Machine learning algorithms to forecast air quality: a survey
Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Lear...
Uložené v:
| Vydané v: | The Artificial intelligence review Ročník 56; číslo 9; s. 10031 - 10066 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.09.2023
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0269-2821, 1573-7462 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011–2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model. |
|---|---|
| AbstractList | Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011-2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model. Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011-2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model.Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011-2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model. |
| Audience | Academic |
| Author | Merayo, Mercedes G. Núñez, Manuel Méndez, Manuel |
| Author_xml | – sequence: 1 givenname: Manuel orcidid: 0000-0001-9808-6401 surname: Méndez fullname: Méndez, Manuel email: manumend@ucm.es organization: Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid – sequence: 2 givenname: Mercedes G. surname: Merayo fullname: Merayo, Mercedes G. organization: Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid – sequence: 3 givenname: Manuel surname: Núñez fullname: Núñez, Manuel organization: Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36820441$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1rHSEYhaWkNDe3_QNdlIFuupnUr7lqoYUQ-gUp3bRrcfSduQZHE50J3H9f00n6kUVwobw-5-jhnKCjmCIg9JLgU4KxeFsI5jvaYsraeqK85U_QhnSCtaLOj9AG051qqaTkGJ2Ucokx7ihnz9Ax20mKOScb9P6bsXsfoQlgcvRxbEwYU_bzfirNnJohZbCmzI3xubleTPDz4V1jmrLkGzg8R08HEwq8uNu36Oenjz_Ov7QX3z9_PT-7aG0n1NwS6YB0ljhQkpgBi25gTvWWEQtikI5bTsGZvu8JSCU5Y7Qz4BynCldJx7bow-p7tfQTOAtxziboq-wnkw86Ga__v4l-r8d0o5ViDDNZDd7cGeR0vUCZ9eSLhRBMhLQUTYVQjCssWEVfP0Av05JjjaepZFIKpSq7RacrNZoA2sch1XdtXQ4mb2tPg6_zM9EJQbmof9iiV_9G-PP3-yoqIFfA5lRKhkFbP5vZp9tEPmiC9W3rem1d19b179Y1r1L6QHrv_qiIraJS4ThC_pvzEdUv_c2-rw |
| CitedBy_id | crossref_primary_10_1007_s11869_025_01752_1 crossref_primary_10_1016_j_uclim_2024_102282 crossref_primary_10_3390_su17125274 crossref_primary_10_1080_24751839_2025_2472503 crossref_primary_10_1016_j_hazadv_2023_100395 crossref_primary_10_1007_s10661_023_12001_2 crossref_primary_10_1007_s10661_024_13447_8 crossref_primary_10_1016_j_jaerosci_2025_106639 crossref_primary_10_1007_s10661_024_12607_0 crossref_primary_10_1007_s13042_024_02329_7 crossref_primary_10_1016_j_apr_2025_102702 crossref_primary_10_1007_s00477_024_02693_4 crossref_primary_10_1038_s41598_024_84342_y crossref_primary_10_1016_j_atmosenv_2024_121017 crossref_primary_10_3390_atmos16080931 crossref_primary_10_1016_j_jia_2025_09_002 crossref_primary_10_1016_j_pce_2024_103849 crossref_primary_10_32604_ee_2024_046644 crossref_primary_10_1186_s12889_023_16694_5 crossref_primary_10_1038_s41598_025_02396_y crossref_primary_10_3390_atmos16050491 crossref_primary_10_3390_su16167062 crossref_primary_10_1007_s11356_024_35404_1 crossref_primary_10_1080_15275922_2023_2297437 crossref_primary_10_1007_s10462_023_10500_9 crossref_primary_10_1007_s00704_025_05658_x crossref_primary_10_3390_technologies12100198 crossref_primary_10_1007_s00477_023_02512_2 crossref_primary_10_1007_s42979_025_04167_y crossref_primary_10_1016_j_rser_2025_115625 crossref_primary_10_3390_app15126391 crossref_primary_10_3390_jrfm17040173 crossref_primary_10_3390_su16030976 crossref_primary_10_1007_s11042_023_17432_0 crossref_primary_10_1007_s11356_025_36265_y crossref_primary_10_1007_s12145_024_01382_8 crossref_primary_10_1016_j_apr_2024_102353 crossref_primary_10_1016_j_envsoft_2024_106048 crossref_primary_10_3389_fenvs_2025_1549209 crossref_primary_10_1016_j_envint_2024_108449 crossref_primary_10_1057_s41599_024_03532_1 crossref_primary_10_17163_ings_n33_2025_06 crossref_primary_10_1016_j_uclim_2025_102415 crossref_primary_10_1109_TIM_2024_3400358 crossref_primary_10_1038_s41598_024_83248_z crossref_primary_10_3233_IDT_240982 crossref_primary_10_3390_app15169088 crossref_primary_10_1051_e3sconf_202450503011 crossref_primary_10_1016_j_envpol_2024_125071 crossref_primary_10_7717_peerj_cs_3162 crossref_primary_10_1007_s11082_025_08169_1 crossref_primary_10_1007_s10532_024_10108_y crossref_primary_10_1016_j_uclim_2024_102262 crossref_primary_10_3390_app14135787 crossref_primary_10_48084_etasr_11665 crossref_primary_10_1002_adsr_202500028 crossref_primary_10_1016_j_ecoenv_2024_116856 crossref_primary_10_2166_wpt_2024_079 crossref_primary_10_1007_s40995_025_01842_w crossref_primary_10_1038_s41612_024_00837_5 crossref_primary_10_1080_23311916_2024_2323813 crossref_primary_10_3390_app131810152 crossref_primary_10_3390_smartcities7060133 crossref_primary_10_1016_j_ifacsc_2025_100298 crossref_primary_10_1007_s10661_023_11408_1 crossref_primary_10_1007_s10661_024_12700_4 crossref_primary_10_3390_atmos16010012 crossref_primary_10_1186_s40068_024_00378_z crossref_primary_10_3390_app14135581 crossref_primary_10_1016_j_scitotenv_2024_176965 crossref_primary_10_1016_j_ccst_2025_100374 crossref_primary_10_3390_su16198471 crossref_primary_10_1007_s13198_024_02535_0 crossref_primary_10_1109_JSEN_2023_3342219 crossref_primary_10_1016_j_scitotenv_2024_176246 crossref_primary_10_3390_atmos14030468 crossref_primary_10_1080_08839514_2024_2371540 crossref_primary_10_3390_atmos14091441 crossref_primary_10_1007_s41742_025_00767_x crossref_primary_10_1109_ACCESS_2024_3520815 crossref_primary_10_3390_su16177477 crossref_primary_10_3390_su15118445 crossref_primary_10_3390_toxics13030217 crossref_primary_10_1109_TFUZZ_2024_3482282 crossref_primary_10_1016_j_atmosenv_2024_120615 crossref_primary_10_1016_j_envpol_2025_126161 crossref_primary_10_3390_atmos16091052 crossref_primary_10_1016_j_jastp_2024_106301 crossref_primary_10_2166_wpt_2025_046 crossref_primary_10_3390_atmos16040429 crossref_primary_10_1016_j_engappai_2023_106041 crossref_primary_10_3390_j8020016 |
| Cites_doi | 10.1109/ACCESS.2019.2941732 10.1109/BigData.2017.8258144 10.1016/j.scs.2020.102567 10.1109/CONIT51480.2021.9498451 10.1016/j.scitotenv.2017.12.139 10.1109/TENCON.2018.8650518 10.1016/j.procs.2016.05.343 10.1007/s00521-015-1853-8 10.1109/ICE3IS54102.2021.9649763 10.1109/SSCI.2016.7850128 10.1109/FSKD.2017.8393403 10.1109/ISSPIT.2011.6151541 10.1109/BigComp51126.2021.00045 10.1007/s00521-019-04492-3 10.1109/DeSE.2019.00111 10.1109/ICARCV.2014.7064399 10.1155/2019/5304535 10.1007/s00521-019-04287-6 10.1109/BigComp48618.2020.00-99 10.1016/j.asoc.2013.05.007 10.1109/CCIS.2018.8691167 10.1016/j.apr.2020.09.003 10.1109/ICKII51822.2021.9574707 10.1002/2017JD028052 10.1109/IJCNN52387.2021.9534167 10.1109/ICAIBD49809.2020.9137441 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.177 10.1016/j.scs.2021.102720 10.1109/GlobalSIP45357.2019.8969343 10.1016/j.asoc.2019.105898 10.1109/TENCON.2019.8929517 10.1109/RAETCS.2018.8443887 10.1109/WiSPNET45539.2019.9032734 10.1109/JSTARS.2016.2541958 10.1109/CITS.2019.8862114 10.23919/J.CC.2020.07.015 10.1016/j.jclepro.2020.121941 10.1109/ICECA52323.2021.9676128 10.1109/CONIELECOMP.2011.5749350 10.1109/ICCISTA.2019.8830667 10.1109/ACCESS.2021.3060744 10.1109/ICCSEC.2017.8446883 10.1002/spe.2413 10.1109/DSAA53316.2021.9564200 10.1109/ICICT46931.2019.8977694 10.1016/j.knosys.2020.106682 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00053 10.1109/AIAM48774.2019.00024 10.1145/3219819.3219822 10.1109/TII.2021.3065425 10.1109/BigDIA53151.2021.9619651 10.1109/BIHTEL.2016.7775721 10.1016/j.jclepro.2018.10.243 10.1109/CCDC.2018.8408092 10.1145/2983323.2983902 10.1016/j.uclim.2021.100989 10.1016/j.uclim.2021.100943 10.1109/ICCEA50009.2020.00124 10.15680/IJIRSET.2019.0805015 10.1109/ICACCS48705.2020.9074431 10.1109/ECTIDAMTNCON51128.2021.9425724 10.1016/j.scitotenv.2019.135934 10.1109/ACCESS.2020.2998145 10.1109/TBDATA.2020.3005368 10.1109/IC3.2018.00020 10.1109/ICSECS52883.2021.00106 10.1109/ICICCS51141.2021.9432078 10.1109/BigData52589.2021.9671941 10.1109/ACCESS.2019.2956599 10.1109/ISCID51228.2020.00052 10.1109/ITAIC.2019.8785751 10.1111/coin.12399 10.1504/ijcse.2021.113652 10.1016/j.apr.2021.101202 10.1016/j.chemosphere.2020.126474 10.1109/CONECCT.2018.8482397 10.1109/ACCESS.2020.3032420 10.1016/j.apr.2020.04.010 10.1145/2487575.2488188 10.1109/CIAPP.2017.8167199 10.1007/s40595-018-0113-0 10.1109/ICSESS.2015.7339050 10.3390/app10072401 10.1007/s11356-020-08948-1 10.1007/s00521-015-1955-3 10.1109/IS48319.2020.9200125 10.1007/s00521-015-1927-7 10.1016/j.jclepro.2020.123231 10.1109/IIAI-AAI.2019.00018 10.1016/j.jclepro.2020.120825 10.1109/ACCESS.2020.2971348 10.1109/ICICOS.2018.8621720 10.1007/978-3-031-21743-2_14 10.1016/j.chemosphere.2022.134250 10.1109/ICCCSP49186.2020.9315252 10.1016/j.aeaoa.2019.100030 10.1109/ACCESS.2019.2925082 10.1002/met.1946 10.1109/PIC.2016.7949469 10.1016/j.snb.2022.133010 10.1007/s00521-018-3532-z 10.1145/3365871.3365884 10.1109/ICECOCS50124.2020.9314380 10.1109/ICOEI.2017.8300926 10.1016/j.scitotenv.2019.135771 10.1109/DS-RT52167.2021.9576143 10.1007/s12145-021-00618-1 10.1109/ICCES51350.2021.9488983 10.1109/ICOEI.2017.8300944 10.1016/j.eswa.2017.04.059 10.1002/clen.201000067 10.1109/TCSS.2021.3056410 10.23919/ChiCC.2019.8865861 10.1109/ACCESS.2019.2932445 10.1145/3369555.3369557 10.1109/WCSP49889.2020.9299738 10.1109/ICCNEA50255.2020.00011 10.1016/j.compeleceng.2021.107257 10.1016/j.aej.2020.12.009 10.1088/1757-899x/1022/1/012123 10.1016/j.envsci.2020.10.015 10.1109/CACRE50138.2020.9230036 10.1155/2019/6780379 10.23919/ChiCC.2018.8483621 10.1016/j.uclim.2021.100834 10.1109/ICMLA.2016.0171 10.1016/j.jclepro.2020.125341 10.1109/TKDE.2018.2823740 10.1016/j.apr.2021.03.008 10.1109/ACCESS.2018.2849820 10.1016/j.jclepro.2020.122722 10.1109/ACCESS.2019.2908081 10.1016/j.uclim.2021.100800 10.1145/3325773.3325788 10.1109/CTIT.2018.8649497 10.1016/j.amc.2013.03.018 10.2478/cait-2020-0060 10.1016/j.ecoinf.2019.101019 10.1109/ISCMI53840.2021.9654925 10.3389/fenvs.2022.924986 10.1109/TBDATA.2020.3047078 10.1016/j.cageo.2013.06.002 10.1109/INCIT.2019.8912072 10.1016/j.neucom.2018.06.049 10.1145/3274895.3274907 10.1109/GUCON.2018.8675022 10.1109/AISEM.2015.7066794 10.22214/ijraset.2019.4395 10.1109/SSCI47803.2020.9308543 10.1109/BigDataService.2019.00027 10.1109/ACCESS.2021.3099111 10.1109/ITAIC.2019.8785602 10.1007/s10479-020-03734-1 10.23919/MIPRO52101.2021.9596860 10.1109/TELSIKS52058.2021.9606405 10.1109/IEA.2019.8715113 10.1016/j.eswa.2020.114513 10.1016/j.scitotenv.2020.139454 10.1109/EEEIC.2011.5874661 10.1007/s11869-020-00925-4 10.1109/ACCESS.2021.3072280 10.1109/ACCESS.2019.2897754 10.1007/s00521-020-05535-w 10.1016/j.atmosenv.2019.116885 10.1109/iCBEB.2012.81 10.1002/tqem.21464 10.1109/ICTKE47035.2019.8966854 10.1007/s11356-021-12657-8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. COPYRIGHT 2023 Springer Copyright Springer Nature B.V. Sep 2023 |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: COPYRIGHT 2023 Springer – notice: Copyright Springer Nature B.V. Sep 2023 |
| DBID | C6C AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRQQA PSYQQ Q9U 7X8 5PM |
| DOI | 10.1007/s10462-023-10424-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection (Proquest) Technology Collection ProQuest One Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| EndPage | 10066 |
| ExternalDocumentID | PMC9933038 A757724730 36820441 10_1007_s10462_023_10424_4 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Universidad Complutense de Madrid – fundername: Comunidad de Madrid grantid: S2018/TCS-4314 funderid: http://dx.doi.org/10.13039/100012818 – fundername: Ministerio de Ciencia, Innovación y Universidades grantid: PID2021-122215NB-C31 funderid: http://dx.doi.org/10.13039/100014440 – fundername: ; – fundername: ; grantid: PID2021-122215NB-C31 – fundername: ; grantid: S2018/TCS-4314 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PRQQA NPM 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c579t-18de15c1de981af075f3d9bc31ce7f8d4c42edabbb1e89843325aedd4290e9853 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939095900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-2821 |
| IngestDate | Tue Nov 04 02:06:42 EST 2025 Thu Oct 02 11:43:57 EDT 2025 Fri Nov 14 11:21:45 EST 2025 Sat Nov 29 10:28:19 EST 2025 Thu Apr 03 06:58:14 EDT 2025 Tue Nov 18 21:05:41 EST 2025 Sat Nov 29 02:43:27 EST 2025 Fri Feb 21 02:41:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Deep learning Air quality Regression algorithms Machine learning |
| Language | English |
| License | The Author(s) 2023. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-18de15c1de981af075f3d9bc31ce7f8d4c42edabbb1e89843325aedd4290e9853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9808-6401 |
| OpenAccessLink | https://link.springer.com/10.1007/s10462-023-10424-4 |
| PMID | 36820441 |
| PQID | 2838879979 |
| PQPubID | 36790 |
| PageCount | 36 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9933038 proquest_miscellaneous_2779349073 proquest_journals_2838879979 gale_infotracacademiconefile_A757724730 pubmed_primary_36820441 crossref_citationtrail_10_1007_s10462_023_10424_4 crossref_primary_10_1007_s10462_023_10424_4 springer_journals_10_1007_s10462_023_10424_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: England |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationTitleAlternate | Artif Intell Rev |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Ao D, Cui Z, Gu D (2019) Hybrid model of air quality prediction using k-means clustering and deep neural network. In: 2019 Chinese Control Conference (CCC), pp 8416–8421. https://doi.org/10.23919/ChiCC.2019.8865861 Alsaedi AS, Liyakathunisa L (2019) Spatial and temporal data analysis with deep learning for air quality prediction. In: 2019 12th International Conference on Developments in eSystems Engineering (DeSE), pp 581–587 . https://doi.org/10.1109/DeSE.2019.00111 HanYLiVOKLamJCKPollittMHow BLUE is the sky? Estimating air qualities in Beijing during the Blue Sky Day period (2008–2012) by Bayesian Multi-task LSTMEnviron Sci Policy2021116697710.1016/j.envsci.2020.10.015 Amado TM, Dela Cruz JC (2018) Development of machine learning-based predictive models for air quality monitoring and characterization. In: TENCON 2018—2018 IEEE Region 10 Conference, pp 0668–0672. https://doi.org/10.1109/TENCON.2018.8650518 BalogunA-LTellaABalooLAdebisiNA review of the inter-correlation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information scienceUrban Climate20214010.1016/j.uclim.2021.100989 QiZWangTSongGHuWLiXZhangZDeep air learning: interpolation, prediction, and feature analysis of fine-grained air qualityIEEE Trans Knowl Data Eng201830122285229710.1109/TKDE.2018.2823740 MaoWWangWJiaoLZhaoSLiuAModeling air quality prediction using a deep learning approach: method optimization and evaluationSustain Cit Soc20216510.1016/j.scs.2020.102567 Kang Z, Qu Z (2017) Application of bp neural network optimized by genetic simulated annealing algorithm to prediction of air quality index in lanzhou. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp 155–160. https://doi.org/10.1109/CIAPP.2017.8167199 Hu J, Zhang X, Liang D, Zhong F (2021) A novel linear interpolation algorithm based on spatial distribution for improvement temporal resolution of pm2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pm_{2.5}$$\end{document} and PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${PM}_{10}$$\end{document}. In: 2021 7th International Conference on Big Data and Information Analytics (BigDIA), pp.60–66. https://doi.org/10.1109/BigDIA53151.2021.9619651 Zheng H, Cheng Y, Li H (2020) Investigation of model ensemble for fine-grained air quality prediction. China Commun 17(7), 207–223. https://doi.org/10.23919/J.CC.2020.07.015 Yang R, Hu X, He L (2020) Prediction of shanghai air quality index based on bp neural network optimized by genetic algorithm. In: 2020 13th International Symposium on Computational Intelligence and Design (ISCID), pp. 205–208. https://doi.org/10.1109/ISCID51228.2020.00052 Thaweephol K, Wiwatwattana N (2019) Long short-term memory deep neural network model for PM2.5 forecasting in the bangkok urban area. In: 2019 17th International Conference on ICT and Knowledge Engineering (ICT KE), pp 1–6. https://doi.org/10.1109/ICTKE47035.2019.8966854 Jato-EspinoDCastillo-LopezERodriguez-HernandezJBallester-MuñozFAir quality modelling in Catalonia from a combination of solar radiation, surface reflectance and elevationSci Total Environ201862418920010.1016/j.scitotenv.2017.12.139 Yi X, Zhang J, Wang Z, Li T, Zheng Y (2018) Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’18, pp 965–973. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/3219819.3219822 Kaur Bamrah S, R SK, S GK (2020) Application of random forests for air quality estimation in india by adopting terrain features. In: 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), pp 1–6. https://doi.org/10.1109/ICCCSP49186.2020.9315252 Yan L, Wu Y, Yan L, Zhou M (2018) Encoder-decoder model for forecast of PM2.5 concentration per hour. In: 2018 1st International Cognitive Cities Conference (IC3), pp 45–50 . https://doi.org/10.1109/IC3.2018.00020 Li Y, Shen X, Han D, Sun J, Shen Y (2018) Spatio-temporal-aware sparse denoising autoencoder neural network for air quality prediction. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp 96–100. https://doi.org/10.1109/CCIS.2018.8691167 LangPECarslawDCMollerSJA trend analysis approach for air quality network dataAtmos Environ X2019210.1016/j.aeaoa.2019.100030 BougoudisIDemertzisKIliadisLHISYCOL a hybrid computational intelligence system for combined machine learning: The case of air pollution modeling in AthensNeural Comput Appl20162751191120610.1007/s00521-015-1927-7 Le, V.-D., Bui, T.-C., Cha, S.-K.: Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 55–62 (2020). https://doi.org/10.1109/BigComp48618.2020.00-99 Ali ShahSAAzizWAhmed NadeemMSAlmaraashiMShimS-OHabeebullahTMMateosCA novel Phase Space Reconstruction- (PSR-) based predictive algorithm to forecast atmospheric particulate matter concentrationSci Program201910.1155/2019/6780379 WangJZhangXGuoZLuHDeveloping an early-warning system for air quality prediction and assessment of cities in ChinaExpert Syst Appl201784C10211610.1016/j.eswa.2017.04.059 De Vito S, Delli Veneri P, Esposito E, Salvato M, Bright V, Jones RL, Popoola O (2015) Dynamic multivariate regression for on-field calibration of high speed air quality chemical multi-sensor systems. In: 2015 XVIII AISEM Annual Conference, pp 1–3. https://doi.org/10.1109/AISEM.2015.7066794 AmeerSShahMAKhanASongHMapleCIslamSUAsgharMNComparative analysis of machine learning techniques for predicting air quality in smart citiesIEEE Access2019712832512833810.1109/ACCESS.2019.2925082 HajmohammadiHHeydeckerBMultivariate time series modelling for urban air qualityUrban Clim20213710.1016/j.uclim.2021.100834 Putra KT, Prayitno Cahyadi EF, Mamonto AS, Berutu SS, Muharom S (2021) Forecasting air quality using massive-scale wsn based on convolutional LSTM network. In: 2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), pp 1–6. https://doi.org/10.1109/ICE3IS54102.2021.9649763 TellaABalogunA-LAdebisiNAbdullahSSpatial assessment of PM10 hotspots using Random Forest, K-Nearest Neighbour and Naïve BayesAtmos Pollut Res2021121010.1016/j.apr.2021.101202 ZhangLLiuPZhaoLWangGZhangWLiuJAir quality predictions with a semi-supervised bidirectional LSTM neural networkAtmos Pollut Res202112132833910.1016/j.apr.2020.09.003 RahimpourAAmanollahiJTzanisCGAir quality data series estimation based on machine learning approaches for urban environmentsAir Qual Atmos Health20211419120110.1007/s11869-020-00925-4 SunXXuWJiangHWangQA deep multitask learning approach for air quality predictionAnn Oper Res20203035179428826910.1007/s10479-020-03734-107422003 Mahalingam U, Elangovan K, Dobhal H, Valliappa C, Shrestha S, Kedam G (2019) A machine learning model for air quality prediction for smart cities. In: 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp 452–457. https://doi.org/10.1109/WiSPNET45539.2019.9032734 PaiT-YHanakiKSuH-CYuL-FA 24-h forecast of oxidant concentration in Tokyo using neural network and fuzzy learning approachClean Soil Air Water201341872973610.1002/clen.201000067 NemadeSA survey on different machine learning techniques for air quality forecasting for urban air pollutionInt J Res Appl Sci Eng Technol201972185219410.22214/ijraset.2019.4395 ZhuSSunJLiuYLuMLiuXThe air quality index trend forecasting based on improved error correction model and data preprocessing for 17 port cities in ChinaChemosphere202025210.1016/j.chemosphere.2020.126474 Alhirmizy S, Qader B (2019) Multivariate time series forecasting with LSTM for madrid, spain pollution. In: 2019 International Conference on Computing and Information Science and Technology and Their Applications (ICCISTA), pp 1–5 (2019). https://doi.org/10.1109/ICCISTA.2019.8830667 Cheng J-C, Peng H-C (2021) Air quality forecast and evaluation based on long short-term memory network and fuzzy algorithm. In: 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII), pp 88–91. https://doi.org/10.1109/ICKII51822.2021.9574707 SonawaniSPatilKChumchuPNO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NO}_2$$\end{document} pollutant concentration forecasting for air quality monitoring by using an optimised deep learning bidirectional GRU modelInt J Comput Sci Eng2021241647310.1504/ijcse.2021.113652 WangJSongGA deep spatial-temporal ensemble model for air quality predictionNeurocomputing201831419820610.1016/j.neucom.2018.06.049 Chakradhar Reddy K, Nagarjuna Reddy K, Brahmaji Prasad K, Selvi Rajendran P (2021) The prediction of quality of the air using supervised learning. In: 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp 1–5. https://doi.org/10.1109/ICCES51350.2021.9488983 NguyenMHLe NguyenPNguyenKLeVANguyenT-HJiYPM2.5 prediction using genetic algorithm-based feature selection and encoder-decoder modelIEEE Access20219573385735010.1109/ACCESS.2021.3072280 Colchado LE, Villanueva E, Ochoa-Luna J (2021) A neural network architecture with an attention-based layer for spatial prediction of fine particulate matter. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA 10424_CR129 10424_CR128 S Ameer (10424_CR8) 2019; 7 X Sun (10424_CR131) 2020; 303 SG Gocheva-Ilieva (10424_CR38) 2020; 20 S Ni (10424_CR101) 2023; 376 J Ma (10424_CR84) 2020; 705 B Liu (10424_CR77) 2021; 8 S Abirami (10424_CR2) 2021; 283 10424_CR7 10424_CR9 KKR Samal (10424_CR114) 2021; 36 10424_CR69 10424_CR130 M Sharma (10424_CR122) 2021; 1022 10424_CR68 M Fu (10424_CR34) 2015; 26 10424_CR133 10424_CR132 10424_CR64 10424_CR61 H Hajmohammadi (10424_CR41) 2021; 37 10424_CR62 10424_CR137 10424_CR136 10424_CR60 10424_CR135 R Yan (10424_CR145) 2021; 169 10424_CR119 JK Sethi (10424_CR120) 2021 J Wang (10424_CR142) 2021; 33 M Durić (10424_CR32) 2020; 27 Y Zhou (10424_CR167) 2019; 209 10424_CR1 L Contreras (10424_CR27) 2016; 80 10424_CR4 K Zhang (10424_CR154) 2020; 277 10424_CR6 10424_CR58 10424_CR59 KKR Samal (10424_CR113) 2021; 39 10424_CR56 Q Zhang (10424_CR155) 2020; 275 10424_CR123 10424_CR55 10424_CR52 10424_CR53 10424_CR127 N Jin (10424_CR54) 2021; 17 10424_CR80 H Li (10424_CR66) 2020; 11 C-Y Lin (10424_CR71) 2021; 12 T-Y Pai (10424_CR107) 2013; 41 10424_CR152 10424_CR151 10424_CR89 T Liu (10424_CR75) 2018; 123 10424_CR87 10424_CR88 10424_CR85 10424_CR86 10424_CR159 10424_CR81 Z Zhang (10424_CR158) 2022; 10 S Agarwal (10424_CR3) 2020; 735 A-L Balogun (10424_CR12) 2021; 40 Y Han (10424_CR42) 2020 Z Zhao (10424_CR162) 2020 Y Han (10424_CR43) 2021; 116 J Li (10424_CR65) 2019 UA Bhatti (10424_CR16) 2021; 9 Z Qi (10424_CR111) 2018; 30 Y Wang (10424_CR139) 2019; 7 L Zhang (10424_CR156) 2021; 12 10424_CR78 10424_CR79 D Jato-Espino (10424_CR51) 2018; 624 10424_CR144 10424_CR74 D Seng (10424_CR118) 2021; 60 10424_CR72 10424_CR149 10424_CR73 10424_CR148 10424_CR147 A Shishegaran (10424_CR124) 2020; 259 10424_CR146 S Metia (10424_CR94) 2016; 9 X Yi (10424_CR150) 2020 S Zhu (10424_CR169) 2020; 252 Y Chen (10424_CR21) 2017; 47 PE Lang (10424_CR63) 2019; 2 A Tella (10424_CR134) 2021; 12 BB Semlali (10424_CR117) 2021; 93 A-L Balogun (10424_CR11) 2022; 299 10424_CR29 Y Huang (10424_CR46) 2020; 8 10424_CR170 10424_CR25 10424_CR26 10424_CR24 10424_CR171 10424_CR22 10424_CR20 R Navares (10424_CR97) 2020; 55 H Wahid (10424_CR138) 2013; 13 MH Nguyen (10424_CR100) 2021; 9 E Sharma (10424_CR121) 2020; 709 10424_CR91 J Wang (10424_CR141) 2017; 84 W Mao (10424_CR90) 2021; 65 B Liu (10424_CR76) 2019; 7 S Nemade (10424_CR98) 2019; 7 E Eslami (10424_CR33) 2019; 32 KI Hoi (10424_CR44) 2013; 59 J Ma (10424_CR83) 2019; 7 Z Wu (10424_CR143) 2019; 31 PJ García Nieto (10424_CR37) 2013; 219 10424_CR19 10424_CR17 10424_CR14 10424_CR163 I Bougoudis (10424_CR18) 2016; 27 10424_CR13 10424_CR160 10424_CR10 10424_CR99 10424_CR166 C Guo (10424_CR40) 2020; 8 10424_CR96 10424_CR165 D Iskandaryan (10424_CR49) 2020 S Sonawani (10424_CR126) 2021; 24 10424_CR164 10424_CR95 Y-C Lin (10424_CR70) 2020; 86 10424_CR92 10424_CR93 10424_CR168 10424_CR109 A Ozturk (10424_CR106) 2021; 37 10424_CR108 A Rahimpour (10424_CR112) 2021; 14 D Corral-Plaza (10424_CR28) 2021; 213 Y Zhang (10424_CR153) 2019; 7 G Zhao (10424_CR161) 2019; 7 J Wang (10424_CR140) 2018; 314 SA Ali Shah (10424_CR5) 2019 D Schürholz (10424_CR115) 2020; 271 BT Ong (10424_CR104) 2016; 27 P-W Chiang (10424_CR23) 2021; 9 10424_CR47 10424_CR48 10424_CR45 Z Zhang (10424_CR157) 2021; 312 10424_CR110 10424_CR116 K Gu (10424_CR39) 2020 K Karatzas (10424_CR57) 2018; 5 T Li (10424_CR67) 2020; 8 10424_CR36 M Niharika Venkatadri (10424_CR102) 2014; 5 10424_CR35 J Ma (10424_CR82) 2019; 214 10424_CR30 P-W Soh (10424_CR125) 2018; 6 10424_CR31 10424_CR105 R Janarthanan (10424_CR50) 2021; 67 10424_CR103 S Bharat Deshmukh (10424_CR15) 2021; 7 |
| References_xml | – reference: Pasupuleti VR, Uhasri Kalyan P, Srikanth Reddy HK (2020) Air quality prediction of data log by machine learning. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp 1395–1399. https://doi.org/10.1109/ICACCS48705.2020.9074431 – reference: LangPECarslawDCMollerSJA trend analysis approach for air quality network dataAtmos Environ X2019210.1016/j.aeaoa.2019.100030 – reference: ZhaoGHuangGHeHHeHRenJRegional spatiotemporal collaborative prediction model for air qualityIEEE Access2019713490313491910.1109/ACCESS.2019.2941732 – reference: Jiao Y, Wang Z, Zhang Y (2019) Prediction of air quality index based on LSTM. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp 17–20. https://doi.org/10.1109/ITAIC.2019.8785602 – reference: Zhang S, Li X, Li Y, Mei J (2018) Prediction of urban PM2.5 concentration based on wavelet neural network. In: 2018 Chinese Control And Decision Conference (CCDC), pp 5514–5519. https://doi.org/10.1109/CCDC.2018.8408092 – reference: SunXXuWJiangHWangQA deep multitask learning approach for air quality predictionAnn Oper Res20203035179428826910.1007/s10479-020-03734-107422003 – reference: Kuo RJ, Prasetyo B, Wibowo BS (2019) Deep learning-based approach for air quality forecasting by using recurrent neural network with gaussian process in taiwan. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), pp 471–474. https://doi.org/10.1109/IEA.2019.8715113 – reference: Zheng H, Cheng Y, Li H (2020) Investigation of model ensemble for fine-grained air quality prediction. China Commun 17(7), 207–223. https://doi.org/10.23919/J.CC.2020.07.015 – reference: HanYLamJCKLiVOZhangQA domain-specific Bayesian deep-learning approach for air pollution forecastIEEE Trans Big Data202010.1109/TBDATA.2020.3005368 – reference: Alsaedi AS, Liyakathunisa L (2019) Spatial and temporal data analysis with deep learning for air quality prediction. In: 2019 12th International Conference on Developments in eSystems Engineering (DeSE), pp 581–587 . https://doi.org/10.1109/DeSE.2019.00111 – reference: Yarragunta S, Nabi MA, P J, S R (2021) Prediction of air pollutants using supervised machine learning. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1633–1640. https://doi.org/10.1109/ICICCS51141.2021.9432078 – reference: Sotomayor-Olmedo A, Aceves-Fernandez MA, Gorrostieta-Hurtado E, Pedraza-Ortega JC, Vargas-Soto JE, Ramos-Arreguin JM, Villaseñor-Carillo U (2011) Evaluating trends of airborne contaminants by using support vector regression techniques. In: CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers, pp 137–141. https://doi.org/10.1109/CONIELECOMP.2011.5749350 – reference: AgarwalSSharmaSSureshRRahmanMHVranckxSMaiheuBBlythLJanssenSGargavaPShuklaVKBatraSAir quality forecasting using artificial neural networks with real time dynamic error correction in highly polluted regionsSci Total Environ202073510.1016/j.scitotenv.2020.139454 – reference: Barrón-Adame JM, Ibarra-Manzano OG, Vega-Corona A, Cortina-Januchs MG, Andina D (2012) Air pollution data classification by SOM Neural Network. In: World Automation Congress 2012, pp 1–5. https://ieeexplore.ieee.org/abstract/document/6320993 – reference: Alhirmizy S, Qader B (2019) Multivariate time series forecasting with LSTM for madrid, spain pollution. In: 2019 International Conference on Computing and Information Science and Technology and Their Applications (ICCISTA), pp 1–5 (2019). https://doi.org/10.1109/ICCISTA.2019.8830667 – reference: Ali ShahSAAzizWAhmed NadeemMSAlmaraashiMShimS-OHabeebullahTMMateosCA novel Phase Space Reconstruction- (PSR-) based predictive algorithm to forecast atmospheric particulate matter concentrationSci Program201910.1155/2019/6780379 – reference: Matović K, Vlahović N (2021) Air quality prediction in smart city. In: 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), pp 287–290 . https://doi.org/10.1109/TELSIKS52058.2021.9606405 – reference: Lin Y, Mago N, Gao Y, Li Y, Chiang Y-Y, Shahabi C, Ambite JL (2018) Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. SIGSPATIAL ’18, pp 359–368. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3274895.3274907 – reference: SethiJKMittalMAn efficient correlation based adaptive lasso regression method for air quality index predictionEarth Sci Inform202110.1007/s12145-021-00618-1 – reference: Su Y, Xie H (2020) Prediction of aqi by bp neural network based on genetic algorithm. In: 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), pp 625–629. https://doi.org/10.1109/CACRE50138.2020.9230036 – reference: AbiramiSChitraPRegional air quality forecasting using spatiotemporal deep learningJ Clean Prod202128310.1016/j.jclepro.2020.125341 – reference: Campalani P, Nguyen TNT, Mantovani S, Mazzini G (2011) On the automatic prediction of PM10 with in-situ measurements, satellite aot retrievals and ancillary data. In: 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp 093–098. https://doi.org/10.1109/ISSPIT.2011.6151541 – reference: SamalKKRPandaAKBabuKSDasSKMulti-output TCN autoencoder for long-term pollution forecasting for multiple sitesUrban Clim20213910.1016/j.uclim.2021.100943 – reference: Asadollahfardi G, Madinejad M, Aria SH, Motamadi V (2016) Predicting particulate matter (PM2.5) concentrations in the air of Shahr-e Ray City, Iran, by using an Artificial Neural Network. Environmental Quality Management 25(4), 71–83. https://doi.org/10.1002/tqem.21464 – reference: MaJLiZChengJCPDingYLinCXuZAir quality prediction at new stations using spatially transferred bi-directional long short-term memory networkSci Total Environ202070510.1016/j.scitotenv.2019.135771 – reference: Schürholz D, Nurgazy M, Zaslavsky A, Jayaraman PP, Kubler S, Mitra K, Saguna S (2019) Myaqi: Context-aware outdoor air pollution monitoring system. In: Proceedings of the 9th International Conference on the Internet of Things. IoT 2019, pp 1–8. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3365871.3365884D – reference: Thaweephol K, Wiwatwattana N (2019) Long short-term memory deep neural network model for PM2.5 forecasting in the bangkok urban area. In: 2019 17th International Conference on ICT and Knowledge Engineering (ICT KE), pp 1–6. https://doi.org/10.1109/ICTKE47035.2019.8966854 – reference: Zhoul L, Chenl M, Ni Q (2020) A hybrid prophet-LSTM model for prediction of air quality index. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp 595–601. https://doi.org/10.1109/SSCI47803.2020.9308543 – reference: FuMWangWLeZKhorramMSPrediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray modelNeural Comput Appl20152681789179710.1007/s00521-015-1853-8 – reference: Zhenghua W, Zhihui T (2017) Prediction of air quality index based on improved neural network. In: 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC), pp 200–204. https://doi.org/10.1109/ICCSEC.2017.8446883 – reference: Gocheva-IlievaSGIvanovAVLivierisIEHigh performance machine learning models of large scale air pollution data in urban areaCybern Inf Technol2020206496010.2478/cait-2020-0060 – reference: Ganesh SS, Modali SH, Palreddy SR, Arulmozhivarman P (2017) Forecasting air quality index using regression models: A case study on delhi and houston. In: 2017 International Conference on Trends in Electronics and Informatics (ICEI), pp 248–254. https://doi.org/10.1109/ICOEI.2017.8300926 – reference: Kiftiyani U, Nazhifah SA (2021) Deep learning models for air pollution forecasting in Seoul South Korea. In: 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), pp 547–551. https://doi.org/10.1109/ICSECS52883.2021.00106 – reference: Yao L, Lu N, Jiang S (2012) Artificial neural network (ANN) for multi-source PM2.5 estimation using surface, modis, and meteorological data. In: 2012 International Conference on Biomedical Engineering and Biotechnology, pp 1228–1231. https://doi.org/10.1109/iCBEB.2012.81 – reference: Zhu W, Liu X, Zhu Z (2020) Optimized air quality prediction model based on neural network. In: 2020 International Conference on Computer Engineering and Application (ICCEA), pp 565–568. https://doi.org/10.1109/ICCEA50009.2020.00124 – reference: ChenYLiFDengZChenXHeJPM2.5 forecasting with hybrid LSE model-based approachSoftw Pract Exp201747337939010.1002/spe.2413 – reference: ZhangZZengYYanKA hybrid deep learning technology for PM2.5 air quality forecastingEnviron Sci Pollut Res2021312394093942210.1007/s11356-021-12657-8 – reference: NguyenMHLe NguyenPNguyenKLeVANguyenT-HJiYPM2.5 prediction using genetic algorithm-based feature selection and encoder-decoder modelIEEE Access20219573385735010.1109/ACCESS.2021.3072280 – reference: ZhangLLiuPZhaoLWangGZhangWLiuJAir quality predictions with a semi-supervised bidirectional LSTM neural networkAtmos Pollut Res202112132833910.1016/j.apr.2020.09.003 – reference: Ao D, Cui Z, Gu D (2019) Hybrid model of air quality prediction using k-means clustering and deep neural network. In: 2019 Chinese Control Conference (CCC), pp 8416–8421. https://doi.org/10.23919/ChiCC.2019.8865861 – reference: Chowdhury A-S, Uddin MS, Tanjim MR, Noor F, Rahman RM (2020) Application of data mining techniques on air pollution of Dhaka city. In: 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp 562–567. https://doi.org/10.1109/IS48319.2020.9200125 – reference: LiHWangJYangHA novel dynamic ensemble air quality index forecasting systemAtmos Pollut Res20201181258127010.1016/j.apr.2020.04.010 – reference: NavaresRAznarteJLPredicting air quality with deep learning LSTM: towards comprehensive modelsEco Inform20205510.1016/j.ecoinf.2019.101019 – reference: ChiangP-WHorngS-JHybrid time-series framework for daily-based PM2.5 forecastingIEEE Access2021910416210417610.1109/ACCESS.2021.3099111 – reference: Chakradhar Reddy K, Nagarjuna Reddy K, Brahmaji Prasad K, Selvi Rajendran P (2021) The prediction of quality of the air using supervised learning. In: 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp 1–5. https://doi.org/10.1109/ICCES51350.2021.9488983 – reference: GuKZhouYSunHZhaoLLiuSPrediction of air quality in Shenzhen based on neural network algorithmNeural Comput Appl202010.1007/s00521-019-04492-3 – reference: Sunori SK, Negi PB, Maurya S, Mittal A, Bhakuni AS, Juneja P(2021) Neural network and machine learning based prediction model design for air pollutant PM10. In: 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp 1128–1133. https://doi.org/10.1109/ICECA52323.2021.9676128 – reference: Zhu H, Hu J (2019) Air quality forecasting using svr with quasi-linear kernel. In: 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), pp 1–5. https://doi.org/10.1109/CITS.2019.8862114 – reference: Huang M, Zhang T, Wang J, Zhu L (2015) A new air quality forecasting model using data mining and artificial neural network. In: 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp 259–262. https://doi.org/10.1109/ICSESS.2015.7339050 – reference: Mu B, Li S, Yuan S (2017) An improved effective approach for urban air quality forecast. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp 935–942. https://doi.org/10.1109/FSKD.2017.8393403 – reference: SengDZhangQZhangXChenGChenXSpatiotemporal prediction of air quality based on LSTM neural networkAlex Eng J20216022021203210.1016/j.aej.2020.12.009 – reference: Li L, Li Z, Reichmann L, Woodbridge D (2019) A scalable and reliable model for real-time air quality prediction. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp 51–57. https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00053 – reference: Li W, Yi L, Yin X (2020) Real time air monitoring, analysis and prediction system based on internet of things and LSTM. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP), pp 188–194. https://doi.org/10.1109/WCSP49889.2020.9299738 – reference: ZhangQWuSWangXSunBLiuHA PM2.5 concentration prediction model based on multi-task deep learning for intensive air quality monitoring stationsJ Clean Prod202027512272210.1016/j.jclepro.2020.122722 – reference: Colchado LE, Villanueva E, Ochoa-Luna J (2021) A neural network architecture with an attention-based layer for spatial prediction of fine particulate matter. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp 1–10. https://doi.org/10.1109/DSAA53316.2021.9564200 – reference: MaJChengJCPLinCTanYZhangJImproving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniquesAtmos Environ201921410.1016/j.atmosenv.2019.116885 – reference: Ouyang X, Yang Y, Zhang Y, Zhou W (2021) Spatial-temporal dynamic graph convolution neural network for air quality prediction. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp 1–8. https://doi.org/10.1109/IJCNN52387.2021.9534167 – reference: WangJZhangXGuoZLuHDeveloping an early-warning system for air quality prediction and assessment of cities in ChinaExpert Syst Appl201784C10211610.1016/j.eswa.2017.04.059 – reference: Yadav V, Nath S (2018) Daily prediction of PM10 using radial basis function and generalized regression neural network. In: 2018 Recent Advances on Engineering, Technology and Computational Sciences (RAETCS), pp 1–5. https://doi.org/10.1109/RAETCS.2018.8443887 – reference: Lim YB, Aliyu I, Lim CG (2019) Air pollution matter prediction using recurrent neural networks with sequential data. In: Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. ISMSI 2019, pp 40–44. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3325773.3325788 – reference: AmeerSShahMAKhanASongHMapleCIslamSUAsgharMNComparative analysis of machine learning techniques for predicting air quality in smart citiesIEEE Access2019712832512833810.1109/ACCESS.2019.2925082 – reference: Ochando LC, Julián CIF, Ochando FC, Ferri C (2015) Airvlc: An application for real-time forecasting urban air pollution. In: Proceedings of the 2nd International Conference on Mining Urban Data—Volume 1392. MUD’15, pp 72–79. CEUR-WS.org, Aachen, DEU – reference: WangYKongTAir quality predictive modeling based on an improved decision tree in a weather-smart gridIEEE Access2019717289217290110.1109/ACCESS.2019.2956599 – reference: MetiaSOduroSDDucHNHaQInverse air-pollutant emission and prediction using extended fractional Kalman filteringIEEE J Sel Top Appl Earth Observ Remote Sens2016952051206310.1109/JSTARS.2016.2541958 – reference: ZhangYWangYGaoMMaQZhaoJZhangRWangQHuangLA predictive data feature exploration-based air quality prediction approachIEEE Access20197307323074310.1109/ACCESS.2019.2897754 – reference: Niharika VenkatadriMRaoPA survey on air quality forecasting techniquesInt J Comput Sci Inf Technol20145110310710.15680/IJIRSET.2019.0805015 – reference: GuoCLiuGLyuLChenC-HAn unsupervised PM2.5 estimation method with different spatio-temporal resolutions based on kidw-tcgruIEEE Access2020819026319027610.1109/ACCESS.2020.3032420 – reference: MaJDingYGanVJLLinCWanZSpatiotemporal prediction of PM2.5 concentrations at different time granularities using IDW-BLSTMIEEE Access2019710789710790710.1109/ACCESS.2019.2932445 – reference: DurićMVujovićDShort-term forecasting of air pollution index in Belgrade, SerbiaMeteorol Appl2020275194610.1002/met.1946 – reference: Ma L, Gao Y, Zhao C (2020) Research on machine learning prediction of air quality index based on spss. In: 2020 International Conference on Computer Network, Electronic and Automation (ICCNEA), pp 1–5. https://doi.org/10.1109/ICCNEA50255.2020.00011 – reference: Bharat DeshmukhSPrakash ShirsatKPrashant DhotreSRavsaheb JejurkarPA survey on machine learning-based prediction of air quality indexInt J Adv Res Innov Ideas Educ2021712031207 – reference: De Vito S, Delli Veneri P, Esposito E, Salvato M, Bright V, Jones RL, Popoola O (2015) Dynamic multivariate regression for on-field calibration of high speed air quality chemical multi-sensor systems. In: 2015 XVIII AISEM Annual Conference, pp 1–3. https://doi.org/10.1109/AISEM.2015.7066794 – reference: LiTHuaMWuXA hybrid CNN-LSTM model for forecasting particulate matter (PM2.5)IEEE Access20208269332694010.1109/ACCESS.2020.2971348 – reference: Cheng J-C, Peng H-C (2021) Air quality forecast and evaluation based on long short-term memory network and fuzzy algorithm. In: 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII), pp 88–91. https://doi.org/10.1109/ICKII51822.2021.9574707 – reference: Li Y, Shen X, Han D, Sun J, Shen Y (2018) Spatio-temporal-aware sparse denoising autoencoder neural network for air quality prediction. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp 96–100. https://doi.org/10.1109/CCIS.2018.8691167 – reference: RahimpourAAmanollahiJTzanisCGAir quality data series estimation based on machine learning approaches for urban environmentsAir Qual Atmos Health20211419120110.1007/s11869-020-00925-4 – reference: García NietoPJCombarroEFDel Coz DíazJJMontañésEA svm-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case studyAppl Math Comput2013219178923893710.1016/j.amc.2013.03.018 – reference: JanarthananRPartheebanPSomasundaramKNavin ElamparithiPA deep learning approach for prediction of air quality index in a metropolitan citySustain Cities Soc20216710.1016/j.scs.2021.102720 – reference: Kök İ, Şimşek MU, Özdemir S (2017) A deep learning model for air quality prediction in smart cities. In: 2017 IEEE International Conference on Big Data (Big Data), pp 1983–1990 . https://doi.org/10.1109/BigData.2017.8258144 – reference: Le, V.-D., Bui, T.-C., Cha, S.-K.: Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 55–62 (2020). https://doi.org/10.1109/BigComp48618.2020.00-99 – reference: WahidHHaQPDucHAzziMNeural network-based meta-modelling approach for estimating spatial distribution of air pollutant levelsAppl Soft Comput201313104087409610.1016/j.asoc.2013.05.007 – reference: IskandaryanDRamosFTrillesSAir quality prediction in smart cities using machine learning technologies based on sensor data: a reviewAppl Sci202010.3390/app10072401 – reference: Li D, Yu H, Geng Y-a, Li X, Li Q (2021) DDGNet: A dual-stage dynamic spatio-temporal graph network for PM2.5 forecasting. In: 2021 IEEE International Conference on Big Data (Big Data), pp 1679–1685. https://doi.org/10.1109/BigData52589.2021.9671941 – reference: Madaan D, Dua R, Mukherjee P, Lall B (2019) Vayuanukulani: Adaptive memory networks for air pollution forecasting. In: 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp 1–5. https://doi.org/10.1109/GlobalSIP45357.2019.8969343 – reference: Putra KT, Prayitno Cahyadi EF, Mamonto AS, Berutu SS, Muharom S (2021) Forecasting air quality using massive-scale wsn based on convolutional LSTM network. In: 2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), pp 1–6. https://doi.org/10.1109/ICE3IS54102.2021.9649763 – reference: SonawaniSPatilKChumchuPNO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NO}_2$$\end{document} pollutant concentration forecasting for air quality monitoring by using an optimised deep learning bidirectional GRU modelInt J Comput Sci Eng2021241647310.1504/ijcse.2021.113652 – reference: Méndez M, Montero C, Núñez M (2022) Using deep transformer based models to predict ozone levels. In: Intelligent Information and Database Systems—14th Asian Conference, ACIIDS 2022, Part I. Lecture Notes in Computer Science, vol 13757, pp 169–182. Springer. https://doi.org/10.1007/978-3-031-21743-2_14 – reference: ZhaoZQinJHeZLiHYangYZhangRCombining forward with recurrent neural networks for hourly air quality prediction in Northwest of ChinaEnviron Sci Pollut Res202010.1007/s11356-020-08948-1 – reference: Zheng Y, Liu F, Hsieh H-P (2013) U-air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’13, pp 1436–1444. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2487575.2488188 – reference: Metia S, Oduro SD, Ha QP, Due H (2014) Air pollution prediction using matérn function based extended fractional Kalman filtering. In: 2014 13th International Conference on Control Automation Robotics Vision (ICARCV), pp 758–763. https://doi.org/10.1109/ICARCV.2014.7064399 – reference: ZhangKThéJXieGYuHMulti-step ahead forecasting of regional air quality using spatial-temporal deep neural networks: a case study of Huaihai economic zoneJ Clean Prod202027710.1016/j.jclepro.2020.123231 – reference: BougoudisIDemertzisKIliadisLHISYCOL a hybrid computational intelligence system for combined machine learning: The case of air pollution modeling in AthensNeural Comput Appl20162751191120610.1007/s00521-015-1927-7 – reference: EslamiESalmanAKChoiYSayeedALopsYA data ensemble approach for real-time air quality forecasting using extremely randomized trees and deep neural networksNeural Comput Appl2019327563757910.1007/s00521-019-04287-6 – reference: Mei G, Zhang H, Zhang B (2016) Improving elman neural network model via fusion of new feedback mechanism and genetic algorithm. In: 2016 International Conference on Progress in Informatics and Computing (PIC), pp 69–73. https://doi.org/10.1109/PIC.2016.7949469 – reference: SharmaEDeoRCPrasadRParisiAVA hybrid air quality early-warning framework: an hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithmsSci Total Environ202070910.1016/j.scitotenv.2019.135934 – reference: SohP-WChangJ-WHuangJ-WAdaptive deep learning-based air quality prediction model using the most relevant spatial-temporal relationsIEEE Access20186381863819910.1109/ACCESS.2018.2849820 – reference: Zhang C, Yuan D (2015) Fast fine-grained air quality index level prediction using random forest algorithm on cluster computing of spark. In: 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp 929–934 . https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.177 – reference: ZhouYChangF-JChangL-CKaoI-FWangY-SExplore a deep learning multi-output neural network for regional multi-step-ahead air quality forecastsJ Clean Prod201920913414510.1016/j.jclepro.2018.10.243 – reference: HanYLiVOKLamJCKPollittMHow BLUE is the sky? Estimating air qualities in Beijing during the Blue Sky Day period (2008–2012) by Bayesian Multi-task LSTMEnviron Sci Policy2021116697710.1016/j.envsci.2020.10.015 – reference: TellaABalogunA-LAdebisiNAbdullahSSpatial assessment of PM10 hotspots using Random Forest, K-Nearest Neighbour and Naïve BayesAtmos Pollut Res2021121010.1016/j.apr.2021.101202 – reference: YiXDuanZLiRZhangJLiTZhengYPredicting fine-grained air quality based on deep neural networksIEEE Trans Big Data202010.1109/TBDATA.2020.3047078 – reference: Yi X, Zhang J, Wang Z, Li T, Zheng Y (2018) Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’18, pp 965–973. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/3219819.3219822 – reference: Choi J, Kim J, Jung K (2021) Air quality prediction with 1-dimensional convolution and attention on multi-modal features. In: 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 196–202. https://doi.org/10.1109/BigComp51126.2021.00045 – reference: WuZZhangSStudy on the spatial-temporal change characteristics and influence factors of fog and haze pollution based on gamNeural Comput Appl20193151619163110.1007/s00521-018-3532-z – reference: JinNZengYYanKJiZMultivariate air quality forecasting with nested long short term memory neural networkIEEE Trans Ind Inf202117128514852210.1109/TII.2021.3065425 – reference: LiuBYanSLiJQuGLiYLangJGuRA sequence-to-sequence air quality predictor based on the n-step recurrent predictionIEEE Access20197433314334510.1109/ACCESS.2019.2908081 – reference: SchürholzDKublerSZaslavskyAArtificial intelligence-enabled context-aware air quality prediction for smart citiesJ Clean Prod202027110.1016/j.jclepro.2020.121941 – reference: Dedovic MM, Avdakovic S, Turkovic I, Dautbasic N, Konjic T (2016) Forecasting PM10 concentrations using neural networks and system for improving air quality. In: 2016 XI International Symposium on Telecommunications (BIHTEL), pp 1–6. https://doi.org/10.1109/BIHTEL.2016.7775721 – reference: PaiT-YHanakiKSuH-CYuL-FA 24-h forecast of oxidant concentration in Tokyo using neural network and fuzzy learning approachClean Soil Air Water201341872973610.1002/clen.201000067 – reference: Liu W, Zhang H, Liu Q (2019) An air quality grade forecasting approach based on ensemble learning. In: 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), pp 87–91. https://doi.org/10.1109/AIAM48774.2019.00024 – reference: Hota L, Dash PK, Sahoo KS, Gandomi AH (2021) Air quality index analysis of indian cities during covid-19 using machine learning models: a comparative study. In: 2021 8th International Conference on Soft Computing Machine Intelligence (ISCMI), pp 27–31. https://doi.org/10.1109/ISCMI53840.2021.9654925 – reference: WangJSongGA deep spatial-temporal ensemble model for air quality predictionNeurocomputing201831419820610.1016/j.neucom.2018.06.049 – reference: Yan L, Wu Y, Yan L, Zhou M (2018) Encoder-decoder model for forecast of PM2.5 concentration per hour. In: 2018 1st International Cognitive Cities Conference (IC3), pp 45–50 . https://doi.org/10.1109/IC3.2018.00020 – reference: SamalKKRBabuKSDasSKMulti-directional temporal convolutional artificial neural network for PM2.5 forecasting with missing values: a deep learning approachUrban Clim20213610080010.1016/j.uclim.2021.100800 – reference: BalogunA-LTellaAModelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regressionChemosphere202229910.1016/j.chemosphere.2022.134250 – reference: Kaur Bamrah S, R SK, S GK (2020) Application of random forests for air quality estimation in india by adopting terrain features. In: 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), pp 1–6. https://doi.org/10.1109/ICCCSP49186.2020.9315252 – reference: NiSJiaPXuYZengLLiXXuMPrediction of CO concentration in different conditions based on gaussian-TCNSens Actuators B202337610.1016/j.snb.2022.133010 – reference: YanRLiaoJYangJSunWNongMLiFMulti-hour and multi-site air quality index forecasting in beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clusteringExpert Syst Appl202116910.1016/j.eswa.2020.114513 – reference: OzturkAAccuracy improvement in air-quality forecasting using regressor combination with missing data imputationComput Intell2021371226252422197610.1111/coin.12399 – reference: Yi H, Xiong Q, Zou Q, Xu R, Wang K, Gao M (2019) A novel random forest and its application on classification of air quality. In: 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), pp 35–38. https://doi.org/10.1109/IIAI-AAI.2019.00018 – reference: Zhao C, van Heeswijk M, Karhunen J (2016) Air quality forecasting using neural networks. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–7 . https://doi.org/10.1109/SSCI.2016.7850128 – reference: Jovova L, Trivodaliev K (2021) Air pollution forecasting using CNN-LSTM deep learning model. In: 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pp 1091–1096. https://doi.org/10.23919/MIPRO52101.2021.9596860 – reference: Jiang J-Y, Li C-T (2016) Forecasting geo-sensor data with participatory sensing based on dropout neural network. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. CIKM ’16, pp 2033–2036. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/2983323.2983902 – reference: Song X, Huang J, Song D (2019) Air quality prediction based on LSTM-kalman model. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp 695–699. https://doi.org/10.1109/ITAIC.2019.8785751 – reference: OngBTSugiuraKZettsuKDynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5Neural Comput Appl20162761553156610.1007/s00521-015-1955-3 – reference: ZhuSSunJLiuYLuMLiuXThe air quality index trend forecasting based on improved error correction model and data preprocessing for 17 port cities in ChinaChemosphere202025210.1016/j.chemosphere.2020.126474 – reference: LinY-CLeeS-JOuyangC-SWuC-HAir quality prediction by neuro-fuzzy modeling approachAppl Soft Comput20208610.1016/j.asoc.2019.105898 – reference: NemadeSA survey on different machine learning techniques for air quality forecasting for urban air pollutionInt J Res Appl Sci Eng Technol201972185219410.22214/ijraset.2019.4395 – reference: QiZWangTSongGHuWLiXZhangZDeep air learning: interpolation, prediction, and feature analysis of fine-grained air qualityIEEE Trans Knowl Data Eng201830122285229710.1109/TKDE.2018.2823740 – reference: Amado TM, Dela Cruz JC (2018) Development of machine learning-based predictive models for air quality monitoring and characterization. In: TENCON 2018—2018 IEEE Region 10 Conference, pp 0668–0672. https://doi.org/10.1109/TENCON.2018.8650518 – reference: KaratzasKKatsifarakisNOrlowskiCSarzyńskiARevisiting urban air quality forecasting: a regression approachVietnam J Comput Sci20185217718410.1007/s40595-018-0113-0 – reference: LiJShaoXSunRVisioliAA dbn-based deep neural network model with multitask learning for online air quality predictionJ Control Sci Eng201910.1155/2019/53045351433.92075 – reference: ZhangZZhangSZhaoXChenLYaoJTemporal difference-based graph transformer networks for air quality PM2.5 prediction: a case study in ChinaFront Environ Sci20221010.3389/fenvs.2022.924986 – reference: Srikamdee S, Onpans J (2019) Forecasting daily air quality in northern thailand using machine learning techniques. In: 2019 4th International Conference on Information Technology (InCIT), pp 259–263. https://doi.org/10.1109/INCIT.2019.8912072 – reference: ContrerasLFerriCWind-sensitive interpolation of urban air pollution forecastsProcedia Comput Sci201680C31332310.1016/j.procs.2016.05.343 – reference: WangJLiJWangXWangJHuangMAir quality prediction using ct-LSTMNeural Comput Appl2021334779479210.1007/s00521-020-05535-w – reference: ShishegaranASaeediMKumarAGhiasinejadHPrediction of air quality in tehran by developing the nonlinear ensemble modelJ Clean Prod202025910.1016/j.jclepro.2020.120825 – reference: SemlaliBBAmraniCEOrtizGBoubeta-PuigJde PradoAGSAT-CEP-monitor: an air quality monitoring software architecture combining complex event processing with satellite remote sensingComput Electr Eng20219310.1016/j.compeleceng.2021.107257 – reference: MaoWWangWJiaoLZhaoSLiuAModeling air quality prediction using a deep learning approach: method optimization and evaluationSustain Cit Soc20216510.1016/j.scs.2020.102567 – reference: HuangYXiangYZhaoRChengZAir quality prediction using improved pso-bp neural networkIEEE Access20208993469935310.1109/ACCESS.2020.2998145 – reference: Liu B, Yan S, Li J, Li Y (2016) Forecasting PM2.5 concentration using spatio-temporal extreme learning machine. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp 950–953. https://doi.org/10.1109/ICMLA.2016.0171 – reference: Jato-EspinoDCastillo-LopezERodriguez-HernandezJBallester-MuñozFAir quality modelling in Catalonia from a combination of solar radiation, surface reflectance and elevationSci Total Environ201862418920010.1016/j.scitotenv.2017.12.139 – reference: LiuTLauAKHSandbrinkKFungJCHTime series forecasting of air quality based on regional numerical modeling in Hong KongJ Geophys Res201812384175419610.1002/2017JD028052 – reference: Verma P, Reddy SV, Ragha L, Datta D (2021) Comparison of time-series forecasting models. In: 2021 International Conference on Intelligent Technologies (CONIT), pp 1–7. https://doi.org/10.1109/CONIT51480.2021.9498451 – reference: BalogunA-LTellaABalooLAdebisiNA review of the inter-correlation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information scienceUrban Climate20214010.1016/j.uclim.2021.100989 – reference: HoiKIYuenKVMokKMImprovement of the multilayer perceptron for air quality modelling through an adaptive learning schemeComput Geosci20135914815510.1016/j.cageo.2013.06.002 – reference: LinC-YChangY-SAbimannanSEnsemble multifeatured deep learning models for air quality forecastingAtmos Pollut Res202112510.1016/j.apr.2021.03.008 – reference: Shawabkeh A, Al-Beqain F, Redan A, Salem M (2018) Benzene air pollution monitoring model using ann and svm. In: 2018 Fifth HCT Information Technology Trends (ITT), pp 197–204. https://doi.org/10.1109/CTIT.2018.8649497 – reference: Corral-PlazaDOrtizGMedina-BuloIBoubeta-PuigJMEdit4CEP-SP: a model-driven solution to improve decision-making through user-friendly management and real-time processing of heterogeneous data streamsKnowl Based Syst202121310.1016/j.knosys.2020.106682 – reference: Lan Y, Dai Y (2020) Urban air quality prediction based on space-time optimization LSTM model. In: 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), pp 215–222 . https://doi.org/10.1109/ICAIBD49809.2020.9137441 – reference: BhattiUAYanYZhouMAliSHussainAQingsongHYuZYuanLTime series analysis and forecasting of air pollution particulate matter (PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${PM}_2.5$$\end{document}): an sarima and factor analysis approachIEEE Access20219410194103110.1109/ACCESS.2021.3060744 – reference: Yang R, Hu X, He L (2020) Prediction of shanghai air quality index based on bp neural network optimized by genetic algorithm. In: 2020 13th International Symposium on Computational Intelligence and Design (ISCID), pp. 205–208. https://doi.org/10.1109/ISCID51228.2020.00052 – reference: Barthwal A, Acharya D (2018) An internet of things system for sensing, analysis forecasting urban air quality. In: 2018 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp 1–6 . https://doi.org/10.1109/CONECCT.2018.8482397 – reference: Bouakline O, ARJDAL K, KHOMSI K, SEMANE N, ELIDRISSI A, NAFIRI S, NAJMI H (2020) Prediction of daily PM10 concentration using machine learning. In: 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), pp 1–5. https://doi.org/10.1109/ICECOCS50124.2020.9314380 – reference: Abdullah S, Ismail M, Ahmed AN, Mansor WNW (2019) Big data analytics and artificial intelligence in air pollution studies for the prediction of particulate matter concentration. In: Proceedings of the 3rd International Conference on Telecommunications and Communication Engineering. ICTCE ’19, pp 90–94. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3369555.3369557 – reference: Mahanta S, Ramakrishnudu T, Jha RR, Tailor N (2019) Urban air quality prediction using regression analysis. In: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp 1118–1123. https://doi.org/10.1109/TENCON.2019.8929517 – reference: SharmaMJainSMittalSSheikhTHForecasting and prediction of air pollutants concentrates using machine learning techniques: the case of IndiaIOP Conf Ser20211022110.1088/1757-899x/1022/1/012123 – reference: Srivastava C, Singh S, Singh AP (2018) Estimation of air pollution in delhi using machine learning techniques. In: 2018 International Conference on Computing, Power and Communication Technologies (GUCON), pp 304–309. https://doi.org/10.1109/GUCON.2018.8675022 – reference: HajmohammadiHHeydeckerBMultivariate time series modelling for urban air qualityUrban Clim20213710.1016/j.uclim.2021.100834 – reference: Mahalingam U, Elangovan K, Dobhal H, Valliappa C, Shrestha S, Kedam G (2019) A machine learning model for air quality prediction for smart cities. In: 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp 452–457. https://doi.org/10.1109/WiSPNET45539.2019.9032734 – reference: Ganesh SS, Reddy NB, Arulmozhivarman P (2017) Forecasting air quality index based on mamdani fuzzy inference system. In: 2017 International Conference on Trends in Electronics and Informatics (ICEI), pp 338–341. https://doi.org/10.1109/ICOEI.2017.8300944 – reference: Kang Z, Qu Z (2017) Application of bp neural network optimized by genetic simulated annealing algorithm to prediction of air quality index in lanzhou. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp 155–160. https://doi.org/10.1109/CIAPP.2017.8167199 – reference: Paoli C, Notton G, Nivet M-L, Padovani M, Savelli J-L (2011) A neural network model forecasting for prediction of hourly ozone concentration in corsica. In: 2011 10th International Conference on Environment and Electrical Engineering, pp 1–4 . https://doi.org/10.1109/EEEIC.2011.5874661 – reference: Septiawan WM, Endah SN (2018) Suitable recurrent neural network for air quality prediction with backpropagation through time. In: 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), pp 1–6. https://doi.org/10.1109/ICICOS.2018.8621720 – reference: LiuBYanSLiJLiYLangJQuGA spatiotempor.al recurrent neural network for prediction of atmospheric PM2.5: a case study of BeijingIEEE Trans Soc Syst20218357858810.1109/TCSS.2021.3056410 – reference: Maheshwari K, Lamba S (2019) Air quality prediction using supervised regression model. In: 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), vol. 1, pp 1–7. https://doi.org/10.1109/ICICT46931.2019.8977694 – reference: Ngom B, Diallo M, Seyc MR, Drame MS, Cambier C, Marilleau N (2021) PM10 data assimilation on real-time agent-based simulation using machine learning models: case of dakar urban air pollution study. In: 2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pp 1–4. https://doi.org/10.1109/DS-RT52167.2021.9576143 – reference: Dua R, Madaan D, Mukherjee P, Lall B (2019) Real time attention based bidirectional long short-term memory networks for air pollution forecasting. In: 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), pp 151–158. https://doi.org/10.1109/BigDataService.2019.00027 – reference: Li J, Shao X, Zhao H (2018) An online method based on random forest for air pollutant concentration forecasting. In: 2018 37th Chinese Control Conference (CCC), pp 9641–9648 . https://doi.org/10.23919/ChiCC.2018.8483621 – reference: Hu J, Zhang X, Liang D, Zhong F (2021) A novel linear interpolation algorithm based on spatial distribution for improvement temporal resolution of pm2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pm_{2.5}$$\end{document} and PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${PM}_{10}$$\end{document}. In: 2021 7th International Conference on Big Data and Information Analytics (BigDIA), pp.60–66. https://doi.org/10.1109/BigDIA53151.2021.9619651 – reference: Thanavanich T, Yaibuates M, Suchaya P (2021) Improving the accuracy of forecasting PM2.5 concentrations with hybrid neural network model. In: 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, pp 18–22. https://doi.org/10.1109/ECTIDAMTNCON51128.2021.9425724 – volume: 7 start-page: 134903 year: 2019 ident: 10424_CR161 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941732 – ident: 10424_CR60 doi: 10.1109/BigData.2017.8258144 – volume: 65 year: 2021 ident: 10424_CR90 publication-title: Sustain Cit Soc doi: 10.1016/j.scs.2020.102567 – ident: 10424_CR137 doi: 10.1109/CONIT51480.2021.9498451 – volume: 624 start-page: 189 year: 2018 ident: 10424_CR51 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.12.139 – ident: 10424_CR7 doi: 10.1109/TENCON.2018.8650518 – volume: 80 start-page: 313 issue: C year: 2016 ident: 10424_CR27 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.05.343 – volume: 26 start-page: 1789 issue: 8 year: 2015 ident: 10424_CR34 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1853-8 – ident: 10424_CR110 doi: 10.1109/ICE3IS54102.2021.9649763 – ident: 10424_CR163 doi: 10.1109/SSCI.2016.7850128 – ident: 10424_CR96 doi: 10.1109/FSKD.2017.8393403 – ident: 10424_CR19 doi: 10.1109/ISSPIT.2011.6151541 – ident: 10424_CR24 doi: 10.1109/BigComp51126.2021.00045 – year: 2020 ident: 10424_CR39 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04492-3 – ident: 10424_CR6 doi: 10.1109/DeSE.2019.00111 – ident: 10424_CR95 doi: 10.1109/ICARCV.2014.7064399 – year: 2019 ident: 10424_CR65 publication-title: J Control Sci Eng doi: 10.1155/2019/5304535 – volume: 32 start-page: 7563 year: 2019 ident: 10424_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04287-6 – ident: 10424_CR64 doi: 10.1109/BigComp48618.2020.00-99 – volume: 13 start-page: 4087 issue: 10 year: 2013 ident: 10424_CR138 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.05.007 – ident: 10424_CR74 doi: 10.1109/CCIS.2018.8691167 – volume: 12 start-page: 328 issue: 1 year: 2021 ident: 10424_CR156 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2020.09.003 – ident: 10424_CR22 doi: 10.1109/ICKII51822.2021.9574707 – volume: 123 start-page: 4175 issue: 8 year: 2018 ident: 10424_CR75 publication-title: J Geophys Res doi: 10.1002/2017JD028052 – ident: 10424_CR105 doi: 10.1109/IJCNN52387.2021.9534167 – ident: 10424_CR62 doi: 10.1109/ICAIBD49809.2020.9137441 – ident: 10424_CR160 doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.177 – volume: 67 year: 2021 ident: 10424_CR50 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2021.102720 – ident: 10424_CR85 doi: 10.1109/GlobalSIP45357.2019.8969343 – volume: 86 year: 2020 ident: 10424_CR70 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105898 – ident: 10424_CR88 doi: 10.1109/TENCON.2019.8929517 – ident: 10424_CR144 doi: 10.1109/RAETCS.2018.8443887 – ident: 10424_CR87 doi: 10.1109/WiSPNET45539.2019.9032734 – volume: 9 start-page: 2051 issue: 5 year: 2016 ident: 10424_CR94 publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2016.2541958 – ident: 10424_CR170 doi: 10.1109/CITS.2019.8862114 – ident: 10424_CR164 doi: 10.23919/J.CC.2020.07.015 – volume: 271 year: 2020 ident: 10424_CR115 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.121941 – ident: 10424_CR132 doi: 10.1109/ICECA52323.2021.9676128 – ident: 10424_CR128 doi: 10.1109/CONIELECOMP.2011.5749350 – ident: 10424_CR4 doi: 10.1109/ICCISTA.2019.8830667 – volume: 9 start-page: 41019 year: 2021 ident: 10424_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060744 – ident: 10424_CR165 doi: 10.1109/ICCSEC.2017.8446883 – volume: 47 start-page: 379 issue: 3 year: 2017 ident: 10424_CR21 publication-title: Softw Pract Exp doi: 10.1002/spe.2413 – ident: 10424_CR26 doi: 10.1109/DSAA53316.2021.9564200 – ident: 10424_CR89 doi: 10.1109/ICICT46931.2019.8977694 – volume: 213 year: 2021 ident: 10424_CR28 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.106682 – ident: 10424_CR68 doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00053 – ident: 10424_CR79 doi: 10.1109/AIAM48774.2019.00024 – ident: 10424_CR152 doi: 10.1145/3219819.3219822 – volume: 17 start-page: 8514 issue: 12 year: 2021 ident: 10424_CR54 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3065425 – ident: 10424_CR48 doi: 10.1109/BigDIA53151.2021.9619651 – ident: 10424_CR30 doi: 10.1109/BIHTEL.2016.7775721 – volume: 209 start-page: 134 year: 2019 ident: 10424_CR167 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.10.243 – ident: 10424_CR159 doi: 10.1109/CCDC.2018.8408092 – ident: 10424_CR52 doi: 10.1145/2983323.2983902 – volume: 40 year: 2021 ident: 10424_CR12 publication-title: Urban Climate doi: 10.1016/j.uclim.2021.100989 – volume: 39 year: 2021 ident: 10424_CR113 publication-title: Urban Clim doi: 10.1016/j.uclim.2021.100943 – ident: 10424_CR171 doi: 10.1109/ICCEA50009.2020.00124 – volume: 5 start-page: 103 issue: 1 year: 2014 ident: 10424_CR102 publication-title: Int J Comput Sci Inf Technol doi: 10.15680/IJIRSET.2019.0805015 – ident: 10424_CR109 doi: 10.1109/ICACCS48705.2020.9074431 – ident: 10424_CR135 doi: 10.1109/ECTIDAMTNCON51128.2021.9425724 – volume: 709 year: 2020 ident: 10424_CR121 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135934 – volume: 8 start-page: 99346 year: 2020 ident: 10424_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998145 – year: 2020 ident: 10424_CR42 publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2020.3005368 – ident: 10424_CR147 doi: 10.1109/IC3.2018.00020 – ident: 10424_CR59 doi: 10.1109/ICSECS52883.2021.00106 – ident: 10424_CR149 doi: 10.1109/ICICCS51141.2021.9432078 – ident: 10424_CR81 doi: 10.1109/BigData52589.2021.9671941 – volume: 7 start-page: 172892 year: 2019 ident: 10424_CR139 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956599 – ident: 10424_CR146 doi: 10.1109/ISCID51228.2020.00052 – ident: 10424_CR127 doi: 10.1109/ITAIC.2019.8785751 – volume: 37 start-page: 226 issue: 1 year: 2021 ident: 10424_CR106 publication-title: Comput Intell doi: 10.1111/coin.12399 – volume: 24 start-page: 64 issue: 1 year: 2021 ident: 10424_CR126 publication-title: Int J Comput Sci Eng doi: 10.1504/ijcse.2021.113652 – volume: 12 issue: 10 year: 2021 ident: 10424_CR134 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2021.101202 – volume: 252 year: 2020 ident: 10424_CR169 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126474 – ident: 10424_CR14 doi: 10.1109/CONECCT.2018.8482397 – volume: 8 start-page: 190263 year: 2020 ident: 10424_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3032420 – volume: 11 start-page: 1258 issue: 8 year: 2020 ident: 10424_CR66 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2020.04.010 – ident: 10424_CR166 doi: 10.1145/2487575.2488188 – ident: 10424_CR56 doi: 10.1109/CIAPP.2017.8167199 – volume: 5 start-page: 177 issue: 2 year: 2018 ident: 10424_CR57 publication-title: Vietnam J Comput Sci doi: 10.1007/s40595-018-0113-0 – ident: 10424_CR47 doi: 10.1109/ICSESS.2015.7339050 – year: 2020 ident: 10424_CR49 publication-title: Appl Sci doi: 10.3390/app10072401 – year: 2020 ident: 10424_CR162 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-08948-1 – volume: 27 start-page: 1553 issue: 6 year: 2016 ident: 10424_CR104 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1955-3 – ident: 10424_CR25 doi: 10.1109/IS48319.2020.9200125 – volume: 27 start-page: 1191 issue: 5 year: 2016 ident: 10424_CR18 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1927-7 – volume: 277 year: 2020 ident: 10424_CR154 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123231 – ident: 10424_CR151 doi: 10.1109/IIAI-AAI.2019.00018 – volume: 259 year: 2020 ident: 10424_CR124 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120825 – volume: 8 start-page: 26933 year: 2020 ident: 10424_CR67 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971348 – ident: 10424_CR119 doi: 10.1109/ICICOS.2018.8621720 – ident: 10424_CR93 doi: 10.1007/978-3-031-21743-2_14 – volume: 299 year: 2022 ident: 10424_CR11 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134250 – ident: 10424_CR58 doi: 10.1109/ICCCSP49186.2020.9315252 – volume: 2 year: 2019 ident: 10424_CR63 publication-title: Atmos Environ X doi: 10.1016/j.aeaoa.2019.100030 – volume: 7 start-page: 128325 year: 2019 ident: 10424_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925082 – volume: 27 start-page: 1946 issue: 5 year: 2020 ident: 10424_CR32 publication-title: Meteorol Appl doi: 10.1002/met.1946 – ident: 10424_CR92 doi: 10.1109/PIC.2016.7949469 – volume: 376 year: 2023 ident: 10424_CR101 publication-title: Sens Actuators B doi: 10.1016/j.snb.2022.133010 – volume: 31 start-page: 1619 issue: 5 year: 2019 ident: 10424_CR143 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3532-z – ident: 10424_CR116 doi: 10.1145/3365871.3365884 – ident: 10424_CR17 doi: 10.1109/ICECOCS50124.2020.9314380 – ident: 10424_CR35 doi: 10.1109/ICOEI.2017.8300926 – volume: 705 year: 2020 ident: 10424_CR84 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135771 – ident: 10424_CR99 doi: 10.1109/DS-RT52167.2021.9576143 – year: 2021 ident: 10424_CR120 publication-title: Earth Sci Inform doi: 10.1007/s12145-021-00618-1 – ident: 10424_CR20 doi: 10.1109/ICCES51350.2021.9488983 – ident: 10424_CR36 doi: 10.1109/ICOEI.2017.8300944 – volume: 84 start-page: 102 issue: C year: 2017 ident: 10424_CR141 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.059 – volume: 41 start-page: 729 issue: 8 year: 2013 ident: 10424_CR107 publication-title: Clean Soil Air Water doi: 10.1002/clen.201000067 – volume: 8 start-page: 578 issue: 3 year: 2021 ident: 10424_CR77 publication-title: IEEE Trans Soc Syst doi: 10.1109/TCSS.2021.3056410 – ident: 10424_CR9 doi: 10.23919/ChiCC.2019.8865861 – volume: 7 start-page: 107897 year: 2019 ident: 10424_CR83 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932445 – ident: 10424_CR1 doi: 10.1145/3369555.3369557 – ident: 10424_CR80 doi: 10.1109/WCSP49889.2020.9299738 – ident: 10424_CR86 doi: 10.1109/ICCNEA50255.2020.00011 – volume: 93 year: 2021 ident: 10424_CR117 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107257 – volume: 60 start-page: 2021 issue: 2 year: 2021 ident: 10424_CR118 publication-title: Alex Eng J doi: 10.1016/j.aej.2020.12.009 – volume: 1022 issue: 1 year: 2021 ident: 10424_CR122 publication-title: IOP Conf Ser doi: 10.1088/1757-899x/1022/1/012123 – volume: 116 start-page: 69 year: 2021 ident: 10424_CR43 publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2020.10.015 – ident: 10424_CR133 doi: 10.1109/CACRE50138.2020.9230036 – year: 2019 ident: 10424_CR5 publication-title: Sci Program doi: 10.1155/2019/6780379 – ident: 10424_CR73 doi: 10.23919/ChiCC.2018.8483621 – volume: 37 year: 2021 ident: 10424_CR41 publication-title: Urban Clim doi: 10.1016/j.uclim.2021.100834 – ident: 10424_CR78 doi: 10.1109/ICMLA.2016.0171 – volume: 283 year: 2021 ident: 10424_CR2 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125341 – volume: 30 start-page: 2285 issue: 12 year: 2018 ident: 10424_CR111 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2823740 – volume: 12 issue: 5 year: 2021 ident: 10424_CR71 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2021.03.008 – volume: 6 start-page: 38186 year: 2018 ident: 10424_CR125 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2849820 – volume: 275 start-page: 122722 year: 2020 ident: 10424_CR155 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122722 – volume: 7 start-page: 43331 year: 2019 ident: 10424_CR76 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2908081 – volume: 36 start-page: 100800 year: 2021 ident: 10424_CR114 publication-title: Urban Clim doi: 10.1016/j.uclim.2021.100800 – ident: 10424_CR69 doi: 10.1145/3325773.3325788 – ident: 10424_CR13 – ident: 10424_CR123 doi: 10.1109/CTIT.2018.8649497 – volume: 219 start-page: 8923 issue: 17 year: 2013 ident: 10424_CR37 publication-title: Appl Math Comput doi: 10.1016/j.amc.2013.03.018 – volume: 20 start-page: 49 issue: 6 year: 2020 ident: 10424_CR38 publication-title: Cybern Inf Technol doi: 10.2478/cait-2020-0060 – ident: 10424_CR103 – volume: 55 year: 2020 ident: 10424_CR97 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2019.101019 – volume: 7 start-page: 1203 year: 2021 ident: 10424_CR15 publication-title: Int J Adv Res Innov Ideas Educ – ident: 10424_CR45 doi: 10.1109/ISCMI53840.2021.9654925 – volume: 10 year: 2022 ident: 10424_CR158 publication-title: Front Environ Sci doi: 10.3389/fenvs.2022.924986 – year: 2020 ident: 10424_CR150 publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2020.3047078 – volume: 59 start-page: 148 year: 2013 ident: 10424_CR44 publication-title: Comput Geosci doi: 10.1016/j.cageo.2013.06.002 – ident: 10424_CR129 doi: 10.1109/INCIT.2019.8912072 – volume: 314 start-page: 198 year: 2018 ident: 10424_CR140 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.049 – ident: 10424_CR72 doi: 10.1145/3274895.3274907 – ident: 10424_CR130 doi: 10.1109/GUCON.2018.8675022 – ident: 10424_CR29 doi: 10.1109/AISEM.2015.7066794 – volume: 7 start-page: 2185 year: 2019 ident: 10424_CR98 publication-title: Int J Res Appl Sci Eng Technol doi: 10.22214/ijraset.2019.4395 – ident: 10424_CR168 doi: 10.1109/SSCI47803.2020.9308543 – ident: 10424_CR31 doi: 10.1109/BigDataService.2019.00027 – volume: 9 start-page: 104162 year: 2021 ident: 10424_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3099111 – ident: 10424_CR53 doi: 10.1109/ITAIC.2019.8785602 – volume: 303 start-page: 51 year: 2020 ident: 10424_CR131 publication-title: Ann Oper Res doi: 10.1007/s10479-020-03734-1 – ident: 10424_CR55 doi: 10.23919/MIPRO52101.2021.9596860 – ident: 10424_CR91 doi: 10.1109/TELSIKS52058.2021.9606405 – ident: 10424_CR61 doi: 10.1109/IEA.2019.8715113 – volume: 169 year: 2021 ident: 10424_CR145 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114513 – volume: 735 year: 2020 ident: 10424_CR3 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.139454 – ident: 10424_CR108 doi: 10.1109/EEEIC.2011.5874661 – volume: 14 start-page: 191 year: 2021 ident: 10424_CR112 publication-title: Air Qual Atmos Health doi: 10.1007/s11869-020-00925-4 – volume: 9 start-page: 57338 year: 2021 ident: 10424_CR100 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072280 – volume: 7 start-page: 30732 year: 2019 ident: 10424_CR153 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897754 – volume: 33 start-page: 4779 year: 2021 ident: 10424_CR142 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05535-w – volume: 214 year: 2019 ident: 10424_CR82 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2019.116885 – ident: 10424_CR148 doi: 10.1109/iCBEB.2012.81 – ident: 10424_CR10 doi: 10.1002/tqem.21464 – ident: 10424_CR136 doi: 10.1109/ICTKE47035.2019.8966854 – volume: 312 start-page: 39409 year: 2021 ident: 10424_CR157 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-12657-8 |
| SSID | ssj0005243 |
| Score | 2.66811 |
| Snippet | Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10031 |
| SubjectTerms | Air pollution Air quality Algorithms Artificial Intelligence Computer Science Data mining Deep learning Forecasting Geographical distribution Machine learning Mathematical models Neural networks Outdoor air quality Risk factors Surveys |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VlgMX2vIMFGQkJA5ggR0ntrlUFaKqBKp6KFJvlmM73ZVKtmyylfrvGSfObncleuEc2xpnnrZnvgF4r721GAkIGlTgVHBZUlWXnrqCa3QRvpa2h8z_KU9P1cWFPksXbm1KqxxtYm-o_czFO_LP6AZRH7SW-vD6D41do-Lramqh8QB2GOcsyvkPSe-keAxZc7zUFI8WLBXNpNI5UXKK5KAhElxQseaYNs3zHf-0mTu58YDa-6Xj3f_d0R48ThEpORpEaB-2QvMEdsduDyQp_1OIl9YTjElJajRxSezVJa7XTX63pJsRjH6Ds21H7HROhlrN26_EknYxvwm3z-DX8ffzbyc0NV9ANkndUaZ8YIVjPmjFbI2RRZ17XbmcuSBr5YUTPHhbVRULSqsIg1bY4D36ty84pcifw3Yza8JLIEqiQ6gL5nnNRaF5VVle-LrHfAq5LTNg4583LiGTxwYZV2aFqRy5ZZBbpueWERl8XM65HnA57h39ITLURKXFlZ1NtQdIX4S_MkeywFOGQGuXwcHILJO0uTUrTmXwbvkZ9TA-rtgmzBY4RqKlExotZgYvBhFZEpaXGGdh3JmBXBOe5YCI8b3-pZlOeqxvHS-ccpXBp1HMVmT9e7-v7t_Fa3jEo-T3qXIHsN3NF-ENPHQ33bSdv-116C-VcyDz priority: 102 providerName: ProQuest |
| Title | Machine learning algorithms to forecast air quality: a survey |
| URI | https://link.springer.com/article/10.1007/s10462-023-10424-4 https://www.ncbi.nlm.nih.gov/pubmed/36820441 https://www.proquest.com/docview/2838879979 https://www.proquest.com/docview/2779349073 https://pubmed.ncbi.nlm.nih.gov/PMC9933038 |
| Volume | 56 |
| WOSCitedRecordID | wos000939095900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlgOXlvJMKSsjIXEAS43jxDa3UrWqBCyr8lq4WE7sdFdqs1WSrdR_zziP7e4KkOBiKYpt2eN52Z75DPBSWWPQE-DUSccoZyKhMk8szWKm0ETYXJgGMv-DGA7leKxGXVJY1Ue791eSjaZeSnbjCaPYAaoOzjjlG7CF5k56cTz7_G0psKONlWOJorihCLtUmd_3sWKO1pXyklVaj5hcuzZtrNHJzv_N4z5sd94nOWzZZRfuuOIB7PQvO5BO0B-CP6CeoP9Jukclzom5OJ-V03pyWZF6RtDTdZmpamKmJWnzMm_eEkOqeXntbh7B15PjL0entHtoAZdEqJqG0rowzkLrkJomRy8ij6xKsyjMnMil5Rlnzpo0TUMnlfSQZ7Fx1qItO8AmcfQYNotZ4Z4CkQKVfx6HluWMx4qlqWGxzRt8JxeZJICwp7fOOhRy_xjGhb7FT_b00Ugf3dBH8wBeL9pctRgcf639yi-j9gKKPWemyzPA8XmoK30oYtxRcNRsAez3K607ya00uluod5USKoAXi98oc_4ixRRuNsc6ArUaV6gdA3jSMsZiYFGCPhX6mAGIFZZZVPB43qt_iumkwfVW_nApkgG86Rnndlh_nu_ev1V_BveY570mTG4fNuty7p7D3ey6nlblADbE9x--HMsBbL07Ho7O8Ou9oFh-PDjyZfgJy1H8c9BI3S-E4R3v |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkulDcpBYwE4gBWG8eJbSSEqkLVqsuKQ5F6M47tdFcqu-0mW7R_it_IOI_d7kr01gNnO4kdf_PN2J4HwBvljEFLgFMvPaOciYzKInPUpkyhinCFMHXK_J7o9-XJifq-Bn-6WJjgVtlxYk3UbmzDGfk2qkGUB6WE-nx-QUPVqHC72pXQaGBx5Ge_cctWfjr8guv7lrH9r8d7B7StKoDfF6qisXQ-Tm3svJKxKVBlFolTuU1i60UhHbeceWfyPI-9VDLk90qNdw6JewcfCVUikPJvcY7iEFwFd_auuJQ0XnosUxS3MnEbpNOG6vGMUZw-Eh9nnPIlRbiqDq7ow1VfzZUL21oP7m_8b3_wPtxrLW6y24jIA1jzo4ew0VWzIC25PYJwKD9Am5u0hTROiTk7xfFXg18lqcYErXtvTVkRM5yQJhZ19pEYUk4nl372GH7cyCSewPpoPPLPgEiBCq9IY8cKxlPF8tyw1BV1TiufmCyCuFtpbdvM66EAyJle5IwO6NCIDl2jQ_MI3s-fOW_yjlzb-10AkA6khG-2po2twPGF9F56V6S4i-LI5hFsdeDQLVuVeoGMCF7Pm5FnwuWRGfnxFPsIZHKuUCNE8LSB5HxgSYZ2JNrVEYglsM47hBzmyy2j4aDOZa7CgVoiI_jQwXoxrH_Pd_P6WbyCOwfH33q6d9g_eg53WZC62i1wC9arydS_gNv2shqWk5e1_BL4edNw_wteyYAq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aBkJcGJ8jY4CRQBzAGnGdOEZCaGJUTJ2qHUDazTi2s1Ya6dakQ_3X-Ot4Tpx2rcRuO3COEz3Hv_d7z_b7AHgtrdboCXDqMscoZyKlWZFaahIm0UTYQuimZP6RGA6zkxN5vAF_ulwYH1bZcWJD1HZi_Bn5HppB1AcphdwrQljE8UH_8_kF9R2k_E1r106jhcjAzX_j9q36dHiAa_2Gsf7X71--0dBhAGURsqZxZl2cmNg6mcW6QPNZ9KzMTS82ThSZ5YYzZ3We57HLZOZrfSXaWYsk_gFf8R0jkP5voRVOvI4NBL0SXtJG7LFUUtzWxCFhJ6Tt8ZRR_BVIgpxxyleM4rppuGIb1-M21y5vG5vY3_qf_-Z9uBc8cbLfqs4D2HDlQ9jqulyQQHqPwB_Wj9AXJ6HBxinRZ6cofz36VZF6QtDrd0ZXNdHjKWlzVOcfiSbVbHrp5o_hx41M4glslpPSPQWSCTSERRJbVjCeSJbnmiW2aGpduZ5OI4i7VVcmVGT3jUHO1LKWtEeKQqSoBimKR_Bu8c55W4_k2tFvPZiUJyv8stEh5wLl82W_1L5IcHfFkeUj2O2AogKLVWqJkgheLR4j__hLJV26yQzHCGR4LtFSRLDdwnMhWC9F_xL97QjECnAXA3xt89Un5XjU1DiX_qCtl0XwvoP4Uqx_z3fn-lm8hDuIcnV0OBw8g7vMK2ATLbgLm_V05p7DbXNZj6vpi0aVCfy8abT_BfFEiNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+to+forecast+air+quality%3A+a+survey&rft.jtitle=The+Artificial+intelligence+review&rft.au=M%C3%A9ndez%2C+Manuel&rft.au=Merayo%2C+Mercedes+G.&rft.au=N%C3%BA%C3%B1ez%2C+Manuel&rft.date=2023-09-01&rft.pub=Springer+Netherlands&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=9&rft.spage=10031&rft.epage=10066&rft_id=info:doi/10.1007%2Fs10462-023-10424-4&rft.externalDocID=10_1007_s10462_023_10424_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |