Machine learning algorithms to forecast air quality: a survey

Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Lear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Artificial intelligence review Ročník 56; číslo 9; s. 10031 - 10066
Hlavní autori: Méndez, Manuel, Merayo, Mercedes G., Núñez, Manuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.09.2023
Springer
Springer Nature B.V
Predmet:
ISSN:0269-2821, 1573-7462
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011–2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model.
AbstractList Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011-2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model.
Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011-2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model.Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the authorities, so that they can anticipate measures when high concentrations of certain pollutants are expected in the near future. Machine Learning models, in particular, Deep Learning models, have been widely used to forecast air quality. In this paper we present a comprehensive review of the main contributions in the field during the period 2011-2021. We have searched the main scientific publications databases and, after a careful selection, we have considered a total of 155 papers. The papers are classified in terms of geographical distribution, predicted values, predictor variables, evaluation metrics and Machine Learning model.
Audience Academic
Author Merayo, Mercedes G.
Núñez, Manuel
Méndez, Manuel
Author_xml – sequence: 1
  givenname: Manuel
  orcidid: 0000-0001-9808-6401
  surname: Méndez
  fullname: Méndez, Manuel
  email: manumend@ucm.es
  organization: Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid
– sequence: 2
  givenname: Mercedes G.
  surname: Merayo
  fullname: Merayo, Mercedes G.
  organization: Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid
– sequence: 3
  givenname: Manuel
  surname: Núñez
  fullname: Núñez, Manuel
  organization: Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36820441$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rHSEYhaWkNDe3_QNdlIFuupnUr7lqoYUQ-gUp3bRrcfSduQZHE50J3H9f00n6kUVwobw-5-jhnKCjmCIg9JLgU4KxeFsI5jvaYsraeqK85U_QhnSCtaLOj9AG051qqaTkGJ2Ucokx7ihnz9Ax20mKOScb9P6bsXsfoQlgcvRxbEwYU_bzfirNnJohZbCmzI3xubleTPDz4V1jmrLkGzg8R08HEwq8uNu36Oenjz_Ov7QX3z9_PT-7aG0n1NwS6YB0ljhQkpgBi25gTvWWEQtikI5bTsGZvu8JSCU5Y7Qz4BynCldJx7bow-p7tfQTOAtxziboq-wnkw86Ga__v4l-r8d0o5ViDDNZDd7cGeR0vUCZ9eSLhRBMhLQUTYVQjCssWEVfP0Av05JjjaepZFIKpSq7RacrNZoA2sch1XdtXQ4mb2tPg6_zM9EJQbmof9iiV_9G-PP3-yoqIFfA5lRKhkFbP5vZp9tEPmiC9W3rem1d19b179Y1r1L6QHrv_qiIraJS4ThC_pvzEdUv_c2-rw
CitedBy_id crossref_primary_10_1007_s11869_025_01752_1
crossref_primary_10_1016_j_uclim_2024_102282
crossref_primary_10_3390_su17125274
crossref_primary_10_1080_24751839_2025_2472503
crossref_primary_10_1016_j_hazadv_2023_100395
crossref_primary_10_1007_s10661_023_12001_2
crossref_primary_10_1007_s10661_024_13447_8
crossref_primary_10_1016_j_jaerosci_2025_106639
crossref_primary_10_1007_s10661_024_12607_0
crossref_primary_10_1007_s13042_024_02329_7
crossref_primary_10_1016_j_apr_2025_102702
crossref_primary_10_1007_s00477_024_02693_4
crossref_primary_10_1038_s41598_024_84342_y
crossref_primary_10_1016_j_atmosenv_2024_121017
crossref_primary_10_3390_atmos16080931
crossref_primary_10_1016_j_jia_2025_09_002
crossref_primary_10_1016_j_pce_2024_103849
crossref_primary_10_32604_ee_2024_046644
crossref_primary_10_1186_s12889_023_16694_5
crossref_primary_10_1038_s41598_025_02396_y
crossref_primary_10_3390_atmos16050491
crossref_primary_10_3390_su16167062
crossref_primary_10_1007_s11356_024_35404_1
crossref_primary_10_1080_15275922_2023_2297437
crossref_primary_10_1007_s10462_023_10500_9
crossref_primary_10_1007_s00704_025_05658_x
crossref_primary_10_3390_technologies12100198
crossref_primary_10_1007_s00477_023_02512_2
crossref_primary_10_1007_s42979_025_04167_y
crossref_primary_10_1016_j_rser_2025_115625
crossref_primary_10_3390_app15126391
crossref_primary_10_3390_jrfm17040173
crossref_primary_10_3390_su16030976
crossref_primary_10_1007_s11042_023_17432_0
crossref_primary_10_1007_s11356_025_36265_y
crossref_primary_10_1007_s12145_024_01382_8
crossref_primary_10_1016_j_apr_2024_102353
crossref_primary_10_1016_j_envsoft_2024_106048
crossref_primary_10_3389_fenvs_2025_1549209
crossref_primary_10_1016_j_envint_2024_108449
crossref_primary_10_1057_s41599_024_03532_1
crossref_primary_10_17163_ings_n33_2025_06
crossref_primary_10_1016_j_uclim_2025_102415
crossref_primary_10_1109_TIM_2024_3400358
crossref_primary_10_1038_s41598_024_83248_z
crossref_primary_10_3233_IDT_240982
crossref_primary_10_3390_app15169088
crossref_primary_10_1051_e3sconf_202450503011
crossref_primary_10_1016_j_envpol_2024_125071
crossref_primary_10_7717_peerj_cs_3162
crossref_primary_10_1007_s11082_025_08169_1
crossref_primary_10_1007_s10532_024_10108_y
crossref_primary_10_1016_j_uclim_2024_102262
crossref_primary_10_3390_app14135787
crossref_primary_10_48084_etasr_11665
crossref_primary_10_1002_adsr_202500028
crossref_primary_10_1016_j_ecoenv_2024_116856
crossref_primary_10_2166_wpt_2024_079
crossref_primary_10_1007_s40995_025_01842_w
crossref_primary_10_1038_s41612_024_00837_5
crossref_primary_10_1080_23311916_2024_2323813
crossref_primary_10_3390_app131810152
crossref_primary_10_3390_smartcities7060133
crossref_primary_10_1016_j_ifacsc_2025_100298
crossref_primary_10_1007_s10661_023_11408_1
crossref_primary_10_1007_s10661_024_12700_4
crossref_primary_10_3390_atmos16010012
crossref_primary_10_1186_s40068_024_00378_z
crossref_primary_10_3390_app14135581
crossref_primary_10_1016_j_scitotenv_2024_176965
crossref_primary_10_1016_j_ccst_2025_100374
crossref_primary_10_3390_su16198471
crossref_primary_10_1007_s13198_024_02535_0
crossref_primary_10_1109_JSEN_2023_3342219
crossref_primary_10_1016_j_scitotenv_2024_176246
crossref_primary_10_3390_atmos14030468
crossref_primary_10_1080_08839514_2024_2371540
crossref_primary_10_3390_atmos14091441
crossref_primary_10_1007_s41742_025_00767_x
crossref_primary_10_1109_ACCESS_2024_3520815
crossref_primary_10_3390_su16177477
crossref_primary_10_3390_su15118445
crossref_primary_10_3390_toxics13030217
crossref_primary_10_1109_TFUZZ_2024_3482282
crossref_primary_10_1016_j_atmosenv_2024_120615
crossref_primary_10_1016_j_envpol_2025_126161
crossref_primary_10_3390_atmos16091052
crossref_primary_10_1016_j_jastp_2024_106301
crossref_primary_10_2166_wpt_2025_046
crossref_primary_10_3390_atmos16040429
crossref_primary_10_1016_j_engappai_2023_106041
crossref_primary_10_3390_j8020016
Cites_doi 10.1109/ACCESS.2019.2941732
10.1109/BigData.2017.8258144
10.1016/j.scs.2020.102567
10.1109/CONIT51480.2021.9498451
10.1016/j.scitotenv.2017.12.139
10.1109/TENCON.2018.8650518
10.1016/j.procs.2016.05.343
10.1007/s00521-015-1853-8
10.1109/ICE3IS54102.2021.9649763
10.1109/SSCI.2016.7850128
10.1109/FSKD.2017.8393403
10.1109/ISSPIT.2011.6151541
10.1109/BigComp51126.2021.00045
10.1007/s00521-019-04492-3
10.1109/DeSE.2019.00111
10.1109/ICARCV.2014.7064399
10.1155/2019/5304535
10.1007/s00521-019-04287-6
10.1109/BigComp48618.2020.00-99
10.1016/j.asoc.2013.05.007
10.1109/CCIS.2018.8691167
10.1016/j.apr.2020.09.003
10.1109/ICKII51822.2021.9574707
10.1002/2017JD028052
10.1109/IJCNN52387.2021.9534167
10.1109/ICAIBD49809.2020.9137441
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.177
10.1016/j.scs.2021.102720
10.1109/GlobalSIP45357.2019.8969343
10.1016/j.asoc.2019.105898
10.1109/TENCON.2019.8929517
10.1109/RAETCS.2018.8443887
10.1109/WiSPNET45539.2019.9032734
10.1109/JSTARS.2016.2541958
10.1109/CITS.2019.8862114
10.23919/J.CC.2020.07.015
10.1016/j.jclepro.2020.121941
10.1109/ICECA52323.2021.9676128
10.1109/CONIELECOMP.2011.5749350
10.1109/ICCISTA.2019.8830667
10.1109/ACCESS.2021.3060744
10.1109/ICCSEC.2017.8446883
10.1002/spe.2413
10.1109/DSAA53316.2021.9564200
10.1109/ICICT46931.2019.8977694
10.1016/j.knosys.2020.106682
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00053
10.1109/AIAM48774.2019.00024
10.1145/3219819.3219822
10.1109/TII.2021.3065425
10.1109/BigDIA53151.2021.9619651
10.1109/BIHTEL.2016.7775721
10.1016/j.jclepro.2018.10.243
10.1109/CCDC.2018.8408092
10.1145/2983323.2983902
10.1016/j.uclim.2021.100989
10.1016/j.uclim.2021.100943
10.1109/ICCEA50009.2020.00124
10.15680/IJIRSET.2019.0805015
10.1109/ICACCS48705.2020.9074431
10.1109/ECTIDAMTNCON51128.2021.9425724
10.1016/j.scitotenv.2019.135934
10.1109/ACCESS.2020.2998145
10.1109/TBDATA.2020.3005368
10.1109/IC3.2018.00020
10.1109/ICSECS52883.2021.00106
10.1109/ICICCS51141.2021.9432078
10.1109/BigData52589.2021.9671941
10.1109/ACCESS.2019.2956599
10.1109/ISCID51228.2020.00052
10.1109/ITAIC.2019.8785751
10.1111/coin.12399
10.1504/ijcse.2021.113652
10.1016/j.apr.2021.101202
10.1016/j.chemosphere.2020.126474
10.1109/CONECCT.2018.8482397
10.1109/ACCESS.2020.3032420
10.1016/j.apr.2020.04.010
10.1145/2487575.2488188
10.1109/CIAPP.2017.8167199
10.1007/s40595-018-0113-0
10.1109/ICSESS.2015.7339050
10.3390/app10072401
10.1007/s11356-020-08948-1
10.1007/s00521-015-1955-3
10.1109/IS48319.2020.9200125
10.1007/s00521-015-1927-7
10.1016/j.jclepro.2020.123231
10.1109/IIAI-AAI.2019.00018
10.1016/j.jclepro.2020.120825
10.1109/ACCESS.2020.2971348
10.1109/ICICOS.2018.8621720
10.1007/978-3-031-21743-2_14
10.1016/j.chemosphere.2022.134250
10.1109/ICCCSP49186.2020.9315252
10.1016/j.aeaoa.2019.100030
10.1109/ACCESS.2019.2925082
10.1002/met.1946
10.1109/PIC.2016.7949469
10.1016/j.snb.2022.133010
10.1007/s00521-018-3532-z
10.1145/3365871.3365884
10.1109/ICECOCS50124.2020.9314380
10.1109/ICOEI.2017.8300926
10.1016/j.scitotenv.2019.135771
10.1109/DS-RT52167.2021.9576143
10.1007/s12145-021-00618-1
10.1109/ICCES51350.2021.9488983
10.1109/ICOEI.2017.8300944
10.1016/j.eswa.2017.04.059
10.1002/clen.201000067
10.1109/TCSS.2021.3056410
10.23919/ChiCC.2019.8865861
10.1109/ACCESS.2019.2932445
10.1145/3369555.3369557
10.1109/WCSP49889.2020.9299738
10.1109/ICCNEA50255.2020.00011
10.1016/j.compeleceng.2021.107257
10.1016/j.aej.2020.12.009
10.1088/1757-899x/1022/1/012123
10.1016/j.envsci.2020.10.015
10.1109/CACRE50138.2020.9230036
10.1155/2019/6780379
10.23919/ChiCC.2018.8483621
10.1016/j.uclim.2021.100834
10.1109/ICMLA.2016.0171
10.1016/j.jclepro.2020.125341
10.1109/TKDE.2018.2823740
10.1016/j.apr.2021.03.008
10.1109/ACCESS.2018.2849820
10.1016/j.jclepro.2020.122722
10.1109/ACCESS.2019.2908081
10.1016/j.uclim.2021.100800
10.1145/3325773.3325788
10.1109/CTIT.2018.8649497
10.1016/j.amc.2013.03.018
10.2478/cait-2020-0060
10.1016/j.ecoinf.2019.101019
10.1109/ISCMI53840.2021.9654925
10.3389/fenvs.2022.924986
10.1109/TBDATA.2020.3047078
10.1016/j.cageo.2013.06.002
10.1109/INCIT.2019.8912072
10.1016/j.neucom.2018.06.049
10.1145/3274895.3274907
10.1109/GUCON.2018.8675022
10.1109/AISEM.2015.7066794
10.22214/ijraset.2019.4395
10.1109/SSCI47803.2020.9308543
10.1109/BigDataService.2019.00027
10.1109/ACCESS.2021.3099111
10.1109/ITAIC.2019.8785602
10.1007/s10479-020-03734-1
10.23919/MIPRO52101.2021.9596860
10.1109/TELSIKS52058.2021.9606405
10.1109/IEA.2019.8715113
10.1016/j.eswa.2020.114513
10.1016/j.scitotenv.2020.139454
10.1109/EEEIC.2011.5874661
10.1007/s11869-020-00925-4
10.1109/ACCESS.2021.3072280
10.1109/ACCESS.2019.2897754
10.1007/s00521-020-05535-w
10.1016/j.atmosenv.2019.116885
10.1109/iCBEB.2012.81
10.1002/tqem.21464
10.1109/ICTKE47035.2019.8966854
10.1007/s11356-021-12657-8
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
COPYRIGHT 2023 Springer
Copyright Springer Nature B.V. Sep 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: COPYRIGHT 2023 Springer
– notice: Copyright Springer Nature B.V. Sep 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s10462-023-10424-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)


CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 10066
ExternalDocumentID PMC9933038
A757724730
36820441
10_1007_s10462_023_10424_4
Genre Journal Article
GrantInformation_xml – fundername: Universidad Complutense de Madrid
– fundername: Comunidad de Madrid
  grantid: S2018/TCS-4314
  funderid: http://dx.doi.org/10.13039/100012818
– fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: PID2021-122215NB-C31
  funderid: http://dx.doi.org/10.13039/100014440
– fundername: ;
– fundername: ;
  grantid: PID2021-122215NB-C31
– fundername: ;
  grantid: S2018/TCS-4314
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
NPM
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c579t-18de15c1de981af075f3d9bc31ce7f8d4c42edabbb1e89843325aedd4290e9853
IEDL.DBID RSV
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939095900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Tue Nov 04 02:06:42 EST 2025
Thu Oct 02 11:43:57 EDT 2025
Fri Nov 14 11:21:45 EST 2025
Sat Nov 29 10:28:19 EST 2025
Thu Apr 03 06:58:14 EDT 2025
Tue Nov 18 21:05:41 EST 2025
Sat Nov 29 02:43:27 EST 2025
Fri Feb 21 02:41:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
Air quality
Regression algorithms
Machine learning
Language English
License The Author(s) 2023.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-18de15c1de981af075f3d9bc31ce7f8d4c42edabbb1e89843325aedd4290e9853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9808-6401
OpenAccessLink https://link.springer.com/10.1007/s10462-023-10424-4
PMID 36820441
PQID 2838879979
PQPubID 36790
PageCount 36
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9933038
proquest_miscellaneous_2779349073
proquest_journals_2838879979
gale_infotracacademiconefile_A757724730
pubmed_primary_36820441
crossref_citationtrail_10_1007_s10462_023_10424_4
crossref_primary_10_1007_s10462_023_10424_4
springer_journals_10_1007_s10462_023_10424_4
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: England
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationTitleAlternate Artif Intell Rev
PublicationYear 2023
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Ao D, Cui Z, Gu D (2019) Hybrid model of air quality prediction using k-means clustering and deep neural network. In: 2019 Chinese Control Conference (CCC), pp 8416–8421. https://doi.org/10.23919/ChiCC.2019.8865861
Alsaedi AS, Liyakathunisa L (2019) Spatial and temporal data analysis with deep learning for air quality prediction. In: 2019 12th International Conference on Developments in eSystems Engineering (DeSE), pp 581–587 . https://doi.org/10.1109/DeSE.2019.00111
HanYLiVOKLamJCKPollittMHow BLUE is the sky? Estimating air qualities in Beijing during the Blue Sky Day period (2008–2012) by Bayesian Multi-task LSTMEnviron Sci Policy2021116697710.1016/j.envsci.2020.10.015
Amado TM, Dela Cruz JC (2018) Development of machine learning-based predictive models for air quality monitoring and characterization. In: TENCON 2018—2018 IEEE Region 10 Conference, pp 0668–0672. https://doi.org/10.1109/TENCON.2018.8650518
BalogunA-LTellaABalooLAdebisiNA review of the inter-correlation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information scienceUrban Climate20214010.1016/j.uclim.2021.100989
QiZWangTSongGHuWLiXZhangZDeep air learning: interpolation, prediction, and feature analysis of fine-grained air qualityIEEE Trans Knowl Data Eng201830122285229710.1109/TKDE.2018.2823740
MaoWWangWJiaoLZhaoSLiuAModeling air quality prediction using a deep learning approach: method optimization and evaluationSustain Cit Soc20216510.1016/j.scs.2020.102567
Kang Z, Qu Z (2017) Application of bp neural network optimized by genetic simulated annealing algorithm to prediction of air quality index in lanzhou. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp 155–160. https://doi.org/10.1109/CIAPP.2017.8167199
Hu J, Zhang X, Liang D, Zhong F (2021) A novel linear interpolation algorithm based on spatial distribution for improvement temporal resolution of pm2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pm_{2.5}$$\end{document} and PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${PM}_{10}$$\end{document}. In: 2021 7th International Conference on Big Data and Information Analytics (BigDIA), pp.60–66. https://doi.org/10.1109/BigDIA53151.2021.9619651
Zheng H, Cheng Y, Li H (2020) Investigation of model ensemble for fine-grained air quality prediction. China Commun 17(7), 207–223. https://doi.org/10.23919/J.CC.2020.07.015
Yang R, Hu X, He L (2020) Prediction of shanghai air quality index based on bp neural network optimized by genetic algorithm. In: 2020 13th International Symposium on Computational Intelligence and Design (ISCID), pp. 205–208. https://doi.org/10.1109/ISCID51228.2020.00052
Thaweephol K, Wiwatwattana N (2019) Long short-term memory deep neural network model for PM2.5 forecasting in the bangkok urban area. In: 2019 17th International Conference on ICT and Knowledge Engineering (ICT KE), pp 1–6. https://doi.org/10.1109/ICTKE47035.2019.8966854
Jato-EspinoDCastillo-LopezERodriguez-HernandezJBallester-MuñozFAir quality modelling in Catalonia from a combination of solar radiation, surface reflectance and elevationSci Total Environ201862418920010.1016/j.scitotenv.2017.12.139
Yi X, Zhang J, Wang Z, Li T, Zheng Y (2018) Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’18, pp 965–973. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/3219819.3219822
Kaur Bamrah S, R SK, S GK (2020) Application of random forests for air quality estimation in india by adopting terrain features. In: 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), pp 1–6. https://doi.org/10.1109/ICCCSP49186.2020.9315252
Yan L, Wu Y, Yan L, Zhou M (2018) Encoder-decoder model for forecast of PM2.5 concentration per hour. In: 2018 1st International Cognitive Cities Conference (IC3), pp 45–50 . https://doi.org/10.1109/IC3.2018.00020
Li Y, Shen X, Han D, Sun J, Shen Y (2018) Spatio-temporal-aware sparse denoising autoencoder neural network for air quality prediction. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp 96–100. https://doi.org/10.1109/CCIS.2018.8691167
LangPECarslawDCMollerSJA trend analysis approach for air quality network dataAtmos Environ X2019210.1016/j.aeaoa.2019.100030
BougoudisIDemertzisKIliadisLHISYCOL a hybrid computational intelligence system for combined machine learning: The case of air pollution modeling in AthensNeural Comput Appl20162751191120610.1007/s00521-015-1927-7
Le, V.-D., Bui, T.-C., Cha, S.-K.: Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 55–62 (2020). https://doi.org/10.1109/BigComp48618.2020.00-99
Ali ShahSAAzizWAhmed NadeemMSAlmaraashiMShimS-OHabeebullahTMMateosCA novel Phase Space Reconstruction- (PSR-) based predictive algorithm to forecast atmospheric particulate matter concentrationSci Program201910.1155/2019/6780379
WangJZhangXGuoZLuHDeveloping an early-warning system for air quality prediction and assessment of cities in ChinaExpert Syst Appl201784C10211610.1016/j.eswa.2017.04.059
De Vito S, Delli Veneri P, Esposito E, Salvato M, Bright V, Jones RL, Popoola O (2015) Dynamic multivariate regression for on-field calibration of high speed air quality chemical multi-sensor systems. In: 2015 XVIII AISEM Annual Conference, pp 1–3. https://doi.org/10.1109/AISEM.2015.7066794
AmeerSShahMAKhanASongHMapleCIslamSUAsgharMNComparative analysis of machine learning techniques for predicting air quality in smart citiesIEEE Access2019712832512833810.1109/ACCESS.2019.2925082
HajmohammadiHHeydeckerBMultivariate time series modelling for urban air qualityUrban Clim20213710.1016/j.uclim.2021.100834
Putra KT, Prayitno Cahyadi EF, Mamonto AS, Berutu SS, Muharom S (2021) Forecasting air quality using massive-scale wsn based on convolutional LSTM network. In: 2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), pp 1–6. https://doi.org/10.1109/ICE3IS54102.2021.9649763
TellaABalogunA-LAdebisiNAbdullahSSpatial assessment of PM10 hotspots using Random Forest, K-Nearest Neighbour and Naïve BayesAtmos Pollut Res2021121010.1016/j.apr.2021.101202
ZhangLLiuPZhaoLWangGZhangWLiuJAir quality predictions with a semi-supervised bidirectional LSTM neural networkAtmos Pollut Res202112132833910.1016/j.apr.2020.09.003
RahimpourAAmanollahiJTzanisCGAir quality data series estimation based on machine learning approaches for urban environmentsAir Qual Atmos Health20211419120110.1007/s11869-020-00925-4
SunXXuWJiangHWangQA deep multitask learning approach for air quality predictionAnn Oper Res20203035179428826910.1007/s10479-020-03734-107422003
Mahalingam U, Elangovan K, Dobhal H, Valliappa C, Shrestha S, Kedam G (2019) A machine learning model for air quality prediction for smart cities. In: 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp 452–457. https://doi.org/10.1109/WiSPNET45539.2019.9032734
PaiT-YHanakiKSuH-CYuL-FA 24-h forecast of oxidant concentration in Tokyo using neural network and fuzzy learning approachClean Soil Air Water201341872973610.1002/clen.201000067
NemadeSA survey on different machine learning techniques for air quality forecasting for urban air pollutionInt J Res Appl Sci Eng Technol201972185219410.22214/ijraset.2019.4395
ZhuSSunJLiuYLuMLiuXThe air quality index trend forecasting based on improved error correction model and data preprocessing for 17 port cities in ChinaChemosphere202025210.1016/j.chemosphere.2020.126474
Alhirmizy S, Qader B (2019) Multivariate time series forecasting with LSTM for madrid, spain pollution. In: 2019 International Conference on Computing and Information Science and Technology and Their Applications (ICCISTA), pp 1–5 (2019). https://doi.org/10.1109/ICCISTA.2019.8830667
Cheng J-C, Peng H-C (2021) Air quality forecast and evaluation based on long short-term memory network and fuzzy algorithm. In: 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII), pp 88–91. https://doi.org/10.1109/ICKII51822.2021.9574707
SonawaniSPatilKChumchuPNO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NO}_2$$\end{document} pollutant concentration forecasting for air quality monitoring by using an optimised deep learning bidirectional GRU modelInt J Comput Sci Eng2021241647310.1504/ijcse.2021.113652
WangJSongGA deep spatial-temporal ensemble model for air quality predictionNeurocomputing201831419820610.1016/j.neucom.2018.06.049
Chakradhar Reddy K, Nagarjuna Reddy K, Brahmaji Prasad K, Selvi Rajendran P (2021) The prediction of quality of the air using supervised learning. In: 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp 1–5. https://doi.org/10.1109/ICCES51350.2021.9488983
NguyenMHLe NguyenPNguyenKLeVANguyenT-HJiYPM2.5 prediction using genetic algorithm-based feature selection and encoder-decoder modelIEEE Access20219573385735010.1109/ACCESS.2021.3072280
Colchado LE, Villanueva E, Ochoa-Luna J (2021) A neural network architecture with an attention-based layer for spatial prediction of fine particulate matter. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA
10424_CR129
10424_CR128
S Ameer (10424_CR8) 2019; 7
X Sun (10424_CR131) 2020; 303
SG Gocheva-Ilieva (10424_CR38) 2020; 20
S Ni (10424_CR101) 2023; 376
J Ma (10424_CR84) 2020; 705
B Liu (10424_CR77) 2021; 8
S Abirami (10424_CR2) 2021; 283
10424_CR7
10424_CR9
KKR Samal (10424_CR114) 2021; 36
10424_CR69
10424_CR130
M Sharma (10424_CR122) 2021; 1022
10424_CR68
M Fu (10424_CR34) 2015; 26
10424_CR133
10424_CR132
10424_CR64
10424_CR61
H Hajmohammadi (10424_CR41) 2021; 37
10424_CR62
10424_CR137
10424_CR136
10424_CR60
10424_CR135
R Yan (10424_CR145) 2021; 169
10424_CR119
JK Sethi (10424_CR120) 2021
J Wang (10424_CR142) 2021; 33
M Durić (10424_CR32) 2020; 27
Y Zhou (10424_CR167) 2019; 209
10424_CR1
L Contreras (10424_CR27) 2016; 80
10424_CR4
K Zhang (10424_CR154) 2020; 277
10424_CR6
10424_CR58
10424_CR59
KKR Samal (10424_CR113) 2021; 39
10424_CR56
Q Zhang (10424_CR155) 2020; 275
10424_CR123
10424_CR55
10424_CR52
10424_CR53
10424_CR127
N Jin (10424_CR54) 2021; 17
10424_CR80
H Li (10424_CR66) 2020; 11
C-Y Lin (10424_CR71) 2021; 12
T-Y Pai (10424_CR107) 2013; 41
10424_CR152
10424_CR151
10424_CR89
T Liu (10424_CR75) 2018; 123
10424_CR87
10424_CR88
10424_CR85
10424_CR86
10424_CR159
10424_CR81
Z Zhang (10424_CR158) 2022; 10
S Agarwal (10424_CR3) 2020; 735
A-L Balogun (10424_CR12) 2021; 40
Y Han (10424_CR42) 2020
Z Zhao (10424_CR162) 2020
Y Han (10424_CR43) 2021; 116
J Li (10424_CR65) 2019
UA Bhatti (10424_CR16) 2021; 9
Z Qi (10424_CR111) 2018; 30
Y Wang (10424_CR139) 2019; 7
L Zhang (10424_CR156) 2021; 12
10424_CR78
10424_CR79
D Jato-Espino (10424_CR51) 2018; 624
10424_CR144
10424_CR74
D Seng (10424_CR118) 2021; 60
10424_CR72
10424_CR149
10424_CR73
10424_CR148
10424_CR147
A Shishegaran (10424_CR124) 2020; 259
10424_CR146
S Metia (10424_CR94) 2016; 9
X Yi (10424_CR150) 2020
S Zhu (10424_CR169) 2020; 252
Y Chen (10424_CR21) 2017; 47
PE Lang (10424_CR63) 2019; 2
A Tella (10424_CR134) 2021; 12
BB Semlali (10424_CR117) 2021; 93
A-L Balogun (10424_CR11) 2022; 299
10424_CR29
Y Huang (10424_CR46) 2020; 8
10424_CR170
10424_CR25
10424_CR26
10424_CR24
10424_CR171
10424_CR22
10424_CR20
R Navares (10424_CR97) 2020; 55
H Wahid (10424_CR138) 2013; 13
MH Nguyen (10424_CR100) 2021; 9
E Sharma (10424_CR121) 2020; 709
10424_CR91
J Wang (10424_CR141) 2017; 84
W Mao (10424_CR90) 2021; 65
B Liu (10424_CR76) 2019; 7
S Nemade (10424_CR98) 2019; 7
E Eslami (10424_CR33) 2019; 32
KI Hoi (10424_CR44) 2013; 59
J Ma (10424_CR83) 2019; 7
Z Wu (10424_CR143) 2019; 31
PJ García Nieto (10424_CR37) 2013; 219
10424_CR19
10424_CR17
10424_CR14
10424_CR163
I Bougoudis (10424_CR18) 2016; 27
10424_CR13
10424_CR160
10424_CR10
10424_CR99
10424_CR166
C Guo (10424_CR40) 2020; 8
10424_CR96
10424_CR165
D Iskandaryan (10424_CR49) 2020
S Sonawani (10424_CR126) 2021; 24
10424_CR164
10424_CR95
Y-C Lin (10424_CR70) 2020; 86
10424_CR92
10424_CR93
10424_CR168
10424_CR109
A Ozturk (10424_CR106) 2021; 37
10424_CR108
A Rahimpour (10424_CR112) 2021; 14
D Corral-Plaza (10424_CR28) 2021; 213
Y Zhang (10424_CR153) 2019; 7
G Zhao (10424_CR161) 2019; 7
J Wang (10424_CR140) 2018; 314
SA Ali Shah (10424_CR5) 2019
D Schürholz (10424_CR115) 2020; 271
BT Ong (10424_CR104) 2016; 27
P-W Chiang (10424_CR23) 2021; 9
10424_CR47
10424_CR48
10424_CR45
Z Zhang (10424_CR157) 2021; 312
10424_CR110
10424_CR116
K Gu (10424_CR39) 2020
K Karatzas (10424_CR57) 2018; 5
T Li (10424_CR67) 2020; 8
10424_CR36
M Niharika Venkatadri (10424_CR102) 2014; 5
10424_CR35
J Ma (10424_CR82) 2019; 214
10424_CR30
P-W Soh (10424_CR125) 2018; 6
10424_CR31
10424_CR105
R Janarthanan (10424_CR50) 2021; 67
10424_CR103
S Bharat Deshmukh (10424_CR15) 2021; 7
References_xml – reference: Pasupuleti VR, Uhasri Kalyan P, Srikanth Reddy HK (2020) Air quality prediction of data log by machine learning. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp 1395–1399. https://doi.org/10.1109/ICACCS48705.2020.9074431
– reference: LangPECarslawDCMollerSJA trend analysis approach for air quality network dataAtmos Environ X2019210.1016/j.aeaoa.2019.100030
– reference: ZhaoGHuangGHeHHeHRenJRegional spatiotemporal collaborative prediction model for air qualityIEEE Access2019713490313491910.1109/ACCESS.2019.2941732
– reference: Jiao Y, Wang Z, Zhang Y (2019) Prediction of air quality index based on LSTM. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp 17–20. https://doi.org/10.1109/ITAIC.2019.8785602
– reference: Zhang S, Li X, Li Y, Mei J (2018) Prediction of urban PM2.5 concentration based on wavelet neural network. In: 2018 Chinese Control And Decision Conference (CCDC), pp 5514–5519. https://doi.org/10.1109/CCDC.2018.8408092
– reference: SunXXuWJiangHWangQA deep multitask learning approach for air quality predictionAnn Oper Res20203035179428826910.1007/s10479-020-03734-107422003
– reference: Kuo RJ, Prasetyo B, Wibowo BS (2019) Deep learning-based approach for air quality forecasting by using recurrent neural network with gaussian process in taiwan. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), pp 471–474. https://doi.org/10.1109/IEA.2019.8715113
– reference: Zheng H, Cheng Y, Li H (2020) Investigation of model ensemble for fine-grained air quality prediction. China Commun 17(7), 207–223. https://doi.org/10.23919/J.CC.2020.07.015
– reference: HanYLamJCKLiVOZhangQA domain-specific Bayesian deep-learning approach for air pollution forecastIEEE Trans Big Data202010.1109/TBDATA.2020.3005368
– reference: Alsaedi AS, Liyakathunisa L (2019) Spatial and temporal data analysis with deep learning for air quality prediction. In: 2019 12th International Conference on Developments in eSystems Engineering (DeSE), pp 581–587 . https://doi.org/10.1109/DeSE.2019.00111
– reference: Yarragunta S, Nabi MA, P J, S R (2021) Prediction of air pollutants using supervised machine learning. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1633–1640. https://doi.org/10.1109/ICICCS51141.2021.9432078
– reference: Sotomayor-Olmedo A, Aceves-Fernandez MA, Gorrostieta-Hurtado E, Pedraza-Ortega JC, Vargas-Soto JE, Ramos-Arreguin JM, Villaseñor-Carillo U (2011) Evaluating trends of airborne contaminants by using support vector regression techniques. In: CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers, pp 137–141. https://doi.org/10.1109/CONIELECOMP.2011.5749350
– reference: AgarwalSSharmaSSureshRRahmanMHVranckxSMaiheuBBlythLJanssenSGargavaPShuklaVKBatraSAir quality forecasting using artificial neural networks with real time dynamic error correction in highly polluted regionsSci Total Environ202073510.1016/j.scitotenv.2020.139454
– reference: Barrón-Adame JM, Ibarra-Manzano OG, Vega-Corona A, Cortina-Januchs MG, Andina D (2012) Air pollution data classification by SOM Neural Network. In: World Automation Congress 2012, pp 1–5. https://ieeexplore.ieee.org/abstract/document/6320993
– reference: Alhirmizy S, Qader B (2019) Multivariate time series forecasting with LSTM for madrid, spain pollution. In: 2019 International Conference on Computing and Information Science and Technology and Their Applications (ICCISTA), pp 1–5 (2019). https://doi.org/10.1109/ICCISTA.2019.8830667
– reference: Ali ShahSAAzizWAhmed NadeemMSAlmaraashiMShimS-OHabeebullahTMMateosCA novel Phase Space Reconstruction- (PSR-) based predictive algorithm to forecast atmospheric particulate matter concentrationSci Program201910.1155/2019/6780379
– reference: Matović K, Vlahović N (2021) Air quality prediction in smart city. In: 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), pp 287–290 . https://doi.org/10.1109/TELSIKS52058.2021.9606405
– reference: Lin Y, Mago N, Gao Y, Li Y, Chiang Y-Y, Shahabi C, Ambite JL (2018) Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. SIGSPATIAL ’18, pp 359–368. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3274895.3274907
– reference: SethiJKMittalMAn efficient correlation based adaptive lasso regression method for air quality index predictionEarth Sci Inform202110.1007/s12145-021-00618-1
– reference: Su Y, Xie H (2020) Prediction of aqi by bp neural network based on genetic algorithm. In: 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), pp 625–629. https://doi.org/10.1109/CACRE50138.2020.9230036
– reference: AbiramiSChitraPRegional air quality forecasting using spatiotemporal deep learningJ Clean Prod202128310.1016/j.jclepro.2020.125341
– reference: Campalani P, Nguyen TNT, Mantovani S, Mazzini G (2011) On the automatic prediction of PM10 with in-situ measurements, satellite aot retrievals and ancillary data. In: 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp 093–098. https://doi.org/10.1109/ISSPIT.2011.6151541
– reference: SamalKKRPandaAKBabuKSDasSKMulti-output TCN autoencoder for long-term pollution forecasting for multiple sitesUrban Clim20213910.1016/j.uclim.2021.100943
– reference: Asadollahfardi G, Madinejad M, Aria SH, Motamadi V (2016) Predicting particulate matter (PM2.5) concentrations in the air of Shahr-e Ray City, Iran, by using an Artificial Neural Network. Environmental Quality Management 25(4), 71–83. https://doi.org/10.1002/tqem.21464
– reference: MaJLiZChengJCPDingYLinCXuZAir quality prediction at new stations using spatially transferred bi-directional long short-term memory networkSci Total Environ202070510.1016/j.scitotenv.2019.135771
– reference: Schürholz D, Nurgazy M, Zaslavsky A, Jayaraman PP, Kubler S, Mitra K, Saguna S (2019) Myaqi: Context-aware outdoor air pollution monitoring system. In: Proceedings of the 9th International Conference on the Internet of Things. IoT 2019, pp 1–8. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3365871.3365884D
– reference: Thaweephol K, Wiwatwattana N (2019) Long short-term memory deep neural network model for PM2.5 forecasting in the bangkok urban area. In: 2019 17th International Conference on ICT and Knowledge Engineering (ICT KE), pp 1–6. https://doi.org/10.1109/ICTKE47035.2019.8966854
– reference: Zhoul L, Chenl M, Ni Q (2020) A hybrid prophet-LSTM model for prediction of air quality index. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp 595–601. https://doi.org/10.1109/SSCI47803.2020.9308543
– reference: FuMWangWLeZKhorramMSPrediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray modelNeural Comput Appl20152681789179710.1007/s00521-015-1853-8
– reference: Zhenghua W, Zhihui T (2017) Prediction of air quality index based on improved neural network. In: 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC), pp 200–204. https://doi.org/10.1109/ICCSEC.2017.8446883
– reference: Gocheva-IlievaSGIvanovAVLivierisIEHigh performance machine learning models of large scale air pollution data in urban areaCybern Inf Technol2020206496010.2478/cait-2020-0060
– reference: Ganesh SS, Modali SH, Palreddy SR, Arulmozhivarman P (2017) Forecasting air quality index using regression models: A case study on delhi and houston. In: 2017 International Conference on Trends in Electronics and Informatics (ICEI), pp 248–254. https://doi.org/10.1109/ICOEI.2017.8300926
– reference: Kiftiyani U, Nazhifah SA (2021) Deep learning models for air pollution forecasting in Seoul South Korea. In: 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), pp 547–551. https://doi.org/10.1109/ICSECS52883.2021.00106
– reference: Yao L, Lu N, Jiang S (2012) Artificial neural network (ANN) for multi-source PM2.5 estimation using surface, modis, and meteorological data. In: 2012 International Conference on Biomedical Engineering and Biotechnology, pp 1228–1231. https://doi.org/10.1109/iCBEB.2012.81
– reference: Zhu W, Liu X, Zhu Z (2020) Optimized air quality prediction model based on neural network. In: 2020 International Conference on Computer Engineering and Application (ICCEA), pp 565–568. https://doi.org/10.1109/ICCEA50009.2020.00124
– reference: ChenYLiFDengZChenXHeJPM2.5 forecasting with hybrid LSE model-based approachSoftw Pract Exp201747337939010.1002/spe.2413
– reference: ZhangZZengYYanKA hybrid deep learning technology for PM2.5 air quality forecastingEnviron Sci Pollut Res2021312394093942210.1007/s11356-021-12657-8
– reference: NguyenMHLe NguyenPNguyenKLeVANguyenT-HJiYPM2.5 prediction using genetic algorithm-based feature selection and encoder-decoder modelIEEE Access20219573385735010.1109/ACCESS.2021.3072280
– reference: ZhangLLiuPZhaoLWangGZhangWLiuJAir quality predictions with a semi-supervised bidirectional LSTM neural networkAtmos Pollut Res202112132833910.1016/j.apr.2020.09.003
– reference: Ao D, Cui Z, Gu D (2019) Hybrid model of air quality prediction using k-means clustering and deep neural network. In: 2019 Chinese Control Conference (CCC), pp 8416–8421. https://doi.org/10.23919/ChiCC.2019.8865861
– reference: Chowdhury A-S, Uddin MS, Tanjim MR, Noor F, Rahman RM (2020) Application of data mining techniques on air pollution of Dhaka city. In: 2020 IEEE 10th International Conference on Intelligent Systems (IS), pp 562–567. https://doi.org/10.1109/IS48319.2020.9200125
– reference: LiHWangJYangHA novel dynamic ensemble air quality index forecasting systemAtmos Pollut Res20201181258127010.1016/j.apr.2020.04.010
– reference: NavaresRAznarteJLPredicting air quality with deep learning LSTM: towards comprehensive modelsEco Inform20205510.1016/j.ecoinf.2019.101019
– reference: ChiangP-WHorngS-JHybrid time-series framework for daily-based PM2.5 forecastingIEEE Access2021910416210417610.1109/ACCESS.2021.3099111
– reference: Chakradhar Reddy K, Nagarjuna Reddy K, Brahmaji Prasad K, Selvi Rajendran P (2021) The prediction of quality of the air using supervised learning. In: 2021 6th International Conference on Communication and Electronics Systems (ICCES), pp 1–5. https://doi.org/10.1109/ICCES51350.2021.9488983
– reference: GuKZhouYSunHZhaoLLiuSPrediction of air quality in Shenzhen based on neural network algorithmNeural Comput Appl202010.1007/s00521-019-04492-3
– reference: Sunori SK, Negi PB, Maurya S, Mittal A, Bhakuni AS, Juneja P(2021) Neural network and machine learning based prediction model design for air pollutant PM10. In: 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp 1128–1133. https://doi.org/10.1109/ICECA52323.2021.9676128
– reference: Zhu H, Hu J (2019) Air quality forecasting using svr with quasi-linear kernel. In: 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), pp 1–5. https://doi.org/10.1109/CITS.2019.8862114
– reference: Huang M, Zhang T, Wang J, Zhu L (2015) A new air quality forecasting model using data mining and artificial neural network. In: 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp 259–262. https://doi.org/10.1109/ICSESS.2015.7339050
– reference: Mu B, Li S, Yuan S (2017) An improved effective approach for urban air quality forecast. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp 935–942. https://doi.org/10.1109/FSKD.2017.8393403
– reference: SengDZhangQZhangXChenGChenXSpatiotemporal prediction of air quality based on LSTM neural networkAlex Eng J20216022021203210.1016/j.aej.2020.12.009
– reference: Li L, Li Z, Reichmann L, Woodbridge D (2019) A scalable and reliable model for real-time air quality prediction. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp 51–57. https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00053
– reference: Li W, Yi L, Yin X (2020) Real time air monitoring, analysis and prediction system based on internet of things and LSTM. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP), pp 188–194. https://doi.org/10.1109/WCSP49889.2020.9299738
– reference: ZhangQWuSWangXSunBLiuHA PM2.5 concentration prediction model based on multi-task deep learning for intensive air quality monitoring stationsJ Clean Prod202027512272210.1016/j.jclepro.2020.122722
– reference: Colchado LE, Villanueva E, Ochoa-Luna J (2021) A neural network architecture with an attention-based layer for spatial prediction of fine particulate matter. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp 1–10. https://doi.org/10.1109/DSAA53316.2021.9564200
– reference: MaJChengJCPLinCTanYZhangJImproving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniquesAtmos Environ201921410.1016/j.atmosenv.2019.116885
– reference: Ouyang X, Yang Y, Zhang Y, Zhou W (2021) Spatial-temporal dynamic graph convolution neural network for air quality prediction. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp 1–8. https://doi.org/10.1109/IJCNN52387.2021.9534167
– reference: WangJZhangXGuoZLuHDeveloping an early-warning system for air quality prediction and assessment of cities in ChinaExpert Syst Appl201784C10211610.1016/j.eswa.2017.04.059
– reference: Yadav V, Nath S (2018) Daily prediction of PM10 using radial basis function and generalized regression neural network. In: 2018 Recent Advances on Engineering, Technology and Computational Sciences (RAETCS), pp 1–5. https://doi.org/10.1109/RAETCS.2018.8443887
– reference: Lim YB, Aliyu I, Lim CG (2019) Air pollution matter prediction using recurrent neural networks with sequential data. In: Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. ISMSI 2019, pp 40–44. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3325773.3325788
– reference: AmeerSShahMAKhanASongHMapleCIslamSUAsgharMNComparative analysis of machine learning techniques for predicting air quality in smart citiesIEEE Access2019712832512833810.1109/ACCESS.2019.2925082
– reference: Ochando LC, Julián CIF, Ochando FC, Ferri C (2015) Airvlc: An application for real-time forecasting urban air pollution. In: Proceedings of the 2nd International Conference on Mining Urban Data—Volume 1392. MUD’15, pp 72–79. CEUR-WS.org, Aachen, DEU
– reference: WangYKongTAir quality predictive modeling based on an improved decision tree in a weather-smart gridIEEE Access2019717289217290110.1109/ACCESS.2019.2956599
– reference: MetiaSOduroSDDucHNHaQInverse air-pollutant emission and prediction using extended fractional Kalman filteringIEEE J Sel Top Appl Earth Observ Remote Sens2016952051206310.1109/JSTARS.2016.2541958
– reference: ZhangYWangYGaoMMaQZhaoJZhangRWangQHuangLA predictive data feature exploration-based air quality prediction approachIEEE Access20197307323074310.1109/ACCESS.2019.2897754
– reference: Niharika VenkatadriMRaoPA survey on air quality forecasting techniquesInt J Comput Sci Inf Technol20145110310710.15680/IJIRSET.2019.0805015
– reference: GuoCLiuGLyuLChenC-HAn unsupervised PM2.5 estimation method with different spatio-temporal resolutions based on kidw-tcgruIEEE Access2020819026319027610.1109/ACCESS.2020.3032420
– reference: MaJDingYGanVJLLinCWanZSpatiotemporal prediction of PM2.5 concentrations at different time granularities using IDW-BLSTMIEEE Access2019710789710790710.1109/ACCESS.2019.2932445
– reference: DurićMVujovićDShort-term forecasting of air pollution index in Belgrade, SerbiaMeteorol Appl2020275194610.1002/met.1946
– reference: Ma L, Gao Y, Zhao C (2020) Research on machine learning prediction of air quality index based on spss. In: 2020 International Conference on Computer Network, Electronic and Automation (ICCNEA), pp 1–5. https://doi.org/10.1109/ICCNEA50255.2020.00011
– reference: Bharat DeshmukhSPrakash ShirsatKPrashant DhotreSRavsaheb JejurkarPA survey on machine learning-based prediction of air quality indexInt J Adv Res Innov Ideas Educ2021712031207
– reference: De Vito S, Delli Veneri P, Esposito E, Salvato M, Bright V, Jones RL, Popoola O (2015) Dynamic multivariate regression for on-field calibration of high speed air quality chemical multi-sensor systems. In: 2015 XVIII AISEM Annual Conference, pp 1–3. https://doi.org/10.1109/AISEM.2015.7066794
– reference: LiTHuaMWuXA hybrid CNN-LSTM model for forecasting particulate matter (PM2.5)IEEE Access20208269332694010.1109/ACCESS.2020.2971348
– reference: Cheng J-C, Peng H-C (2021) Air quality forecast and evaluation based on long short-term memory network and fuzzy algorithm. In: 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII), pp 88–91. https://doi.org/10.1109/ICKII51822.2021.9574707
– reference: Li Y, Shen X, Han D, Sun J, Shen Y (2018) Spatio-temporal-aware sparse denoising autoencoder neural network for air quality prediction. In: 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp 96–100. https://doi.org/10.1109/CCIS.2018.8691167
– reference: RahimpourAAmanollahiJTzanisCGAir quality data series estimation based on machine learning approaches for urban environmentsAir Qual Atmos Health20211419120110.1007/s11869-020-00925-4
– reference: García NietoPJCombarroEFDel Coz DíazJJMontañésEA svm-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case studyAppl Math Comput2013219178923893710.1016/j.amc.2013.03.018
– reference: JanarthananRPartheebanPSomasundaramKNavin ElamparithiPA deep learning approach for prediction of air quality index in a metropolitan citySustain Cities Soc20216710.1016/j.scs.2021.102720
– reference: Kök İ, Şimşek MU, Özdemir S (2017) A deep learning model for air quality prediction in smart cities. In: 2017 IEEE International Conference on Big Data (Big Data), pp 1983–1990 . https://doi.org/10.1109/BigData.2017.8258144
– reference: Le, V.-D., Bui, T.-C., Cha, S.-K.: Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 55–62 (2020). https://doi.org/10.1109/BigComp48618.2020.00-99
– reference: WahidHHaQPDucHAzziMNeural network-based meta-modelling approach for estimating spatial distribution of air pollutant levelsAppl Soft Comput201313104087409610.1016/j.asoc.2013.05.007
– reference: IskandaryanDRamosFTrillesSAir quality prediction in smart cities using machine learning technologies based on sensor data: a reviewAppl Sci202010.3390/app10072401
– reference: Li D, Yu H, Geng Y-a, Li X, Li Q (2021) DDGNet: A dual-stage dynamic spatio-temporal graph network for PM2.5 forecasting. In: 2021 IEEE International Conference on Big Data (Big Data), pp 1679–1685. https://doi.org/10.1109/BigData52589.2021.9671941
– reference: Madaan D, Dua R, Mukherjee P, Lall B (2019) Vayuanukulani: Adaptive memory networks for air pollution forecasting. In: 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp 1–5. https://doi.org/10.1109/GlobalSIP45357.2019.8969343
– reference: Putra KT, Prayitno Cahyadi EF, Mamonto AS, Berutu SS, Muharom S (2021) Forecasting air quality using massive-scale wsn based on convolutional LSTM network. In: 2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), pp 1–6. https://doi.org/10.1109/ICE3IS54102.2021.9649763
– reference: SonawaniSPatilKChumchuPNO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NO}_2$$\end{document} pollutant concentration forecasting for air quality monitoring by using an optimised deep learning bidirectional GRU modelInt J Comput Sci Eng2021241647310.1504/ijcse.2021.113652
– reference: Méndez M, Montero C, Núñez M (2022) Using deep transformer based models to predict ozone levels. In: Intelligent Information and Database Systems—14th Asian Conference, ACIIDS 2022, Part I. Lecture Notes in Computer Science, vol 13757, pp 169–182. Springer. https://doi.org/10.1007/978-3-031-21743-2_14
– reference: ZhaoZQinJHeZLiHYangYZhangRCombining forward with recurrent neural networks for hourly air quality prediction in Northwest of ChinaEnviron Sci Pollut Res202010.1007/s11356-020-08948-1
– reference: Zheng Y, Liu F, Hsieh H-P (2013) U-air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’13, pp 1436–1444. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2487575.2488188
– reference: Metia S, Oduro SD, Ha QP, Due H (2014) Air pollution prediction using matérn function based extended fractional Kalman filtering. In: 2014 13th International Conference on Control Automation Robotics Vision (ICARCV), pp 758–763. https://doi.org/10.1109/ICARCV.2014.7064399
– reference: ZhangKThéJXieGYuHMulti-step ahead forecasting of regional air quality using spatial-temporal deep neural networks: a case study of Huaihai economic zoneJ Clean Prod202027710.1016/j.jclepro.2020.123231
– reference: BougoudisIDemertzisKIliadisLHISYCOL a hybrid computational intelligence system for combined machine learning: The case of air pollution modeling in AthensNeural Comput Appl20162751191120610.1007/s00521-015-1927-7
– reference: EslamiESalmanAKChoiYSayeedALopsYA data ensemble approach for real-time air quality forecasting using extremely randomized trees and deep neural networksNeural Comput Appl2019327563757910.1007/s00521-019-04287-6
– reference: Mei G, Zhang H, Zhang B (2016) Improving elman neural network model via fusion of new feedback mechanism and genetic algorithm. In: 2016 International Conference on Progress in Informatics and Computing (PIC), pp 69–73. https://doi.org/10.1109/PIC.2016.7949469
– reference: SharmaEDeoRCPrasadRParisiAVA hybrid air quality early-warning framework: an hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithmsSci Total Environ202070910.1016/j.scitotenv.2019.135934
– reference: SohP-WChangJ-WHuangJ-WAdaptive deep learning-based air quality prediction model using the most relevant spatial-temporal relationsIEEE Access20186381863819910.1109/ACCESS.2018.2849820
– reference: Zhang C, Yuan D (2015) Fast fine-grained air quality index level prediction using random forest algorithm on cluster computing of spark. In: 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp 929–934 . https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.177
– reference: ZhouYChangF-JChangL-CKaoI-FWangY-SExplore a deep learning multi-output neural network for regional multi-step-ahead air quality forecastsJ Clean Prod201920913414510.1016/j.jclepro.2018.10.243
– reference: HanYLiVOKLamJCKPollittMHow BLUE is the sky? Estimating air qualities in Beijing during the Blue Sky Day period (2008–2012) by Bayesian Multi-task LSTMEnviron Sci Policy2021116697710.1016/j.envsci.2020.10.015
– reference: TellaABalogunA-LAdebisiNAbdullahSSpatial assessment of PM10 hotspots using Random Forest, K-Nearest Neighbour and Naïve BayesAtmos Pollut Res2021121010.1016/j.apr.2021.101202
– reference: YiXDuanZLiRZhangJLiTZhengYPredicting fine-grained air quality based on deep neural networksIEEE Trans Big Data202010.1109/TBDATA.2020.3047078
– reference: Yi X, Zhang J, Wang Z, Li T, Zheng Y (2018) Deep distributed fusion network for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD ’18, pp 965–973. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/3219819.3219822
– reference: Choi J, Kim J, Jung K (2021) Air quality prediction with 1-dimensional convolution and attention on multi-modal features. In: 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 196–202. https://doi.org/10.1109/BigComp51126.2021.00045
– reference: WuZZhangSStudy on the spatial-temporal change characteristics and influence factors of fog and haze pollution based on gamNeural Comput Appl20193151619163110.1007/s00521-018-3532-z
– reference: JinNZengYYanKJiZMultivariate air quality forecasting with nested long short term memory neural networkIEEE Trans Ind Inf202117128514852210.1109/TII.2021.3065425
– reference: LiuBYanSLiJQuGLiYLangJGuRA sequence-to-sequence air quality predictor based on the n-step recurrent predictionIEEE Access20197433314334510.1109/ACCESS.2019.2908081
– reference: SchürholzDKublerSZaslavskyAArtificial intelligence-enabled context-aware air quality prediction for smart citiesJ Clean Prod202027110.1016/j.jclepro.2020.121941
– reference: Dedovic MM, Avdakovic S, Turkovic I, Dautbasic N, Konjic T (2016) Forecasting PM10 concentrations using neural networks and system for improving air quality. In: 2016 XI International Symposium on Telecommunications (BIHTEL), pp 1–6. https://doi.org/10.1109/BIHTEL.2016.7775721
– reference: PaiT-YHanakiKSuH-CYuL-FA 24-h forecast of oxidant concentration in Tokyo using neural network and fuzzy learning approachClean Soil Air Water201341872973610.1002/clen.201000067
– reference: Liu W, Zhang H, Liu Q (2019) An air quality grade forecasting approach based on ensemble learning. In: 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), pp 87–91. https://doi.org/10.1109/AIAM48774.2019.00024
– reference: Hota L, Dash PK, Sahoo KS, Gandomi AH (2021) Air quality index analysis of indian cities during covid-19 using machine learning models: a comparative study. In: 2021 8th International Conference on Soft Computing Machine Intelligence (ISCMI), pp 27–31. https://doi.org/10.1109/ISCMI53840.2021.9654925
– reference: WangJSongGA deep spatial-temporal ensemble model for air quality predictionNeurocomputing201831419820610.1016/j.neucom.2018.06.049
– reference: Yan L, Wu Y, Yan L, Zhou M (2018) Encoder-decoder model for forecast of PM2.5 concentration per hour. In: 2018 1st International Cognitive Cities Conference (IC3), pp 45–50 . https://doi.org/10.1109/IC3.2018.00020
– reference: SamalKKRBabuKSDasSKMulti-directional temporal convolutional artificial neural network for PM2.5 forecasting with missing values: a deep learning approachUrban Clim20213610080010.1016/j.uclim.2021.100800
– reference: BalogunA-LTellaAModelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regressionChemosphere202229910.1016/j.chemosphere.2022.134250
– reference: Kaur Bamrah S, R SK, S GK (2020) Application of random forests for air quality estimation in india by adopting terrain features. In: 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), pp 1–6. https://doi.org/10.1109/ICCCSP49186.2020.9315252
– reference: NiSJiaPXuYZengLLiXXuMPrediction of CO concentration in different conditions based on gaussian-TCNSens Actuators B202337610.1016/j.snb.2022.133010
– reference: YanRLiaoJYangJSunWNongMLiFMulti-hour and multi-site air quality index forecasting in beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clusteringExpert Syst Appl202116910.1016/j.eswa.2020.114513
– reference: OzturkAAccuracy improvement in air-quality forecasting using regressor combination with missing data imputationComput Intell2021371226252422197610.1111/coin.12399
– reference: Yi H, Xiong Q, Zou Q, Xu R, Wang K, Gao M (2019) A novel random forest and its application on classification of air quality. In: 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), pp 35–38. https://doi.org/10.1109/IIAI-AAI.2019.00018
– reference: Zhao C, van Heeswijk M, Karhunen J (2016) Air quality forecasting using neural networks. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp 1–7 . https://doi.org/10.1109/SSCI.2016.7850128
– reference: Jovova L, Trivodaliev K (2021) Air pollution forecasting using CNN-LSTM deep learning model. In: 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), pp 1091–1096. https://doi.org/10.23919/MIPRO52101.2021.9596860
– reference: Jiang J-Y, Li C-T (2016) Forecasting geo-sensor data with participatory sensing based on dropout neural network. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. CIKM ’16, pp 2033–2036. Association for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/2983323.2983902
– reference: Song X, Huang J, Song D (2019) Air quality prediction based on LSTM-kalman model. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp 695–699. https://doi.org/10.1109/ITAIC.2019.8785751
– reference: OngBTSugiuraKZettsuKDynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5Neural Comput Appl20162761553156610.1007/s00521-015-1955-3
– reference: ZhuSSunJLiuYLuMLiuXThe air quality index trend forecasting based on improved error correction model and data preprocessing for 17 port cities in ChinaChemosphere202025210.1016/j.chemosphere.2020.126474
– reference: LinY-CLeeS-JOuyangC-SWuC-HAir quality prediction by neuro-fuzzy modeling approachAppl Soft Comput20208610.1016/j.asoc.2019.105898
– reference: NemadeSA survey on different machine learning techniques for air quality forecasting for urban air pollutionInt J Res Appl Sci Eng Technol201972185219410.22214/ijraset.2019.4395
– reference: QiZWangTSongGHuWLiXZhangZDeep air learning: interpolation, prediction, and feature analysis of fine-grained air qualityIEEE Trans Knowl Data Eng201830122285229710.1109/TKDE.2018.2823740
– reference: Amado TM, Dela Cruz JC (2018) Development of machine learning-based predictive models for air quality monitoring and characterization. In: TENCON 2018—2018 IEEE Region 10 Conference, pp 0668–0672. https://doi.org/10.1109/TENCON.2018.8650518
– reference: KaratzasKKatsifarakisNOrlowskiCSarzyńskiARevisiting urban air quality forecasting: a regression approachVietnam J Comput Sci20185217718410.1007/s40595-018-0113-0
– reference: LiJShaoXSunRVisioliAA dbn-based deep neural network model with multitask learning for online air quality predictionJ Control Sci Eng201910.1155/2019/53045351433.92075
– reference: ZhangZZhangSZhaoXChenLYaoJTemporal difference-based graph transformer networks for air quality PM2.5 prediction: a case study in ChinaFront Environ Sci20221010.3389/fenvs.2022.924986
– reference: Srikamdee S, Onpans J (2019) Forecasting daily air quality in northern thailand using machine learning techniques. In: 2019 4th International Conference on Information Technology (InCIT), pp 259–263. https://doi.org/10.1109/INCIT.2019.8912072
– reference: ContrerasLFerriCWind-sensitive interpolation of urban air pollution forecastsProcedia Comput Sci201680C31332310.1016/j.procs.2016.05.343
– reference: WangJLiJWangXWangJHuangMAir quality prediction using ct-LSTMNeural Comput Appl2021334779479210.1007/s00521-020-05535-w
– reference: ShishegaranASaeediMKumarAGhiasinejadHPrediction of air quality in tehran by developing the nonlinear ensemble modelJ Clean Prod202025910.1016/j.jclepro.2020.120825
– reference: SemlaliBBAmraniCEOrtizGBoubeta-PuigJde PradoAGSAT-CEP-monitor: an air quality monitoring software architecture combining complex event processing with satellite remote sensingComput Electr Eng20219310.1016/j.compeleceng.2021.107257
– reference: MaoWWangWJiaoLZhaoSLiuAModeling air quality prediction using a deep learning approach: method optimization and evaluationSustain Cit Soc20216510.1016/j.scs.2020.102567
– reference: HuangYXiangYZhaoRChengZAir quality prediction using improved pso-bp neural networkIEEE Access20208993469935310.1109/ACCESS.2020.2998145
– reference: Liu B, Yan S, Li J, Li Y (2016) Forecasting PM2.5 concentration using spatio-temporal extreme learning machine. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp 950–953. https://doi.org/10.1109/ICMLA.2016.0171
– reference: Jato-EspinoDCastillo-LopezERodriguez-HernandezJBallester-MuñozFAir quality modelling in Catalonia from a combination of solar radiation, surface reflectance and elevationSci Total Environ201862418920010.1016/j.scitotenv.2017.12.139
– reference: LiuTLauAKHSandbrinkKFungJCHTime series forecasting of air quality based on regional numerical modeling in Hong KongJ Geophys Res201812384175419610.1002/2017JD028052
– reference: Verma P, Reddy SV, Ragha L, Datta D (2021) Comparison of time-series forecasting models. In: 2021 International Conference on Intelligent Technologies (CONIT), pp 1–7. https://doi.org/10.1109/CONIT51480.2021.9498451
– reference: BalogunA-LTellaABalooLAdebisiNA review of the inter-correlation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information scienceUrban Climate20214010.1016/j.uclim.2021.100989
– reference: HoiKIYuenKVMokKMImprovement of the multilayer perceptron for air quality modelling through an adaptive learning schemeComput Geosci20135914815510.1016/j.cageo.2013.06.002
– reference: LinC-YChangY-SAbimannanSEnsemble multifeatured deep learning models for air quality forecastingAtmos Pollut Res202112510.1016/j.apr.2021.03.008
– reference: Shawabkeh A, Al-Beqain F, Redan A, Salem M (2018) Benzene air pollution monitoring model using ann and svm. In: 2018 Fifth HCT Information Technology Trends (ITT), pp 197–204. https://doi.org/10.1109/CTIT.2018.8649497
– reference: Corral-PlazaDOrtizGMedina-BuloIBoubeta-PuigJMEdit4CEP-SP: a model-driven solution to improve decision-making through user-friendly management and real-time processing of heterogeneous data streamsKnowl Based Syst202121310.1016/j.knosys.2020.106682
– reference: Lan Y, Dai Y (2020) Urban air quality prediction based on space-time optimization LSTM model. In: 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), pp 215–222 . https://doi.org/10.1109/ICAIBD49809.2020.9137441
– reference: BhattiUAYanYZhouMAliSHussainAQingsongHYuZYuanLTime series analysis and forecasting of air pollution particulate matter (PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${PM}_2.5$$\end{document}): an sarima and factor analysis approachIEEE Access20219410194103110.1109/ACCESS.2021.3060744
– reference: Yang R, Hu X, He L (2020) Prediction of shanghai air quality index based on bp neural network optimized by genetic algorithm. In: 2020 13th International Symposium on Computational Intelligence and Design (ISCID), pp. 205–208. https://doi.org/10.1109/ISCID51228.2020.00052
– reference: Barthwal A, Acharya D (2018) An internet of things system for sensing, analysis forecasting urban air quality. In: 2018 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp 1–6 . https://doi.org/10.1109/CONECCT.2018.8482397
– reference: Bouakline O, ARJDAL K, KHOMSI K, SEMANE N, ELIDRISSI A, NAFIRI S, NAJMI H (2020) Prediction of daily PM10 concentration using machine learning. In: 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), pp 1–5. https://doi.org/10.1109/ICECOCS50124.2020.9314380
– reference: Abdullah S, Ismail M, Ahmed AN, Mansor WNW (2019) Big data analytics and artificial intelligence in air pollution studies for the prediction of particulate matter concentration. In: Proceedings of the 3rd International Conference on Telecommunications and Communication Engineering. ICTCE ’19, pp 90–94. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3369555.3369557
– reference: Mahanta S, Ramakrishnudu T, Jha RR, Tailor N (2019) Urban air quality prediction using regression analysis. In: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp 1118–1123. https://doi.org/10.1109/TENCON.2019.8929517
– reference: SharmaMJainSMittalSSheikhTHForecasting and prediction of air pollutants concentrates using machine learning techniques: the case of IndiaIOP Conf Ser20211022110.1088/1757-899x/1022/1/012123
– reference: Srivastava C, Singh S, Singh AP (2018) Estimation of air pollution in delhi using machine learning techniques. In: 2018 International Conference on Computing, Power and Communication Technologies (GUCON), pp 304–309. https://doi.org/10.1109/GUCON.2018.8675022
– reference: HajmohammadiHHeydeckerBMultivariate time series modelling for urban air qualityUrban Clim20213710.1016/j.uclim.2021.100834
– reference: Mahalingam U, Elangovan K, Dobhal H, Valliappa C, Shrestha S, Kedam G (2019) A machine learning model for air quality prediction for smart cities. In: 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp 452–457. https://doi.org/10.1109/WiSPNET45539.2019.9032734
– reference: Ganesh SS, Reddy NB, Arulmozhivarman P (2017) Forecasting air quality index based on mamdani fuzzy inference system. In: 2017 International Conference on Trends in Electronics and Informatics (ICEI), pp 338–341. https://doi.org/10.1109/ICOEI.2017.8300944
– reference: Kang Z, Qu Z (2017) Application of bp neural network optimized by genetic simulated annealing algorithm to prediction of air quality index in lanzhou. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp 155–160. https://doi.org/10.1109/CIAPP.2017.8167199
– reference: Paoli C, Notton G, Nivet M-L, Padovani M, Savelli J-L (2011) A neural network model forecasting for prediction of hourly ozone concentration in corsica. In: 2011 10th International Conference on Environment and Electrical Engineering, pp 1–4 . https://doi.org/10.1109/EEEIC.2011.5874661
– reference: Septiawan WM, Endah SN (2018) Suitable recurrent neural network for air quality prediction with backpropagation through time. In: 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), pp 1–6. https://doi.org/10.1109/ICICOS.2018.8621720
– reference: LiuBYanSLiJLiYLangJQuGA spatiotempor.al recurrent neural network for prediction of atmospheric PM2.5: a case study of BeijingIEEE Trans Soc Syst20218357858810.1109/TCSS.2021.3056410
– reference: Maheshwari K, Lamba S (2019) Air quality prediction using supervised regression model. In: 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), vol. 1, pp 1–7. https://doi.org/10.1109/ICICT46931.2019.8977694
– reference: Ngom B, Diallo M, Seyc MR, Drame MS, Cambier C, Marilleau N (2021) PM10 data assimilation on real-time agent-based simulation using machine learning models: case of dakar urban air pollution study. In: 2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), pp 1–4. https://doi.org/10.1109/DS-RT52167.2021.9576143
– reference: Dua R, Madaan D, Mukherjee P, Lall B (2019) Real time attention based bidirectional long short-term memory networks for air pollution forecasting. In: 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), pp 151–158. https://doi.org/10.1109/BigDataService.2019.00027
– reference: Li J, Shao X, Zhao H (2018) An online method based on random forest for air pollutant concentration forecasting. In: 2018 37th Chinese Control Conference (CCC), pp 9641–9648 . https://doi.org/10.23919/ChiCC.2018.8483621
– reference: Hu J, Zhang X, Liang D, Zhong F (2021) A novel linear interpolation algorithm based on spatial distribution for improvement temporal resolution of pm2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pm_{2.5}$$\end{document} and PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${PM}_{10}$$\end{document}. In: 2021 7th International Conference on Big Data and Information Analytics (BigDIA), pp.60–66. https://doi.org/10.1109/BigDIA53151.2021.9619651
– reference: Thanavanich T, Yaibuates M, Suchaya P (2021) Improving the accuracy of forecasting PM2.5 concentrations with hybrid neural network model. In: 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, pp 18–22. https://doi.org/10.1109/ECTIDAMTNCON51128.2021.9425724
– volume: 7
  start-page: 134903
  year: 2019
  ident: 10424_CR161
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941732
– ident: 10424_CR60
  doi: 10.1109/BigData.2017.8258144
– volume: 65
  year: 2021
  ident: 10424_CR90
  publication-title: Sustain Cit Soc
  doi: 10.1016/j.scs.2020.102567
– ident: 10424_CR137
  doi: 10.1109/CONIT51480.2021.9498451
– volume: 624
  start-page: 189
  year: 2018
  ident: 10424_CR51
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.12.139
– ident: 10424_CR7
  doi: 10.1109/TENCON.2018.8650518
– volume: 80
  start-page: 313
  issue: C
  year: 2016
  ident: 10424_CR27
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.05.343
– volume: 26
  start-page: 1789
  issue: 8
  year: 2015
  ident: 10424_CR34
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1853-8
– ident: 10424_CR110
  doi: 10.1109/ICE3IS54102.2021.9649763
– ident: 10424_CR163
  doi: 10.1109/SSCI.2016.7850128
– ident: 10424_CR96
  doi: 10.1109/FSKD.2017.8393403
– ident: 10424_CR19
  doi: 10.1109/ISSPIT.2011.6151541
– ident: 10424_CR24
  doi: 10.1109/BigComp51126.2021.00045
– year: 2020
  ident: 10424_CR39
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04492-3
– ident: 10424_CR6
  doi: 10.1109/DeSE.2019.00111
– ident: 10424_CR95
  doi: 10.1109/ICARCV.2014.7064399
– year: 2019
  ident: 10424_CR65
  publication-title: J Control Sci Eng
  doi: 10.1155/2019/5304535
– volume: 32
  start-page: 7563
  year: 2019
  ident: 10424_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04287-6
– ident: 10424_CR64
  doi: 10.1109/BigComp48618.2020.00-99
– volume: 13
  start-page: 4087
  issue: 10
  year: 2013
  ident: 10424_CR138
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.05.007
– ident: 10424_CR74
  doi: 10.1109/CCIS.2018.8691167
– volume: 12
  start-page: 328
  issue: 1
  year: 2021
  ident: 10424_CR156
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2020.09.003
– ident: 10424_CR22
  doi: 10.1109/ICKII51822.2021.9574707
– volume: 123
  start-page: 4175
  issue: 8
  year: 2018
  ident: 10424_CR75
  publication-title: J Geophys Res
  doi: 10.1002/2017JD028052
– ident: 10424_CR105
  doi: 10.1109/IJCNN52387.2021.9534167
– ident: 10424_CR62
  doi: 10.1109/ICAIBD49809.2020.9137441
– ident: 10424_CR160
  doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.177
– volume: 67
  year: 2021
  ident: 10424_CR50
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.102720
– ident: 10424_CR85
  doi: 10.1109/GlobalSIP45357.2019.8969343
– volume: 86
  year: 2020
  ident: 10424_CR70
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105898
– ident: 10424_CR88
  doi: 10.1109/TENCON.2019.8929517
– ident: 10424_CR144
  doi: 10.1109/RAETCS.2018.8443887
– ident: 10424_CR87
  doi: 10.1109/WiSPNET45539.2019.9032734
– volume: 9
  start-page: 2051
  issue: 5
  year: 2016
  ident: 10424_CR94
  publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2016.2541958
– ident: 10424_CR170
  doi: 10.1109/CITS.2019.8862114
– ident: 10424_CR164
  doi: 10.23919/J.CC.2020.07.015
– volume: 271
  year: 2020
  ident: 10424_CR115
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.121941
– ident: 10424_CR132
  doi: 10.1109/ICECA52323.2021.9676128
– ident: 10424_CR128
  doi: 10.1109/CONIELECOMP.2011.5749350
– ident: 10424_CR4
  doi: 10.1109/ICCISTA.2019.8830667
– volume: 9
  start-page: 41019
  year: 2021
  ident: 10424_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060744
– ident: 10424_CR165
  doi: 10.1109/ICCSEC.2017.8446883
– volume: 47
  start-page: 379
  issue: 3
  year: 2017
  ident: 10424_CR21
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.2413
– ident: 10424_CR26
  doi: 10.1109/DSAA53316.2021.9564200
– ident: 10424_CR89
  doi: 10.1109/ICICT46931.2019.8977694
– volume: 213
  year: 2021
  ident: 10424_CR28
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106682
– ident: 10424_CR68
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00053
– ident: 10424_CR79
  doi: 10.1109/AIAM48774.2019.00024
– ident: 10424_CR152
  doi: 10.1145/3219819.3219822
– volume: 17
  start-page: 8514
  issue: 12
  year: 2021
  ident: 10424_CR54
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2021.3065425
– ident: 10424_CR48
  doi: 10.1109/BigDIA53151.2021.9619651
– ident: 10424_CR30
  doi: 10.1109/BIHTEL.2016.7775721
– volume: 209
  start-page: 134
  year: 2019
  ident: 10424_CR167
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.10.243
– ident: 10424_CR159
  doi: 10.1109/CCDC.2018.8408092
– ident: 10424_CR52
  doi: 10.1145/2983323.2983902
– volume: 40
  year: 2021
  ident: 10424_CR12
  publication-title: Urban Climate
  doi: 10.1016/j.uclim.2021.100989
– volume: 39
  year: 2021
  ident: 10424_CR113
  publication-title: Urban Clim
  doi: 10.1016/j.uclim.2021.100943
– ident: 10424_CR171
  doi: 10.1109/ICCEA50009.2020.00124
– volume: 5
  start-page: 103
  issue: 1
  year: 2014
  ident: 10424_CR102
  publication-title: Int J Comput Sci Inf Technol
  doi: 10.15680/IJIRSET.2019.0805015
– ident: 10424_CR109
  doi: 10.1109/ICACCS48705.2020.9074431
– ident: 10424_CR135
  doi: 10.1109/ECTIDAMTNCON51128.2021.9425724
– volume: 709
  year: 2020
  ident: 10424_CR121
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135934
– volume: 8
  start-page: 99346
  year: 2020
  ident: 10424_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998145
– year: 2020
  ident: 10424_CR42
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2020.3005368
– ident: 10424_CR147
  doi: 10.1109/IC3.2018.00020
– ident: 10424_CR59
  doi: 10.1109/ICSECS52883.2021.00106
– ident: 10424_CR149
  doi: 10.1109/ICICCS51141.2021.9432078
– ident: 10424_CR81
  doi: 10.1109/BigData52589.2021.9671941
– volume: 7
  start-page: 172892
  year: 2019
  ident: 10424_CR139
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2956599
– ident: 10424_CR146
  doi: 10.1109/ISCID51228.2020.00052
– ident: 10424_CR127
  doi: 10.1109/ITAIC.2019.8785751
– volume: 37
  start-page: 226
  issue: 1
  year: 2021
  ident: 10424_CR106
  publication-title: Comput Intell
  doi: 10.1111/coin.12399
– volume: 24
  start-page: 64
  issue: 1
  year: 2021
  ident: 10424_CR126
  publication-title: Int J Comput Sci Eng
  doi: 10.1504/ijcse.2021.113652
– volume: 12
  issue: 10
  year: 2021
  ident: 10424_CR134
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2021.101202
– volume: 252
  year: 2020
  ident: 10424_CR169
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126474
– ident: 10424_CR14
  doi: 10.1109/CONECCT.2018.8482397
– volume: 8
  start-page: 190263
  year: 2020
  ident: 10424_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3032420
– volume: 11
  start-page: 1258
  issue: 8
  year: 2020
  ident: 10424_CR66
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2020.04.010
– ident: 10424_CR166
  doi: 10.1145/2487575.2488188
– ident: 10424_CR56
  doi: 10.1109/CIAPP.2017.8167199
– volume: 5
  start-page: 177
  issue: 2
  year: 2018
  ident: 10424_CR57
  publication-title: Vietnam J Comput Sci
  doi: 10.1007/s40595-018-0113-0
– ident: 10424_CR47
  doi: 10.1109/ICSESS.2015.7339050
– year: 2020
  ident: 10424_CR49
  publication-title: Appl Sci
  doi: 10.3390/app10072401
– year: 2020
  ident: 10424_CR162
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-08948-1
– volume: 27
  start-page: 1553
  issue: 6
  year: 2016
  ident: 10424_CR104
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1955-3
– ident: 10424_CR25
  doi: 10.1109/IS48319.2020.9200125
– volume: 27
  start-page: 1191
  issue: 5
  year: 2016
  ident: 10424_CR18
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1927-7
– volume: 277
  year: 2020
  ident: 10424_CR154
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123231
– ident: 10424_CR151
  doi: 10.1109/IIAI-AAI.2019.00018
– volume: 259
  year: 2020
  ident: 10424_CR124
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.120825
– volume: 8
  start-page: 26933
  year: 2020
  ident: 10424_CR67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971348
– ident: 10424_CR119
  doi: 10.1109/ICICOS.2018.8621720
– ident: 10424_CR93
  doi: 10.1007/978-3-031-21743-2_14
– volume: 299
  year: 2022
  ident: 10424_CR11
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134250
– ident: 10424_CR58
  doi: 10.1109/ICCCSP49186.2020.9315252
– volume: 2
  year: 2019
  ident: 10424_CR63
  publication-title: Atmos Environ X
  doi: 10.1016/j.aeaoa.2019.100030
– volume: 7
  start-page: 128325
  year: 2019
  ident: 10424_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925082
– volume: 27
  start-page: 1946
  issue: 5
  year: 2020
  ident: 10424_CR32
  publication-title: Meteorol Appl
  doi: 10.1002/met.1946
– ident: 10424_CR92
  doi: 10.1109/PIC.2016.7949469
– volume: 376
  year: 2023
  ident: 10424_CR101
  publication-title: Sens Actuators B
  doi: 10.1016/j.snb.2022.133010
– volume: 31
  start-page: 1619
  issue: 5
  year: 2019
  ident: 10424_CR143
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3532-z
– ident: 10424_CR116
  doi: 10.1145/3365871.3365884
– ident: 10424_CR17
  doi: 10.1109/ICECOCS50124.2020.9314380
– ident: 10424_CR35
  doi: 10.1109/ICOEI.2017.8300926
– volume: 705
  year: 2020
  ident: 10424_CR84
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135771
– ident: 10424_CR99
  doi: 10.1109/DS-RT52167.2021.9576143
– year: 2021
  ident: 10424_CR120
  publication-title: Earth Sci Inform
  doi: 10.1007/s12145-021-00618-1
– ident: 10424_CR20
  doi: 10.1109/ICCES51350.2021.9488983
– ident: 10424_CR36
  doi: 10.1109/ICOEI.2017.8300944
– volume: 84
  start-page: 102
  issue: C
  year: 2017
  ident: 10424_CR141
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.059
– volume: 41
  start-page: 729
  issue: 8
  year: 2013
  ident: 10424_CR107
  publication-title: Clean Soil Air Water
  doi: 10.1002/clen.201000067
– volume: 8
  start-page: 578
  issue: 3
  year: 2021
  ident: 10424_CR77
  publication-title: IEEE Trans Soc Syst
  doi: 10.1109/TCSS.2021.3056410
– ident: 10424_CR9
  doi: 10.23919/ChiCC.2019.8865861
– volume: 7
  start-page: 107897
  year: 2019
  ident: 10424_CR83
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932445
– ident: 10424_CR1
  doi: 10.1145/3369555.3369557
– ident: 10424_CR80
  doi: 10.1109/WCSP49889.2020.9299738
– ident: 10424_CR86
  doi: 10.1109/ICCNEA50255.2020.00011
– volume: 93
  year: 2021
  ident: 10424_CR117
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107257
– volume: 60
  start-page: 2021
  issue: 2
  year: 2021
  ident: 10424_CR118
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2020.12.009
– volume: 1022
  issue: 1
  year: 2021
  ident: 10424_CR122
  publication-title: IOP Conf Ser
  doi: 10.1088/1757-899x/1022/1/012123
– volume: 116
  start-page: 69
  year: 2021
  ident: 10424_CR43
  publication-title: Environ Sci Policy
  doi: 10.1016/j.envsci.2020.10.015
– ident: 10424_CR133
  doi: 10.1109/CACRE50138.2020.9230036
– year: 2019
  ident: 10424_CR5
  publication-title: Sci Program
  doi: 10.1155/2019/6780379
– ident: 10424_CR73
  doi: 10.23919/ChiCC.2018.8483621
– volume: 37
  year: 2021
  ident: 10424_CR41
  publication-title: Urban Clim
  doi: 10.1016/j.uclim.2021.100834
– ident: 10424_CR78
  doi: 10.1109/ICMLA.2016.0171
– volume: 283
  year: 2021
  ident: 10424_CR2
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125341
– volume: 30
  start-page: 2285
  issue: 12
  year: 2018
  ident: 10424_CR111
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2823740
– volume: 12
  issue: 5
  year: 2021
  ident: 10424_CR71
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2021.03.008
– volume: 6
  start-page: 38186
  year: 2018
  ident: 10424_CR125
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2849820
– volume: 275
  start-page: 122722
  year: 2020
  ident: 10424_CR155
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122722
– volume: 7
  start-page: 43331
  year: 2019
  ident: 10424_CR76
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908081
– volume: 36
  start-page: 100800
  year: 2021
  ident: 10424_CR114
  publication-title: Urban Clim
  doi: 10.1016/j.uclim.2021.100800
– ident: 10424_CR69
  doi: 10.1145/3325773.3325788
– ident: 10424_CR13
– ident: 10424_CR123
  doi: 10.1109/CTIT.2018.8649497
– volume: 219
  start-page: 8923
  issue: 17
  year: 2013
  ident: 10424_CR37
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2013.03.018
– volume: 20
  start-page: 49
  issue: 6
  year: 2020
  ident: 10424_CR38
  publication-title: Cybern Inf Technol
  doi: 10.2478/cait-2020-0060
– ident: 10424_CR103
– volume: 55
  year: 2020
  ident: 10424_CR97
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2019.101019
– volume: 7
  start-page: 1203
  year: 2021
  ident: 10424_CR15
  publication-title: Int J Adv Res Innov Ideas Educ
– ident: 10424_CR45
  doi: 10.1109/ISCMI53840.2021.9654925
– volume: 10
  year: 2022
  ident: 10424_CR158
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2022.924986
– year: 2020
  ident: 10424_CR150
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2020.3047078
– volume: 59
  start-page: 148
  year: 2013
  ident: 10424_CR44
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2013.06.002
– ident: 10424_CR129
  doi: 10.1109/INCIT.2019.8912072
– volume: 314
  start-page: 198
  year: 2018
  ident: 10424_CR140
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.049
– ident: 10424_CR72
  doi: 10.1145/3274895.3274907
– ident: 10424_CR130
  doi: 10.1109/GUCON.2018.8675022
– ident: 10424_CR29
  doi: 10.1109/AISEM.2015.7066794
– volume: 7
  start-page: 2185
  year: 2019
  ident: 10424_CR98
  publication-title: Int J Res Appl Sci Eng Technol
  doi: 10.22214/ijraset.2019.4395
– ident: 10424_CR168
  doi: 10.1109/SSCI47803.2020.9308543
– ident: 10424_CR31
  doi: 10.1109/BigDataService.2019.00027
– volume: 9
  start-page: 104162
  year: 2021
  ident: 10424_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3099111
– ident: 10424_CR53
  doi: 10.1109/ITAIC.2019.8785602
– volume: 303
  start-page: 51
  year: 2020
  ident: 10424_CR131
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-020-03734-1
– ident: 10424_CR55
  doi: 10.23919/MIPRO52101.2021.9596860
– ident: 10424_CR91
  doi: 10.1109/TELSIKS52058.2021.9606405
– ident: 10424_CR61
  doi: 10.1109/IEA.2019.8715113
– volume: 169
  year: 2021
  ident: 10424_CR145
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114513
– volume: 735
  year: 2020
  ident: 10424_CR3
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.139454
– ident: 10424_CR108
  doi: 10.1109/EEEIC.2011.5874661
– volume: 14
  start-page: 191
  year: 2021
  ident: 10424_CR112
  publication-title: Air Qual Atmos Health
  doi: 10.1007/s11869-020-00925-4
– volume: 9
  start-page: 57338
  year: 2021
  ident: 10424_CR100
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072280
– volume: 7
  start-page: 30732
  year: 2019
  ident: 10424_CR153
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897754
– volume: 33
  start-page: 4779
  year: 2021
  ident: 10424_CR142
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05535-w
– volume: 214
  year: 2019
  ident: 10424_CR82
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2019.116885
– ident: 10424_CR148
  doi: 10.1109/iCBEB.2012.81
– ident: 10424_CR10
  doi: 10.1002/tqem.21464
– ident: 10424_CR136
  doi: 10.1109/ICTKE47035.2019.8966854
– volume: 312
  start-page: 39409
  year: 2021
  ident: 10424_CR157
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-12657-8
SSID ssj0005243
Score 2.66811
Snippet Air pollution is a risk factor for many diseases that can lead to death. Therefore, it is important to develop forecasting mechanisms that can be used by the...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10031
SubjectTerms Air pollution
Air quality
Algorithms
Artificial Intelligence
Computer Science
Data mining
Deep learning
Forecasting
Geographical distribution
Machine learning
Mathematical models
Neural networks
Outdoor air quality
Risk factors
Surveys
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VlgMX2vIMFGQkJA5ggR0ntrlUFaKqBKp6KFJvlmM73ZVKtmyylfrvGSfObncleuEc2xpnnrZnvgF4r721GAkIGlTgVHBZUlWXnrqCa3QRvpa2h8z_KU9P1cWFPksXbm1KqxxtYm-o_czFO_LP6AZRH7SW-vD6D41do-Lramqh8QB2GOcsyvkPSe-keAxZc7zUFI8WLBXNpNI5UXKK5KAhElxQseaYNs3zHf-0mTu58YDa-6Xj3f_d0R48ThEpORpEaB-2QvMEdsduDyQp_1OIl9YTjElJajRxSezVJa7XTX63pJsRjH6Ds21H7HROhlrN26_EknYxvwm3z-DX8ffzbyc0NV9ANkndUaZ8YIVjPmjFbI2RRZ17XbmcuSBr5YUTPHhbVRULSqsIg1bY4D36ty84pcifw3Yza8JLIEqiQ6gL5nnNRaF5VVle-LrHfAq5LTNg4583LiGTxwYZV2aFqRy5ZZBbpueWERl8XM65HnA57h39ITLURKXFlZ1NtQdIX4S_MkeywFOGQGuXwcHILJO0uTUrTmXwbvkZ9TA-rtgmzBY4RqKlExotZgYvBhFZEpaXGGdh3JmBXBOe5YCI8b3-pZlOeqxvHS-ccpXBp1HMVmT9e7-v7t_Fa3jEo-T3qXIHsN3NF-ENPHQ33bSdv-116C-VcyDz
  priority: 102
  providerName: ProQuest
Title Machine learning algorithms to forecast air quality: a survey
URI https://link.springer.com/article/10.1007/s10462-023-10424-4
https://www.ncbi.nlm.nih.gov/pubmed/36820441
https://www.proquest.com/docview/2838879979
https://www.proquest.com/docview/2779349073
https://pubmed.ncbi.nlm.nih.gov/PMC9933038
Volume 56
WOSCitedRecordID wos000939095900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlgOXlvJMKSsjIXEAS43jxDa3UrWqBCyr8lq4WE7sdFdqs1WSrdR_zziP7e4KkOBiKYpt2eN52Z75DPBSWWPQE-DUSccoZyKhMk8szWKm0ETYXJgGMv-DGA7leKxGXVJY1Ue791eSjaZeSnbjCaPYAaoOzjjlG7CF5k56cTz7_G0psKONlWOJorihCLtUmd_3sWKO1pXyklVaj5hcuzZtrNHJzv_N4z5sd94nOWzZZRfuuOIB7PQvO5BO0B-CP6CeoP9Jukclzom5OJ-V03pyWZF6RtDTdZmpamKmJWnzMm_eEkOqeXntbh7B15PjL0entHtoAZdEqJqG0rowzkLrkJomRy8ij6xKsyjMnMil5Rlnzpo0TUMnlfSQZ7Fx1qItO8AmcfQYNotZ4Z4CkQKVfx6HluWMx4qlqWGxzRt8JxeZJICwp7fOOhRy_xjGhb7FT_b00Ugf3dBH8wBeL9pctRgcf639yi-j9gKKPWemyzPA8XmoK30oYtxRcNRsAez3K607ya00uluod5USKoAXi98oc_4ixRRuNsc6ArUaV6gdA3jSMsZiYFGCPhX6mAGIFZZZVPB43qt_iumkwfVW_nApkgG86Rnndlh_nu_ev1V_BveY570mTG4fNuty7p7D3ey6nlblADbE9x--HMsBbL07Ho7O8Ou9oFh-PDjyZfgJy1H8c9BI3S-E4R3v
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkulDcpBYwE4gBWG8eJbSSEqkLVqsuKQ5F6M47tdFcqu-0mW7R_it_IOI_d7kr01gNnO4kdf_PN2J4HwBvljEFLgFMvPaOciYzKInPUpkyhinCFMHXK_J7o9-XJifq-Bn-6WJjgVtlxYk3UbmzDGfk2qkGUB6WE-nx-QUPVqHC72pXQaGBx5Ge_cctWfjr8guv7lrH9r8d7B7StKoDfF6qisXQ-Tm3svJKxKVBlFolTuU1i60UhHbeceWfyPI-9VDLk90qNdw6JewcfCVUikPJvcY7iEFwFd_auuJQ0XnosUxS3MnEbpNOG6vGMUZw-Eh9nnPIlRbiqDq7ow1VfzZUL21oP7m_8b3_wPtxrLW6y24jIA1jzo4ew0VWzIC25PYJwKD9Am5u0hTROiTk7xfFXg18lqcYErXtvTVkRM5yQJhZ19pEYUk4nl372GH7cyCSewPpoPPLPgEiBCq9IY8cKxlPF8tyw1BV1TiufmCyCuFtpbdvM66EAyJle5IwO6NCIDl2jQ_MI3s-fOW_yjlzb-10AkA6khG-2po2twPGF9F56V6S4i-LI5hFsdeDQLVuVeoGMCF7Pm5FnwuWRGfnxFPsIZHKuUCNE8LSB5HxgSYZ2JNrVEYglsM47hBzmyy2j4aDOZa7CgVoiI_jQwXoxrH_Pd_P6WbyCOwfH33q6d9g_eg53WZC62i1wC9arydS_gNv2shqWk5e1_BL4edNw_wteyYAq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aBkJcGJ8jY4CRQBzAGnGdOEZCaGJUTJ2qHUDazTi2s1Ya6dakQ_3X-Ot4Tpx2rcRuO3COEz3Hv_d7z_b7AHgtrdboCXDqMscoZyKlWZFaahIm0UTYQuimZP6RGA6zkxN5vAF_ulwYH1bZcWJD1HZi_Bn5HppB1AcphdwrQljE8UH_8_kF9R2k_E1r106jhcjAzX_j9q36dHiAa_2Gsf7X71--0dBhAGURsqZxZl2cmNg6mcW6QPNZ9KzMTS82ThSZ5YYzZ3We57HLZOZrfSXaWYsk_gFf8R0jkP5voRVOvI4NBL0SXtJG7LFUUtzWxCFhJ6Tt8ZRR_BVIgpxxyleM4rppuGIb1-M21y5vG5vY3_qf_-Z9uBc8cbLfqs4D2HDlQ9jqulyQQHqPwB_Wj9AXJ6HBxinRZ6cofz36VZF6QtDrd0ZXNdHjKWlzVOcfiSbVbHrp5o_hx41M4glslpPSPQWSCTSERRJbVjCeSJbnmiW2aGpduZ5OI4i7VVcmVGT3jUHO1LKWtEeKQqSoBimKR_Bu8c55W4_k2tFvPZiUJyv8stEh5wLl82W_1L5IcHfFkeUj2O2AogKLVWqJkgheLR4j__hLJV26yQzHCGR4LtFSRLDdwnMhWC9F_xL97QjECnAXA3xt89Un5XjU1DiX_qCtl0XwvoP4Uqx_z3fn-lm8hDuIcnV0OBw8g7vMK2ATLbgLm_V05p7DbXNZj6vpi0aVCfy8abT_BfFEiNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+to+forecast+air+quality%3A+a+survey&rft.jtitle=The+Artificial+intelligence+review&rft.au=M%C3%A9ndez%2C+Manuel&rft.au=Merayo%2C+Mercedes+G.&rft.au=N%C3%BA%C3%B1ez%2C+Manuel&rft.date=2023-09-01&rft.pub=Springer+Netherlands&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=9&rft.spage=10031&rft.epage=10066&rft_id=info:doi/10.1007%2Fs10462-023-10424-4&rft.externalDocID=10_1007_s10462_023_10424_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon