Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation

Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in meta...

Full description

Saved in:
Bibliographic Details
Published in:EMBO reports Vol. 22; no. 3; pp. e50852 - n/a
Main Authors: Melixetian, Marine, Bossi, Daniela, Mihailovich, Marija, Punzi, Simona, Barozzi, Iros, Marocchi, Federica, Cuomo, Alessandro, Bonaldi, Tiziana, Testa, Giuseppe, Marine, Jean-Christophe, Leucci, Eleonora, Minucci, Saverio, Pelicci, Pier Giuseppe, Lanfrancone, Luisa
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 03.03.2021
Springer Nature B.V
John Wiley and Sons Inc
Subjects:
ISSN:1469-221X, 1469-3178, 1469-3178
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs. SYNOPSIS Long non-coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. High TINCR levels prevent translational reprogramming and ATF4 translation, maintaining proliferative, epithelial-like states. TINCR downregulation leads to translational reprogramming and ATF4 activation, promoting invasion in nutrient-rich conditions. TINCR interacts with selected integrated stress response RNAs, preventing their binding to the translating ribosomes. Graphical Abstract Long non-coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes.
AbstractList Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs.
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs. SYNOPSIS Long non‐coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. High TINCR levels prevent translational reprogramming and ATF4 translation, maintaining proliferative, epithelial‐like states. TINCR downregulation leads to translational reprogramming and ATF4 activation, promoting invasion in nutrient‐rich conditions. TINCR interacts with selected integrated stress response RNAs, preventing their binding to the translating ribosomes. Long non‐coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes.
Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs.Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs.
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs. Long non‐coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes.
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs. image Long non‐coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. High TINCR levels prevent translational reprogramming and ATF4 translation, maintaining proliferative, epithelial‐like states. TINCR downregulation leads to translational reprogramming and ATF4 activation, promoting invasion in nutrient‐rich conditions. TINCR interacts with selected integrated stress response RNAs, preventing their binding to the translating ribosomes.
Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs. SYNOPSIS Long non-coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. High TINCR levels prevent translational reprogramming and ATF4 translation, maintaining proliferative, epithelial-like states. TINCR downregulation leads to translational reprogramming and ATF4 activation, promoting invasion in nutrient-rich conditions. TINCR interacts with selected integrated stress response RNAs, preventing their binding to the translating ribosomes. Graphical Abstract Long non-coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes.
Author Cuomo, Alessandro
Punzi, Simona
Marocchi, Federica
Bonaldi, Tiziana
Pelicci, Pier Giuseppe
Bossi, Daniela
Mihailovich, Marija
Melixetian, Marine
Barozzi, Iros
Leucci, Eleonora
Minucci, Saverio
Marine, Jean-Christophe
Lanfrancone, Luisa
Testa, Giuseppe
AuthorAffiliation 3 Department of Oncology and Hemato‐oncology University of Milan Milan Italy
2 Department of Surgery and Cancer Imperial College London London UK
6 Laboratory for RNA Cancer Biology Department of Oncology KULeuven Leuven Belgium
5 Center for Cancer Biology VIB Leuven Belgium
8 Present address: Institute of Oncology Research (IOR) Bellinzona Switzerland
9 Present address: Candiolo Cancer Institute—FPO IRCCS Candiolo Torino Italy
1 Department of Experimental Oncology IEO European Institute of Oncology IRCCS Milan Italy
7 Department of Biosciences University of Milan Milan Italy
4 Laboratory for Molecular Cancer Biology Department of Oncology KULeuven Leuven Belgium
AuthorAffiliation_xml – name: 4 Laboratory for Molecular Cancer Biology Department of Oncology KULeuven Leuven Belgium
– name: 5 Center for Cancer Biology VIB Leuven Belgium
– name: 6 Laboratory for RNA Cancer Biology Department of Oncology KULeuven Leuven Belgium
– name: 2 Department of Surgery and Cancer Imperial College London London UK
– name: 1 Department of Experimental Oncology IEO European Institute of Oncology IRCCS Milan Italy
– name: 3 Department of Oncology and Hemato‐oncology University of Milan Milan Italy
– name: 8 Present address: Institute of Oncology Research (IOR) Bellinzona Switzerland
– name: 9 Present address: Candiolo Cancer Institute—FPO IRCCS Candiolo Torino Italy
– name: 7 Department of Biosciences University of Milan Milan Italy
Author_xml – sequence: 1
  givenname: Marine
  orcidid: 0000-0002-8454-8262
  surname: Melixetian
  fullname: Melixetian, Marine
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS
– sequence: 2
  givenname: Daniela
  surname: Bossi
  fullname: Bossi, Daniela
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Institute of Oncology Research (IOR)
– sequence: 3
  givenname: Marija
  surname: Mihailovich
  fullname: Mihailovich, Marija
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS
– sequence: 4
  givenname: Simona
  surname: Punzi
  fullname: Punzi, Simona
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Candiolo Cancer Institute—FPO IRCCS
– sequence: 5
  givenname: Iros
  surname: Barozzi
  fullname: Barozzi, Iros
  organization: Department of Surgery and Cancer, Imperial College London
– sequence: 6
  givenname: Federica
  surname: Marocchi
  fullname: Marocchi, Federica
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS
– sequence: 7
  givenname: Alessandro
  surname: Cuomo
  fullname: Cuomo, Alessandro
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS
– sequence: 8
  givenname: Tiziana
  orcidid: 0000-0003-3556-1265
  surname: Bonaldi
  fullname: Bonaldi, Tiziana
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS
– sequence: 9
  givenname: Giuseppe
  orcidid: 0000-0002-9104-0918
  surname: Testa
  fullname: Testa, Giuseppe
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Department of Oncology and Hemato-oncology, University of Milan
– sequence: 10
  givenname: Jean-Christophe
  surname: Marine
  fullname: Marine, Jean-Christophe
  organization: Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Center for Cancer Biology, VIB
– sequence: 11
  givenname: Eleonora
  surname: Leucci
  fullname: Leucci, Eleonora
  organization: Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven
– sequence: 12
  givenname: Saverio
  surname: Minucci
  fullname: Minucci, Saverio
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Department of Biosciences, University of Milan
– sequence: 13
  givenname: Pier Giuseppe
  orcidid: 0000-0002-5076-2316
  surname: Pelicci
  fullname: Pelicci, Pier Giuseppe
  email: piergiuseppe.pelicci@ieo.it
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Department of Oncology and Hemato-oncology, University of Milan
– sequence: 14
  givenname: Luisa
  orcidid: 0000-0002-4523-3815
  surname: Lanfrancone
  fullname: Lanfrancone, Luisa
  email: luisa.lanfrancone@ieo.it
  organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33586907$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vGyEURFWq5qM991at1EsvmwALLPRQybXyJbmpZPnQG2Ix6xLtggu7qfzv-2I7aRop6okn3swwwxyjgxCDQ-g9waeEU07PXN-kU4op5lhy-godESZUWZFaHuxnSsmPQ3Sc8y3GmKtavkGHVcWlULg-Qm4Ww6oA1dLGpYdxfjMpFtc303mRx_U6uZxdLno3mDyYwVsYOxNib4qlh1XvA9zGUDSbAsB3Lgz3IpPFBSuGZELutuu36HVruuze7c8TtLg4X0yvytn3y-vpZFZaXita2sYxwk1tMWMEs7ZtcFsxYzgXkE4t61pQW0lljcDW4Fo1vMaiatpGWtmy6gR92cmux6Z3Swtukun0OvnepI2Oxut_N8H_1Kt4p-FxQYkCgU97gRR_jS4PuvfZug4iuzhmTZlUAmNGBEA_PoPexjEFSAcoxSsspSCA-vDU0aOVhwIAwHcAm2LOybXa-mH7Z2DQd5pgvS1a3xetH4sG3tkz3oP0y4zPO8Zv37nN_-D6_NvX-VMy3pEz8MLKpb9pX3rvD_THzHE
CitedBy_id crossref_primary_10_1016_j_prp_2022_154232
crossref_primary_10_3390_cells11030577
crossref_primary_10_1002_pca_3193
crossref_primary_10_1007_s13577_022_00699_0
crossref_primary_10_1007_s11033_023_08661_5
crossref_primary_10_2174_0109298673290217240513093711
crossref_primary_10_1155_2021_9219961
crossref_primary_10_2174_0109298673267553231017053329
crossref_primary_10_3390_cancers13235970
crossref_primary_10_3389_fimmu_2022_1085766
crossref_primary_10_1002_jcp_70006
crossref_primary_10_3389_fonc_2025_1562861
crossref_primary_10_1016_j_biochi_2023_08_015
crossref_primary_10_3390_ijms26052126
crossref_primary_10_1016_j_pharmthera_2023_108466
crossref_primary_10_1016_j_intimp_2022_108796
crossref_primary_10_1016_j_pharmthera_2022_108301
crossref_primary_10_3390_cancers14235858
Cites_doi 10.1016/j.bbagrm.2014.08.015
10.1038/ncomms9755
10.1093/nar/gku996
10.1007/s004390000328
10.1038/s41568-019-0154-4
10.1111/pcmr.12537
10.1158/0008-5472.CAN-09-0781
10.4161/19336918.2014.983794
10.1038/jid.2013.115
10.1038/nmeth.3688
10.1042/BST20140323
10.1074/jbc.M003816200
10.1038/ncomms11194
10.1091/mbc.01-05-0221
10.18632/oncotarget.16514
10.1158/0008-5472.CAN-08-1053
10.1016/j.freeradbiomed.2016.01.005
10.1101/cshperspect.a032698
10.1371/journal.pgen.1008501
10.1101/gad.329771.119
10.1038/jid.2015.200
10.1016/j.cell.2017.03.035
10.1159/000454875
10.1016/j.molcel.2018.01.019
10.1038/bjc.2017.434
10.1093/hmg/9.13.1907
10.1016/j.devcel.2020.06.013
10.1186/gb-2013-14-4-r36
10.3389/fnmol.2019.00111
10.1038/jid.2014.272
10.3389/fonc.2014.00367
10.1089/ars.2007.1764
10.1152/ajpcell.00293.2016
10.4161/21690731.2014.983402
10.1158/0008-5472.CAN-07-2491
10.3389/fonc.2014.00352
10.1016/j.cell.2018.06.025
10.1038/nature17161
10.1080/15384101.2016.1151581
10.1016/j.jim.2009.06.008
10.1038/jid.2011.218
10.1101/gad.290940.116
10.1158/2159-8290.CD-13-0424
10.1038/nm.3981
10.1101/gad.267708.115
10.1101/gad.406406
10.1093/bioinformatics/btq170
10.1038/s41556-019-0415-1
10.1111/j.1600-0749.2007.00412.x
10.18632/oncotarget.23145
10.7554/eLife.06857
10.1038/ncomms6712
10.1038/nature11661
10.1158/2159-8290.CD-15-1200
10.1038/ncomms13875
10.1016/j.bbcan.2019.02.002
10.1016/j.cmet.2018.11.018
10.1242/dmm.043208
10.1038/onc.2014.262
10.1038/onc.2013.194
10.1016/j.cell.2016.02.065
10.1158/0008-5472.CAN-16-2634
10.1038/onc.2010.598
10.1038/ncomms14343
10.1016/j.molcel.2020.05.025
10.15252/embr.201642195
10.1093/bioinformatics/btt171
10.1038/ncomms7683
10.2174/138920312801619475
10.1101/gr.166231.113
10.1186/gb-2010-11-10-r106
10.1371/journal.pone.0159171
10.1158/2159-8290.CD-13-0005
10.1111/j.1755-148X.2010.00757.x
10.1038/emboj.2010.81
10.1016/j.gde.2017.11.003
10.1111/pcmr.12802
10.1126/science.aad0501
10.1038/nm.4472
10.1016/S0140-6736(18)31559-9
10.1038/nm.3026
10.3390/ijms20081924
10.1016/j.molcel.2019.10.014
10.5483/BMBRep.2018.51.6.025
10.1101/gad.324657.119
10.1074/jbc.C000445200
10.1002/wrna.1491
10.1093/bioinformatics/btu638
10.1038/nature11538
10.1111/j.1755-148X.2010.00823.x
10.1016/j.tem.2017.07.003
10.1038/ncb2738
10.1016/j.celrep.2019.05.069
10.1007/s10555-017-9657-1
10.1073/pnas.0506580102
10.1038/nature20123
ContentType Journal Article
Copyright The Author(s) 2021
2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license
2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license
– notice: 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.202050852
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Marine Melixetian et al
EISSN 1469-3178
EndPage n/a
ExternalDocumentID PMC7926219
33586907
10_15252_embr_202050852
EMBR202050852
Genre article
Journal Article
GrantInformation_xml – fundername: Fondazione Umberto Veronesi (Umberto Veronesi Foundation)
  funderid: 10.13039/501100004710
– fundername: Belgian Federation for Cancer
– fundername: Italian Minitry of Health, Ricerca Corrente, 5x1000
– fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC)
  grantid: 20508
  funderid: 10.13039/501100005010
– fundername: European School of Molecular Medicine (SEMM)
– fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC)
  funderid: 20508
– fundername: Fondazione Umberto Veronesi (Umberto Veronesi Foundation)
– fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC)
  grantid: 20508
– fundername: ;
– fundername: ;
  grantid: 20508
GroupedDBID ---
-DZ
0R~
1OC
29G
2WC
33P
36B
39C
53G
5GY
5VS
70F
8R4
8R5
AAESR
AAEVG
AAHBH
AAJSJ
AAMMB
AANLZ
AAONW
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFGKR
AFRAH
AFWVQ
AFZJQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BFHJK
BHPHI
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
E3Z
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HK~
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NAO
O8X
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TR2
WBKPD
WIH
WIK
WIN
WOHZO
WXSBR
ZGI
ZZTAW
24P
AAHHS
ABJNI
ACCFJ
ADZOD
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
AAYXX
CITATION
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5792-cbe415a7c044104ffb0f34aa5560859d7762c389ca60ca079b57063bfb8c8f43
IEDL.DBID 24P
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617939000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1469-221X
1469-3178
IngestDate Tue Sep 30 16:57:58 EDT 2025
Sun Sep 28 12:10:00 EDT 2025
Sun Nov 30 04:19:21 EST 2025
Thu Apr 03 07:03:38 EDT 2025
Sat Nov 29 03:51:03 EST 2025
Tue Nov 18 21:40:37 EST 2025
Wed Jan 22 16:31:40 EST 2025
Sat Nov 29 01:24:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords lncRNAs
melanoma
translational reprogramming
ATF4
integrated stress response
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5792-cbe415a7c044104ffb0f34aa5560859d7762c389ca60ca079b57063bfb8c8f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5076-2316
0000-0002-8454-8262
0000-0002-4523-3815
0000-0002-9104-0918
0000-0003-3556-1265
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.202050852
PMID 33586907
PQID 2495308861
PQPubID 26169
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7926219
proquest_miscellaneous_2489600416
proquest_journals_2495308861
pubmed_primary_33586907
crossref_citationtrail_10_15252_embr_202050852
crossref_primary_10_15252_embr_202050852
wiley_primary_10_15252_embr_202050852_EMBR202050852
springer_journals_10_15252_embr_202050852
PublicationCentury 2000
PublicationDate 03 March 2021
PublicationDateYYYYMMDD 2021-03-03
PublicationDate_xml – month: 03
  year: 2021
  text: 03 March 2021
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References 2010; 11
2015; 34
2013; 29
2017; 8
2013; 3
2019; 11
2015; 31
2000; 9
2002; 13
2019; 12
2019; 15
2016b; 531
2019; 19
2014; 24
2020; 13
2016a; 29
2020; 54
2016b; 539
2012; 13
2017; 9
2017; 313
2018; 48
2014; 134
2010; 23
2013; 19
2018; 174
2017; 31
2018; 9
2013; 15
2014; 5
2006; 20
2013; 14
2014; 4
2010; 26
2016a; 352
2019; 20
2017; 36
2015; 135
2010; 29
2019; 21
2005; 102
2017; 77
2012; 490
2015; 43
2019; 27
2007; 9
2019; 29
2008; 68
2011; 24
2007; 20
2017; 169
2009; 69
2015; 6
2015; 4
2015; 3
2019; 33
2017; 28
2019; 32
2011; 30
2016; 165
2020; 79
2000; 275
2016; 92
2020; 77
2016; 17
2015; 9
2016; 15
2016; 13
2018; 69
2018; 24
2014; 42
2016; 11
2011; 131
2016; 6
2016; 7
2018; 392
2015; 29
2018; 118
2015; 1849
2000; 107
2015; 21
2013; 133
2013; 493
2018; 51
2014; 33
2019; 1871
2009; 347
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_95_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_97_1
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 9
  start-page: 1907
  year: 2000
  end-page: 1917
  article-title: Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome
  publication-title: Hum Mol Genet
– volume: 21
  start-page: 1590
  year: 2019
  end-page: 1603
  article-title: Translational reprogramming marks adaptation to asparagine restriction in cancer
  publication-title: Nat Cell Biol
– volume: 29
  start-page: 2082
  year: 2010
  end-page: 2096
  article-title: The GCN2‐ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation
  publication-title: EMBO J
– volume: 19
  start-page: 377
  year: 2019
  end-page: 391
  article-title: Phenotype plasticity as enabler of melanoma progression and therapy resistance
  publication-title: Nat Rev Cancer
– volume: 32
  start-page: 792
  year: 2019
  end-page: 808
  article-title: MITF controls the TCA cycle to modulate the melanoma hypoxia response
  publication-title: Pigment Cell Melanoma Res
– volume: 20
  start-page: 3426
  year: 2006
  end-page: 3439
  article-title: Mitf regulation of Dia1 controls melanoma proliferation and invasiveness
  publication-title: Genes Dev
– volume: 4
  year: 2015
  article-title: Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells
  publication-title: Elife
– volume: 275
  start-page: 37978
  year: 2000
  end-page: 37983
  article-title: Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg‐Shah syndrome (WS4)‐associated hypopigmentation and deafness to WS2
  publication-title: J Biol Chem
– volume: 34
  start-page: 3251
  year: 2015
  end-page: 3263
  article-title: Single‐cell gene expression signatures reveal melanoma cell heterogeneity
  publication-title: Oncogene
– volume: 392
  start-page: 971
  year: 2018
  end-page: 984
  article-title: Melanoma
  publication-title: Lancet
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  article-title: HTSeq–a Python framework to work with high‐throughput sequencing data
  publication-title: Bioinformatics
– volume: 36
  start-page: 53
  year: 2017
  end-page: 75
  article-title: The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies
  publication-title: Cancer Metastasis Rev
– volume: 275
  start-page: 30757
  year: 2000
  end-page: 30760
  article-title: Regulation of the microphthalmia‐associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10
  publication-title: J Biol Chem
– volume: 133
  start-page: 2436
  year: 2013
  end-page: 2443
  article-title: Hypoxia contributes to melanoma heterogeneity by triggering HIF1alpha‐dependent phenotype switching
  publication-title: J Invest Dermatol
– volume: 30
  start-page: 2307
  year: 2011
  end-page: 2318
  article-title: Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny
  publication-title: Oncogene
– volume: 8
  start-page: 14343
  year: 2017
  article-title: Microenvironment‐derived factors driving metastatic plasticity in melanoma
  publication-title: Nat Commun
– volume: 29
  start-page: 619
  year: 2016a
  end-page: 626
  article-title: The emerging role of long non‐coding RNAs in cutaneous melanoma
  publication-title: Pigment Cell Melanoma Res
– volume: 11
  start-page: R106
  year: 2010
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol
– volume: 11
  start-page: a032698
  year: 2019
  article-title: Ribosome profiling: global views of translation
  publication-title: Cold Spring Harb Perspect Biol
– volume: 77
  start-page: 120
  year: 2020
  end-page: 137.e9
  article-title: Lineage‐restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity
  publication-title: Mol Cell
– volume: 7
  start-page: 13875
  year: 2016
  article-title: SNHG5 promotes colorectal cancer cell survival by counteracting STAU1‐mediated mRNA destabilization
  publication-title: Nat Commun
– volume: 77
  start-page: 3965
  year: 2017
  end-page: 3981
  article-title: Long noncoding RNA and cancer: a new paradigm
  publication-title: Cancer Res
– volume: 9
  start-page: 65
  year: 2017
  end-page: 68
  article-title: Flare‐up of rheumatoid arthritis by anti‐CTLA‐4 antibody but not by anti‐PD1 therapy in a patient with metastatic melanoma
  publication-title: Case Rep Dermatol
– volume: 68
  start-page: 7788
  year: 2008
  end-page: 7794
  article-title: Brn‐2 represses microphthalmia‐associated transcription factor expression and marks a distinct subpopulation of microphthalmia‐associated transcription factor‐negative melanoma cells
  publication-title: Cancer Res
– volume: 8
  start-page: 32946
  year: 2017
  end-page: 32959
  article-title: Glucose availability controls ATF4‐mediated MITF suppression to drive melanoma cell growth
  publication-title: Oncotarget
– volume: 6
  start-page: 8755
  year: 2015
  article-title: MITF and c‐Jun antagonism interconnects melanoma dedifferentiation with pro‐inflammatory cytokine responsiveness and myeloid cell recruitment
  publication-title: Nat Commun
– volume: 13
  start-page: 195
  year: 2002
  end-page: 210
  article-title: Evidence that ternary complex (eIF2‐GTP‐tRNA(i)(Met))‐deficient preinitiation complexes are core constituents of mammalian stress granules
  publication-title: Mol Biol Cell
– volume: 313
  start-page: C243
  year: 2017
  end-page: C254
  article-title: Regulation of the unfolded protein response by noncoding RNA
  publication-title: Am J Physiol Cell Physiol
– volume: 14
  start-page: R36
  year: 2013
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol
– volume: 33
  start-page: 983
  year: 2019
  end-page: 1007
  article-title: MITF‐the first 25 years
  publication-title: Genes Dev
– volume: 4
  start-page: 816
  year: 2014
  end-page: 827
  article-title: A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors
  publication-title: Cancer Discov
– volume: 13
  start-page: 294
  year: 2012
  end-page: 304
  article-title: RNA binding protein/RNA element interactions and the control of translation
  publication-title: Curr Protein Pept Sci
– volume: 33
  start-page: 2413
  year: 2014
  end-page: 2422
  article-title: Melanoma metastasis: new concepts and evolving paradigms
  publication-title: Oncogene
– volume: 33
  start-page: 1295
  year: 2019
  end-page: 1318
  article-title: Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities
  publication-title: Genes Dev
– volume: 42
  start-page: 12668
  year: 2014
  end-page: 12680
  article-title: Ribosomal stress activates eEF2K‐eEF2 pathway causing translation elongation inhibition and recruitment of terminal oligopyrimidine (TOP) mRNAs on polysomes
  publication-title: Nucleic Acids Res
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles
  publication-title: Proc Natl Acad Sci USA
– volume: 531
  start-page: 518
  year: 2016b
  end-page: 522
  article-title: Melanoma addiction to the long non‐coding RNA SAMMSON
  publication-title: Nature
– volume: 3
  year: 2015
  article-title: Regulation of global and specific mRNA translation by the mTOR signaling pathway
  publication-title: Translation (Austin)
– volume: 347
  start-page: 70
  year: 2009
  end-page: 78
  article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
  publication-title: J Immunol Methods
– volume: 20
  start-page: 466
  year: 2007
  end-page: 484
  article-title: DNA microarray analyses of melanoma gene expression: a decade in the mines
  publication-title: Pigment Cell Res
– volume: 15
  year: 2019
  article-title: The MITF‐SOX10 regulated long non‐coding RNA DIRC3 is a melanoma tumour suppressor
  publication-title: PLoS Genet
– volume: 11
  year: 2016
  article-title: miRNA‐1283 regulates the PERK/ATF4 pathway in vascular injury by targeting ATF4
  publication-title: PLoS One
– volume: 165
  start-page: 35
  year: 2016
  end-page: 44
  article-title: Genomic and transcriptomic features of response to anti‐PD‐1 therapy in metastatic melanoma
  publication-title: Cell
– volume: 92
  start-page: 39
  year: 2016
  end-page: 49
  article-title: miR‐214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2
  publication-title: Free Radic Biol Med
– volume: 1849
  start-page: 801
  year: 2015
  end-page: 811
  article-title: The race to decipher the top secrets of TOP mRNAs
  publication-title: Biochim Biophys Acta
– volume: 28
  start-page: 794
  year: 2017
  end-page: 806
  article-title: Surviving stress: modulation of ATF4‐mediated stress responses in normal and malignant cells
  publication-title: Trends Endocrinol Metab
– volume: 29
  start-page: 254
  year: 2019
  end-page: 267
  article-title: Starvation and pseudo‐starvation as drivers of cancer metastasis through translation reprogramming
  publication-title: Cell Metab
– volume: 54
  start-page: 317
  year: 2020
  end-page: 332
  article-title: PRL3‐DDX21 transcriptional control of endolysosomal genes restricts melanocyte stem cell differentiation
  publication-title: Dev Cell
– volume: 48
  start-page: 104
  year: 2018
  end-page: 111
  article-title: Cross‐talk between protein synthesis, energy metabolism and autophagy in cancer
  publication-title: Curr Opin Genet Dev
– volume: 4
  start-page: 352
  year: 2014
  article-title: Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity
  publication-title: Front Oncol
– volume: 17
  start-page: 1374
  year: 2016
  end-page: 1395
  article-title: The integrated stress response
  publication-title: EMBO Rep
– volume: 19
  start-page: 93
  year: 2013
  end-page: 100
  article-title: miR‐214 targets ATF4 to inhibit bone formation
  publication-title: Nat Med
– volume: 43
  start-page: 328
  year: 2015
  end-page: 332
  article-title: Regulation and roles of elongation factor 2 kinase
  publication-title: Biochem Soc Trans
– volume: 26
  start-page: 1572
  year: 2010
  end-page: 1573
  article-title: ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking
  publication-title: Bioinformatics
– volume: 9
  start-page: 233
  year: 2015
  end-page: 246
  article-title: Reprogramming during epithelial to mesenchymal transition under the control of TGFbeta
  publication-title: Cell Adh Migr
– volume: 31
  start-page: 18
  year: 2017
  end-page: 33
  article-title: Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma
  publication-title: Genes Dev
– volume: 490
  start-page: 412
  year: 2012
  end-page: 416
  article-title: Melanomas resist T‐cell therapy through inflammation‐induced reversible dedifferentiation
  publication-title: Nature
– volume: 9
  year: 2018
  article-title: Regulation of translation initiation factor eIF2B at the hub of the integrated stress response
  publication-title: Wiley Interdiscip Rev RNA
– volume: 6
  start-page: 6683
  year: 2015
  article-title: Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state
  publication-title: Nat Commun
– volume: 69
  start-page: 7969
  year: 2009
  end-page: 7977
  article-title: Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination
  publication-title: Cancer Res
– volume: 131
  start-page: 2448
  year: 2011
  end-page: 2457
  article-title: Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase
  publication-title: J Invest Dermatol
– volume: 8
  start-page: 114856
  year: 2017
  end-page: 114876
  article-title: Hypoxia‐mediated translational activation of ITGB3 in breast cancer cells enhances TGF‐beta signaling and malignant features and
  publication-title: Oncotarget
– volume: 24
  start-page: 203
  year: 2018
  end-page: 212
  article-title: Cooperative targeting of melanoma heterogeneity with an AXL antibody‐drug conjugate and BRAF/MEK inhibitors
  publication-title: Nat Med
– volume: 539
  start-page: 309
  year: 2016b
  end-page: 313
  article-title: Single‐cell RNA‐seq supports a developmental hierarchy in human oligodendroglioma
  publication-title: Nature
– volume: 6
  start-page: 650
  year: 2016
  end-page: 663
  article-title: genetic screens of patient‐derived tumors revealed unexpected frailty of the transformed phenotype
  publication-title: Cancer Discov
– volume: 20
  start-page: 1924
  year: 2019
  article-title: Long noncoding RNA and epithelial mesenchymal transition in cancer
  publication-title: Int J Mol Sci
– volume: 118
  start-page: 9
  year: 2018
  end-page: 16
  article-title: Mechanisms of resistance to immune checkpoint inhibitors
  publication-title: Br J Cancer
– volume: 27
  start-page: 3573
  year: 2019
  end-page: 3586
  article-title: The X‐Linked DDX3X RNA helicase dictates translation reprogramming and metastasis in melanoma
  publication-title: Cell Rep
– volume: 134
  start-page: 3000
  year: 2014
  end-page: 3003
  article-title: Primary melanoma tumors from CDKN2A mutation carriers do not belong to a distinct molecular subclass
  publication-title: J Invest Dermatol
– volume: 12
  start-page: 111
  year: 2019
  article-title: Stem cell‐derived models of neural crest are essential to understand melanoma progression and therapy resistance
  publication-title: Front Mol Neurosci
– volume: 79
  start-page: 472
  year: 2020
  end-page: 487
  article-title: Tuning transcription factor availability through acetylation‐mediated genomic redistribution
  publication-title: Mol Cell
– volume: 13
  start-page: dmm043208
  year: 2020
  article-title: Control of translation elongation in health and disease
  publication-title: Dis Models Mech
– volume: 9
  start-page: 2357
  year: 2007
  end-page: 2371
  article-title: Translational control and the unfolded protein response
  publication-title: Antioxid Redox Signal
– volume: 29
  start-page: 1565
  year: 2013
  end-page: 1567
  article-title: Exome‐based analysis for RNA epigenome sequencing data
  publication-title: Bioinformatics
– volume: 15
  start-page: 481
  year: 2013
  end-page: 490
  article-title: ER‐stress‐induced transcriptional regulation increases protein synthesis leading to cell death
  publication-title: Nat Cell Biol
– volume: 23
  start-page: 746
  year: 2010
  end-page: 759
  article-title: Cancer stem cells versus phenotype‐switching in melanoma
  publication-title: Pigment Cell Melanoma Res
– volume: 21
  start-page: 1253
  year: 2015
  end-page: 1261
  article-title: The emerging role of lncRNAs in cancer
  publication-title: Nat Med
– volume: 5
  start-page: 5712
  year: 2014
  article-title: Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma
  publication-title: Nat Commun
– volume: 493
  start-page: 231
  year: 2013
  end-page: 235
  article-title: Control of somatic tissue differentiation by the long non‐coding RNA TINCR
  publication-title: Nature
– volume: 13
  start-page: 165
  year: 2016
  end-page: 170
  article-title: Detecting actively translated open reading frames in ribosome profiling data
  publication-title: Nat Methods
– volume: 51
  start-page: 280
  year: 2018
  end-page: 289
  article-title: Long noncoding RNA: multiple players in gene expression
  publication-title: BMB Rep
– volume: 135
  start-page: 2464
  year: 2015
  end-page: 2474
  article-title: The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching
  publication-title: J Invest Dermatol
– volume: 3
  start-page: 1378
  year: 2013
  end-page: 1393
  article-title: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2
  publication-title: Cancer Discov
– volume: 169
  start-page: 361
  year: 2017
  end-page: 371
  article-title: mTOR signaling in growth, metabolism, and disease
  publication-title: Cell
– volume: 1871
  start-page: 313
  year: 2019
  end-page: 322
  article-title: Many ways to resistance: how melanoma cells evade targeted therapies
  publication-title: Biochim Biophys Acta Rev Cancer
– volume: 174
  start-page: 843
  year: 2018
  end-page: 855
  article-title: Toward minimal residual disease‐directed therapy in melanoma
  publication-title: Cell
– volume: 69
  start-page: 636
  year: 2018
  end-page: 647
  article-title: N(6)‐methyladenosine guides mRNA alternative translation during integrated stress response
  publication-title: Mol Cell
– volume: 68
  start-page: 650
  year: 2008
  end-page: 656
  article-title: switching of human melanoma cells between proliferative and invasive states
  publication-title: Can Res
– volume: 352
  start-page: 189
  year: 2016a
  end-page: 196
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq
  publication-title: Science
– volume: 15
  start-page: 781
  year: 2016
  end-page: 786
  article-title: 4E‐BP1, a multifactor regulated multifunctional protein
  publication-title: Cell Cycle
– volume: 24
  start-page: 751
  year: 2014
  end-page: 760
  article-title: Enhancer‐targeted genome editing selectively blocks innate resistance to oncokinase inhibition
  publication-title: Genome Res
– volume: 7
  start-page: 11194
  year: 2016
  article-title: Genome‐wide assessment of differential translations with ribosome profiling data
  publication-title: Nat Commun
– volume: 29
  start-page: 2225
  year: 2015
  end-page: 2230
  article-title: CALML5 is a ZNF750‐ and TINCR‐induced protein that binds stratifin to regulate epidermal differentiation
  publication-title: Genes Dev
– volume: 4
  start-page: 367
  year: 2014
  article-title: Effects of epithelial to mesenchymal transition on T cell targeting of melanoma cells
  publication-title: Frontiers in oncology
– volume: 107
  start-page: 1
  year: 2000
  end-page: 6
  article-title: Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3
  publication-title: Hum Genet
– volume: 24
  start-page: 326
  year: 2011
  end-page: 333
  article-title: A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status
  publication-title: Pigment Cell Melanoma Res
– ident: e_1_2_9_57_1
  doi: 10.1016/j.bbagrm.2014.08.015
– ident: e_1_2_9_72_1
  doi: 10.1038/ncomms9755
– ident: e_1_2_9_21_1
  doi: 10.1093/nar/gku996
– ident: e_1_2_9_67_1
  doi: 10.1007/s004390000328
– ident: e_1_2_9_4_1
  doi: 10.1038/s41568-019-0154-4
– ident: e_1_2_9_50_1
  doi: 10.1111/pcmr.12537
– ident: e_1_2_9_66_1
  doi: 10.1158/0008-5472.CAN-09-0781
– ident: e_1_2_9_80_1
  doi: 10.4161/19336918.2014.983794
– ident: e_1_2_9_90_1
  doi: 10.1038/jid.2013.115
– ident: e_1_2_9_9_1
  doi: 10.1038/nmeth.3688
– ident: e_1_2_9_68_1
  doi: 10.1042/BST20140323
– ident: e_1_2_9_48_1
  doi: 10.1074/jbc.M003816200
– ident: e_1_2_9_94_1
  doi: 10.1038/ncomms11194
– ident: e_1_2_9_37_1
  doi: 10.1091/mbc.01-05-0221
– ident: e_1_2_9_18_1
  doi: 10.18632/oncotarget.16514
– ident: e_1_2_9_23_1
  doi: 10.1158/0008-5472.CAN-08-1053
– ident: e_1_2_9_19_1
  doi: 10.1016/j.freeradbiomed.2016.01.005
– ident: e_1_2_9_33_1
  doi: 10.1101/cshperspect.a032698
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pgen.1008501
– ident: e_1_2_9_71_1
  doi: 10.1101/gad.329771.119
– ident: e_1_2_9_49_1
  doi: 10.1038/jid.2015.200
– ident: e_1_2_9_73_1
  doi: 10.1016/j.cell.2017.03.035
– ident: e_1_2_9_34_1
  doi: 10.1159/000454875
– ident: e_1_2_9_96_1
  doi: 10.1016/j.molcel.2018.01.019
– ident: e_1_2_9_35_1
  doi: 10.1038/bjc.2017.434
– ident: e_1_2_9_6_1
  doi: 10.1093/hmg/9.13.1907
– ident: e_1_2_9_36_1
  doi: 10.1016/j.devcel.2020.06.013
– ident: e_1_2_9_38_1
  doi: 10.1186/gb-2013-14-4-r36
– ident: e_1_2_9_46_1
  doi: 10.3389/fnmol.2019.00111
– ident: e_1_2_9_77_1
  doi: 10.1038/jid.2014.272
– ident: e_1_2_9_92_1
  doi: 10.3389/fonc.2014.00367
– ident: e_1_2_9_89_1
  doi: 10.1089/ars.2007.1764
– ident: e_1_2_9_55_1
  doi: 10.1152/ajpcell.00293.2016
– ident: e_1_2_9_59_1
  doi: 10.4161/21690731.2014.983402
– ident: e_1_2_9_28_1
  doi: 10.1158/0008-5472.CAN-07-2491
– ident: e_1_2_9_83_1
  doi: 10.3389/fonc.2014.00352
– ident: e_1_2_9_70_1
  doi: 10.1016/j.cell.2018.06.025
– ident: e_1_2_9_51_1
  doi: 10.1038/nature17161
– ident: e_1_2_9_69_1
  doi: 10.1080/15384101.2016.1151581
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jim.2009.06.008
– ident: e_1_2_9_75_1
  doi: 10.1038/jid.2011.218
– ident: e_1_2_9_17_1
  doi: 10.1101/gad.290940.116
– ident: e_1_2_9_41_1
  doi: 10.1158/2159-8290.CD-13-0424
– ident: e_1_2_9_31_1
  doi: 10.1038/nm.3981
– ident: e_1_2_9_79_1
  doi: 10.1101/gad.267708.115
– ident: e_1_2_9_10_1
  doi: 10.1101/gad.406406
– ident: e_1_2_9_91_1
  doi: 10.1093/bioinformatics/btq170
– ident: e_1_2_9_62_1
  doi: 10.1038/s41556-019-0415-1
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1600-0749.2007.00412.x
– ident: e_1_2_9_76_1
  doi: 10.18632/oncotarget.23145
– ident: e_1_2_9_47_1
  doi: 10.7554/eLife.06857
– ident: e_1_2_9_58_1
  doi: 10.1038/ncomms6712
– ident: e_1_2_9_43_1
  doi: 10.1038/nature11661
– ident: e_1_2_9_8_1
  doi: 10.1158/2159-8290.CD-15-1200
– ident: e_1_2_9_14_1
  doi: 10.1038/ncomms13875
– ident: e_1_2_9_42_1
  doi: 10.1016/j.bbcan.2019.02.002
– ident: e_1_2_9_20_1
  doi: 10.1016/j.cmet.2018.11.018
– ident: e_1_2_9_40_1
  doi: 10.1242/dmm.043208
– ident: e_1_2_9_16_1
  doi: 10.1038/onc.2014.262
– ident: e_1_2_9_15_1
  doi: 10.1038/onc.2013.194
– ident: e_1_2_9_32_1
  doi: 10.1016/j.cell.2016.02.065
– ident: e_1_2_9_5_1
  doi: 10.1158/0008-5472.CAN-16-2634
– ident: e_1_2_9_11_1
  doi: 10.1038/onc.2010.598
– ident: e_1_2_9_39_1
  doi: 10.1038/ncomms14343
– ident: e_1_2_9_54_1
  doi: 10.1016/j.molcel.2020.05.025
– ident: e_1_2_9_61_1
  doi: 10.15252/embr.201642195
– ident: e_1_2_9_56_1
  doi: 10.1093/bioinformatics/btt171
– ident: e_1_2_9_85_1
  doi: 10.1038/ncomms7683
– ident: e_1_2_9_65_1
  doi: 10.2174/138920312801619475
– ident: e_1_2_9_88_1
  doi: 10.1101/gr.166231.113
– ident: e_1_2_9_2_1
  doi: 10.1186/gb-2010-11-10-r106
– ident: e_1_2_9_26_1
  doi: 10.1371/journal.pone.0159171
– ident: e_1_2_9_60_1
  doi: 10.1158/2159-8290.CD-13-0005
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1755-148X.2010.00757.x
– ident: e_1_2_9_95_1
  doi: 10.1038/emboj.2010.81
– ident: e_1_2_9_52_1
  doi: 10.1016/j.gde.2017.11.003
– ident: e_1_2_9_53_1
  doi: 10.1111/pcmr.12802
– ident: e_1_2_9_81_1
  doi: 10.1126/science.aad0501
– ident: e_1_2_9_7_1
  doi: 10.1038/nm.4472
– ident: e_1_2_9_74_1
  doi: 10.1016/S0140-6736(18)31559-9
– ident: e_1_2_9_87_1
  doi: 10.1038/nm.3026
– ident: e_1_2_9_24_1
  doi: 10.3390/ijms20081924
– ident: e_1_2_9_86_1
  doi: 10.1016/j.molcel.2019.10.014
– ident: e_1_2_9_12_1
  doi: 10.5483/BMBRep.2018.51.6.025
– ident: e_1_2_9_22_1
  doi: 10.1101/gad.324657.119
– ident: e_1_2_9_84_1
  doi: 10.1074/jbc.C000445200
– ident: e_1_2_9_63_1
  doi: 10.1002/wrna.1491
– ident: e_1_2_9_3_1
  doi: 10.1093/bioinformatics/btu638
– ident: e_1_2_9_45_1
  doi: 10.1038/nature11538
– ident: e_1_2_9_97_1
  doi: 10.1111/j.1755-148X.2010.00823.x
– ident: e_1_2_9_93_1
  doi: 10.1016/j.tem.2017.07.003
– ident: e_1_2_9_25_1
  doi: 10.1038/ncb2738
– ident: e_1_2_9_64_1
  doi: 10.1016/j.celrep.2019.05.069
– ident: e_1_2_9_44_1
  doi: 10.1007/s10555-017-9657-1
– ident: e_1_2_9_78_1
  doi: 10.1073/pnas.0506580102
– ident: e_1_2_9_82_1
  doi: 10.1038/nature20123
SSID ssj0005978
Score 2.4699142
Snippet Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is...
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e50852
SubjectTerms ATF4
Binding
Depletion
Drug resistance
EMBO03
EMBO36
EMBO37
Genotype & phenotype
integrated stress response
lncRNAs
MEK inhibitors
Melanoma
Metastases
Metastasis
Non-coding RNA
Nutrients
Phenotypes
Phosphorylation
Protein biosynthesis
Protein synthesis
Proteins
Reversion
Ribonucleic acid
Ribosomes
RNA
Translation
translational reprogramming
Tumors
Title Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation
URI https://link.springer.com/article/10.15252/embr.202050852
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.202050852
https://www.ncbi.nlm.nih.gov/pubmed/33586907
https://www.proquest.com/docview/2495308861
https://www.proquest.com/docview/2489600416
https://pubmed.ncbi.nlm.nih.gov/PMC7926219
Volume 22
WOSCitedRecordID wos000617939000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-3178
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005978
  issn: 1469-221X
  databaseCode: WIN
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-3178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005978
  issn: 1469-221X
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb5wwEB5VSVv10kf6CG0auVIP7YHGYMBw3KZZNVKCotVW3RuyjUlXysIq7EbKrT-hv7G_pDPAEqEoqlT1gkA2xjbz-IyHbwDeh1bFUR75rhcWwg1UyF1CIS7PtSWX53tWN8kmZJrGs1ly1kUT0r8wLT9E_8GNNKOx16TgStebjD3EGmoXmgg9fY4YI0QrvO15QpJg-8HZTZRH0hhjtAeJ6_verGP3oSYOhg0MHdMttHk7aLLfOR3i2sYxjZ_8hyE9hccdKmWjVoyewT1b7sCDNk_l9Q48PO124J_D-UlVnrOyKn___GUqcnxsko7Y9Dg9nLB6vWziam3NFnal6GelucHTC1VWC8WavX8KvSFhYPqaLTv-KGxkNB0HbEWOsw3OewHT8dH08KvbJWtwTSgT3zXaIhZQ0nAEWDwoCs0LESgVIqSKwySXaHUNoiOjIm4Ul4kOJcIjXejYxEUgXsIW9t3uAkPAgbCu0L4yQZAXSSxzqbgy2kipokQ58GnzojLTEZlTPo2LjBY0NJMZzWPWz6MDH_obli2Hx91V9zZvPuuUuc4oPbdAaxx5Drzri1ENaW9FlbZaU50Y14Ic4a0Dr1pB6Z8lREh5v6QDciBCfQWi-B6WlPMfDdW3JDpHL3Hg40bYbrp15xBEI2N_G2p2dPp50l-9_qe73sAjn2J8KCZP7MHW6nJt38J9c7Wa15f7jSbiUc7ifdj-Mhl_O8Gr78fpH9UwNxw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hLq8Lj-UVWMBIHOAQcB6Ok2NZttoVbQ5VkXqLbMdZKm2Tatsi7Y2fwG_klzCTpFmi1QoJcUsUx4mdeXzxjL8BeCusiqM88l1PFIEbKsFdQiEuz7Ull-d7VtfFJmSaxvN58udemIYfoltwI82o7TUpOC1I70r2EG2oXWpi9PQ5ggyBZngvRGESA9j7PB19HV8meiS1PUaTkLi-781bgh_q5GO_i75vugI4r-ZNdsHTPrStfdPo_v8Y1QO41yJTNmxE6SHcsOU-3GpqVV7sw-1JG4V_BKfjqjxlZVX--vHTVOT82DQdstlJejhl6-2qzq21a7a0G0UblhYGD89UWS0Vq-P_lH5DAsH0BVu1HFLYyXA2CtmGnGeToPcYZqOj2eGx2xZscI2Qie8abREPKGk4giweFoXmRRAqJRBWxSLJJVpegwjJqIgbxWWihUSIpAsdm7gIgycwwHe3z4Ah6EBoV2hfmTDMiySWuVRcGW2kVFGiHPiw-1KZacnMqabGWUY_NTSTGc1j1s2jA--6G1YNj8f1TQ92nz5rFXqdUYnuAC1y5DnwpruMqkjxFVXaakttYvwf5AhxHXjaSEr3rCAQVPtLOiB7MtQ1IJrv_pVy8a2m-5ZE6eglDrzfSdvla107hKAWsr8NNTuafJp2Z8__6a7XcOd4Nhln45P0ywu461POD-XoBQcw2Jxv7Uu4ab5vFuvzV61i_gaJgTkC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFqpeeJRHAwWMxAEOKc7DcXJcSldUtFG12sPeIttxykrdZNXdReqtP6G_sb-EmSSbElUVEuKWKI5jO_P4nJl8A_BRWBVHeeS7nigCN1SCu4RCXJ5rSy7P96yui03INI0nk-TPf2EafojugxtpRm2vScHtPC_WJXuINtTONDF6-hxBhkAzvBkKtLTE7hye3qZ5JLU1RoOQuL7vTVp6H-riS7-Dvme6AzfvZk12odM-sK090_DJ_5jTU3jc4lI2aATpGTyw5Q48aipVXu7A1kkbg38OZ8dVecbKqry5ujYVuT42SgdsfJQejNhiNa8za-2CzexS0e9KU4OH56qsZorV0X9KviFxYPqSzVsGKexkMB6GbEmus0nPewHj4eH44LvblmtwjZCJ7xptEQ0oaThCLB4WheZFEColEFTFIskl2l2D-MioiBvFZaKFRICkCx2buAiDl7CBY7e7wBByILArtK9MGOZFEstcKq6MNlKqKFEO7K_fVGZaKnOqqHGe0ZaGVjKjdcy6dXTgU3fDvGHxuL_p3vrVZ606LzIq0B2gPY48Bz50l1ERKbqiSlutqE2Mu0GOANeBV42kdM8KAkGVv6QDsidDXQMi-e5fKac_a7JvSYSOXuLA57W03Q7r3ikEtZD9barZ4cnXUXf2-p_ueg9bp9-G2fFR-uMNbPuU8EMJesEebCwvVvYtPDS_ltPFxbtaK38DNu426w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+non%E2%80%90coding+RNA+TINCR+suppresses+metastatic+melanoma+dissemination+by+preventing+ATF4+translation&rft.jtitle=EMBO+reports&rft.au=Melixetian%2C+Marine&rft.au=Bossi%2C+Daniela&rft.au=Mihailovich%2C+Marija&rft.au=Punzi%2C+Simona&rft.date=2021-03-03&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=22&rft.issue=3&rft_id=info:doi/10.15252%2Fembr.202050852&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_embr_202050852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon