Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation
Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in meta...
Gespeichert in:
| Veröffentlicht in: | EMBO reports Jg. 22; H. 3; S. e50852 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
03.03.2021
Springer Nature B.V John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 1469-221X, 1469-3178, 1469-3178 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers,
in vitro
migration,
in vivo
tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs.
SYNOPSIS
Long non-coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes.
High TINCR levels prevent translational reprogramming and ATF4 translation, maintaining proliferative, epithelial-like states.
TINCR downregulation leads to translational reprogramming and ATF4 activation, promoting invasion in nutrient-rich conditions.
TINCR interacts with selected integrated stress response RNAs, preventing their binding to the translating ribosomes.
Graphical Abstract
Long non-coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. |
|---|---|
| AbstractList | Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs. Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs. SYNOPSIS Long non‐coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. High TINCR levels prevent translational reprogramming and ATF4 translation, maintaining proliferative, epithelial‐like states. TINCR downregulation leads to translational reprogramming and ATF4 activation, promoting invasion in nutrient‐rich conditions. TINCR interacts with selected integrated stress response RNAs, preventing their binding to the translating ribosomes. Long non‐coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs.Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs. Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs. Long non‐coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs. image Long non‐coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. High TINCR levels prevent translational reprogramming and ATF4 translation, maintaining proliferative, epithelial‐like states. TINCR downregulation leads to translational reprogramming and ATF4 activation, promoting invasion in nutrient‐rich conditions. TINCR interacts with selected integrated stress response RNAs, preventing their binding to the translating ribosomes. Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs. SYNOPSIS Long non-coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. High TINCR levels prevent translational reprogramming and ATF4 translation, maintaining proliferative, epithelial-like states. TINCR downregulation leads to translational reprogramming and ATF4 activation, promoting invasion in nutrient-rich conditions. TINCR interacts with selected integrated stress response RNAs, preventing their binding to the translating ribosomes. Graphical Abstract Long non-coding RNA TINCR blocks the acquisition of invasive phenotypes in melanoma, including drug resistance and metastasis dissemination. TINCR targets RNAs associated with invasive phenotypes, preventing their interaction with ribosomes. |
| Author | Cuomo, Alessandro Punzi, Simona Marocchi, Federica Bonaldi, Tiziana Pelicci, Pier Giuseppe Bossi, Daniela Mihailovich, Marija Melixetian, Marine Barozzi, Iros Leucci, Eleonora Minucci, Saverio Marine, Jean-Christophe Lanfrancone, Luisa Testa, Giuseppe |
| AuthorAffiliation | 3 Department of Oncology and Hemato‐oncology University of Milan Milan Italy 2 Department of Surgery and Cancer Imperial College London London UK 6 Laboratory for RNA Cancer Biology Department of Oncology KULeuven Leuven Belgium 5 Center for Cancer Biology VIB Leuven Belgium 8 Present address: Institute of Oncology Research (IOR) Bellinzona Switzerland 9 Present address: Candiolo Cancer Institute—FPO IRCCS Candiolo Torino Italy 1 Department of Experimental Oncology IEO European Institute of Oncology IRCCS Milan Italy 7 Department of Biosciences University of Milan Milan Italy 4 Laboratory for Molecular Cancer Biology Department of Oncology KULeuven Leuven Belgium |
| AuthorAffiliation_xml | – name: 4 Laboratory for Molecular Cancer Biology Department of Oncology KULeuven Leuven Belgium – name: 5 Center for Cancer Biology VIB Leuven Belgium – name: 6 Laboratory for RNA Cancer Biology Department of Oncology KULeuven Leuven Belgium – name: 2 Department of Surgery and Cancer Imperial College London London UK – name: 1 Department of Experimental Oncology IEO European Institute of Oncology IRCCS Milan Italy – name: 3 Department of Oncology and Hemato‐oncology University of Milan Milan Italy – name: 8 Present address: Institute of Oncology Research (IOR) Bellinzona Switzerland – name: 9 Present address: Candiolo Cancer Institute—FPO IRCCS Candiolo Torino Italy – name: 7 Department of Biosciences University of Milan Milan Italy |
| Author_xml | – sequence: 1 givenname: Marine orcidid: 0000-0002-8454-8262 surname: Melixetian fullname: Melixetian, Marine organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS – sequence: 2 givenname: Daniela surname: Bossi fullname: Bossi, Daniela organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Institute of Oncology Research (IOR) – sequence: 3 givenname: Marija surname: Mihailovich fullname: Mihailovich, Marija organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS – sequence: 4 givenname: Simona surname: Punzi fullname: Punzi, Simona organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Candiolo Cancer Institute—FPO IRCCS – sequence: 5 givenname: Iros surname: Barozzi fullname: Barozzi, Iros organization: Department of Surgery and Cancer, Imperial College London – sequence: 6 givenname: Federica surname: Marocchi fullname: Marocchi, Federica organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS – sequence: 7 givenname: Alessandro surname: Cuomo fullname: Cuomo, Alessandro organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS – sequence: 8 givenname: Tiziana orcidid: 0000-0003-3556-1265 surname: Bonaldi fullname: Bonaldi, Tiziana organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS – sequence: 9 givenname: Giuseppe orcidid: 0000-0002-9104-0918 surname: Testa fullname: Testa, Giuseppe organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Department of Oncology and Hemato-oncology, University of Milan – sequence: 10 givenname: Jean-Christophe surname: Marine fullname: Marine, Jean-Christophe organization: Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Center for Cancer Biology, VIB – sequence: 11 givenname: Eleonora surname: Leucci fullname: Leucci, Eleonora organization: Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven – sequence: 12 givenname: Saverio surname: Minucci fullname: Minucci, Saverio organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Department of Biosciences, University of Milan – sequence: 13 givenname: Pier Giuseppe orcidid: 0000-0002-5076-2316 surname: Pelicci fullname: Pelicci, Pier Giuseppe email: piergiuseppe.pelicci@ieo.it organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Department of Oncology and Hemato-oncology, University of Milan – sequence: 14 givenname: Luisa orcidid: 0000-0002-4523-3815 surname: Lanfrancone fullname: Lanfrancone, Luisa email: luisa.lanfrancone@ieo.it organization: Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33586907$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1vGyEURFWq5qM991at1EsvmwALLPRQybXyJbmpZPnQG2Ix6xLtggu7qfzv-2I7aRop6okn3swwwxyjgxCDQ-g9waeEU07PXN-kU4op5lhy-godESZUWZFaHuxnSsmPQ3Sc8y3GmKtavkGHVcWlULg-Qm4Ww6oA1dLGpYdxfjMpFtc303mRx_U6uZxdLno3mDyYwVsYOxNib4qlh1XvA9zGUDSbAsB3Lgz3IpPFBSuGZELutuu36HVruuze7c8TtLg4X0yvytn3y-vpZFZaXita2sYxwk1tMWMEs7ZtcFsxYzgXkE4t61pQW0lljcDW4Fo1vMaiatpGWtmy6gR92cmux6Z3Swtukun0OvnepI2Oxut_N8H_1Kt4p-FxQYkCgU97gRR_jS4PuvfZug4iuzhmTZlUAmNGBEA_PoPexjEFSAcoxSsspSCA-vDU0aOVhwIAwHcAm2LOybXa-mH7Z2DQd5pgvS1a3xetH4sG3tkz3oP0y4zPO8Zv37nN_-D6_NvX-VMy3pEz8MLKpb9pX3rvD_THzHE |
| CitedBy_id | crossref_primary_10_1016_j_prp_2022_154232 crossref_primary_10_3390_cells11030577 crossref_primary_10_1002_pca_3193 crossref_primary_10_1007_s13577_022_00699_0 crossref_primary_10_1007_s11033_023_08661_5 crossref_primary_10_2174_0109298673290217240513093711 crossref_primary_10_1155_2021_9219961 crossref_primary_10_2174_0109298673267553231017053329 crossref_primary_10_3390_cancers13235970 crossref_primary_10_3389_fimmu_2022_1085766 crossref_primary_10_1002_jcp_70006 crossref_primary_10_3389_fonc_2025_1562861 crossref_primary_10_1016_j_biochi_2023_08_015 crossref_primary_10_3390_ijms26052126 crossref_primary_10_1016_j_pharmthera_2023_108466 crossref_primary_10_1016_j_intimp_2022_108796 crossref_primary_10_1016_j_pharmthera_2022_108301 crossref_primary_10_3390_cancers14235858 |
| Cites_doi | 10.1016/j.bbagrm.2014.08.015 10.1038/ncomms9755 10.1093/nar/gku996 10.1007/s004390000328 10.1038/s41568-019-0154-4 10.1111/pcmr.12537 10.1158/0008-5472.CAN-09-0781 10.4161/19336918.2014.983794 10.1038/jid.2013.115 10.1038/nmeth.3688 10.1042/BST20140323 10.1074/jbc.M003816200 10.1038/ncomms11194 10.1091/mbc.01-05-0221 10.18632/oncotarget.16514 10.1158/0008-5472.CAN-08-1053 10.1016/j.freeradbiomed.2016.01.005 10.1101/cshperspect.a032698 10.1371/journal.pgen.1008501 10.1101/gad.329771.119 10.1038/jid.2015.200 10.1016/j.cell.2017.03.035 10.1159/000454875 10.1016/j.molcel.2018.01.019 10.1038/bjc.2017.434 10.1093/hmg/9.13.1907 10.1016/j.devcel.2020.06.013 10.1186/gb-2013-14-4-r36 10.3389/fnmol.2019.00111 10.1038/jid.2014.272 10.3389/fonc.2014.00367 10.1089/ars.2007.1764 10.1152/ajpcell.00293.2016 10.4161/21690731.2014.983402 10.1158/0008-5472.CAN-07-2491 10.3389/fonc.2014.00352 10.1016/j.cell.2018.06.025 10.1038/nature17161 10.1080/15384101.2016.1151581 10.1016/j.jim.2009.06.008 10.1038/jid.2011.218 10.1101/gad.290940.116 10.1158/2159-8290.CD-13-0424 10.1038/nm.3981 10.1101/gad.267708.115 10.1101/gad.406406 10.1093/bioinformatics/btq170 10.1038/s41556-019-0415-1 10.1111/j.1600-0749.2007.00412.x 10.18632/oncotarget.23145 10.7554/eLife.06857 10.1038/ncomms6712 10.1038/nature11661 10.1158/2159-8290.CD-15-1200 10.1038/ncomms13875 10.1016/j.bbcan.2019.02.002 10.1016/j.cmet.2018.11.018 10.1242/dmm.043208 10.1038/onc.2014.262 10.1038/onc.2013.194 10.1016/j.cell.2016.02.065 10.1158/0008-5472.CAN-16-2634 10.1038/onc.2010.598 10.1038/ncomms14343 10.1016/j.molcel.2020.05.025 10.15252/embr.201642195 10.1093/bioinformatics/btt171 10.1038/ncomms7683 10.2174/138920312801619475 10.1101/gr.166231.113 10.1186/gb-2010-11-10-r106 10.1371/journal.pone.0159171 10.1158/2159-8290.CD-13-0005 10.1111/j.1755-148X.2010.00757.x 10.1038/emboj.2010.81 10.1016/j.gde.2017.11.003 10.1111/pcmr.12802 10.1126/science.aad0501 10.1038/nm.4472 10.1016/S0140-6736(18)31559-9 10.1038/nm.3026 10.3390/ijms20081924 10.1016/j.molcel.2019.10.014 10.5483/BMBRep.2018.51.6.025 10.1101/gad.324657.119 10.1074/jbc.C000445200 10.1002/wrna.1491 10.1093/bioinformatics/btu638 10.1038/nature11538 10.1111/j.1755-148X.2010.00823.x 10.1016/j.tem.2017.07.003 10.1038/ncb2738 10.1016/j.celrep.2019.05.069 10.1007/s10555-017-9657-1 10.1073/pnas.0506580102 10.1038/nature20123 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license – notice: 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.15252/embr.202050852 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database MEDLINE - Academic |
| DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| DocumentTitleAlternate | Marine Melixetian et al |
| EISSN | 1469-3178 |
| EndPage | n/a |
| ExternalDocumentID | PMC7926219 33586907 10_15252_embr_202050852 EMBR202050852 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Fondazione Umberto Veronesi (Umberto Veronesi Foundation) funderid: 10.13039/501100004710 – fundername: Belgian Federation for Cancer – fundername: Italian Minitry of Health, Ricerca Corrente, 5x1000 – fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC) grantid: 20508 funderid: 10.13039/501100005010 – fundername: European School of Molecular Medicine (SEMM) – fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC) funderid: 20508 – fundername: Fondazione Umberto Veronesi (Umberto Veronesi Foundation) – fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC) grantid: 20508 – fundername: ; – fundername: ; grantid: 20508 |
| GroupedDBID | --- -DZ 0R~ 1OC 29G 2WC 33P 36B 39C 53G 5GY 5VS 70F 8R4 8R5 AAESR AAEVG AAHBH AAJSJ AAMMB AANLZ AAONW AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABZEH ACAHQ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AFBPY AFGKR AFRAH AFWVQ AFZJQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BFHJK BHPHI BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM E3Z EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HK~ HYE H~9 KQ8 L7B LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NAO O8X O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TR2 WBKPD WIH WIK WIN WOHZO WXSBR ZGI ZZTAW 24P AAHHS ABJNI ACCFJ ADZOD AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV RHF WYJ AAYXX CITATION NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c5792-cbe415a7c044104ffb0f34aa5560859d7762c389ca60ca079b57063bfb8c8f43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617939000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1469-221X 1469-3178 |
| IngestDate | Tue Sep 30 16:57:58 EDT 2025 Sun Sep 28 12:10:00 EDT 2025 Sun Nov 30 04:19:21 EST 2025 Thu Apr 03 07:03:38 EDT 2025 Sat Nov 29 03:51:03 EST 2025 Tue Nov 18 21:40:37 EST 2025 Wed Jan 22 16:31:40 EST 2025 Sat Nov 29 01:24:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | lncRNAs melanoma translational reprogramming ATF4 integrated stress response |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5792-cbe415a7c044104ffb0f34aa5560859d7762c389ca60ca079b57063bfb8c8f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5076-2316 0000-0002-8454-8262 0000-0002-4523-3815 0000-0002-9104-0918 0000-0003-3556-1265 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.202050852 |
| PMID | 33586907 |
| PQID | 2495308861 |
| PQPubID | 26169 |
| PageCount | 19 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7926219 proquest_miscellaneous_2489600416 proquest_journals_2495308861 pubmed_primary_33586907 crossref_citationtrail_10_15252_embr_202050852 crossref_primary_10_15252_embr_202050852 wiley_primary_10_15252_embr_202050852_EMBR202050852 springer_journals_10_15252_embr_202050852 |
| PublicationCentury | 2000 |
| PublicationDate | 03 March 2021 |
| PublicationDateYYYYMMDD | 2021-03-03 |
| PublicationDate_xml | – month: 03 year: 2021 text: 03 March 2021 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
| PublicationTitle | EMBO reports |
| PublicationTitleAbbrev | EMBO Rep |
| PublicationTitleAlternate | EMBO Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
| References | 2010; 11 2015; 34 2013; 29 2017; 8 2013; 3 2019; 11 2015; 31 2000; 9 2002; 13 2019; 12 2019; 15 2016b; 531 2019; 19 2014; 24 2020; 13 2016a; 29 2020; 54 2016b; 539 2012; 13 2017; 9 2017; 313 2018; 48 2014; 134 2010; 23 2013; 19 2018; 174 2017; 31 2018; 9 2013; 15 2014; 5 2006; 20 2013; 14 2014; 4 2010; 26 2016a; 352 2019; 20 2017; 36 2015; 135 2010; 29 2019; 21 2005; 102 2017; 77 2012; 490 2015; 43 2019; 27 2007; 9 2019; 29 2008; 68 2011; 24 2007; 20 2017; 169 2009; 69 2015; 6 2015; 4 2015; 3 2019; 33 2017; 28 2019; 32 2011; 30 2016; 165 2020; 79 2000; 275 2016; 92 2020; 77 2016; 17 2015; 9 2016; 15 2016; 13 2018; 69 2018; 24 2014; 42 2016; 11 2011; 131 2016; 6 2016; 7 2018; 392 2015; 29 2018; 118 2015; 1849 2000; 107 2015; 21 2013; 133 2013; 493 2018; 51 2014; 33 2019; 1871 2009; 347 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_95_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_97_1 e_1_2_9_91_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 9 start-page: 1907 year: 2000 end-page: 1917 article-title: Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome publication-title: Hum Mol Genet – volume: 21 start-page: 1590 year: 2019 end-page: 1603 article-title: Translational reprogramming marks adaptation to asparagine restriction in cancer publication-title: Nat Cell Biol – volume: 29 start-page: 2082 year: 2010 end-page: 2096 article-title: The GCN2‐ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation publication-title: EMBO J – volume: 19 start-page: 377 year: 2019 end-page: 391 article-title: Phenotype plasticity as enabler of melanoma progression and therapy resistance publication-title: Nat Rev Cancer – volume: 32 start-page: 792 year: 2019 end-page: 808 article-title: MITF controls the TCA cycle to modulate the melanoma hypoxia response publication-title: Pigment Cell Melanoma Res – volume: 20 start-page: 3426 year: 2006 end-page: 3439 article-title: Mitf regulation of Dia1 controls melanoma proliferation and invasiveness publication-title: Genes Dev – volume: 4 year: 2015 article-title: Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells publication-title: Elife – volume: 275 start-page: 37978 year: 2000 end-page: 37983 article-title: Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg‐Shah syndrome (WS4)‐associated hypopigmentation and deafness to WS2 publication-title: J Biol Chem – volume: 34 start-page: 3251 year: 2015 end-page: 3263 article-title: Single‐cell gene expression signatures reveal melanoma cell heterogeneity publication-title: Oncogene – volume: 392 start-page: 971 year: 2018 end-page: 984 article-title: Melanoma publication-title: Lancet – volume: 31 start-page: 166 year: 2015 end-page: 169 article-title: HTSeq–a Python framework to work with high‐throughput sequencing data publication-title: Bioinformatics – volume: 36 start-page: 53 year: 2017 end-page: 75 article-title: The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies publication-title: Cancer Metastasis Rev – volume: 275 start-page: 30757 year: 2000 end-page: 30760 article-title: Regulation of the microphthalmia‐associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10 publication-title: J Biol Chem – volume: 133 start-page: 2436 year: 2013 end-page: 2443 article-title: Hypoxia contributes to melanoma heterogeneity by triggering HIF1alpha‐dependent phenotype switching publication-title: J Invest Dermatol – volume: 30 start-page: 2307 year: 2011 end-page: 2318 article-title: Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny publication-title: Oncogene – volume: 8 start-page: 14343 year: 2017 article-title: Microenvironment‐derived factors driving metastatic plasticity in melanoma publication-title: Nat Commun – volume: 29 start-page: 619 year: 2016a end-page: 626 article-title: The emerging role of long non‐coding RNAs in cutaneous melanoma publication-title: Pigment Cell Melanoma Res – volume: 11 start-page: R106 year: 2010 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol – volume: 11 start-page: a032698 year: 2019 article-title: Ribosome profiling: global views of translation publication-title: Cold Spring Harb Perspect Biol – volume: 77 start-page: 120 year: 2020 end-page: 137.e9 article-title: Lineage‐restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity publication-title: Mol Cell – volume: 7 start-page: 13875 year: 2016 article-title: SNHG5 promotes colorectal cancer cell survival by counteracting STAU1‐mediated mRNA destabilization publication-title: Nat Commun – volume: 77 start-page: 3965 year: 2017 end-page: 3981 article-title: Long noncoding RNA and cancer: a new paradigm publication-title: Cancer Res – volume: 9 start-page: 65 year: 2017 end-page: 68 article-title: Flare‐up of rheumatoid arthritis by anti‐CTLA‐4 antibody but not by anti‐PD1 therapy in a patient with metastatic melanoma publication-title: Case Rep Dermatol – volume: 68 start-page: 7788 year: 2008 end-page: 7794 article-title: Brn‐2 represses microphthalmia‐associated transcription factor expression and marks a distinct subpopulation of microphthalmia‐associated transcription factor‐negative melanoma cells publication-title: Cancer Res – volume: 8 start-page: 32946 year: 2017 end-page: 32959 article-title: Glucose availability controls ATF4‐mediated MITF suppression to drive melanoma cell growth publication-title: Oncotarget – volume: 6 start-page: 8755 year: 2015 article-title: MITF and c‐Jun antagonism interconnects melanoma dedifferentiation with pro‐inflammatory cytokine responsiveness and myeloid cell recruitment publication-title: Nat Commun – volume: 13 start-page: 195 year: 2002 end-page: 210 article-title: Evidence that ternary complex (eIF2‐GTP‐tRNA(i)(Met))‐deficient preinitiation complexes are core constituents of mammalian stress granules publication-title: Mol Biol Cell – volume: 313 start-page: C243 year: 2017 end-page: C254 article-title: Regulation of the unfolded protein response by noncoding RNA publication-title: Am J Physiol Cell Physiol – volume: 14 start-page: R36 year: 2013 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol – volume: 33 start-page: 983 year: 2019 end-page: 1007 article-title: MITF‐the first 25 years publication-title: Genes Dev – volume: 4 start-page: 816 year: 2014 end-page: 827 article-title: A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors publication-title: Cancer Discov – volume: 13 start-page: 294 year: 2012 end-page: 304 article-title: RNA binding protein/RNA element interactions and the control of translation publication-title: Curr Protein Pept Sci – volume: 33 start-page: 2413 year: 2014 end-page: 2422 article-title: Melanoma metastasis: new concepts and evolving paradigms publication-title: Oncogene – volume: 33 start-page: 1295 year: 2019 end-page: 1318 article-title: Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities publication-title: Genes Dev – volume: 42 start-page: 12668 year: 2014 end-page: 12680 article-title: Ribosomal stress activates eEF2K‐eEF2 pathway causing translation elongation inhibition and recruitment of terminal oligopyrimidine (TOP) mRNAs on polysomes publication-title: Nucleic Acids Res – volume: 102 start-page: 15545 year: 2005 end-page: 15550 article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles publication-title: Proc Natl Acad Sci USA – volume: 531 start-page: 518 year: 2016b end-page: 522 article-title: Melanoma addiction to the long non‐coding RNA SAMMSON publication-title: Nature – volume: 3 year: 2015 article-title: Regulation of global and specific mRNA translation by the mTOR signaling pathway publication-title: Translation (Austin) – volume: 347 start-page: 70 year: 2009 end-page: 78 article-title: ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays publication-title: J Immunol Methods – volume: 20 start-page: 466 year: 2007 end-page: 484 article-title: DNA microarray analyses of melanoma gene expression: a decade in the mines publication-title: Pigment Cell Res – volume: 15 year: 2019 article-title: The MITF‐SOX10 regulated long non‐coding RNA DIRC3 is a melanoma tumour suppressor publication-title: PLoS Genet – volume: 11 year: 2016 article-title: miRNA‐1283 regulates the PERK/ATF4 pathway in vascular injury by targeting ATF4 publication-title: PLoS One – volume: 165 start-page: 35 year: 2016 end-page: 44 article-title: Genomic and transcriptomic features of response to anti‐PD‐1 therapy in metastatic melanoma publication-title: Cell – volume: 92 start-page: 39 year: 2016 end-page: 49 article-title: miR‐214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2 publication-title: Free Radic Biol Med – volume: 1849 start-page: 801 year: 2015 end-page: 811 article-title: The race to decipher the top secrets of TOP mRNAs publication-title: Biochim Biophys Acta – volume: 28 start-page: 794 year: 2017 end-page: 806 article-title: Surviving stress: modulation of ATF4‐mediated stress responses in normal and malignant cells publication-title: Trends Endocrinol Metab – volume: 29 start-page: 254 year: 2019 end-page: 267 article-title: Starvation and pseudo‐starvation as drivers of cancer metastasis through translation reprogramming publication-title: Cell Metab – volume: 54 start-page: 317 year: 2020 end-page: 332 article-title: PRL3‐DDX21 transcriptional control of endolysosomal genes restricts melanocyte stem cell differentiation publication-title: Dev Cell – volume: 48 start-page: 104 year: 2018 end-page: 111 article-title: Cross‐talk between protein synthesis, energy metabolism and autophagy in cancer publication-title: Curr Opin Genet Dev – volume: 4 start-page: 352 year: 2014 article-title: Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity publication-title: Front Oncol – volume: 17 start-page: 1374 year: 2016 end-page: 1395 article-title: The integrated stress response publication-title: EMBO Rep – volume: 19 start-page: 93 year: 2013 end-page: 100 article-title: miR‐214 targets ATF4 to inhibit bone formation publication-title: Nat Med – volume: 43 start-page: 328 year: 2015 end-page: 332 article-title: Regulation and roles of elongation factor 2 kinase publication-title: Biochem Soc Trans – volume: 26 start-page: 1572 year: 2010 end-page: 1573 article-title: ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking publication-title: Bioinformatics – volume: 9 start-page: 233 year: 2015 end-page: 246 article-title: Reprogramming during epithelial to mesenchymal transition under the control of TGFbeta publication-title: Cell Adh Migr – volume: 31 start-page: 18 year: 2017 end-page: 33 article-title: Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma publication-title: Genes Dev – volume: 490 start-page: 412 year: 2012 end-page: 416 article-title: Melanomas resist T‐cell therapy through inflammation‐induced reversible dedifferentiation publication-title: Nature – volume: 9 year: 2018 article-title: Regulation of translation initiation factor eIF2B at the hub of the integrated stress response publication-title: Wiley Interdiscip Rev RNA – volume: 6 start-page: 6683 year: 2015 article-title: Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state publication-title: Nat Commun – volume: 69 start-page: 7969 year: 2009 end-page: 7977 article-title: Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination publication-title: Cancer Res – volume: 131 start-page: 2448 year: 2011 end-page: 2457 article-title: Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase publication-title: J Invest Dermatol – volume: 8 start-page: 114856 year: 2017 end-page: 114876 article-title: Hypoxia‐mediated translational activation of ITGB3 in breast cancer cells enhances TGF‐beta signaling and malignant features and publication-title: Oncotarget – volume: 24 start-page: 203 year: 2018 end-page: 212 article-title: Cooperative targeting of melanoma heterogeneity with an AXL antibody‐drug conjugate and BRAF/MEK inhibitors publication-title: Nat Med – volume: 539 start-page: 309 year: 2016b end-page: 313 article-title: Single‐cell RNA‐seq supports a developmental hierarchy in human oligodendroglioma publication-title: Nature – volume: 6 start-page: 650 year: 2016 end-page: 663 article-title: genetic screens of patient‐derived tumors revealed unexpected frailty of the transformed phenotype publication-title: Cancer Discov – volume: 20 start-page: 1924 year: 2019 article-title: Long noncoding RNA and epithelial mesenchymal transition in cancer publication-title: Int J Mol Sci – volume: 118 start-page: 9 year: 2018 end-page: 16 article-title: Mechanisms of resistance to immune checkpoint inhibitors publication-title: Br J Cancer – volume: 27 start-page: 3573 year: 2019 end-page: 3586 article-title: The X‐Linked DDX3X RNA helicase dictates translation reprogramming and metastasis in melanoma publication-title: Cell Rep – volume: 134 start-page: 3000 year: 2014 end-page: 3003 article-title: Primary melanoma tumors from CDKN2A mutation carriers do not belong to a distinct molecular subclass publication-title: J Invest Dermatol – volume: 12 start-page: 111 year: 2019 article-title: Stem cell‐derived models of neural crest are essential to understand melanoma progression and therapy resistance publication-title: Front Mol Neurosci – volume: 79 start-page: 472 year: 2020 end-page: 487 article-title: Tuning transcription factor availability through acetylation‐mediated genomic redistribution publication-title: Mol Cell – volume: 13 start-page: dmm043208 year: 2020 article-title: Control of translation elongation in health and disease publication-title: Dis Models Mech – volume: 9 start-page: 2357 year: 2007 end-page: 2371 article-title: Translational control and the unfolded protein response publication-title: Antioxid Redox Signal – volume: 29 start-page: 1565 year: 2013 end-page: 1567 article-title: Exome‐based analysis for RNA epigenome sequencing data publication-title: Bioinformatics – volume: 15 start-page: 481 year: 2013 end-page: 490 article-title: ER‐stress‐induced transcriptional regulation increases protein synthesis leading to cell death publication-title: Nat Cell Biol – volume: 23 start-page: 746 year: 2010 end-page: 759 article-title: Cancer stem cells versus phenotype‐switching in melanoma publication-title: Pigment Cell Melanoma Res – volume: 21 start-page: 1253 year: 2015 end-page: 1261 article-title: The emerging role of lncRNAs in cancer publication-title: Nat Med – volume: 5 start-page: 5712 year: 2014 article-title: Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma publication-title: Nat Commun – volume: 493 start-page: 231 year: 2013 end-page: 235 article-title: Control of somatic tissue differentiation by the long non‐coding RNA TINCR publication-title: Nature – volume: 13 start-page: 165 year: 2016 end-page: 170 article-title: Detecting actively translated open reading frames in ribosome profiling data publication-title: Nat Methods – volume: 51 start-page: 280 year: 2018 end-page: 289 article-title: Long noncoding RNA: multiple players in gene expression publication-title: BMB Rep – volume: 135 start-page: 2464 year: 2015 end-page: 2474 article-title: The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching publication-title: J Invest Dermatol – volume: 3 start-page: 1378 year: 2013 end-page: 1393 article-title: Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2 publication-title: Cancer Discov – volume: 169 start-page: 361 year: 2017 end-page: 371 article-title: mTOR signaling in growth, metabolism, and disease publication-title: Cell – volume: 1871 start-page: 313 year: 2019 end-page: 322 article-title: Many ways to resistance: how melanoma cells evade targeted therapies publication-title: Biochim Biophys Acta Rev Cancer – volume: 174 start-page: 843 year: 2018 end-page: 855 article-title: Toward minimal residual disease‐directed therapy in melanoma publication-title: Cell – volume: 69 start-page: 636 year: 2018 end-page: 647 article-title: N(6)‐methyladenosine guides mRNA alternative translation during integrated stress response publication-title: Mol Cell – volume: 68 start-page: 650 year: 2008 end-page: 656 article-title: switching of human melanoma cells between proliferative and invasive states publication-title: Can Res – volume: 352 start-page: 189 year: 2016a end-page: 196 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq publication-title: Science – volume: 15 start-page: 781 year: 2016 end-page: 786 article-title: 4E‐BP1, a multifactor regulated multifunctional protein publication-title: Cell Cycle – volume: 24 start-page: 751 year: 2014 end-page: 760 article-title: Enhancer‐targeted genome editing selectively blocks innate resistance to oncokinase inhibition publication-title: Genome Res – volume: 7 start-page: 11194 year: 2016 article-title: Genome‐wide assessment of differential translations with ribosome profiling data publication-title: Nat Commun – volume: 29 start-page: 2225 year: 2015 end-page: 2230 article-title: CALML5 is a ZNF750‐ and TINCR‐induced protein that binds stratifin to regulate epidermal differentiation publication-title: Genes Dev – volume: 4 start-page: 367 year: 2014 article-title: Effects of epithelial to mesenchymal transition on T cell targeting of melanoma cells publication-title: Frontiers in oncology – volume: 107 start-page: 1 year: 2000 end-page: 6 article-title: Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3 publication-title: Hum Genet – volume: 24 start-page: 326 year: 2011 end-page: 333 article-title: A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status publication-title: Pigment Cell Melanoma Res – ident: e_1_2_9_57_1 doi: 10.1016/j.bbagrm.2014.08.015 – ident: e_1_2_9_72_1 doi: 10.1038/ncomms9755 – ident: e_1_2_9_21_1 doi: 10.1093/nar/gku996 – ident: e_1_2_9_67_1 doi: 10.1007/s004390000328 – ident: e_1_2_9_4_1 doi: 10.1038/s41568-019-0154-4 – ident: e_1_2_9_50_1 doi: 10.1111/pcmr.12537 – ident: e_1_2_9_66_1 doi: 10.1158/0008-5472.CAN-09-0781 – ident: e_1_2_9_80_1 doi: 10.4161/19336918.2014.983794 – ident: e_1_2_9_90_1 doi: 10.1038/jid.2013.115 – ident: e_1_2_9_9_1 doi: 10.1038/nmeth.3688 – ident: e_1_2_9_68_1 doi: 10.1042/BST20140323 – ident: e_1_2_9_48_1 doi: 10.1074/jbc.M003816200 – ident: e_1_2_9_94_1 doi: 10.1038/ncomms11194 – ident: e_1_2_9_37_1 doi: 10.1091/mbc.01-05-0221 – ident: e_1_2_9_18_1 doi: 10.18632/oncotarget.16514 – ident: e_1_2_9_23_1 doi: 10.1158/0008-5472.CAN-08-1053 – ident: e_1_2_9_19_1 doi: 10.1016/j.freeradbiomed.2016.01.005 – ident: e_1_2_9_33_1 doi: 10.1101/cshperspect.a032698 – ident: e_1_2_9_13_1 doi: 10.1371/journal.pgen.1008501 – ident: e_1_2_9_71_1 doi: 10.1101/gad.329771.119 – ident: e_1_2_9_49_1 doi: 10.1038/jid.2015.200 – ident: e_1_2_9_73_1 doi: 10.1016/j.cell.2017.03.035 – ident: e_1_2_9_34_1 doi: 10.1159/000454875 – ident: e_1_2_9_96_1 doi: 10.1016/j.molcel.2018.01.019 – ident: e_1_2_9_35_1 doi: 10.1038/bjc.2017.434 – ident: e_1_2_9_6_1 doi: 10.1093/hmg/9.13.1907 – ident: e_1_2_9_36_1 doi: 10.1016/j.devcel.2020.06.013 – ident: e_1_2_9_38_1 doi: 10.1186/gb-2013-14-4-r36 – ident: e_1_2_9_46_1 doi: 10.3389/fnmol.2019.00111 – ident: e_1_2_9_77_1 doi: 10.1038/jid.2014.272 – ident: e_1_2_9_92_1 doi: 10.3389/fonc.2014.00367 – ident: e_1_2_9_89_1 doi: 10.1089/ars.2007.1764 – ident: e_1_2_9_55_1 doi: 10.1152/ajpcell.00293.2016 – ident: e_1_2_9_59_1 doi: 10.4161/21690731.2014.983402 – ident: e_1_2_9_28_1 doi: 10.1158/0008-5472.CAN-07-2491 – ident: e_1_2_9_83_1 doi: 10.3389/fonc.2014.00352 – ident: e_1_2_9_70_1 doi: 10.1016/j.cell.2018.06.025 – ident: e_1_2_9_51_1 doi: 10.1038/nature17161 – ident: e_1_2_9_69_1 doi: 10.1080/15384101.2016.1151581 – ident: e_1_2_9_30_1 doi: 10.1016/j.jim.2009.06.008 – ident: e_1_2_9_75_1 doi: 10.1038/jid.2011.218 – ident: e_1_2_9_17_1 doi: 10.1101/gad.290940.116 – ident: e_1_2_9_41_1 doi: 10.1158/2159-8290.CD-13-0424 – ident: e_1_2_9_31_1 doi: 10.1038/nm.3981 – ident: e_1_2_9_79_1 doi: 10.1101/gad.267708.115 – ident: e_1_2_9_10_1 doi: 10.1101/gad.406406 – ident: e_1_2_9_91_1 doi: 10.1093/bioinformatics/btq170 – ident: e_1_2_9_62_1 doi: 10.1038/s41556-019-0415-1 – ident: e_1_2_9_27_1 doi: 10.1111/j.1600-0749.2007.00412.x – ident: e_1_2_9_76_1 doi: 10.18632/oncotarget.23145 – ident: e_1_2_9_47_1 doi: 10.7554/eLife.06857 – ident: e_1_2_9_58_1 doi: 10.1038/ncomms6712 – ident: e_1_2_9_43_1 doi: 10.1038/nature11661 – ident: e_1_2_9_8_1 doi: 10.1158/2159-8290.CD-15-1200 – ident: e_1_2_9_14_1 doi: 10.1038/ncomms13875 – ident: e_1_2_9_42_1 doi: 10.1016/j.bbcan.2019.02.002 – ident: e_1_2_9_20_1 doi: 10.1016/j.cmet.2018.11.018 – ident: e_1_2_9_40_1 doi: 10.1242/dmm.043208 – ident: e_1_2_9_16_1 doi: 10.1038/onc.2014.262 – ident: e_1_2_9_15_1 doi: 10.1038/onc.2013.194 – ident: e_1_2_9_32_1 doi: 10.1016/j.cell.2016.02.065 – ident: e_1_2_9_5_1 doi: 10.1158/0008-5472.CAN-16-2634 – ident: e_1_2_9_11_1 doi: 10.1038/onc.2010.598 – ident: e_1_2_9_39_1 doi: 10.1038/ncomms14343 – ident: e_1_2_9_54_1 doi: 10.1016/j.molcel.2020.05.025 – ident: e_1_2_9_61_1 doi: 10.15252/embr.201642195 – ident: e_1_2_9_56_1 doi: 10.1093/bioinformatics/btt171 – ident: e_1_2_9_85_1 doi: 10.1038/ncomms7683 – ident: e_1_2_9_65_1 doi: 10.2174/138920312801619475 – ident: e_1_2_9_88_1 doi: 10.1101/gr.166231.113 – ident: e_1_2_9_2_1 doi: 10.1186/gb-2010-11-10-r106 – ident: e_1_2_9_26_1 doi: 10.1371/journal.pone.0159171 – ident: e_1_2_9_60_1 doi: 10.1158/2159-8290.CD-13-0005 – ident: e_1_2_9_29_1 doi: 10.1111/j.1755-148X.2010.00757.x – ident: e_1_2_9_95_1 doi: 10.1038/emboj.2010.81 – ident: e_1_2_9_52_1 doi: 10.1016/j.gde.2017.11.003 – ident: e_1_2_9_53_1 doi: 10.1111/pcmr.12802 – ident: e_1_2_9_81_1 doi: 10.1126/science.aad0501 – ident: e_1_2_9_7_1 doi: 10.1038/nm.4472 – ident: e_1_2_9_74_1 doi: 10.1016/S0140-6736(18)31559-9 – ident: e_1_2_9_87_1 doi: 10.1038/nm.3026 – ident: e_1_2_9_24_1 doi: 10.3390/ijms20081924 – ident: e_1_2_9_86_1 doi: 10.1016/j.molcel.2019.10.014 – ident: e_1_2_9_12_1 doi: 10.5483/BMBRep.2018.51.6.025 – ident: e_1_2_9_22_1 doi: 10.1101/gad.324657.119 – ident: e_1_2_9_84_1 doi: 10.1074/jbc.C000445200 – ident: e_1_2_9_63_1 doi: 10.1002/wrna.1491 – ident: e_1_2_9_3_1 doi: 10.1093/bioinformatics/btu638 – ident: e_1_2_9_45_1 doi: 10.1038/nature11538 – ident: e_1_2_9_97_1 doi: 10.1111/j.1755-148X.2010.00823.x – ident: e_1_2_9_93_1 doi: 10.1016/j.tem.2017.07.003 – ident: e_1_2_9_25_1 doi: 10.1038/ncb2738 – ident: e_1_2_9_64_1 doi: 10.1016/j.celrep.2019.05.069 – ident: e_1_2_9_44_1 doi: 10.1007/s10555-017-9657-1 – ident: e_1_2_9_78_1 doi: 10.1073/pnas.0506580102 – ident: e_1_2_9_82_1 doi: 10.1038/nature20123 |
| SSID | ssj0005978 |
| Score | 2.4699912 |
| Snippet | Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is... Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is... |
| SourceID | pubmedcentral proquest pubmed crossref wiley springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e50852 |
| SubjectTerms | ATF4 Binding Depletion Drug resistance EMBO03 EMBO36 EMBO37 Genotype & phenotype integrated stress response lncRNAs MEK inhibitors Melanoma Metastases Metastasis Non-coding RNA Nutrients Phenotypes Phosphorylation Protein biosynthesis Protein synthesis Proteins Reversion Ribonucleic acid Ribosomes RNA Translation translational reprogramming Tumors |
| Title | Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation |
| URI | https://link.springer.com/article/10.15252/embr.202050852 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.202050852 https://www.ncbi.nlm.nih.gov/pubmed/33586907 https://www.proquest.com/docview/2495308861 https://www.proquest.com/docview/2489600416 https://pubmed.ncbi.nlm.nih.gov/PMC7926219 |
| Volume | 22 |
| WOSCitedRecordID | wos000617939000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1469-3178 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005978 issn: 1469-221X databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-3178 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005978 issn: 1469-221X databaseCode: WIN dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFhAXHuUVKJWROMAhkNhOnByX0hWVtlG1WmBvkeM4ZaVusmp2kXrjJ_Ab-SXMJNlUUVUhIS5RLD9iOzPjz_HkG4A3Da-UVNwtrAxcmUvtRoZLN_NF4VtuZEum83WikiSaz-PTzpuQ_oVp-SH6D26kGY29JgXXWb2N2EOsoXaZEaEn9xBjBGiFd31fKBJsLk-vvDzixhijPYhdzv15x-5DTXwYNjBcmK6hzetOk_3J6RDXNgvT-MF_GNJDuN-hUjZqxegR3LLlHtxp41Re7sHdk-4E_jGcTaryjJVV-fvnL1PRwsemyYjNjpPDKas3q8av1tZsadeaflZaGLw912W11Kw5-yfXGxIGll2yVccfhY2MZmPJ1rRwts55T2A2Ppodfna7YA2uCVTMXZNZxAJaGQ8BlieLIvMKIbUOEFJFQZwrtLoG0ZHRoWe0p-IsUAiPsiKLTFRI8RR2sO_2ObBcodEz2g-syGWoEdJKLbkOgzwrTKilA--3Lyo1HZE5xdM4T2lDQzOZ0jym_Tw68LavsGo5PG4uur9982mnzHVK4bkFWuPQd-B1n41qSGcrurTVhspEuBf0EN468KwVlP5ZQgQU90s5oAYi1Bcgiu9hTrn43lB9K6Jz9GMH3m2F7apbNw5BNDL2t6GmRycfp33qxT_Vegn3OPn4kE-e2Ied9cXGvoLb5sd6UV8cNJqIVzWPDmD303T8ZYKpb8fJH5EnNqo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hLVAuPAqUQAEjcYBDSh52nByX0lUrsjmsFrS3yHGcslI3WXV3kXrjJ_Ab-SXMJNmUqKqQELdEsR0_Zsaf7fE3AG9rXikuPbswXNg858oOtcftzPUL13iaN2Q6X2OZJOFsFv15F6bhh-g23EgzantNCk4b0tuQPUQbahYZMXp6DoIMgWZ4h6MwiQHsfJqMvsRXjh5RbY_RJES257mzluCHCvnQL6I_N10DnNf9JrvD0z60reem0YP_0aqHcL9FpmzYiNIjuGXKPbjTxKq83IO74_YU_jGcxVV5xsqq_PXjp65o8mOTZMimp8nRhK02y9q31qzYwqwVXViaa3w8V2W1UKw-_yf3GxIIll2yZcshhYUMpyPO1jR5Ng56T2A6Op4endhtwAZbCxl5ts4M4gEltYMgy-FFkTmFz5USCKtCEeUSLa9GhKRV4GjlyCgTEiFSVmShDgvuP4UB1t08A5ZLNHxaucL4OQ8UwlquuKcCkWeFDhS34HA7UqluycwppsZ5Sosa6smU-jHt-tGCd12GZcPjcXPSg-3Qp61Cr1IK0e2jRQ5cC950n1EV6XxFlabaUJoQ14MOQlwL9htJ6f7l-4Jif0kLZE-GugRE893_Us6_1XTfkigd3ciC91tpu6rWjU3wayH7W1PT4_HHSff2_J9yvYbdk-k4TuPT5PMLuOeRzw_56PkHMFhfbMxLuK2_r-eri1etYv4GR1g4kA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hAhUXHoVCaAEjcYBDIA87To5L6YqKbVStVmhvkePY7UrdZNXdReqNn8Bv5Jd0JsmmRFWFhLgl8iN-zIw_x-NvAN7VvFJcBq41XLi84MqNdcDd3A-tbwLNGzKd7yOZpvF0mvx5F6bhh-h-uJFm1PaaFNwsCrsJ2UO0oWaeE6Nn4CHIEGiG73KBlpbYnfnJtZtHUltjNAiJGwT-tKX3oSo-9Svor0w34OZNr8nu6LQPbOuVafjof_TpMTxscSkbNIL0BO6YcgfuN5EqL3dg-7g9g38Kp6OqPGVlVf7--UtXtPSxcTpgk6P0YMyW60XtWWuWbG5Wiq4rzTQ-nquymitWn_6T8w2JA8sv2aJlkMJKBpMhZytaOhv3vGcwGR5ODr66bbgGVwuZBK7ODaIBJbWHEMvj1uaeDblSAkFVLJJCot3ViI-0ijytPJnkQiJAym0e69jycBe2sO3mBbBCotnTyhcmLHikENRyxQMViSK3OlLcgY-bmcp0S2VOETXOM9rS0EhmNI5ZN44OvO8KLBoWj9uz7m-mPmvVeZlRgO4Q7XHkO_C2S0ZFpNMVVZpqTXli3A16CHAdeN5ISvetMBQU-Us6IHsy1GUgku9-Sjk7q8m-JRE6-okDHzbSdt2sW7sQ1kL2t65mh8efx93by38q9Qa2T74Ms9FR-m0PHgTk8EMOeuE-bK0u1uYV3NM_VrPlxetaK68A9nI2eQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+non%E2%80%90coding+RNA+TINCR+suppresses+metastatic+melanoma+dissemination+by+preventing+ATF4+translation&rft.jtitle=EMBO+reports&rft.au=Melixetian%2C+Marine&rft.au=Bossi%2C+Daniela&rft.au=Mihailovich%2C+Marija&rft.au=Punzi%2C+Simona&rft.date=2021-03-03&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=22&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembr.202050852&rft.externalDBID=10.15252%252Fembr.202050852&rft.externalDocID=EMBR202050852 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon |