Attention-based deep clustering method for scRNA-seq cell type identification
Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not availab...
Uložené v:
| Vydané v: | PLoS computational biology Ročník 19; číslo 11; s. e1011641 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
01.11.2023
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes. |
|---|---|
| Bibliografia: | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1553-7358 1553-734X 1553-7358 |
| DOI: | 10.1371/journal.pcbi.1011641 |