Attention-based deep clustering method for scRNA-seq cell type identification
Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not availab...
Uloženo v:
| Vydáno v: | PLoS computational biology Ročník 19; číslo 11; s. e1011641 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
01.11.2023
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes. |
|---|---|
| AbstractList | Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes. Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes.Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes. |
| Audience | Academic |
| Author | Li, Menglong Guo, Hui Zhang, Simai Li, Shenghao Li, Yizhou |
| Author_xml | – sequence: 1 givenname: Shenghao surname: Li fullname: Li, Shenghao – sequence: 2 givenname: Hui surname: Guo fullname: Guo, Hui – sequence: 3 givenname: Simai surname: Zhang fullname: Zhang, Simai – sequence: 4 givenname: Yizhou orcidid: 0000-0002-0351-1792 surname: Li fullname: Li, Yizhou – sequence: 5 givenname: Menglong surname: Li fullname: Li, Menglong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37948464$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkk1v1DAQhiNURD_gHyCIxKUcstixHTvcVlWBlUqRCpwtxxkvXiVxajsS_fc43SyiFUJCPng0ft6Z8cycZkeDGyDLXmK0woTjdzs3-UF1q1E3doURxhXFT7ITzBgpOGHi6A_7ODsNYYdQMuvqWXZMeE0FrehJ9nkdIwzRuqFoVIA2bwHGXHdTiODtsM17iD9cmxvn86BvrtdFgNtcQ9fl8W6E3Laz2lit5hjPs6dGdQFeLPdZ9v3D5beLT8XVl4-bi_VVoRkXsTBCawGkFMhwpMqaEQ4YlaRVhAJXjcIYagy0qRqEk6NWtC25hqYqteB1Rc6y1_u4Y-eCXDoRJEFVjdO7KBOx2ROtUzs5etsrfyedsvLe4fxWKh-t7kCShtSsJA1nDaaKGcEQNS1FiJmUWOMU63zJ5t3tBCHK3oa5BWoANwVZClGXlGA6F_bmEfr34lZ7aqtSfjsYF73S6bTQW53GbGzyrzlnJa4RE0nw9oEgMRF-xq2aQpCbrzf_wV4_ZF8t5U5ND-3vPh32IwHv94D2LgQPRmob70edKradxEjOy3j4pZyXUS7LmMT0kfgQ_5-yX0XO4iM |
| CitedBy_id | crossref_primary_10_1093_bib_bbaf378 crossref_primary_10_1371_journal_pgen_1011420 crossref_primary_10_1093_bib_bbaf368 crossref_primary_10_1093_bib_bbaf423 crossref_primary_10_1093_bib_bbaf207 crossref_primary_10_1186_s12859_025_06231_z crossref_primary_10_3390_ijms26094365 crossref_primary_10_1093_bib_bbaf109 crossref_primary_10_1016_j_bspc_2025_107502 crossref_primary_10_1093_bfgp_elaf010 |
| Cites_doi | 10.1038/ncomms15081 10.1002/ijc.25242 10.1038/s41576-018-0088-9 10.1016/j.cell.2015.05.047 10.1038/s41467-021-21246-9 10.1016/j.cell.2018.02.001 10.1038/s41598-019-41695-z 10.1038/s41467-018-07931-2 10.1038/s41586-018-0590-4 10.1093/nar/gkab447 10.1038/s41467-022-29358-6 10.1016/j.cels.2016.09.002 10.1186/s12864-023-09344-y 10.1038/s41467-021-26017-0 10.1186/s13059-017-1382-0 10.1038/nature14966 10.1186/s13059-020-1926-6 10.1016/j.cels.2016.08.011 10.1038/s41587-021-01206-w 10.1016/j.molcel.2015.04.005 10.1093/nar/gkab775 10.1007/BF01908075 10.1038/nmeth.4236 10.1093/bioinformatics/btab787 10.1038/nmeth.3971 10.1038/s42256-019-0037-0 10.1109/TPAMI.1979.4766909 10.1038/nbt.3192 10.1038/nmeth.4220 10.1016/0377-0427(87)90125-7 10.1016/j.cell.2015.04.044 10.1111/cpr.13088 10.1038/s41592-018-0229-2 10.1073/pnas.0500334102 10.1038/nrg3542 10.1093/bioinformatics/btac099 10.1002/gcc.10121 10.1038/s41586-018-0409-3 10.1038/s41467-020-15851-3 10.1093/bib/bbz062 10.1038/nn.4462 10.1038/s41586-020-2157-4 10.1038/s41467-021-22197-x |
| ContentType | Journal Article |
| Copyright | Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 DOA |
| DOI | 10.1371/journal.pcbi.1011641 |
| DatabaseName | CrossRef PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1553-7358 |
| ExternalDocumentID | 3069179682 oai_doaj_org_article_3b39523b75b14a5f8504fd4005f9a4c1 A775219058 37948464 10_1371_journal_pcbi_1011641 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A H13 IPNFZ NPM RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c578t-f8cc8e3280f70a29537e1023da34e7aba11e91e4b6b01e7a9a4d27ceb62c87963 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119854800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Tue Sep 30 23:54:32 EDT 2025 Mon Nov 10 04:28:07 EST 2025 Sun Nov 09 11:00:59 EST 2025 Sat Nov 29 14:59:08 EST 2025 Tue Nov 04 18:36:46 EST 2025 Wed Nov 26 11:07:54 EST 2025 Thu Nov 13 16:16:41 EST 2025 Thu Apr 03 07:00:37 EDT 2025 Sat Nov 29 03:00:16 EST 2025 Tue Nov 18 22:35:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c578t-f8cc8e3280f70a29537e1023da34e7aba11e91e4b6b01e7a9a4d27ceb62c87963 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0351-1792 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pcbi.1011641 |
| PMID | 37948464 |
| PQID | 3069179682 |
| PQPubID | 1436340 |
| PageCount | e1011641 |
| ParticipantIDs | plos_journals_3069179682 doaj_primary_oai_doaj_org_article_3b39523b75b14a5f8504fd4005f9a4c1 proquest_miscellaneous_2889243146 proquest_journals_3069179682 gale_infotracacademiconefile_A775219058 gale_incontextgauss_ISR_A775219058 gale_incontextgauss_ISN_A775219058 pubmed_primary_37948464 crossref_citationtrail_10_1371_journal_pcbi_1011641 crossref_primary_10_1371_journal_pcbi_1011641 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | T.N. Kipf (pcbi.1011641.ref025) 2017 E. Shapiro (pcbi.1011641.ref001) 2013; 14 X. Shao (pcbi.1011641.ref022) 2021; 49 U. Ben-David (pcbi.1011641.ref045) 2018; 560 R. Qi (pcbi.1011641.ref008) 2020; 21 G. Eraslan (pcbi.1011641.ref016) 2019; 10 R.A. Romanov (pcbi.1011641.ref031) 2017; 20 G. Gambardella (pcbi.1011641.ref041) 2022; 13 V. Svensson (pcbi.1011641.ref006) 2017; 14 L. Hubert (pcbi.1011641.ref034) 1985; 2 A. Dosovitskiy (pcbi.1011641.ref027) 2021 L. Haghverdi (pcbi.1011641.ref039) 2016; 13 M. Baron (pcbi.1011641.ref029) 2016; 3 S.A.R. Abadi (pcbi.1011641.ref024) 2023; 24 V.Y. Kiselev (pcbi.1011641.ref013) 2017; 14 Z. Zhou (pcbi.1011641.ref043) 2021; 54 J.H. Levine (pcbi.1011641.ref014) 2015; 162 V.A. Traag (pcbi.1011641.ref015) 2019; 9 A. Vaswani (pcbi.1011641.ref026) 2017 X. Han (pcbi.1011641.ref048) 2020; 581 J. Xie (pcbi.1011641.ref017) 2016 X. Li (pcbi.1011641.ref018) 2020; 11 A.A. Kolodziejczyk (pcbi.1011641.ref002) 2015; 58 F.A. Wolf (pcbi.1011641.ref004) 2018; 19 N. Schaum (pcbi.1011641.ref033) 2018; 562 M. Barlund (pcbi.1011641.ref042) 2002; 35 S. Jin (pcbi.1011641.ref049) 2021; 12 A. Capes-Davis (pcbi.1011641.ref044) 2010; 127 R. Coifman (pcbi.1011641.ref038) 2005; 102 J. Wang (pcbi.1011641.ref010) 2021; 12 T. Tian (pcbi.1011641.ref009) 2019; 1 R. Satija (pcbi.1011641.ref003) 2015; 33 R. Lopez (pcbi.1011641.ref019) 2018; 15 L. Seninge (pcbi.1011641.ref050) 2021; 12 W. Chung (pcbi.1011641.ref032) 2017; 8 D. L. Davies (pcbi.1011641.ref037) 1979; 1 P.J. Rousseeuw (pcbi.1011641.ref036) 1987; 20 M.J. Muraro (pcbi.1011641.ref030) 2016; 3 X. Han (pcbi.1011641.ref047) 2018; 172 D. Lahnemann (pcbi.1011641.ref005) 2020; 21 A. Gayoso (pcbi.1011641.ref020) 2022; 40 A. Strehl (pcbi.1011641.ref035) 2002; 3 A.M. Klein (pcbi.1011641.ref028) 2015; 161 M. Ciortan (pcbi.1011641.ref021) 2021; 38 D. Bu (pcbi.1011641.ref046) 2021; 49 V.Y. Kiselev (pcbi.1011641.ref007) 2019; 20 D. Grun (pcbi.1011641.ref012) 2015; 525 Y. Cheng (pcbi.1011641.ref011) 2022; 38 T.N. Kipf (pcbi.1011641.ref023) 2016 L. McInnes (pcbi.1011641.ref040) 2018 |
| References_xml | – volume: 8 start-page: 15081 year: 2017 ident: pcbi.1011641.ref032 article-title: Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer publication-title: Nat. Commun doi: 10.1038/ncomms15081 – volume: 127 start-page: 1 year: 2010 ident: pcbi.1011641.ref044 article-title: Check your cultures! A list of cross-contaminated or misidentified cell lines publication-title: Int. J. Cancer doi: 10.1002/ijc.25242 – volume: 20 start-page: 273 year: 2019 ident: pcbi.1011641.ref007 article-title: Challenges in unsupervised clustering of single-cell RNA-seq data publication-title: Nat. Rev. Genet doi: 10.1038/s41576-018-0088-9 – volume: 162 start-page: 184 year: 2015 ident: pcbi.1011641.ref014 article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis publication-title: Cell doi: 10.1016/j.cell.2015.05.047 – volume: 12 start-page: 1088 year: 2021 ident: pcbi.1011641.ref049 article-title: Inference and analysis of cell-cell communication using CellChat publication-title: Nat. Commun doi: 10.1038/s41467-021-21246-9 – volume: 172 start-page: 1091 year: 2018 ident: pcbi.1011641.ref047 article-title: Mapping the Mouse Cell Atlas by Microwell-Seq publication-title: Cell doi: 10.1016/j.cell.2018.02.001 – volume: 9 start-page: 5233 year: 2019 ident: pcbi.1011641.ref015 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci. Rep doi: 10.1038/s41598-019-41695-z – volume: 10 start-page: 390 year: 2019 ident: pcbi.1011641.ref016 article-title: Single-cell RNA-seq denoising using a deep count autoencoder publication-title: Nat. Commun doi: 10.1038/s41467-018-07931-2 – volume: 562 start-page: 367 year: 2018 ident: pcbi.1011641.ref033 article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 49 start-page: W317 year: 2021 ident: pcbi.1011641.ref046 article-title: KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab447 – year: 2018 ident: pcbi.1011641.ref040 article-title: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction publication-title: arXiv – volume: 13 start-page: 1714 year: 2022 ident: pcbi.1011641.ref041 article-title: A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response publication-title: Nat. Commun doi: 10.1038/s41467-022-29358-6 – volume: 3 start-page: 385 year: 2016 ident: pcbi.1011641.ref030 article-title: A Single-Cell Transcriptome Atlas of the Human Pancreas publication-title: Cell Syst doi: 10.1016/j.cels.2016.09.002 – volume: 3 start-page: 583 year: 2002 ident: pcbi.1011641.ref035 article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res – volume: 24 start-page: 227 year: 2023 ident: pcbi.1011641.ref024 article-title: An optimized graph-based structure for single-cell RNA-seq cell-type classification based on non-linear dimension reduction publication-title: BMC Genomics doi: 10.1186/s12864-023-09344-y – volume: 12 start-page: 5684 year: 2021 ident: pcbi.1011641.ref050 article-title: VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics publication-title: Nat. Commun doi: 10.1038/s41467-021-26017-0 – volume: 19 start-page: 15 year: 2018 ident: pcbi.1011641.ref004 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol doi: 10.1186/s13059-017-1382-0 – volume: 525 start-page: 251 year: 2015 ident: pcbi.1011641.ref012 article-title: Single-cell messenger RNA sequencing reveals rare intestinal cell types publication-title: Nature doi: 10.1038/nature14966 – volume: 21 start-page: 31 year: 2020 ident: pcbi.1011641.ref005 article-title: Eleven grand challenges in single-cell data science publication-title: Genome Biol doi: 10.1186/s13059-020-1926-6 – volume: 3 start-page: 346 year: 2016 ident: pcbi.1011641.ref029 article-title: A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure publication-title: Cell Syst doi: 10.1016/j.cels.2016.08.011 – volume: 40 start-page: 163 year: 2022 ident: pcbi.1011641.ref020 article-title: A Python library for probabilistic analysis of single-cell omics data publication-title: Nat. Biotechnol doi: 10.1038/s41587-021-01206-w – volume: 58 start-page: 610 year: 2015 ident: pcbi.1011641.ref002 article-title: The technology and biology of single-cell RNA sequencing publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.04.005 – volume: 49 start-page: e122 year: 2021 ident: pcbi.1011641.ref022 article-title: scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab775 – volume: 2 start-page: 193 year: 1985 ident: pcbi.1011641.ref034 article-title: Comparing partitions publication-title: J. Classif doi: 10.1007/BF01908075 – volume: 14 start-page: 483 year: 2017 ident: pcbi.1011641.ref013 article-title: SC3: consensus clustering of single-cell RNA-seq data publication-title: Nat. Methods doi: 10.1038/nmeth.4236 – year: 2017 ident: pcbi.1011641.ref025 article-title: Semi-Supervised Classification with Graph Convolutional Networks publication-title: arXiv – volume: 38 start-page: 1037 year: 2021 ident: pcbi.1011641.ref021 article-title: GNN-based embedding for clustering scRNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab787 – volume: 13 start-page: 845 year: 2016 ident: pcbi.1011641.ref039 article-title: Diffusion pseudotime robustly reconstructs lineage branching publication-title: Nat. Methods doi: 10.1038/nmeth.3971 – volume: 1 start-page: 191 year: 2019 ident: pcbi.1011641.ref009 article-title: Clustering single-cell RNA-seq data with a model-based deep learning approach publication-title: Nat. Mach. Intell doi: 10.1038/s42256-019-0037-0 – volume: 1 start-page: 224 year: 1979 ident: pcbi.1011641.ref037 article-title: A Cluster Separation Measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – year: 2017 ident: pcbi.1011641.ref026 article-title: Attention Is All You Need publication-title: arXiv – volume: 33 start-page: 495 year: 2015 ident: pcbi.1011641.ref003 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol doi: 10.1038/nbt.3192 – volume: 14 start-page: 381 year: 2017 ident: pcbi.1011641.ref006 article-title: Power analysis of single-cell RNA-sequencing experiments publication-title: Nat. Methods doi: 10.1038/nmeth.4220 – volume: 20 start-page: 53 year: 1987 ident: pcbi.1011641.ref036 article-title: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math doi: 10.1016/0377-0427(87)90125-7 – volume: 161 start-page: 1187 year: 2015 ident: pcbi.1011641.ref028 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 54 start-page: e13088 year: 2021 ident: pcbi.1011641.ref043 article-title: BCAS3 exhibits oncogenic properties by promoting CRL4A-mediated ubiquitination of p53 in breast cancer publication-title: Cell Prolif doi: 10.1111/cpr.13088 – volume: 15 start-page: 1053 year: 2018 ident: pcbi.1011641.ref019 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – year: 2016 ident: pcbi.1011641.ref023 article-title: Variational Graph Auto-Encoders publication-title: arXiv – volume: 102 start-page: 7426 year: 2005 ident: pcbi.1011641.ref038 article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0500334102 – volume: 14 start-page: 618 year: 2013 ident: pcbi.1011641.ref001 article-title: Single-cell sequencing-based technologies will revolutionize whole-organism science publication-title: Nat. Rev. Genet doi: 10.1038/nrg3542 – volume: 38 start-page: 2187 year: 2022 ident: pcbi.1011641.ref011 article-title: scGAC: a graph attentional architecture for clustering single-cell RNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac099 – year: 2021 ident: pcbi.1011641.ref027 article-title: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale publication-title: arXiv – year: 2016 ident: pcbi.1011641.ref017 article-title: Unsupervised Deep Embedding for Clustering Analysis publication-title: arXiv – volume: 35 start-page: 311 year: 2002 ident: pcbi.1011641.ref042 article-title: Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.10121 – volume: 560 start-page: 325 year: 2018 ident: pcbi.1011641.ref045 article-title: Genetic and transcriptional evolution alters cancer cell line drug response publication-title: Nature doi: 10.1038/s41586-018-0409-3 – volume: 11 start-page: 2338 year: 2020 ident: pcbi.1011641.ref018 article-title: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis publication-title: Nat. Commun doi: 10.1038/s41467-020-15851-3 – volume: 21 start-page: 1196 year: 2020 ident: pcbi.1011641.ref008 article-title: Clustering and classification methods for single-cell RNA-sequencing data publication-title: Brief. Bioinform doi: 10.1093/bib/bbz062 – volume: 20 start-page: 176 year: 2017 ident: pcbi.1011641.ref031 article-title: Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes publication-title: Nat. Neurosci doi: 10.1038/nn.4462 – volume: 581 start-page: 303 year: 2020 ident: pcbi.1011641.ref048 article-title: Construction of a human cell landscape at single-cell level publication-title: Nature doi: 10.1038/s41586-020-2157-4 – volume: 12 start-page: 1882 year: 2021 ident: pcbi.1011641.ref010 article-title: scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses publication-title: Nat. Commun doi: 10.1038/s41467-021-22197-x |
| SSID | ssj0035896 |
| Score | 2.5136888 |
| Snippet | Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in... |
| SourceID | plos doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | e1011641 |
| SubjectTerms | Algorithms Biological research Breast cancer Cell fusion Cells Clustering Computational linguistics Data visualization Datasets Deep learning Embedding Gene expression Gene sequencing Genetic aspects Graph neural networks Heterogeneity Identification and classification Language processing Methods Natural language interfaces Representations RNA sequencing |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA4yKHiR9ed23ZUogqe4bZM0yXEUFz04yKowt5BflYGhM7vtCPvf-9JkigMue_Havpb2ey9572uT7yH0lgcZRWIccapuCGttIKYyDQnc1Tw0LHjvx2YTYrGQy6X69lerr7gmLMkDJ-DOqaUKyJIV3FbM8FbykrUeIo-3yjA3Ep9SqD2ZSnMw5XLszBWb4hBB2TJvmqOiOs8-er91dhW5K_CF6iApjdr90ww92643_e3l55iGLo7Qo1w_4nl67sfoXuieoAepo-TNU_R1PgxpASOJ-cljH8IWu_Uu6iFAlsKpYzSGUhX37nIxJ324wvHrPY4fY_HK59VDo8OeoZ8Xn358_ExyxwTiYOQNpJXOyUBrWbaiNLXiVISozeANZUEYa6oqqCow29iyggOAoK-FC7apnRQwFp-jWbfpwjHCra2h9DC28YCfEMbAbGQY3MwrGxgTBaJ7yLTLcuKxq8Vaj__IBNCKhIiOQOsMdIHIdNU2yWncYf8hemOyjWLY4wEIEZ1DRN8VIgV6E32po9xFF9fT_DK7vtdfvi_0XAioX1TJ5a1GlwdG77JRu4GXdSbvYQDIoozWgeVxDJz9S_UaqBkwY9XIukCn-2D69-nX02kY6jECTBc2u17XUgJbppDbCvQiBeEEDIV5FUpJdvI_AHuJHoLzadpyeYpmw_UunKH77vew6q9fjSPtD7l6KdU priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-6Kvji93mrp1QRfIrXNkmTPskqHvrgIqfCvoV89VhY2t62K_jfO9NmKwuePvjaTAOTmcxHMpkfIa9EUNgkxlFX5gXllQ3UZKagQbhchIIH7_0ANiGXS7ValV_igVsXyyr3NnEw1L5xeEZ-CqEtZBZlofK37SVF1Ci8XY0QGtfJDYTNRj2XqynhYkIN-FwIjUMl46v4dI7J7DRK6k3r7BozWMgasgPXNHTwn-z0rN003dVB6OCMzu7-Lxv3yJ0YhiaLUW_uk2uhfkBujcCUPx-Sz4u-H-sgKbo5n_gQ2sRtdthWAZxdMgJPJxDxJp07Xy5oFy4TvARI8Ew3WftYhDTI_RH5fvbh2_uPNAIvUAcbuKeVck4Flqu0kqnJS8FkwBYP3jAepLEmy0KZBW4Lm2bwoTTc59IFW-ROAXPsiMzqpg7HJKlsDhGMsYUHAUhpDBg1w2EyX9rAuZwTtl9z7WJXcgTH2Ojhqk1CdjKuiEZJ6SipOaHTX-3YleMf9O9QnBMt9tQePjTbCx23qGaWlZCWWylsxo2olEh55cHGiQoYdDDJS1QGjV0zaizLuTC7rtOfvi71QkoIg8pUqCuJzg-IXkeiqgFmnYlPIWDJsBvXAeUxat6eqU7_1p85Odlr2J-HX0zDYDFQA0wdml2nc6Ug6WbgIufk8ajF08IwMM8QkfInf5_8KbkNYmXjm8wTMuu3u_CM3HQ_-nW3fT5swl-rLTip priority: 102 providerName: ProQuest |
| Title | Attention-based deep clustering method for scRNA-seq cell type identification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37948464 https://www.proquest.com/docview/3069179682 https://www.proquest.com/docview/2889243146 https://doaj.org/article/3b39523b75b14a5f8504fd4005f9a4c1 http://dx.doi.org/10.1371/journal.pcbi.1011641 |
| Volume | 19 |
| WOSCitedRecordID | wos001119854800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagC9JeeMMWliogJE6GJLZj59hFW7GCjaICUuFi-RVUqUq7mxSJf884cYOKqBAXH5LJwzPjefjxDUKvmBMeJMZgk6cZppV2WCUqw46ZlLmMOmttV2yCF4VYLPLyd6L4xwo-4cnbwNM3G6OXPteE-B6ynaOUZJkv1TArP-4sL2Eiz8LxuENP7rmfDqV_sMWjzWrdHA40O4czu_u_v3oP3QmhZTTtdeE-uuHqB-h2X2zy50N0OW3bfm8j9q7LRta5TWRWWw-VAA4s6otJRxDFRo2ZF1PcuKvIT-xHfp42WtqwsaiT5SP0ZXb--d17HIopYAODssWVMEY4koq44rFKc0a487ANVhHquNIqSVyeOKozHSdwIVfUptw4naVGcBimj9GoXtfuBEWVTiEqUTqznFDOlQJDpSi8zObaUcrHiOx4LE1AGvcFL1ayWz7jkHH0HJGeUTIwaozw8NSmR9r4B_2ZF99A63GyuwsgERmGnSSa5JBqa850QhWrBItpZcFusQo6aOAlL73wpUfCqP1Wm-9q2zTy4lMhp5xDaJPHTBwkmu8RvQ5E1Ro6a1Q43gAs8whbe5QnXtN2nWokZG2QNOeZSMfodKd9f7_9YrgNVsBrgKrdetvIVAhIpAm4vTF60mvtwBgCJheiTPr08HefoWMQKenPWJ6iUXu9dc_RLfOjXTbXE3STL3jXigk6Ojsvyvmkm7uYdMMP2g8cT_yu2RLakn0DqvLisvz6C-IELYw |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4IX7rDCgIBAPJklthM7DwiVy7Rqa1WNIZUn41umSlXTNS1of4rfyHHiFFVi8LQHXu0TK7Y_n4sv50PoZeqETxJjsMlJhlmhHVaJyrBLDUldxpy1tiab4MOhGI_z0Rb62b6F8dcqW51YK2pbGr9HvgeuLUQWeSbIu_kZ9qxR_nS1pdBoYHHozn9AyFa97X-E-X1FyP6nkw8HOLAKYAPoXOJCGCMcJSIueKxInlLufP4CqyhzXGmVJC5PHNOZjhMoyBWzhBunM2IE_ACFdq-gbQZgjztoe9QfjL62up-momYE82Q8mFM2Do_1KE_2AjbezI2e-JgZ4pRkwxjWnAFry9CZT8vqYre3Nn_7t_63gbuNbgZHO-o1K-MO2nKzu-haQ715fg8Nestlc9MTe0NuI-vcPDLTlU8cAeY8aqi1I_Dpo8ocD3u4cmeRP-aI_K51NLHhmlWN7Pvoy6X05QHqzMqZ20FRoQn4aEpnFiacc6VAbSsGjdlcO8Z4F9F2jqUJedc9_cdU1oeJHOKvZkSkR4YMyOgivP5q3uQd-Yf8ew-ftazPGl4XlItTGZSQpJrmKaGapzphKi1EGrPCghZPC-iggUZeePBJnxdk5i8enapVVcn-56HscQ6OXh6n4kKh4w2h10GoKKGzRoXHHjBkPt_YhuSOR3rbqUr-xmsX7baI_nP183U16ESPADVz5aqSRIicgGfMsi562Kya9cBQMEDgc7NHf2_8Gbp-cDI4kkf94eFjdAOmmDYvUHdRZ7lYuSfoqvm-nFSLp0EFROjbZS-eX9ffl2M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gX7rDCgIBAPJk2thM7Dwh1bBXVIKoGSH0zvmWqVDVd04L21_h1HCdOUSUGT3vg1T6xYvvzufhyPoReJk74JDEGm4ykmBXaYRWrFLvEkMSlzFlra7IJnudiMsnGO-hn-xbGX6tsdWKtqG1p_B55D1xbiCyyVJBeEa5FjA-H7xZn2DNI-ZPWlk6jgcixO_8B4Vv1dnQIc_2KkOHRl_cfcGAYwAaQusKFMEY4SkS_4H1FsoRy53MZWEWZ40qrOHZZ7JhOdT-GgkwxS7hxOiVGwM9QaPcK2uUUfq2Ddg-O8vFJawdoImp2ME_Mgzllk_Bwj_K4F3DyZmH01MfPELPEW4ax5g_YWInOYlZWF7vAtSkc3vqfB_E2uhkc8GjQrJg7aMfN76JrDSXn-T30abBaNTdAsTfwNrLOLSIzW_uEEmDmo4ZyOwJfP6rMST7AlTuL_PFH5Hezo6kN169qxN9HXy-lLw9QZ17O3R6KCk3Ad1M6tTD5nCsF6lwxaMxm2jHGu4i28y1NyMfuaUFmsj5k5BCXNSMiPUpkQEkX4c1XiyYfyT_kDzyUNrI-m3hdUC5PZVBOkmqaJYRqnuiYqaQQSZ8VFrR7UkAHDTTywgNR-nwhcw-aU7WuKjn6nMsB5-AAZv1EXCh0siX0OggVJXTWqPAIBIbM5yHbktzzqG87Vcnf2O2i_Rbdf65-vqkGXekRoOauXFeSCJER8JhZ2kUPmxW0GRgKhgl8cfbo740_Q9dhxciPo_z4MboBM0ybh6n7qLNart0TdNV8X02r5dOgDSL07bLXzi_GWp_9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+deep+clustering+method+for+scRNA-seq+cell+type+identification&rft.jtitle=PLoS+computational+biology&rft.au=Li%2C+Shenghao&rft.au=Guo%2C+Hui&rft.au=Zhang%2C+Simai&rft.au=Li%2C+Yizhou&rft.date=2023-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=19&rft.issue=11&rft.spage=e1011641&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011641&rft.externalDocID=A775219058 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |