Attention-based deep clustering method for scRNA-seq cell type identification

Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not availab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 19; číslo 11; s. e1011641
Hlavní autoři: Li, Shenghao, Guo, Hui, Zhang, Simai, Li, Yizhou, Li, Menglong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 01.11.2023
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes.
AbstractList Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes.
Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes.Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes.
Audience Academic
Author Li, Menglong
Guo, Hui
Zhang, Simai
Li, Shenghao
Li, Yizhou
Author_xml – sequence: 1
  givenname: Shenghao
  surname: Li
  fullname: Li, Shenghao
– sequence: 2
  givenname: Hui
  surname: Guo
  fullname: Guo, Hui
– sequence: 3
  givenname: Simai
  surname: Zhang
  fullname: Zhang, Simai
– sequence: 4
  givenname: Yizhou
  orcidid: 0000-0002-0351-1792
  surname: Li
  fullname: Li, Yizhou
– sequence: 5
  givenname: Menglong
  surname: Li
  fullname: Li, Menglong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37948464$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhiNURD_gHyCIxKUcstixHTvcVlWBlUqRCpwtxxkvXiVxajsS_fc43SyiFUJCPng0ft6Z8cycZkeDGyDLXmK0woTjdzs3-UF1q1E3doURxhXFT7ITzBgpOGHi6A_7ODsNYYdQMuvqWXZMeE0FrehJ9nkdIwzRuqFoVIA2bwHGXHdTiODtsM17iD9cmxvn86BvrtdFgNtcQ9fl8W6E3Laz2lit5hjPs6dGdQFeLPdZ9v3D5beLT8XVl4-bi_VVoRkXsTBCawGkFMhwpMqaEQ4YlaRVhAJXjcIYagy0qRqEk6NWtC25hqYqteB1Rc6y1_u4Y-eCXDoRJEFVjdO7KBOx2ROtUzs5etsrfyedsvLe4fxWKh-t7kCShtSsJA1nDaaKGcEQNS1FiJmUWOMU63zJ5t3tBCHK3oa5BWoANwVZClGXlGA6F_bmEfr34lZ7aqtSfjsYF73S6bTQW53GbGzyrzlnJa4RE0nw9oEgMRF-xq2aQpCbrzf_wV4_ZF8t5U5ND-3vPh32IwHv94D2LgQPRmob70edKradxEjOy3j4pZyXUS7LmMT0kfgQ_5-yX0XO4iM
CitedBy_id crossref_primary_10_1093_bib_bbaf378
crossref_primary_10_1371_journal_pgen_1011420
crossref_primary_10_1093_bib_bbaf368
crossref_primary_10_1093_bib_bbaf423
crossref_primary_10_1093_bib_bbaf207
crossref_primary_10_1186_s12859_025_06231_z
crossref_primary_10_3390_ijms26094365
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1016_j_bspc_2025_107502
crossref_primary_10_1093_bfgp_elaf010
Cites_doi 10.1038/ncomms15081
10.1002/ijc.25242
10.1038/s41576-018-0088-9
10.1016/j.cell.2015.05.047
10.1038/s41467-021-21246-9
10.1016/j.cell.2018.02.001
10.1038/s41598-019-41695-z
10.1038/s41467-018-07931-2
10.1038/s41586-018-0590-4
10.1093/nar/gkab447
10.1038/s41467-022-29358-6
10.1016/j.cels.2016.09.002
10.1186/s12864-023-09344-y
10.1038/s41467-021-26017-0
10.1186/s13059-017-1382-0
10.1038/nature14966
10.1186/s13059-020-1926-6
10.1016/j.cels.2016.08.011
10.1038/s41587-021-01206-w
10.1016/j.molcel.2015.04.005
10.1093/nar/gkab775
10.1007/BF01908075
10.1038/nmeth.4236
10.1093/bioinformatics/btab787
10.1038/nmeth.3971
10.1038/s42256-019-0037-0
10.1109/TPAMI.1979.4766909
10.1038/nbt.3192
10.1038/nmeth.4220
10.1016/0377-0427(87)90125-7
10.1016/j.cell.2015.04.044
10.1111/cpr.13088
10.1038/s41592-018-0229-2
10.1073/pnas.0500334102
10.1038/nrg3542
10.1093/bioinformatics/btac099
10.1002/gcc.10121
10.1038/s41586-018-0409-3
10.1038/s41467-020-15851-3
10.1093/bib/bbz062
10.1038/nn.4462
10.1038/s41586-020-2157-4
10.1038/s41467-021-22197-x
ContentType Journal Article
Copyright Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOA
DOI 10.1371/journal.pcbi.1011641
DatabaseName CrossRef
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1553-7358
ExternalDocumentID 3069179682
oai_doaj_org_article_3b39523b75b14a5f8504fd4005f9a4c1
A775219058
37948464
10_1371_journal_pcbi_1011641
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c578t-f8cc8e3280f70a29537e1023da34e7aba11e91e4b6b01e7a9a4d27ceb62c87963
IEDL.DBID FPL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001119854800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Tue Sep 30 23:54:32 EDT 2025
Mon Nov 10 04:28:07 EST 2025
Sun Nov 09 11:00:59 EST 2025
Sat Nov 29 14:59:08 EST 2025
Tue Nov 04 18:36:46 EST 2025
Wed Nov 26 11:07:54 EST 2025
Thu Nov 13 16:16:41 EST 2025
Thu Apr 03 07:00:37 EDT 2025
Sat Nov 29 03:00:16 EST 2025
Tue Nov 18 22:35:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-f8cc8e3280f70a29537e1023da34e7aba11e91e4b6b01e7a9a4d27ceb62c87963
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0351-1792
OpenAccessLink http://dx.doi.org/10.1371/journal.pcbi.1011641
PMID 37948464
PQID 3069179682
PQPubID 1436340
PageCount e1011641
ParticipantIDs plos_journals_3069179682
doaj_primary_oai_doaj_org_article_3b39523b75b14a5f8504fd4005f9a4c1
proquest_miscellaneous_2889243146
proquest_journals_3069179682
gale_infotracacademiconefile_A775219058
gale_incontextgauss_ISR_A775219058
gale_incontextgauss_ISN_A775219058
pubmed_primary_37948464
crossref_citationtrail_10_1371_journal_pcbi_1011641
crossref_primary_10_1371_journal_pcbi_1011641
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References T.N. Kipf (pcbi.1011641.ref025) 2017
E. Shapiro (pcbi.1011641.ref001) 2013; 14
X. Shao (pcbi.1011641.ref022) 2021; 49
U. Ben-David (pcbi.1011641.ref045) 2018; 560
R. Qi (pcbi.1011641.ref008) 2020; 21
G. Eraslan (pcbi.1011641.ref016) 2019; 10
R.A. Romanov (pcbi.1011641.ref031) 2017; 20
G. Gambardella (pcbi.1011641.ref041) 2022; 13
V. Svensson (pcbi.1011641.ref006) 2017; 14
L. Hubert (pcbi.1011641.ref034) 1985; 2
A. Dosovitskiy (pcbi.1011641.ref027) 2021
L. Haghverdi (pcbi.1011641.ref039) 2016; 13
M. Baron (pcbi.1011641.ref029) 2016; 3
S.A.R. Abadi (pcbi.1011641.ref024) 2023; 24
V.Y. Kiselev (pcbi.1011641.ref013) 2017; 14
Z. Zhou (pcbi.1011641.ref043) 2021; 54
J.H. Levine (pcbi.1011641.ref014) 2015; 162
V.A. Traag (pcbi.1011641.ref015) 2019; 9
A. Vaswani (pcbi.1011641.ref026) 2017
X. Han (pcbi.1011641.ref048) 2020; 581
J. Xie (pcbi.1011641.ref017) 2016
X. Li (pcbi.1011641.ref018) 2020; 11
A.A. Kolodziejczyk (pcbi.1011641.ref002) 2015; 58
F.A. Wolf (pcbi.1011641.ref004) 2018; 19
N. Schaum (pcbi.1011641.ref033) 2018; 562
M. Barlund (pcbi.1011641.ref042) 2002; 35
S. Jin (pcbi.1011641.ref049) 2021; 12
A. Capes-Davis (pcbi.1011641.ref044) 2010; 127
R. Coifman (pcbi.1011641.ref038) 2005; 102
J. Wang (pcbi.1011641.ref010) 2021; 12
T. Tian (pcbi.1011641.ref009) 2019; 1
R. Satija (pcbi.1011641.ref003) 2015; 33
R. Lopez (pcbi.1011641.ref019) 2018; 15
L. Seninge (pcbi.1011641.ref050) 2021; 12
W. Chung (pcbi.1011641.ref032) 2017; 8
D. L. Davies (pcbi.1011641.ref037) 1979; 1
P.J. Rousseeuw (pcbi.1011641.ref036) 1987; 20
M.J. Muraro (pcbi.1011641.ref030) 2016; 3
X. Han (pcbi.1011641.ref047) 2018; 172
D. Lahnemann (pcbi.1011641.ref005) 2020; 21
A. Gayoso (pcbi.1011641.ref020) 2022; 40
A. Strehl (pcbi.1011641.ref035) 2002; 3
A.M. Klein (pcbi.1011641.ref028) 2015; 161
M. Ciortan (pcbi.1011641.ref021) 2021; 38
D. Bu (pcbi.1011641.ref046) 2021; 49
V.Y. Kiselev (pcbi.1011641.ref007) 2019; 20
D. Grun (pcbi.1011641.ref012) 2015; 525
Y. Cheng (pcbi.1011641.ref011) 2022; 38
T.N. Kipf (pcbi.1011641.ref023) 2016
L. McInnes (pcbi.1011641.ref040) 2018
References_xml – volume: 8
  start-page: 15081
  year: 2017
  ident: pcbi.1011641.ref032
  article-title: Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer
  publication-title: Nat. Commun
  doi: 10.1038/ncomms15081
– volume: 127
  start-page: 1
  year: 2010
  ident: pcbi.1011641.ref044
  article-title: Check your cultures! A list of cross-contaminated or misidentified cell lines
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.25242
– volume: 20
  start-page: 273
  year: 2019
  ident: pcbi.1011641.ref007
  article-title: Challenges in unsupervised clustering of single-cell RNA-seq data
  publication-title: Nat. Rev. Genet
  doi: 10.1038/s41576-018-0088-9
– volume: 162
  start-page: 184
  year: 2015
  ident: pcbi.1011641.ref014
  article-title: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– volume: 12
  start-page: 1088
  year: 2021
  ident: pcbi.1011641.ref049
  article-title: Inference and analysis of cell-cell communication using CellChat
  publication-title: Nat. Commun
  doi: 10.1038/s41467-021-21246-9
– volume: 172
  start-page: 1091
  year: 2018
  ident: pcbi.1011641.ref047
  article-title: Mapping the Mouse Cell Atlas by Microwell-Seq
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.001
– volume: 9
  start-page: 5233
  year: 2019
  ident: pcbi.1011641.ref015
  article-title: From Louvain to Leiden: guaranteeing well-connected communities
  publication-title: Sci. Rep
  doi: 10.1038/s41598-019-41695-z
– volume: 10
  start-page: 390
  year: 2019
  ident: pcbi.1011641.ref016
  article-title: Single-cell RNA-seq denoising using a deep count autoencoder
  publication-title: Nat. Commun
  doi: 10.1038/s41467-018-07931-2
– volume: 562
  start-page: 367
  year: 2018
  ident: pcbi.1011641.ref033
  article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 49
  start-page: W317
  year: 2021
  ident: pcbi.1011641.ref046
  article-title: KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab447
– year: 2018
  ident: pcbi.1011641.ref040
  article-title: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
  publication-title: arXiv
– volume: 13
  start-page: 1714
  year: 2022
  ident: pcbi.1011641.ref041
  article-title: A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response
  publication-title: Nat. Commun
  doi: 10.1038/s41467-022-29358-6
– volume: 3
  start-page: 385
  year: 2016
  ident: pcbi.1011641.ref030
  article-title: A Single-Cell Transcriptome Atlas of the Human Pancreas
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.09.002
– volume: 3
  start-page: 583
  year: 2002
  ident: pcbi.1011641.ref035
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res
– volume: 24
  start-page: 227
  year: 2023
  ident: pcbi.1011641.ref024
  article-title: An optimized graph-based structure for single-cell RNA-seq cell-type classification based on non-linear dimension reduction
  publication-title: BMC Genomics
  doi: 10.1186/s12864-023-09344-y
– volume: 12
  start-page: 5684
  year: 2021
  ident: pcbi.1011641.ref050
  article-title: VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
  publication-title: Nat. Commun
  doi: 10.1038/s41467-021-26017-0
– volume: 19
  start-page: 15
  year: 2018
  ident: pcbi.1011641.ref004
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 525
  start-page: 251
  year: 2015
  ident: pcbi.1011641.ref012
  article-title: Single-cell messenger RNA sequencing reveals rare intestinal cell types
  publication-title: Nature
  doi: 10.1038/nature14966
– volume: 21
  start-page: 31
  year: 2020
  ident: pcbi.1011641.ref005
  article-title: Eleven grand challenges in single-cell data science
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-1926-6
– volume: 3
  start-page: 346
  year: 2016
  ident: pcbi.1011641.ref029
  article-title: A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.08.011
– volume: 40
  start-page: 163
  year: 2022
  ident: pcbi.1011641.ref020
  article-title: A Python library for probabilistic analysis of single-cell omics data
  publication-title: Nat. Biotechnol
  doi: 10.1038/s41587-021-01206-w
– volume: 58
  start-page: 610
  year: 2015
  ident: pcbi.1011641.ref002
  article-title: The technology and biology of single-cell RNA sequencing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.04.005
– volume: 49
  start-page: e122
  year: 2021
  ident: pcbi.1011641.ref022
  article-title: scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab775
– volume: 2
  start-page: 193
  year: 1985
  ident: pcbi.1011641.ref034
  article-title: Comparing partitions
  publication-title: J. Classif
  doi: 10.1007/BF01908075
– volume: 14
  start-page: 483
  year: 2017
  ident: pcbi.1011641.ref013
  article-title: SC3: consensus clustering of single-cell RNA-seq data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4236
– year: 2017
  ident: pcbi.1011641.ref025
  article-title: Semi-Supervised Classification with Graph Convolutional Networks
  publication-title: arXiv
– volume: 38
  start-page: 1037
  year: 2021
  ident: pcbi.1011641.ref021
  article-title: GNN-based embedding for clustering scRNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab787
– volume: 13
  start-page: 845
  year: 2016
  ident: pcbi.1011641.ref039
  article-title: Diffusion pseudotime robustly reconstructs lineage branching
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3971
– volume: 1
  start-page: 191
  year: 2019
  ident: pcbi.1011641.ref009
  article-title: Clustering single-cell RNA-seq data with a model-based deep learning approach
  publication-title: Nat. Mach. Intell
  doi: 10.1038/s42256-019-0037-0
– volume: 1
  start-page: 224
  year: 1979
  ident: pcbi.1011641.ref037
  article-title: A Cluster Separation Measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– year: 2017
  ident: pcbi.1011641.ref026
  article-title: Attention Is All You Need
  publication-title: arXiv
– volume: 33
  start-page: 495
  year: 2015
  ident: pcbi.1011641.ref003
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3192
– volume: 14
  start-page: 381
  year: 2017
  ident: pcbi.1011641.ref006
  article-title: Power analysis of single-cell RNA-sequencing experiments
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4220
– volume: 20
  start-page: 53
  year: 1987
  ident: pcbi.1011641.ref036
  article-title: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 161
  start-page: 1187
  year: 2015
  ident: pcbi.1011641.ref028
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 54
  start-page: e13088
  year: 2021
  ident: pcbi.1011641.ref043
  article-title: BCAS3 exhibits oncogenic properties by promoting CRL4A-mediated ubiquitination of p53 in breast cancer
  publication-title: Cell Prolif
  doi: 10.1111/cpr.13088
– volume: 15
  start-page: 1053
  year: 2018
  ident: pcbi.1011641.ref019
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– year: 2016
  ident: pcbi.1011641.ref023
  article-title: Variational Graph Auto-Encoders
  publication-title: arXiv
– volume: 102
  start-page: 7426
  year: 2005
  ident: pcbi.1011641.ref038
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0500334102
– volume: 14
  start-page: 618
  year: 2013
  ident: pcbi.1011641.ref001
  article-title: Single-cell sequencing-based technologies will revolutionize whole-organism science
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg3542
– volume: 38
  start-page: 2187
  year: 2022
  ident: pcbi.1011641.ref011
  article-title: scGAC: a graph attentional architecture for clustering single-cell RNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac099
– year: 2021
  ident: pcbi.1011641.ref027
  article-title: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
  publication-title: arXiv
– year: 2016
  ident: pcbi.1011641.ref017
  article-title: Unsupervised Deep Embedding for Clustering Analysis
  publication-title: arXiv
– volume: 35
  start-page: 311
  year: 2002
  ident: pcbi.1011641.ref042
  article-title: Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.10121
– volume: 560
  start-page: 325
  year: 2018
  ident: pcbi.1011641.ref045
  article-title: Genetic and transcriptional evolution alters cancer cell line drug response
  publication-title: Nature
  doi: 10.1038/s41586-018-0409-3
– volume: 11
  start-page: 2338
  year: 2020
  ident: pcbi.1011641.ref018
  article-title: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
  publication-title: Nat. Commun
  doi: 10.1038/s41467-020-15851-3
– volume: 21
  start-page: 1196
  year: 2020
  ident: pcbi.1011641.ref008
  article-title: Clustering and classification methods for single-cell RNA-sequencing data
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbz062
– volume: 20
  start-page: 176
  year: 2017
  ident: pcbi.1011641.ref031
  article-title: Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes
  publication-title: Nat. Neurosci
  doi: 10.1038/nn.4462
– volume: 581
  start-page: 303
  year: 2020
  ident: pcbi.1011641.ref048
  article-title: Construction of a human cell landscape at single-cell level
  publication-title: Nature
  doi: 10.1038/s41586-020-2157-4
– volume: 12
  start-page: 1882
  year: 2021
  ident: pcbi.1011641.ref010
  article-title: scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
  publication-title: Nat. Commun
  doi: 10.1038/s41467-021-22197-x
SSID ssj0035896
Score 2.5136888
Snippet Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage e1011641
SubjectTerms Algorithms
Biological research
Breast cancer
Cell fusion
Cells
Clustering
Computational linguistics
Data visualization
Datasets
Deep learning
Embedding
Gene expression
Gene sequencing
Genetic aspects
Graph neural networks
Heterogeneity
Identification and classification
Language processing
Methods
Natural language interfaces
Representations
RNA sequencing
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA4yKHiR9ed23ZUogqe4bZM0yXEUFz04yKowt5BflYGhM7vtCPvf-9JkigMue_Havpb2ey9572uT7yH0lgcZRWIccapuCGttIKYyDQnc1Tw0LHjvx2YTYrGQy6X69lerr7gmLMkDJ-DOqaUKyJIV3FbM8FbykrUeIo-3yjA3Ep9SqD2ZSnMw5XLszBWb4hBB2TJvmqOiOs8-er91dhW5K_CF6iApjdr90ww92643_e3l55iGLo7Qo1w_4nl67sfoXuieoAepo-TNU_R1PgxpASOJ-cljH8IWu_Uu6iFAlsKpYzSGUhX37nIxJ324wvHrPY4fY_HK59VDo8OeoZ8Xn358_ExyxwTiYOQNpJXOyUBrWbaiNLXiVISozeANZUEYa6oqqCow29iyggOAoK-FC7apnRQwFp-jWbfpwjHCra2h9DC28YCfEMbAbGQY3MwrGxgTBaJ7yLTLcuKxq8Vaj__IBNCKhIiOQOsMdIHIdNU2yWncYf8hemOyjWLY4wEIEZ1DRN8VIgV6E32po9xFF9fT_DK7vtdfvi_0XAioX1TJ5a1GlwdG77JRu4GXdSbvYQDIoozWgeVxDJz9S_UaqBkwY9XIukCn-2D69-nX02kY6jECTBc2u17XUgJbppDbCvQiBeEEDIV5FUpJdvI_AHuJHoLzadpyeYpmw_UunKH77vew6q9fjSPtD7l6KdU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-6Kvji93mrp1QRfIrXNkmTPskqHvrgIqfCvoV89VhY2t62K_jfO9NmKwuePvjaTAOTmcxHMpkfIa9EUNgkxlFX5gXllQ3UZKagQbhchIIH7_0ANiGXS7ValV_igVsXyyr3NnEw1L5xeEZ-CqEtZBZlofK37SVF1Ci8XY0QGtfJDYTNRj2XqynhYkIN-FwIjUMl46v4dI7J7DRK6k3r7BozWMgasgPXNHTwn-z0rN003dVB6OCMzu7-Lxv3yJ0YhiaLUW_uk2uhfkBujcCUPx-Sz4u-H-sgKbo5n_gQ2sRtdthWAZxdMgJPJxDxJp07Xy5oFy4TvARI8Ew3WftYhDTI_RH5fvbh2_uPNAIvUAcbuKeVck4Flqu0kqnJS8FkwBYP3jAepLEmy0KZBW4Lm2bwoTTc59IFW-ROAXPsiMzqpg7HJKlsDhGMsYUHAUhpDBg1w2EyX9rAuZwTtl9z7WJXcgTH2Ojhqk1CdjKuiEZJ6SipOaHTX-3YleMf9O9QnBMt9tQePjTbCx23qGaWlZCWWylsxo2olEh55cHGiQoYdDDJS1QGjV0zaizLuTC7rtOfvi71QkoIg8pUqCuJzg-IXkeiqgFmnYlPIWDJsBvXAeUxat6eqU7_1p85Odlr2J-HX0zDYDFQA0wdml2nc6Ug6WbgIufk8ajF08IwMM8QkfInf5_8KbkNYmXjm8wTMuu3u_CM3HQ_-nW3fT5swl-rLTip
  priority: 102
  providerName: ProQuest
Title Attention-based deep clustering method for scRNA-seq cell type identification
URI https://www.ncbi.nlm.nih.gov/pubmed/37948464
https://www.proquest.com/docview/3069179682
https://www.proquest.com/docview/2889243146
https://doaj.org/article/3b39523b75b14a5f8504fd4005f9a4c1
http://dx.doi.org/10.1371/journal.pcbi.1011641
Volume 19
WOSCitedRecordID wos001119854800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagC9JeeMMWliogJE6GJLZj59hFW7GCjaICUuFi-RVUqUq7mxSJf884cYOKqBAXH5LJwzPjefjxDUKvmBMeJMZgk6cZppV2WCUqw46ZlLmMOmttV2yCF4VYLPLyd6L4xwo-4cnbwNM3G6OXPteE-B6ynaOUZJkv1TArP-4sL2Eiz8LxuENP7rmfDqV_sMWjzWrdHA40O4czu_u_v3oP3QmhZTTtdeE-uuHqB-h2X2zy50N0OW3bfm8j9q7LRta5TWRWWw-VAA4s6otJRxDFRo2ZF1PcuKvIT-xHfp42WtqwsaiT5SP0ZXb--d17HIopYAODssWVMEY4koq44rFKc0a487ANVhHquNIqSVyeOKozHSdwIVfUptw4naVGcBimj9GoXtfuBEWVTiEqUTqznFDOlQJDpSi8zObaUcrHiOx4LE1AGvcFL1ayWz7jkHH0HJGeUTIwaozw8NSmR9r4B_2ZF99A63GyuwsgERmGnSSa5JBqa850QhWrBItpZcFusQo6aOAlL73wpUfCqP1Wm-9q2zTy4lMhp5xDaJPHTBwkmu8RvQ5E1Ro6a1Q43gAs8whbe5QnXtN2nWokZG2QNOeZSMfodKd9f7_9YrgNVsBrgKrdetvIVAhIpAm4vTF60mvtwBgCJheiTPr08HefoWMQKenPWJ6iUXu9dc_RLfOjXTbXE3STL3jXigk6Ojsvyvmkm7uYdMMP2g8cT_yu2RLakn0DqvLisvz6C-IELYw
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4IX7rDCgIBAPJklthM7DwiVy7Rqa1WNIZUn41umSlXTNS1of4rfyHHiFFVi8LQHXu0TK7Y_n4sv50PoZeqETxJjsMlJhlmhHVaJyrBLDUldxpy1tiab4MOhGI_z0Rb62b6F8dcqW51YK2pbGr9HvgeuLUQWeSbIu_kZ9qxR_nS1pdBoYHHozn9AyFa97X-E-X1FyP6nkw8HOLAKYAPoXOJCGCMcJSIueKxInlLufP4CqyhzXGmVJC5PHNOZjhMoyBWzhBunM2IE_ACFdq-gbQZgjztoe9QfjL62up-momYE82Q8mFM2Do_1KE_2AjbezI2e-JgZ4pRkwxjWnAFry9CZT8vqYre3Nn_7t_63gbuNbgZHO-o1K-MO2nKzu-haQ715fg8Nestlc9MTe0NuI-vcPDLTlU8cAeY8aqi1I_Dpo8ocD3u4cmeRP-aI_K51NLHhmlWN7Pvoy6X05QHqzMqZ20FRoQn4aEpnFiacc6VAbSsGjdlcO8Z4F9F2jqUJedc9_cdU1oeJHOKvZkSkR4YMyOgivP5q3uQd-Yf8ew-ftazPGl4XlItTGZSQpJrmKaGapzphKi1EGrPCghZPC-iggUZeePBJnxdk5i8enapVVcn-56HscQ6OXh6n4kKh4w2h10GoKKGzRoXHHjBkPt_YhuSOR3rbqUr-xmsX7baI_nP183U16ESPADVz5aqSRIicgGfMsi562Kya9cBQMEDgc7NHf2_8Gbp-cDI4kkf94eFjdAOmmDYvUHdRZ7lYuSfoqvm-nFSLp0EFROjbZS-eX9ffl2M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gX7rDCgIBAPJk2thM7Dwh1bBXVIKoGSH0zvmWqVDVd04L21_h1HCdOUSUGT3vg1T6xYvvzufhyPoReJk74JDEGm4ykmBXaYRWrFLvEkMSlzFlra7IJnudiMsnGO-hn-xbGX6tsdWKtqG1p_B55D1xbiCyyVJBeEa5FjA-H7xZn2DNI-ZPWlk6jgcixO_8B4Vv1dnQIc_2KkOHRl_cfcGAYwAaQusKFMEY4SkS_4H1FsoRy53MZWEWZ40qrOHZZ7JhOdT-GgkwxS7hxOiVGwM9QaPcK2uUUfq2Ddg-O8vFJawdoImp2ME_Mgzllk_Bwj_K4F3DyZmH01MfPELPEW4ax5g_YWInOYlZWF7vAtSkc3vqfB_E2uhkc8GjQrJg7aMfN76JrDSXn-T30abBaNTdAsTfwNrLOLSIzW_uEEmDmo4ZyOwJfP6rMST7AlTuL_PFH5Hezo6kN169qxN9HXy-lLw9QZ17O3R6KCk3Ad1M6tTD5nCsF6lwxaMxm2jHGu4i28y1NyMfuaUFmsj5k5BCXNSMiPUpkQEkX4c1XiyYfyT_kDzyUNrI-m3hdUC5PZVBOkmqaJYRqnuiYqaQQSZ8VFrR7UkAHDTTywgNR-nwhcw-aU7WuKjn6nMsB5-AAZv1EXCh0siX0OggVJXTWqPAIBIbM5yHbktzzqG87Vcnf2O2i_Rbdf65-vqkGXekRoOauXFeSCJER8JhZ2kUPmxW0GRgKhgl8cfbo740_Q9dhxciPo_z4MboBM0ybh6n7qLNart0TdNV8X02r5dOgDSL07bLXzi_GWp_9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+deep+clustering+method+for+scRNA-seq+cell+type+identification&rft.jtitle=PLoS+computational+biology&rft.au=Li%2C+Shenghao&rft.au=Guo%2C+Hui&rft.au=Zhang%2C+Simai&rft.au=Li%2C+Yizhou&rft.date=2023-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=19&rft.issue=11&rft.spage=e1011641&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011641&rft.externalDocID=A775219058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon