Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 7; číslo 1; s. 10217 - 9
Hlavní autoři: Freedman, Kevin J., Otto, Lauren M., Ivanov, Aleksandar P., Barik, Avijit, Oh, Sang-Hyun, Edel, Joshua B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 06.01.2016
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10 8 –10 10 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10 3 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the authors report a dielectrophoretic method to concentrate DNA near the tip of a nanopore, reducing the limit of detection by three orders of magnitude.
AbstractList Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10(8)-10(10) times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10(3) reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.
Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10 8 –10 10 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10 3 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the authors report a dielectrophoretic method to concentrate DNA near the tip of a nanopore, reducing the limit of detection by three orders of magnitude.
Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108 -1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.
Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10(8)-10(10) times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10(3) reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10(8)-10(10) times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10(3) reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.
Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108–1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the authors report a dielectrophoretic method to concentrate DNA near the tip of a nanopore, reducing the limit of detection by three orders of magnitude.
Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the authors report a dielectrophoretic method to concentrate DNA near the tip of a nanopore, reducing the limit of detection by three orders of magnitude.
Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10 8 –10 10 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10 3 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.
ArticleNumber 10217
Author Ivanov, Aleksandar P.
Barik, Avijit
Oh, Sang-Hyun
Freedman, Kevin J.
Otto, Lauren M.
Edel, Joshua B.
Author_xml – sequence: 1
  givenname: Kevin J.
  surname: Freedman
  fullname: Freedman, Kevin J.
  organization: Department of Chemistry, Imperial College London
– sequence: 2
  givenname: Lauren M.
  surname: Otto
  fullname: Otto, Lauren M.
  organization: Department of Electrical and Computer Engineering, University of Minnesota
– sequence: 3
  givenname: Aleksandar P.
  orcidid: 0000-0003-1419-1381
  surname: Ivanov
  fullname: Ivanov, Aleksandar P.
  organization: Department of Chemistry, Imperial College London
– sequence: 4
  givenname: Avijit
  surname: Barik
  fullname: Barik, Avijit
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Department of Biomedical Engineering, University of Minnesota
– sequence: 5
  givenname: Sang-Hyun
  surname: Oh
  fullname: Oh, Sang-Hyun
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Department of Biomedical Engineering, University of Minnesota
– sequence: 6
  givenname: Joshua B.
  surname: Edel
  fullname: Edel, Joshua B.
  email: joshua.edel@imperial.ac.uk
  organization: Department of Chemistry, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26732171$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1TAQhS3UipbSFXsUiQ0SBPxKnGyQUFVopapsYIks25nc-sqxg52A-Pd1bkp1WxUv_Pzm-Iw9L9CBDx4QekXwB4JZ89GbMAyJYErEM3RMMSclEZQd7M2P0GlKW5wba0nD-XN0RGvBcgQ5Rj-vlQ9jiFAk8Mn6TaGmYnZTVKULfwoTvAGfV5MNPhXzjlg6B-UQHJjZQdFZyLMphvEmC03WFDlgHDP1Eh32yiU4vRtP0I8v59_PLsqrb18vzz5flaYSzVQaonWjmYJKEDBaiV6bvhcMSFfVoq81YWCoYLUC3QNUmjJhmIG27YSucy4n6HLV7YLayjHaQcW_MigrdxshbqSK2ZgDSWvKiKg467DhmjZtrfvGGNEyCgrjKmt9WrXGWQ_Qrem7B6IPT7y9kZvwW3JB24YuZt7eCcTwa4Y0ycEmA84pD2FOcrm9ooxyntE3j9BtmKPPT7VQjPOKtAv1et_RvZV_v5iBdytgYkgpQn-PECyXMpF7ZZJp8og2dtp9cE7Huv_EvF9jUlb2G4h7Rp_AbwEq2NMg
CitedBy_id crossref_primary_10_3390_ijms22084128
crossref_primary_10_1017_jfm_2021_656
crossref_primary_10_1002_adma_202302827
crossref_primary_10_1073_pnas_1904513116
crossref_primary_10_3390_ijms21082808
crossref_primary_10_1016_j_nano_2021_102425
crossref_primary_10_1088_1361_6528_aada64
crossref_primary_10_1016_j_jelechem_2022_116106
crossref_primary_10_1038_s41565_019_0493_z
crossref_primary_10_1016_j_bpj_2016_12_033
crossref_primary_10_1038_s41467_021_25566_8
crossref_primary_10_1146_annurev_anchem_061417_125903
crossref_primary_10_1038_s41467_025_58425_x
crossref_primary_10_1007_s00542_018_4242_2
crossref_primary_10_1002_macp_202300060
crossref_primary_10_1002_celc_202101180
crossref_primary_10_1038_s41596_019_0171_5
crossref_primary_10_3390_s17051091
crossref_primary_10_1002_ange_202002323
crossref_primary_10_1109_JMEMS_2017_2699864
crossref_primary_10_1038_s41467_017_00549_w
crossref_primary_10_1038_s41467_018_06873_z
crossref_primary_10_1021_jacs_7b12106
crossref_primary_10_1016_j_cbpa_2016_08_005
crossref_primary_10_1038_s41565_018_0315_8
crossref_primary_10_1002_celc_201800163
crossref_primary_10_1109_JSEN_2021_3084284
crossref_primary_10_1016_j_snb_2017_09_069
crossref_primary_10_1002_ange_201704137
crossref_primary_10_1021_jacs_9b10329
crossref_primary_10_1073_pnas_1719844115
crossref_primary_10_1038_s41427_021_00313_z
crossref_primary_10_1039_D0NR07733J
crossref_primary_10_1016_j_trac_2023_117358
crossref_primary_10_1021_jacs_3c09311
crossref_primary_10_1088_1361_6528_ac43e9
crossref_primary_10_1002_smll_202005550
crossref_primary_10_1039_C8NR08632J
crossref_primary_10_1002_adom_202100009
crossref_primary_10_1109_TNB_2019_2954099
crossref_primary_10_1038_s41565_022_01193_2
crossref_primary_10_1016_j_coche_2020_02_007
crossref_primary_10_3390_bios12100784
crossref_primary_10_1109_JSEN_2020_3032451
crossref_primary_10_1002_anie_201600495
crossref_primary_10_1002_smll_202100495
crossref_primary_10_1016_j_cap_2016_12_018
crossref_primary_10_1063_5_0020011
crossref_primary_10_1002_adma_201907082
crossref_primary_10_1007_s12274_022_4535_8
crossref_primary_10_1002_ange_201600495
crossref_primary_10_1038_s41467_023_37654_y
crossref_primary_10_1016_j_jelechem_2022_117125
crossref_primary_10_1038_s41467_017_01635_9
crossref_primary_10_1021_acsami_4c22829
crossref_primary_10_1021_jacs_2c06962
crossref_primary_10_1002_adom_202202924
crossref_primary_10_1016_j_trac_2023_117343
crossref_primary_10_1109_JSEN_2023_3343908
crossref_primary_10_1146_annurev_anchem_061318_114902
crossref_primary_10_1007_s42452_019_1231_8
crossref_primary_10_1038_s41467_021_23564_4
crossref_primary_10_1021_jacs_7b05058
crossref_primary_10_1002_smll_202102543
crossref_primary_10_1016_j_snb_2017_05_144
crossref_primary_10_1021_acsnano_5c04662
crossref_primary_10_1021_jacs_2c13465
crossref_primary_10_1016_j_colsurfa_2020_125829
crossref_primary_10_1002_anie_202423473
crossref_primary_10_1088_1361_6463_aaa528
crossref_primary_10_3390_mi13060968
crossref_primary_10_1021_acsnano_5c00732
crossref_primary_10_3390_biomedicines11061625
crossref_primary_10_1002_anie_201704137
crossref_primary_10_1109_JSEN_2022_3185457
crossref_primary_10_1039_C8RA09017C
crossref_primary_10_1038_nnano_2017_205
crossref_primary_10_1002_smll_201600359
crossref_primary_10_3390_ma15134627
crossref_primary_10_1063_5_0231311
crossref_primary_10_1002_ange_201803229
crossref_primary_10_3390_nano12091468
crossref_primary_10_1002_elps_202000218
crossref_primary_10_1039_C9RA05886A
crossref_primary_10_1177_0003702816684839
crossref_primary_10_1002_elps_202000213
crossref_primary_10_3390_chemosensors6040043
crossref_primary_10_3390_bios8040100
crossref_primary_10_1002_elps_202100346
crossref_primary_10_1016_j_jece_2025_117838
crossref_primary_10_1016_j_aca_2020_03_001
crossref_primary_10_1016_j_bbamem_2021_183644
crossref_primary_10_1073_pnas_2400203121
crossref_primary_10_1073_pnas_2422135122
crossref_primary_10_3390_s16030303
crossref_primary_10_1038_nnano_2017_176
crossref_primary_10_1177_15330338221076669
crossref_primary_10_1016_j_eng_2024_11_020
crossref_primary_10_1002_anie_201803229
crossref_primary_10_1038_s41467_019_09476_4
crossref_primary_10_1016_j_coelec_2018_10_012
crossref_primary_10_3390_mi11110954
crossref_primary_10_1002_smtd_202100542
crossref_primary_10_1016_j_cbpa_2019_05_013
crossref_primary_10_1038_s41565_021_00968_3
crossref_primary_10_1039_D0SC02807J
crossref_primary_10_1038_s41467_019_10147_7
crossref_primary_10_1002_cjoc_202000722
crossref_primary_10_1002_dro2_70020
crossref_primary_10_3390_nano12183135
crossref_primary_10_1098_rsta_2020_0407
crossref_primary_10_1002_anie_202002323
crossref_primary_10_1063_5_0144564
crossref_primary_10_1038_s41467_021_21101_x
crossref_primary_10_1038_s41467_023_43004_9
crossref_primary_10_1515_nanoph_2021_0711
crossref_primary_10_1002_aisy_202100279
crossref_primary_10_1146_annurev_anchem_061417_125840
crossref_primary_10_1088_1361_6528_ab4445
crossref_primary_10_1002_adma_201705061
crossref_primary_10_3390_chemosensors9110298
crossref_primary_10_1016_j_jelechem_2021_115373
crossref_primary_10_1016_j_snb_2017_12_098
crossref_primary_10_1002_smll_201905379
crossref_primary_10_1002_ange_202423473
crossref_primary_10_1021_jacs_8b09397
crossref_primary_10_1038_srep31670
crossref_primary_10_1116_6_0004821
crossref_primary_10_1039_C7CS00688H
crossref_primary_10_1002_admt_202302191
crossref_primary_10_1038_s41598_018_25026_2
crossref_primary_10_1038_s41467_022_34273_x
crossref_primary_10_1002_mds3_10156
crossref_primary_10_1016_j_chroma_2020_461262
crossref_primary_10_1002_adfm_202301934
Cites_doi 10.1088/0957-4484/18/30/305505
10.1021/ac970551g
10.1021/nl402108g
10.1103/PhysRevLett.89.198103
10.1021/ac1005475
10.1021/nn406586m
10.1021/nl048818w
10.1039/C2CS35286A
10.1021/ja047675c
10.1021/nn501969r
10.1073/pnas.93.24.13770
10.1021/ph500091h
10.1039/C5AN01001B
10.1016/S0167-4781(00)00176-7
10.1021/ac980027p
10.1038/nmat1143
10.1073/pnas.0808296105
10.1021/acsnano.5b00911
10.1021/nl500149h
10.1038/nbt1388
10.1021/ac3035025
10.1021/nl504375c
10.1038/nbt.2799
10.1038/srep01638
10.1088/0957-4484/23/48/485707
10.1021/nl304247n
10.1038/nbt.2950
10.1063/1.363884
10.1038/nnano.2010.237
10.1021/ja205773a
10.1021/nl402052v
10.1038/nnano.2009.12
10.1021/nn301672g
10.1021/ja043910f
10.1002/elps.201200099
10.1038/nnano.2009.379
10.1126/science.7112126
ContentType Journal Article
Copyright The Author(s) 2016
Copyright Nature Publishing Group Jan 2016
Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright Nature Publishing Group Jan 2016
– notice: Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/ncomms10217
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_262317543d0c4b2896bf8cc7932ea005
PMC4729827
3912524941
26732171
10_1038_ncomms10217
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Minnesota
GeographicLocations_xml – name: Minnesota
– name: United States--US
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM008347
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c578t-c1bb8b3ae571ecba7fbcff73e1d567f6b13ec2736aebfee5b237c3ce99d7b6673
IEDL.DBID DOA
ISICitedReferencesCount 232
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369020000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Tue Oct 14 19:05:12 EDT 2025
Tue Nov 04 01:59:21 EST 2025
Sun Aug 24 04:08:19 EDT 2025
Sat Nov 29 14:42:41 EST 2025
Thu Apr 03 06:50:52 EDT 2025
Sat Nov 29 03:46:15 EST 2025
Tue Nov 18 20:55:04 EST 2025
Fri Feb 21 02:40:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-c1bb8b3ae571ecba7fbcff73e1d567f6b13ec2736aebfee5b237c3ce99d7b6673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1419-1381
OpenAccessLink https://doaj.org/article/262317543d0c4b2896bf8cc7932ea005
PMID 26732171
PQID 1753445194
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_262317543d0c4b2896bf8cc7932ea005
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4729827
proquest_miscellaneous_1754523244
proquest_journals_1753445194
pubmed_primary_26732171
crossref_primary_10_1038_ncomms10217
crossref_citationtrail_10_1038_ncomms10217
springer_journals_10_1038_ncomms10217
PublicationCentury 2000
PublicationDate 20160106
PublicationDateYYYYMMDD 2016-01-06
PublicationDate_xml – month: 1
  year: 2016
  text: 20160106
  day: 6
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Miles (CR3) 2013; 42
Cressiot (CR10) 2012; 6
Barik (CR35) 2014; 14
Eggeling, Widengren, Rigler (CR28) 1998; 70
Hirano (CR38) 2013; 13
Ivanov (CR13) 2015; 9
Lan, Holden, White (CR21) 2011; 133
Ivanov, Freedman, Kim, Albrecht, Edel (CR34) 2014; 8
CR32
Squires, Messinger, Manalis (CR8) 2008; 26
Tabard-Cossa, Trivedi, Wiggin, Jetha, Marziali (CR25) 2007; 18
Lu (CR16) 2013; 13
Regtmeier, Eichhorn, Bogunovic, Ros, Anselmetti (CR30) 2010; 82
Laszlo (CR15) 2014; 32
Siwy, Fuliński (CR22) 2002; 89
Bakewell, Ermolina, Morgan, Milner, Feldman (CR27) 2000; 1493
Cecchini (CR33) 2013; 13
Maglia, Restrepo, Mikhailova, Bayley (CR14) 2008; 105
Wei, Bard, Feldberg (CR23) 1997; 69
Brolo, Arctander, Gordon, Leathem, Kavanagh (CR36) 2004; 4
Sze, Kumar, Ivanov, Oh, Edel (CR24) 2015; 140
Japrung (CR6) 2013; 85
Giloh, Sedat (CR29) 1982; 217
Yeo (CR18) 2012; 23
Sasaki, Kitamori, Kim (CR31) 2012; 33
Plesa, van Loo, Ketterer, Dietz, Dekker (CR9) 2014; 15
Siwy (CR19) 2005; 127
Hall (CR37) 2010; 5
Shasha (CR7) 2014; 8
Freedman, Haq, Edel, Jemth, Kim (CR5) 2013; 3
Kasianowicz, Brandin, Branton, Deamer (CR1) 1996; 93
Rosen, Rodriguez-Larrea, Bayley (CR4) 2014; 32
Jose (CR17) 2014; 1
Siwy, Heins, Harrell, Kohli, Martin (CR20) 2004; 126
Kasianowicz (CR11) 2004; 3
Belaidi, Girard, Leveque (CR26) 1997; 81
Clarke (CR2) 2009; 4
Wanunu, Morrison, Rabin, Grosberg, Meller (CR12) 2010; 5
B Cressiot (BFncomms10217_CR10) 2012; 6
M Wanunu (BFncomms10217_CR12) 2010; 5
D Japrung (BFncomms10217_CR6) 2013; 85
C Eggeling (BFncomms10217_CR28) 1998; 70
H Giloh (BFncomms10217_CR29) 1982; 217
AH Laszlo (BFncomms10217_CR15) 2014; 32
K Hirano (BFncomms10217_CR38) 2013; 13
AP Ivanov (BFncomms10217_CR13) 2015; 9
BN Miles (BFncomms10217_CR3) 2013; 42
JY Sze (BFncomms10217_CR24) 2015; 140
CB Rosen (BFncomms10217_CR4) 2014; 32
B Lu (BFncomms10217_CR16) 2013; 13
Z Siwy (BFncomms10217_CR20) 2004; 126
C Shasha (BFncomms10217_CR7) 2014; 8
J Clarke (BFncomms10217_CR2) 2009; 4
KJ Freedman (BFncomms10217_CR5) 2013; 3
J Jose (BFncomms10217_CR17) 2014; 1
AP Ivanov (BFncomms10217_CR34) 2014; 8
J Regtmeier (BFncomms10217_CR30) 2010; 82
V Tabard-Cossa (BFncomms10217_CR25) 2007; 18
AG Brolo (BFncomms10217_CR36) 2004; 4
N Sasaki (BFncomms10217_CR31) 2012; 33
JJ Kasianowicz (BFncomms10217_CR11) 2004; 3
TM Squires (BFncomms10217_CR8) 2008; 26
C Plesa (BFncomms10217_CR9) 2014; 15
G Maglia (BFncomms10217_CR14) 2008; 105
A Barik (BFncomms10217_CR35) 2014; 14
W-H Yeo (BFncomms10217_CR18) 2012; 23
Z Siwy (BFncomms10217_CR22) 2002; 89
AR Hall (BFncomms10217_CR37) 2010; 5
JJ Kasianowicz (BFncomms10217_CR1) 1996; 93
C Wei (BFncomms10217_CR23) 1997; 69
W-J Lan (BFncomms10217_CR21) 2011; 133
MP Cecchini (BFncomms10217_CR33) 2013; 13
Z Siwy (BFncomms10217_CR19) 2005; 127
S Belaidi (BFncomms10217_CR26) 1997; 81
DJ Bakewell (BFncomms10217_CR27) 2000; 1493
BFncomms10217_CR32
21800889 - J Am Chem Soc. 2011 Aug 31;133(34):13300-3
22990878 - Chem Soc Rev. 2013 Jan 7;42(1):15-28
15173852 - Nat Mater. 2004 Jun;3(6):355-6
22965710 - Electrophoresis. 2012 Sep;33(17):2668-73
25496458 - Nano Lett. 2015 Jan 14;15(1):732-7
23137928 - Nanotechnology. 2012 Dec 7;23(48):485707
24446951 - ACS Nano. 2014 Feb 25;8(2):1940-8
23547650 - Nano Lett. 2013 May 8;13(5):1877-82
18392027 - Nat Biotechnol. 2008 Apr;26(4):417-26
24646075 - Nano Lett. 2014;14(4):2006-12
24861167 - ACS Nano. 2014 Jun 24;8(6):6425-30
25541619 - ACS Photonics. 2014 May 21;1(5):464-470
26066550 - Analyst. 2015 Jul 21;140(14):4828-34
20690609 - Anal Chem. 2010 Sep 1;82(17):7141-9
12443155 - Phys Rev Lett. 2002 Nov 4;89(19):198103
22670559 - ACS Nano. 2012 Jul 24;6(7):6236-43
19060213 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19720-5
23572157 - Sci Rep. 2013;3:1638
24021086 - Nano Lett. 2013 Oct 9;13(10):4602-9
20023645 - Nat Nanotechnol. 2010 Feb;5(2):160-5
15339163 - J Am Chem Soc. 2004 Sep 8;126(35):10850-1
15810817 - J Am Chem Soc. 2005 Apr 13;127(14):5000-1
19350039 - Nat Nanotechnol. 2009 Apr;4(4):265-70
21644785 - Anal Chem. 1998 Jul 1;70(13):2651-9
7112126 - Science. 1982 Sep 24;217(4566):1252-5
21113160 - Nat Nanotechnol. 2010 Dec;5(12):874-7
23802688 - Nano Lett. 2013 Jul 10;13(7):3048-52
24964173 - Nat Biotechnol. 2014 Aug;32(8):829-33
10978517 - Biochim Biophys Acta. 2000 Sep 7;1493(1-2):151-8
24441471 - Nat Biotechnol. 2014 Feb;32(2):179-81
8943010 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770-3
23327569 - Anal Chem. 2013 Feb 19;85(4):2449-56
25794527 - ACS Nano. 2015;9(4):3587-95
References_xml – volume: 18
  start-page: 305505
  year: 2007
  ident: CR25
  article-title: Noise analysis and reduction in solid-state nanopores
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/30/305505
– volume: 69
  start-page: 4627
  year: 1997
  end-page: 4633
  ident: CR23
  article-title: Current rectification at quartz nanopipet electrodes
  publication-title: Anal. Chem.
  doi: 10.1021/ac970551g
– volume: 13
  start-page: 4602
  year: 2013
  end-page: 4609
  ident: CR33
  article-title: Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores
  publication-title: Nano Lett.
  doi: 10.1021/nl402108g
– volume: 89
  start-page: 198103
  year: 2002
  ident: CR22
  article-title: Fabrication of a synthetic nanopore ion pump
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.198103
– volume: 82
  start-page: 7141
  year: 2010
  end-page: 7149
  ident: CR30
  article-title: Dielectrophoretic trapping and polarizability of DNA: the role of spatial conformation
  publication-title: Anal. Chem.
  doi: 10.1021/ac1005475
– volume: 8
  start-page: 1940
  year: 2014
  end-page: 1948
  ident: CR34
  article-title: High precision fabrication and positioning of nanoelectrodes in a nanopore
  publication-title: ACS Nano
  doi: 10.1021/nn406586m
– volume: 4
  start-page: 2015
  year: 2004
  end-page: 2018
  ident: CR36
  article-title: Nanohole-enhanced raman scattering
  publication-title: Nano Lett.
  doi: 10.1021/nl048818w
– volume: 42
  start-page: 15
  year: 2013
  end-page: 28
  ident: CR3
  article-title: Single molecule sensing with solid-state nanopores: novel materials, methods, and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35286A
– volume: 126
  start-page: 10850
  year: 2004
  end-page: 10851
  ident: CR20
  article-title: Conical-nanotube ion-current rectifiers: the role of surface charge
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047675c
– volume: 8
  start-page: 6425
  year: 2014
  end-page: 6430
  ident: CR7
  article-title: Nanopore-based conformational analysis of a viral RNA drug target
  publication-title: ACS Nano
  doi: 10.1021/nn501969r
– volume: 93
  start-page: 13770
  year: 1996
  end-page: 13773
  ident: CR1
  article-title: Characterization of individual polynucleotide molecules using a membrane channel
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.24.13770
– volume: 1
  start-page: 464
  year: 2014
  end-page: 470
  ident: CR17
  article-title: Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis
  publication-title: ACS Photonics
  doi: 10.1021/ph500091h
– volume: 140
  start-page: 4828
  year: 2015
  end-page: 4834
  ident: CR24
  article-title: Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing
  publication-title: Analyst
  doi: 10.1039/C5AN01001B
– volume: 1493
  start-page: 151
  year: 2000
  end-page: 158
  ident: CR27
  article-title: Dielectric relaxation measurements of 12 kbp plasmid DNA
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4781(00)00176-7
– volume: 70
  start-page: 2651
  year: 1998
  end-page: 2659
  ident: CR28
  article-title: Seidel CAM. Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis
  publication-title: Anal. Chem.
  doi: 10.1021/ac980027p
– volume: 3
  start-page: 355
  year: 2004
  end-page: 356
  ident: CR11
  article-title: Nanopores: flossing with DNA
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1143
– volume: 105
  start-page: 19720
  year: 2008
  end-page: 19725
  ident: CR14
  article-title: Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0808296105
– volume: 9
  start-page: 3587
  year: 2015
  end-page: 3595
  ident: CR13
  article-title: On-demand delivery of single DNA molecules using nanopipets
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00911
– volume: 14
  start-page: 2006
  year: 2014
  end-page: 2012
  ident: CR35
  article-title: Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays
  publication-title: Nano Lett.
  doi: 10.1021/nl500149h
– volume: 26
  start-page: 417
  year: 2008
  end-page: 426
  ident: CR8
  article-title: Making it stick: convection, reaction and diffusion in surface-based biosensors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1388
– volume: 85
  start-page: 2449
  year: 2013
  end-page: 2456
  ident: CR6
  article-title: Single-molecule studies of intrinsically disordered proteins using solid-state nanopores
  publication-title: Anal. Chem.
  doi: 10.1021/ac3035025
– volume: 15
  start-page: 732
  year: 2014
  end-page: 737
  ident: CR9
  article-title: Velocity of DNA during translocation through a solid-state nanopore
  publication-title: Nano Lett.
  doi: 10.1021/nl504375c
– volume: 32
  start-page: 179
  year: 2014
  end-page: 181
  ident: CR4
  article-title: Single-molecule site-specific detection of protein phosphorylation with a nanopore
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2799
– ident: CR32
– volume: 3
  start-page: 1638
  year: 2013
  ident: CR5
  article-title: Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field
  publication-title: Sci. Rep.
  doi: 10.1038/srep01638
– volume: 23
  start-page: 485707
  year: 2012
  ident: CR18
  article-title: Dielectrophoretic concentration of low-abundance nanoparticles using a nanostructured tip
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/48/485707
– volume: 13
  start-page: 1877
  year: 2013
  end-page: 1882
  ident: CR38
  article-title: Plasmonic imaging of Brownian motion of single DNA molecules spontaneously binding to Ag nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl304247n
– volume: 32
  start-page: 829
  year: 2014
  end-page: 833
  ident: CR15
  article-title: Decoding long nanopore sequencing reads of natural DNA
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2950
– volume: 81
  start-page: 1023
  year: 1997
  end-page: 1030
  ident: CR26
  article-title: Electrostatic forces acting on the tip in atomic force microscopy: modelization and comparison with analytic expressions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363884
– volume: 5
  start-page: 874
  year: 2010
  end-page: 877
  ident: CR37
  article-title: Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.237
– volume: 133
  start-page: 13300
  year: 2011
  end-page: 13303
  ident: CR21
  article-title: Pressure-dependent ion current rectification in conical-shaped glass nanopores
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205773a
– volume: 13
  start-page: 3048
  year: 2013
  end-page: 3052
  ident: CR16
  article-title: Pressure-controlled motion of single polymers through solid-state nanopores
  publication-title: Nano Lett.
  doi: 10.1021/nl402052v
– volume: 4
  start-page: 265
  year: 2009
  end-page: 270
  ident: CR2
  article-title: Continuous base identification for single-molecule nanopore DNA sequencing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.12
– volume: 6
  start-page: 6236
  year: 2012
  end-page: 6243
  ident: CR10
  article-title: Protein transport through a narrow solid-state nanopore at high voltage: experiments and theory
  publication-title: ACS Nano
  doi: 10.1021/nn301672g
– volume: 127
  start-page: 5000
  year: 2005
  end-page: 5001
  ident: CR19
  article-title: Protein biosensors based on biofunctionalized conical gold nanotubes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja043910f
– volume: 33
  start-page: 2668
  year: 2012
  end-page: 2673
  ident: CR31
  article-title: Fluid mixing using AC electrothermal flow on meandering electrodes in a microchannel
  publication-title: Electrophoresis
  doi: 10.1002/elps.201200099
– volume: 5
  start-page: 160
  year: 2010
  end-page: 165
  ident: CR12
  article-title: Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.379
– volume: 217
  start-page: 1252
  year: 1982
  end-page: 1255
  ident: CR29
  article-title: Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate
  publication-title: Science
  doi: 10.1126/science.7112126
– volume: 6
  start-page: 6236
  year: 2012
  ident: BFncomms10217_CR10
  publication-title: ACS Nano
  doi: 10.1021/nn301672g
– volume: 133
  start-page: 13300
  year: 2011
  ident: BFncomms10217_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205773a
– volume: 23
  start-page: 485707
  year: 2012
  ident: BFncomms10217_CR18
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/48/485707
– volume: 70
  start-page: 2651
  year: 1998
  ident: BFncomms10217_CR28
  publication-title: Anal. Chem.
  doi: 10.1021/ac980027p
– volume: 26
  start-page: 417
  year: 2008
  ident: BFncomms10217_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1388
– volume: 9
  start-page: 3587
  year: 2015
  ident: BFncomms10217_CR13
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00911
– volume: 8
  start-page: 6425
  year: 2014
  ident: BFncomms10217_CR7
  publication-title: ACS Nano
  doi: 10.1021/nn501969r
– volume: 105
  start-page: 19720
  year: 2008
  ident: BFncomms10217_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0808296105
– volume: 5
  start-page: 160
  year: 2010
  ident: BFncomms10217_CR12
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.379
– ident: BFncomms10217_CR32
– volume: 82
  start-page: 7141
  year: 2010
  ident: BFncomms10217_CR30
  publication-title: Anal. Chem.
  doi: 10.1021/ac1005475
– volume: 126
  start-page: 10850
  year: 2004
  ident: BFncomms10217_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047675c
– volume: 89
  start-page: 198103
  year: 2002
  ident: BFncomms10217_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.198103
– volume: 13
  start-page: 4602
  year: 2013
  ident: BFncomms10217_CR33
  publication-title: Nano Lett.
  doi: 10.1021/nl402108g
– volume: 69
  start-page: 4627
  year: 1997
  ident: BFncomms10217_CR23
  publication-title: Anal. Chem.
  doi: 10.1021/ac970551g
– volume: 4
  start-page: 2015
  year: 2004
  ident: BFncomms10217_CR36
  publication-title: Nano Lett.
  doi: 10.1021/nl048818w
– volume: 32
  start-page: 179
  year: 2014
  ident: BFncomms10217_CR4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2799
– volume: 18
  start-page: 305505
  year: 2007
  ident: BFncomms10217_CR25
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/30/305505
– volume: 32
  start-page: 829
  year: 2014
  ident: BFncomms10217_CR15
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2950
– volume: 42
  start-page: 15
  year: 2013
  ident: BFncomms10217_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35286A
– volume: 1
  start-page: 464
  year: 2014
  ident: BFncomms10217_CR17
  publication-title: ACS Photonics
  doi: 10.1021/ph500091h
– volume: 3
  start-page: 355
  year: 2004
  ident: BFncomms10217_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1143
– volume: 81
  start-page: 1023
  year: 1997
  ident: BFncomms10217_CR26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363884
– volume: 13
  start-page: 3048
  year: 2013
  ident: BFncomms10217_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl402052v
– volume: 4
  start-page: 265
  year: 2009
  ident: BFncomms10217_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.12
– volume: 85
  start-page: 2449
  year: 2013
  ident: BFncomms10217_CR6
  publication-title: Anal. Chem.
  doi: 10.1021/ac3035025
– volume: 217
  start-page: 1252
  year: 1982
  ident: BFncomms10217_CR29
  publication-title: Science
  doi: 10.1126/science.7112126
– volume: 5
  start-page: 874
  year: 2010
  ident: BFncomms10217_CR37
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.237
– volume: 93
  start-page: 13770
  year: 1996
  ident: BFncomms10217_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.24.13770
– volume: 8
  start-page: 1940
  year: 2014
  ident: BFncomms10217_CR34
  publication-title: ACS Nano
  doi: 10.1021/nn406586m
– volume: 3
  start-page: 1638
  year: 2013
  ident: BFncomms10217_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/srep01638
– volume: 14
  start-page: 2006
  year: 2014
  ident: BFncomms10217_CR35
  publication-title: Nano Lett.
  doi: 10.1021/nl500149h
– volume: 140
  start-page: 4828
  year: 2015
  ident: BFncomms10217_CR24
  publication-title: Analyst
  doi: 10.1039/C5AN01001B
– volume: 33
  start-page: 2668
  year: 2012
  ident: BFncomms10217_CR31
  publication-title: Electrophoresis
  doi: 10.1002/elps.201200099
– volume: 15
  start-page: 732
  year: 2014
  ident: BFncomms10217_CR9
  publication-title: Nano Lett.
  doi: 10.1021/nl504375c
– volume: 1493
  start-page: 151
  year: 2000
  ident: BFncomms10217_CR27
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4781(00)00176-7
– volume: 13
  start-page: 1877
  year: 2013
  ident: BFncomms10217_CR38
  publication-title: Nano Lett.
  doi: 10.1021/nl304247n
– volume: 127
  start-page: 5000
  year: 2005
  ident: BFncomms10217_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja043910f
– reference: 21644785 - Anal Chem. 1998 Jul 1;70(13):2651-9
– reference: 18392027 - Nat Biotechnol. 2008 Apr;26(4):417-26
– reference: 23802688 - Nano Lett. 2013 Jul 10;13(7):3048-52
– reference: 21113160 - Nat Nanotechnol. 2010 Dec;5(12):874-7
– reference: 24021086 - Nano Lett. 2013 Oct 9;13(10):4602-9
– reference: 23572157 - Sci Rep. 2013;3:1638
– reference: 25794527 - ACS Nano. 2015;9(4):3587-95
– reference: 23137928 - Nanotechnology. 2012 Dec 7;23(48):485707
– reference: 8943010 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770-3
– reference: 24446951 - ACS Nano. 2014 Feb 25;8(2):1940-8
– reference: 10978517 - Biochim Biophys Acta. 2000 Sep 7;1493(1-2):151-8
– reference: 15173852 - Nat Mater. 2004 Jun;3(6):355-6
– reference: 22965710 - Electrophoresis. 2012 Sep;33(17):2668-73
– reference: 12443155 - Phys Rev Lett. 2002 Nov 4;89(19):198103
– reference: 25541619 - ACS Photonics. 2014 May 21;1(5):464-470
– reference: 15339163 - J Am Chem Soc. 2004 Sep 8;126(35):10850-1
– reference: 19350039 - Nat Nanotechnol. 2009 Apr;4(4):265-70
– reference: 24646075 - Nano Lett. 2014;14(4):2006-12
– reference: 21800889 - J Am Chem Soc. 2011 Aug 31;133(34):13300-3
– reference: 23327569 - Anal Chem. 2013 Feb 19;85(4):2449-56
– reference: 25496458 - Nano Lett. 2015 Jan 14;15(1):732-7
– reference: 24964173 - Nat Biotechnol. 2014 Aug;32(8):829-33
– reference: 26066550 - Analyst. 2015 Jul 21;140(14):4828-34
– reference: 7112126 - Science. 1982 Sep 24;217(4566):1252-5
– reference: 15810817 - J Am Chem Soc. 2005 Apr 13;127(14):5000-1
– reference: 20023645 - Nat Nanotechnol. 2010 Feb;5(2):160-5
– reference: 19060213 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19720-5
– reference: 22670559 - ACS Nano. 2012 Jul 24;6(7):6236-43
– reference: 24861167 - ACS Nano. 2014 Jun 24;8(6):6425-30
– reference: 20690609 - Anal Chem. 2010 Sep 1;82(17):7141-9
– reference: 22990878 - Chem Soc Rev. 2013 Jan 7;42(1):15-28
– reference: 24441471 - Nat Biotechnol. 2014 Feb;32(2):179-81
– reference: 23547650 - Nano Lett. 2013 May 8;13(5):1877-82
SSID ssj0000391844
Score 2.5884607
Snippet Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and...
Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10217
SubjectTerms 639/638/11
639/925/350/1058
9/10
9/74
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
DNA - chemistry
DNA - genetics
Electrochemical Techniques
Electrodes
Experiments
Health care industry
Humanities and Social Sciences
Membranes, Artificial
multidisciplinary
Nanopores
Science
Science (multidisciplinary)
Trapping
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFdyHQoiCVC5LVTezEzgkBasWp6gGkXlBkT-ztSttk2eyC-u8743hDl1ZcuOQQT6KJx_OIH9_H2EGlvILMa-7BKC6Ns7xyUHDQua0UZkRvTCCbUCcn-uysOo0Tbn3cVrmJiSFQNx3QHPkhIUoSmFYlPy5-cmKNotXVSKFxl90jlAQRtu6djnMshH6upYzH8iZCH7b4youe6KzVViIKeP23FZk390r-tWAa8tDx4__9gifsUaxA00_DkHnK7rj2GXswcFJePmc_MN52WJS7tKe97e00Nat0PUet-Lz7nQIdc2wj1m6froMEXeaOXwxUuy5tZpFdZ3E-nJJM8QECgpi-YN-Pj759-cojBwMH9OUVh8xabYVxhcocWKO8Be-VcFlTlMqXNhMOsAQq0creucLmQoEAV1WNskQpust22q51r1hqTKMwZ0pTYErUHipnrCW8tmYipZVNwj5sDFJDBCgnnox5HRbKha6vWS9hB6PwYsDluF3sM1l2FCEw7XCjW07r6Jt1jiUgGkeKZgLS4h9oab0GwMiVO4NRKmF7G4PW0cP7-o81E_ZubEbfpAUX07puHWRkQSUryrwchtGoSY59gwpmCVNbA2xL1e2WdnYe8L8l_hDpHL_t_WYoXlPrZh-8_rf6b9hDLAKHaaVyj-2slmu3z-7Dr9WsX74NDnUFDcExgg
  priority: 102
  providerName: ProQuest
Title Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping
URI https://link.springer.com/article/10.1038/ncomms10217
https://www.ncbi.nlm.nih.gov/pubmed/26732171
https://www.proquest.com/docview/1753445194
https://www.proquest.com/docview/1754523244
https://pubmed.ncbi.nlm.nih.gov/PMC4729827
https://doaj.org/article/262317543d0c4b2896bf8cc7932ea005
Volume 7
WOSCitedRecordID wos000369020000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0VPBF_Dyr5xLhfBHKbZu0SR49uUMfXIoorIKUJE3uFva6x3VX8b938rHLrnfgiy95aKZlOpl0Zprk9wM4lNxxUziRO6N4zpTVubSmyo0oteQYEZ1SgWyCTyZiOpXNFtWX3xMW4YGj4Y5KjM8Y4hjtxoZpLA9q7YQx6FalVQm9FLOerWIqfIOpxNKFpQN5YyqOehzAi8ETWfOdEBSQ-m9KL6_vkvxrqTREoNOH8CCljuRdVPkR3LL9Y7gXySR_P4Ef-KFcYDZtyeA3pfdnRC3Jao4PzeeLX8T484l9AskdyCpI-GZu84vIkWtJN0u0OJfn8XgjwRs8gsPZU_h6evLl_Yc8kSfkBifhMjeF1kJTZSteWKMVd9o4x6ktuqrmrtYFtQZzlxqHx1lb6ZJyQ42VsuPac4E-g71-0dvnQJTqOAY7piqMZcIZaZXWHmitGzOmWZfB27U9W5OQxT3BxbwNK9xUtFvGz-BwI3wZATVuFjv2A7MR8SjY4QL6Rpt8o_2Xb2RwsB7WNk3NofXQpB6VTbIMXm-6cVL5lRLV28UqyLDK55oosx-9YKNJibZBBYsM-I5_7Ki629PPzgNwN8NKRpT4bm_WnrSl1nUbvPgfNngJ9zHHi3-N6gPYW16t7Cu4a34uZ8PVCG7zKQ-tGMGd45NJ83kUZtLIb4JtsG2q79jTfPzUfPsDFPEpZA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3g9DgUVqL0irxvbauz4gxKtq1DbKoUjlgNzd9W4aKbVDnFD1T_EbmfWLhlbceuCSQzyJZtffzsy-vg9gM-GWa98KarXklEmjaGJ0RLUIVMIxI1opK7EJPhyKo6NktAa_2rsw7lhlGxOrQJ0V2q2RbztGSUemlbD3sx_UqUa53dVWQqOGxZ45P8MpW_lu8Bnf71YQ7Hw5_LRLG1UBqhGdC6p9pYQKpYm4b7SS3CptLQ-Nn0Uxt7HyQ6MxqcfotzUmUkHIdahNkmRcOZFM_N8bsM4Q7KIH66PBwehbt6rj-NYFY81FwH4otnNsxGnpBLT5SuqrFAKuKmsvn878a4u2ynw79_63PrsPd5sam3yoB8UDWDP5Q7hVq26eP4LvmFEKnHYYUrrT-_mYyAVZTrEX6LQ4I9pd5MwbNuGSLCsL9zE19LQWEzYkmzT6QbOT-h4owR84qovxY_h6LW17Ar28yM0zIFJmHKsCJiNM-sLqxEilHCNd1mdMscyDty0AUt1QsDslkGlaHQUIRXoBLR5sdsazmnnkarOPDkmdiaMLr74o5uO0iT5pgEUugoGFWV8zhXPsWFmhNcbmwEiMwx5stABKmxhWpn_Q48Gb7jFGH7elJHNTLCsbFrmiHG2e1rDtPAmwb9BB3wO-AugVV1ef5JOTiuGc4ZRPBNi2rRb6F9y63AfP_-3-a7i9e3iwn-4Phnsv4A6WvPUiWrwBvcV8aV7CTf1zMSnnr5rhTOD4ukfDb5KBlOM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6V8lAvPAsNFDBSe0Gykt31rr0HhIASURVFOYDUC1psr51GSndDNqHqX-PXMfY-aGjFrQcuOWQn0dg7L9vj7wPYS7nlOrCCWi05ZdIomhodUy1ClXLMiFZKTzbBRyNxfJyON-BXexfGtVW2MdEH6rzUbo-87xAlHZhWyvq2aYsYHwzfzn9QxyDlTlpbOo3aRI7M-Rku36o3hwf4rvfDcPjxy4dPtGEYoBotdUl1oJRQkTQxD4xWklulreWRCfI44TZRQWQ0JvgEx2CNiVUYcR1pk6Y5V44wE__3BtzkDrTctw2Ou_0dh7wuGGuuBA4i0S9wOKeVo9Lma0nQcwVcVeBe7tP867DW58Dhvf959u7D3abyJu9qV3kAG6Z4CLdrLs7zR_AN80yJixFDKtfTX0yIXJLVDGeEzsozot31zqLBGK7Iyku4j5mhpzXFsCH5tGEVmp_Ut0MJ_sABYEy24eu1jO0xbBZlYXaASJlzrBWYjLEUEFanRirlcOryAWOK5T143RpDphtgdscPMst8g0AksguW04O9Tnhe45FcLfbeWVUn4kDE_RflYpI1MSkLsfRFw2BRPtBM4co7UVZojRE7NBKjcw92W2PKmshWZX8sqQevuscYk9xBkyxMufIyLHalOso8qU240yTEuUEFgx7wNeNeU3X9STE98bjnDBeCIsSx7bducEGty3Pw9N_qv4Q76ALZ58PR0TPYwjq43llLdmFzuViZ53BL_1xOq8UL79cEvl-3K_wGDTecIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopore+sensing+at+ultra-low+concentrations+using+single-molecule+dielectrophoretic+trapping&rft.jtitle=Nature+communications&rft.au=Freedman%2C+Kevin+J&rft.au=Otto%2C+Lauren+M&rft.au=Ivanov%2C+Aleksandar+P&rft.au=Barik%2C+Avijit&rft.date=2016-01-06&rft.eissn=2041-1723&rft.volume=7&rft.spage=10217&rft_id=info:doi/10.1038%2Fncomms10217&rft_id=info%3Apmid%2F26732171&rft.externalDocID=26732171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon