Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping
Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and c...
Uloženo v:
| Vydáno v: | Nature communications Ročník 7; číslo 1; s. 10217 - 9 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
06.01.2016
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10
8
–10
10
times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10
3
reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.
Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the authors report a dielectrophoretic method to concentrate DNA near the tip of a nanopore, reducing the limit of detection by three orders of magnitude. |
|---|---|
| AbstractList | Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10(8)-10(10) times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10(3) reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10 8 –10 10 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10 3 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the authors report a dielectrophoretic method to concentrate DNA near the tip of a nanopore, reducing the limit of detection by three orders of magnitude. Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108 -1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10(8)-10(10) times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10(3) reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10(8)-10(10) times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10(3) reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108–1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the authors report a dielectrophoretic method to concentrate DNA near the tip of a nanopore, reducing the limit of detection by three orders of magnitude. Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the authors report a dielectrophoretic method to concentrate DNA near the tip of a nanopore, reducing the limit of detection by three orders of magnitude. Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 10 8 –10 10 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 10 3 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. |
| ArticleNumber | 10217 |
| Author | Ivanov, Aleksandar P. Barik, Avijit Oh, Sang-Hyun Freedman, Kevin J. Otto, Lauren M. Edel, Joshua B. |
| Author_xml | – sequence: 1 givenname: Kevin J. surname: Freedman fullname: Freedman, Kevin J. organization: Department of Chemistry, Imperial College London – sequence: 2 givenname: Lauren M. surname: Otto fullname: Otto, Lauren M. organization: Department of Electrical and Computer Engineering, University of Minnesota – sequence: 3 givenname: Aleksandar P. orcidid: 0000-0003-1419-1381 surname: Ivanov fullname: Ivanov, Aleksandar P. organization: Department of Chemistry, Imperial College London – sequence: 4 givenname: Avijit surname: Barik fullname: Barik, Avijit organization: Department of Electrical and Computer Engineering, University of Minnesota, Department of Biomedical Engineering, University of Minnesota – sequence: 5 givenname: Sang-Hyun surname: Oh fullname: Oh, Sang-Hyun organization: Department of Electrical and Computer Engineering, University of Minnesota, Department of Biomedical Engineering, University of Minnesota – sequence: 6 givenname: Joshua B. surname: Edel fullname: Edel, Joshua B. email: joshua.edel@imperial.ac.uk organization: Department of Chemistry, Imperial College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26732171$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kktv1TAQhS3UipbSFXsUiQ0SBPxKnGyQUFVopapsYIks25nc-sqxg52A-Pd1bkp1WxUv_Pzm-Iw9L9CBDx4QekXwB4JZ89GbMAyJYErEM3RMMSclEZQd7M2P0GlKW5wba0nD-XN0RGvBcgQ5Rj-vlQ9jiFAk8Mn6TaGmYnZTVKULfwoTvAGfV5MNPhXzjlg6B-UQHJjZQdFZyLMphvEmC03WFDlgHDP1Eh32yiU4vRtP0I8v59_PLsqrb18vzz5flaYSzVQaonWjmYJKEDBaiV6bvhcMSFfVoq81YWCoYLUC3QNUmjJhmIG27YSucy4n6HLV7YLayjHaQcW_MigrdxshbqSK2ZgDSWvKiKg467DhmjZtrfvGGNEyCgrjKmt9WrXGWQ_Qrem7B6IPT7y9kZvwW3JB24YuZt7eCcTwa4Y0ycEmA84pD2FOcrm9ooxyntE3j9BtmKPPT7VQjPOKtAv1et_RvZV_v5iBdytgYkgpQn-PECyXMpF7ZZJp8og2dtp9cE7Huv_EvF9jUlb2G4h7Rp_AbwEq2NMg |
| CitedBy_id | crossref_primary_10_3390_ijms22084128 crossref_primary_10_1017_jfm_2021_656 crossref_primary_10_1002_adma_202302827 crossref_primary_10_1073_pnas_1904513116 crossref_primary_10_3390_ijms21082808 crossref_primary_10_1016_j_nano_2021_102425 crossref_primary_10_1088_1361_6528_aada64 crossref_primary_10_1016_j_jelechem_2022_116106 crossref_primary_10_1038_s41565_019_0493_z crossref_primary_10_1016_j_bpj_2016_12_033 crossref_primary_10_1038_s41467_021_25566_8 crossref_primary_10_1146_annurev_anchem_061417_125903 crossref_primary_10_1038_s41467_025_58425_x crossref_primary_10_1007_s00542_018_4242_2 crossref_primary_10_1002_macp_202300060 crossref_primary_10_1002_celc_202101180 crossref_primary_10_1038_s41596_019_0171_5 crossref_primary_10_3390_s17051091 crossref_primary_10_1002_ange_202002323 crossref_primary_10_1109_JMEMS_2017_2699864 crossref_primary_10_1038_s41467_017_00549_w crossref_primary_10_1038_s41467_018_06873_z crossref_primary_10_1021_jacs_7b12106 crossref_primary_10_1016_j_cbpa_2016_08_005 crossref_primary_10_1038_s41565_018_0315_8 crossref_primary_10_1002_celc_201800163 crossref_primary_10_1109_JSEN_2021_3084284 crossref_primary_10_1016_j_snb_2017_09_069 crossref_primary_10_1002_ange_201704137 crossref_primary_10_1021_jacs_9b10329 crossref_primary_10_1073_pnas_1719844115 crossref_primary_10_1038_s41427_021_00313_z crossref_primary_10_1039_D0NR07733J crossref_primary_10_1016_j_trac_2023_117358 crossref_primary_10_1021_jacs_3c09311 crossref_primary_10_1088_1361_6528_ac43e9 crossref_primary_10_1002_smll_202005550 crossref_primary_10_1039_C8NR08632J crossref_primary_10_1002_adom_202100009 crossref_primary_10_1109_TNB_2019_2954099 crossref_primary_10_1038_s41565_022_01193_2 crossref_primary_10_1016_j_coche_2020_02_007 crossref_primary_10_3390_bios12100784 crossref_primary_10_1109_JSEN_2020_3032451 crossref_primary_10_1002_anie_201600495 crossref_primary_10_1002_smll_202100495 crossref_primary_10_1016_j_cap_2016_12_018 crossref_primary_10_1063_5_0020011 crossref_primary_10_1002_adma_201907082 crossref_primary_10_1007_s12274_022_4535_8 crossref_primary_10_1002_ange_201600495 crossref_primary_10_1038_s41467_023_37654_y crossref_primary_10_1016_j_jelechem_2022_117125 crossref_primary_10_1038_s41467_017_01635_9 crossref_primary_10_1021_acsami_4c22829 crossref_primary_10_1021_jacs_2c06962 crossref_primary_10_1002_adom_202202924 crossref_primary_10_1016_j_trac_2023_117343 crossref_primary_10_1109_JSEN_2023_3343908 crossref_primary_10_1146_annurev_anchem_061318_114902 crossref_primary_10_1007_s42452_019_1231_8 crossref_primary_10_1038_s41467_021_23564_4 crossref_primary_10_1021_jacs_7b05058 crossref_primary_10_1002_smll_202102543 crossref_primary_10_1016_j_snb_2017_05_144 crossref_primary_10_1021_acsnano_5c04662 crossref_primary_10_1021_jacs_2c13465 crossref_primary_10_1016_j_colsurfa_2020_125829 crossref_primary_10_1002_anie_202423473 crossref_primary_10_1088_1361_6463_aaa528 crossref_primary_10_3390_mi13060968 crossref_primary_10_1021_acsnano_5c00732 crossref_primary_10_3390_biomedicines11061625 crossref_primary_10_1002_anie_201704137 crossref_primary_10_1109_JSEN_2022_3185457 crossref_primary_10_1039_C8RA09017C crossref_primary_10_1038_nnano_2017_205 crossref_primary_10_1002_smll_201600359 crossref_primary_10_3390_ma15134627 crossref_primary_10_1063_5_0231311 crossref_primary_10_1002_ange_201803229 crossref_primary_10_3390_nano12091468 crossref_primary_10_1002_elps_202000218 crossref_primary_10_1039_C9RA05886A crossref_primary_10_1177_0003702816684839 crossref_primary_10_1002_elps_202000213 crossref_primary_10_3390_chemosensors6040043 crossref_primary_10_3390_bios8040100 crossref_primary_10_1002_elps_202100346 crossref_primary_10_1016_j_jece_2025_117838 crossref_primary_10_1016_j_aca_2020_03_001 crossref_primary_10_1016_j_bbamem_2021_183644 crossref_primary_10_1073_pnas_2400203121 crossref_primary_10_1073_pnas_2422135122 crossref_primary_10_3390_s16030303 crossref_primary_10_1038_nnano_2017_176 crossref_primary_10_1177_15330338221076669 crossref_primary_10_1016_j_eng_2024_11_020 crossref_primary_10_1002_anie_201803229 crossref_primary_10_1038_s41467_019_09476_4 crossref_primary_10_1016_j_coelec_2018_10_012 crossref_primary_10_3390_mi11110954 crossref_primary_10_1002_smtd_202100542 crossref_primary_10_1016_j_cbpa_2019_05_013 crossref_primary_10_1038_s41565_021_00968_3 crossref_primary_10_1039_D0SC02807J crossref_primary_10_1038_s41467_019_10147_7 crossref_primary_10_1002_cjoc_202000722 crossref_primary_10_1002_dro2_70020 crossref_primary_10_3390_nano12183135 crossref_primary_10_1098_rsta_2020_0407 crossref_primary_10_1002_anie_202002323 crossref_primary_10_1063_5_0144564 crossref_primary_10_1038_s41467_021_21101_x crossref_primary_10_1038_s41467_023_43004_9 crossref_primary_10_1515_nanoph_2021_0711 crossref_primary_10_1002_aisy_202100279 crossref_primary_10_1146_annurev_anchem_061417_125840 crossref_primary_10_1088_1361_6528_ab4445 crossref_primary_10_1002_adma_201705061 crossref_primary_10_3390_chemosensors9110298 crossref_primary_10_1016_j_jelechem_2021_115373 crossref_primary_10_1016_j_snb_2017_12_098 crossref_primary_10_1002_smll_201905379 crossref_primary_10_1002_ange_202423473 crossref_primary_10_1021_jacs_8b09397 crossref_primary_10_1038_srep31670 crossref_primary_10_1116_6_0004821 crossref_primary_10_1039_C7CS00688H crossref_primary_10_1002_admt_202302191 crossref_primary_10_1038_s41598_018_25026_2 crossref_primary_10_1038_s41467_022_34273_x crossref_primary_10_1002_mds3_10156 crossref_primary_10_1016_j_chroma_2020_461262 crossref_primary_10_1002_adfm_202301934 |
| Cites_doi | 10.1088/0957-4484/18/30/305505 10.1021/ac970551g 10.1021/nl402108g 10.1103/PhysRevLett.89.198103 10.1021/ac1005475 10.1021/nn406586m 10.1021/nl048818w 10.1039/C2CS35286A 10.1021/ja047675c 10.1021/nn501969r 10.1073/pnas.93.24.13770 10.1021/ph500091h 10.1039/C5AN01001B 10.1016/S0167-4781(00)00176-7 10.1021/ac980027p 10.1038/nmat1143 10.1073/pnas.0808296105 10.1021/acsnano.5b00911 10.1021/nl500149h 10.1038/nbt1388 10.1021/ac3035025 10.1021/nl504375c 10.1038/nbt.2799 10.1038/srep01638 10.1088/0957-4484/23/48/485707 10.1021/nl304247n 10.1038/nbt.2950 10.1063/1.363884 10.1038/nnano.2010.237 10.1021/ja205773a 10.1021/nl402052v 10.1038/nnano.2009.12 10.1021/nn301672g 10.1021/ja043910f 10.1002/elps.201200099 10.1038/nnano.2009.379 10.1126/science.7112126 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2016 Copyright Nature Publishing Group Jan 2016 Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
| Copyright_xml | – notice: The Author(s) 2016 – notice: Copyright Nature Publishing Group Jan 2016 – notice: Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/ncomms10217 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_262317543d0c4b2896bf8cc7932ea005 PMC4729827 3912524941 26732171 10_1038_ncomms10217 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States--US Minnesota |
| GeographicLocations_xml | – name: Minnesota – name: United States--US |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008347 |
| GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c578t-c1bb8b3ae571ecba7fbcff73e1d567f6b13ec2736aebfee5b237c3ce99d7b6673 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 232 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369020000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 19:05:12 EDT 2025 Tue Nov 04 01:59:21 EST 2025 Sun Aug 24 04:08:19 EDT 2025 Sat Nov 29 14:42:41 EST 2025 Thu Apr 03 06:50:52 EDT 2025 Sat Nov 29 03:46:15 EST 2025 Tue Nov 18 20:55:04 EST 2025 Fri Feb 21 02:40:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c578t-c1bb8b3ae571ecba7fbcff73e1d567f6b13ec2736aebfee5b237c3ce99d7b6673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1419-1381 |
| OpenAccessLink | https://doaj.org/article/262317543d0c4b2896bf8cc7932ea005 |
| PMID | 26732171 |
| PQID | 1753445194 |
| PQPubID | 546298 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_262317543d0c4b2896bf8cc7932ea005 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4729827 proquest_miscellaneous_1754523244 proquest_journals_1753445194 pubmed_primary_26732171 crossref_primary_10_1038_ncomms10217 crossref_citationtrail_10_1038_ncomms10217 springer_journals_10_1038_ncomms10217 |
| PublicationCentury | 2000 |
| PublicationDate | 20160106 |
| PublicationDateYYYYMMDD | 2016-01-06 |
| PublicationDate_xml | – month: 1 year: 2016 text: 20160106 day: 6 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2016 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Miles (CR3) 2013; 42 Cressiot (CR10) 2012; 6 Barik (CR35) 2014; 14 Eggeling, Widengren, Rigler (CR28) 1998; 70 Hirano (CR38) 2013; 13 Ivanov (CR13) 2015; 9 Lan, Holden, White (CR21) 2011; 133 Ivanov, Freedman, Kim, Albrecht, Edel (CR34) 2014; 8 CR32 Squires, Messinger, Manalis (CR8) 2008; 26 Tabard-Cossa, Trivedi, Wiggin, Jetha, Marziali (CR25) 2007; 18 Lu (CR16) 2013; 13 Regtmeier, Eichhorn, Bogunovic, Ros, Anselmetti (CR30) 2010; 82 Laszlo (CR15) 2014; 32 Siwy, Fuliński (CR22) 2002; 89 Bakewell, Ermolina, Morgan, Milner, Feldman (CR27) 2000; 1493 Cecchini (CR33) 2013; 13 Maglia, Restrepo, Mikhailova, Bayley (CR14) 2008; 105 Wei, Bard, Feldberg (CR23) 1997; 69 Brolo, Arctander, Gordon, Leathem, Kavanagh (CR36) 2004; 4 Sze, Kumar, Ivanov, Oh, Edel (CR24) 2015; 140 Japrung (CR6) 2013; 85 Giloh, Sedat (CR29) 1982; 217 Yeo (CR18) 2012; 23 Sasaki, Kitamori, Kim (CR31) 2012; 33 Plesa, van Loo, Ketterer, Dietz, Dekker (CR9) 2014; 15 Siwy (CR19) 2005; 127 Hall (CR37) 2010; 5 Shasha (CR7) 2014; 8 Freedman, Haq, Edel, Jemth, Kim (CR5) 2013; 3 Kasianowicz, Brandin, Branton, Deamer (CR1) 1996; 93 Rosen, Rodriguez-Larrea, Bayley (CR4) 2014; 32 Jose (CR17) 2014; 1 Siwy, Heins, Harrell, Kohli, Martin (CR20) 2004; 126 Kasianowicz (CR11) 2004; 3 Belaidi, Girard, Leveque (CR26) 1997; 81 Clarke (CR2) 2009; 4 Wanunu, Morrison, Rabin, Grosberg, Meller (CR12) 2010; 5 B Cressiot (BFncomms10217_CR10) 2012; 6 M Wanunu (BFncomms10217_CR12) 2010; 5 D Japrung (BFncomms10217_CR6) 2013; 85 C Eggeling (BFncomms10217_CR28) 1998; 70 H Giloh (BFncomms10217_CR29) 1982; 217 AH Laszlo (BFncomms10217_CR15) 2014; 32 K Hirano (BFncomms10217_CR38) 2013; 13 AP Ivanov (BFncomms10217_CR13) 2015; 9 BN Miles (BFncomms10217_CR3) 2013; 42 JY Sze (BFncomms10217_CR24) 2015; 140 CB Rosen (BFncomms10217_CR4) 2014; 32 B Lu (BFncomms10217_CR16) 2013; 13 Z Siwy (BFncomms10217_CR20) 2004; 126 C Shasha (BFncomms10217_CR7) 2014; 8 J Clarke (BFncomms10217_CR2) 2009; 4 KJ Freedman (BFncomms10217_CR5) 2013; 3 J Jose (BFncomms10217_CR17) 2014; 1 AP Ivanov (BFncomms10217_CR34) 2014; 8 J Regtmeier (BFncomms10217_CR30) 2010; 82 V Tabard-Cossa (BFncomms10217_CR25) 2007; 18 AG Brolo (BFncomms10217_CR36) 2004; 4 N Sasaki (BFncomms10217_CR31) 2012; 33 JJ Kasianowicz (BFncomms10217_CR11) 2004; 3 TM Squires (BFncomms10217_CR8) 2008; 26 C Plesa (BFncomms10217_CR9) 2014; 15 G Maglia (BFncomms10217_CR14) 2008; 105 A Barik (BFncomms10217_CR35) 2014; 14 W-H Yeo (BFncomms10217_CR18) 2012; 23 Z Siwy (BFncomms10217_CR22) 2002; 89 AR Hall (BFncomms10217_CR37) 2010; 5 JJ Kasianowicz (BFncomms10217_CR1) 1996; 93 C Wei (BFncomms10217_CR23) 1997; 69 W-J Lan (BFncomms10217_CR21) 2011; 133 MP Cecchini (BFncomms10217_CR33) 2013; 13 Z Siwy (BFncomms10217_CR19) 2005; 127 S Belaidi (BFncomms10217_CR26) 1997; 81 DJ Bakewell (BFncomms10217_CR27) 2000; 1493 BFncomms10217_CR32 21800889 - J Am Chem Soc. 2011 Aug 31;133(34):13300-3 22990878 - Chem Soc Rev. 2013 Jan 7;42(1):15-28 15173852 - Nat Mater. 2004 Jun;3(6):355-6 22965710 - Electrophoresis. 2012 Sep;33(17):2668-73 25496458 - Nano Lett. 2015 Jan 14;15(1):732-7 23137928 - Nanotechnology. 2012 Dec 7;23(48):485707 24446951 - ACS Nano. 2014 Feb 25;8(2):1940-8 23547650 - Nano Lett. 2013 May 8;13(5):1877-82 18392027 - Nat Biotechnol. 2008 Apr;26(4):417-26 24646075 - Nano Lett. 2014;14(4):2006-12 24861167 - ACS Nano. 2014 Jun 24;8(6):6425-30 25541619 - ACS Photonics. 2014 May 21;1(5):464-470 26066550 - Analyst. 2015 Jul 21;140(14):4828-34 20690609 - Anal Chem. 2010 Sep 1;82(17):7141-9 12443155 - Phys Rev Lett. 2002 Nov 4;89(19):198103 22670559 - ACS Nano. 2012 Jul 24;6(7):6236-43 19060213 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19720-5 23572157 - Sci Rep. 2013;3:1638 24021086 - Nano Lett. 2013 Oct 9;13(10):4602-9 20023645 - Nat Nanotechnol. 2010 Feb;5(2):160-5 15339163 - J Am Chem Soc. 2004 Sep 8;126(35):10850-1 15810817 - J Am Chem Soc. 2005 Apr 13;127(14):5000-1 19350039 - Nat Nanotechnol. 2009 Apr;4(4):265-70 21644785 - Anal Chem. 1998 Jul 1;70(13):2651-9 7112126 - Science. 1982 Sep 24;217(4566):1252-5 21113160 - Nat Nanotechnol. 2010 Dec;5(12):874-7 23802688 - Nano Lett. 2013 Jul 10;13(7):3048-52 24964173 - Nat Biotechnol. 2014 Aug;32(8):829-33 10978517 - Biochim Biophys Acta. 2000 Sep 7;1493(1-2):151-8 24441471 - Nat Biotechnol. 2014 Feb;32(2):179-81 8943010 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770-3 23327569 - Anal Chem. 2013 Feb 19;85(4):2449-56 25794527 - ACS Nano. 2015;9(4):3587-95 |
| References_xml | – volume: 18 start-page: 305505 year: 2007 ident: CR25 article-title: Noise analysis and reduction in solid-state nanopores publication-title: Nanotechnology doi: 10.1088/0957-4484/18/30/305505 – volume: 69 start-page: 4627 year: 1997 end-page: 4633 ident: CR23 article-title: Current rectification at quartz nanopipet electrodes publication-title: Anal. Chem. doi: 10.1021/ac970551g – volume: 13 start-page: 4602 year: 2013 end-page: 4609 ident: CR33 article-title: Rapid ultrasensitive single particle surface-enhanced raman spectroscopy using metallic nanopores publication-title: Nano Lett. doi: 10.1021/nl402108g – volume: 89 start-page: 198103 year: 2002 ident: CR22 article-title: Fabrication of a synthetic nanopore ion pump publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.198103 – volume: 82 start-page: 7141 year: 2010 end-page: 7149 ident: CR30 article-title: Dielectrophoretic trapping and polarizability of DNA: the role of spatial conformation publication-title: Anal. Chem. doi: 10.1021/ac1005475 – volume: 8 start-page: 1940 year: 2014 end-page: 1948 ident: CR34 article-title: High precision fabrication and positioning of nanoelectrodes in a nanopore publication-title: ACS Nano doi: 10.1021/nn406586m – volume: 4 start-page: 2015 year: 2004 end-page: 2018 ident: CR36 article-title: Nanohole-enhanced raman scattering publication-title: Nano Lett. doi: 10.1021/nl048818w – volume: 42 start-page: 15 year: 2013 end-page: 28 ident: CR3 article-title: Single molecule sensing with solid-state nanopores: novel materials, methods, and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35286A – volume: 126 start-page: 10850 year: 2004 end-page: 10851 ident: CR20 article-title: Conical-nanotube ion-current rectifiers: the role of surface charge publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047675c – volume: 8 start-page: 6425 year: 2014 end-page: 6430 ident: CR7 article-title: Nanopore-based conformational analysis of a viral RNA drug target publication-title: ACS Nano doi: 10.1021/nn501969r – volume: 93 start-page: 13770 year: 1996 end-page: 13773 ident: CR1 article-title: Characterization of individual polynucleotide molecules using a membrane channel publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.24.13770 – volume: 1 start-page: 464 year: 2014 end-page: 470 ident: CR17 article-title: Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis publication-title: ACS Photonics doi: 10.1021/ph500091h – volume: 140 start-page: 4828 year: 2015 end-page: 4834 ident: CR24 article-title: Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing publication-title: Analyst doi: 10.1039/C5AN01001B – volume: 1493 start-page: 151 year: 2000 end-page: 158 ident: CR27 article-title: Dielectric relaxation measurements of 12 kbp plasmid DNA publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4781(00)00176-7 – volume: 70 start-page: 2651 year: 1998 end-page: 2659 ident: CR28 article-title: Seidel CAM. Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis publication-title: Anal. Chem. doi: 10.1021/ac980027p – volume: 3 start-page: 355 year: 2004 end-page: 356 ident: CR11 article-title: Nanopores: flossing with DNA publication-title: Nat. Mater. doi: 10.1038/nmat1143 – volume: 105 start-page: 19720 year: 2008 end-page: 19725 ident: CR14 article-title: Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0808296105 – volume: 9 start-page: 3587 year: 2015 end-page: 3595 ident: CR13 article-title: On-demand delivery of single DNA molecules using nanopipets publication-title: ACS Nano doi: 10.1021/acsnano.5b00911 – volume: 14 start-page: 2006 year: 2014 end-page: 2012 ident: CR35 article-title: Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays publication-title: Nano Lett. doi: 10.1021/nl500149h – volume: 26 start-page: 417 year: 2008 end-page: 426 ident: CR8 article-title: Making it stick: convection, reaction and diffusion in surface-based biosensors publication-title: Nat. Biotechnol. doi: 10.1038/nbt1388 – volume: 85 start-page: 2449 year: 2013 end-page: 2456 ident: CR6 article-title: Single-molecule studies of intrinsically disordered proteins using solid-state nanopores publication-title: Anal. Chem. doi: 10.1021/ac3035025 – volume: 15 start-page: 732 year: 2014 end-page: 737 ident: CR9 article-title: Velocity of DNA during translocation through a solid-state nanopore publication-title: Nano Lett. doi: 10.1021/nl504375c – volume: 32 start-page: 179 year: 2014 end-page: 181 ident: CR4 article-title: Single-molecule site-specific detection of protein phosphorylation with a nanopore publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2799 – ident: CR32 – volume: 3 start-page: 1638 year: 2013 ident: CR5 article-title: Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field publication-title: Sci. Rep. doi: 10.1038/srep01638 – volume: 23 start-page: 485707 year: 2012 ident: CR18 article-title: Dielectrophoretic concentration of low-abundance nanoparticles using a nanostructured tip publication-title: Nanotechnology doi: 10.1088/0957-4484/23/48/485707 – volume: 13 start-page: 1877 year: 2013 end-page: 1882 ident: CR38 article-title: Plasmonic imaging of Brownian motion of single DNA molecules spontaneously binding to Ag nanoparticles publication-title: Nano Lett. doi: 10.1021/nl304247n – volume: 32 start-page: 829 year: 2014 end-page: 833 ident: CR15 article-title: Decoding long nanopore sequencing reads of natural DNA publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2950 – volume: 81 start-page: 1023 year: 1997 end-page: 1030 ident: CR26 article-title: Electrostatic forces acting on the tip in atomic force microscopy: modelization and comparison with analytic expressions publication-title: J. Appl. Phys. doi: 10.1063/1.363884 – volume: 5 start-page: 874 year: 2010 end-page: 877 ident: CR37 article-title: Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.237 – volume: 133 start-page: 13300 year: 2011 end-page: 13303 ident: CR21 article-title: Pressure-dependent ion current rectification in conical-shaped glass nanopores publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205773a – volume: 13 start-page: 3048 year: 2013 end-page: 3052 ident: CR16 article-title: Pressure-controlled motion of single polymers through solid-state nanopores publication-title: Nano Lett. doi: 10.1021/nl402052v – volume: 4 start-page: 265 year: 2009 end-page: 270 ident: CR2 article-title: Continuous base identification for single-molecule nanopore DNA sequencing publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.12 – volume: 6 start-page: 6236 year: 2012 end-page: 6243 ident: CR10 article-title: Protein transport through a narrow solid-state nanopore at high voltage: experiments and theory publication-title: ACS Nano doi: 10.1021/nn301672g – volume: 127 start-page: 5000 year: 2005 end-page: 5001 ident: CR19 article-title: Protein biosensors based on biofunctionalized conical gold nanotubes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043910f – volume: 33 start-page: 2668 year: 2012 end-page: 2673 ident: CR31 article-title: Fluid mixing using AC electrothermal flow on meandering electrodes in a microchannel publication-title: Electrophoresis doi: 10.1002/elps.201200099 – volume: 5 start-page: 160 year: 2010 end-page: 165 ident: CR12 article-title: Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.379 – volume: 217 start-page: 1252 year: 1982 end-page: 1255 ident: CR29 article-title: Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate publication-title: Science doi: 10.1126/science.7112126 – volume: 6 start-page: 6236 year: 2012 ident: BFncomms10217_CR10 publication-title: ACS Nano doi: 10.1021/nn301672g – volume: 133 start-page: 13300 year: 2011 ident: BFncomms10217_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205773a – volume: 23 start-page: 485707 year: 2012 ident: BFncomms10217_CR18 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/48/485707 – volume: 70 start-page: 2651 year: 1998 ident: BFncomms10217_CR28 publication-title: Anal. Chem. doi: 10.1021/ac980027p – volume: 26 start-page: 417 year: 2008 ident: BFncomms10217_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1388 – volume: 9 start-page: 3587 year: 2015 ident: BFncomms10217_CR13 publication-title: ACS Nano doi: 10.1021/acsnano.5b00911 – volume: 8 start-page: 6425 year: 2014 ident: BFncomms10217_CR7 publication-title: ACS Nano doi: 10.1021/nn501969r – volume: 105 start-page: 19720 year: 2008 ident: BFncomms10217_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0808296105 – volume: 5 start-page: 160 year: 2010 ident: BFncomms10217_CR12 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.379 – ident: BFncomms10217_CR32 – volume: 82 start-page: 7141 year: 2010 ident: BFncomms10217_CR30 publication-title: Anal. Chem. doi: 10.1021/ac1005475 – volume: 126 start-page: 10850 year: 2004 ident: BFncomms10217_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047675c – volume: 89 start-page: 198103 year: 2002 ident: BFncomms10217_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.198103 – volume: 13 start-page: 4602 year: 2013 ident: BFncomms10217_CR33 publication-title: Nano Lett. doi: 10.1021/nl402108g – volume: 69 start-page: 4627 year: 1997 ident: BFncomms10217_CR23 publication-title: Anal. Chem. doi: 10.1021/ac970551g – volume: 4 start-page: 2015 year: 2004 ident: BFncomms10217_CR36 publication-title: Nano Lett. doi: 10.1021/nl048818w – volume: 32 start-page: 179 year: 2014 ident: BFncomms10217_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2799 – volume: 18 start-page: 305505 year: 2007 ident: BFncomms10217_CR25 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/30/305505 – volume: 32 start-page: 829 year: 2014 ident: BFncomms10217_CR15 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2950 – volume: 42 start-page: 15 year: 2013 ident: BFncomms10217_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35286A – volume: 1 start-page: 464 year: 2014 ident: BFncomms10217_CR17 publication-title: ACS Photonics doi: 10.1021/ph500091h – volume: 3 start-page: 355 year: 2004 ident: BFncomms10217_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat1143 – volume: 81 start-page: 1023 year: 1997 ident: BFncomms10217_CR26 publication-title: J. Appl. Phys. doi: 10.1063/1.363884 – volume: 13 start-page: 3048 year: 2013 ident: BFncomms10217_CR16 publication-title: Nano Lett. doi: 10.1021/nl402052v – volume: 4 start-page: 265 year: 2009 ident: BFncomms10217_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.12 – volume: 85 start-page: 2449 year: 2013 ident: BFncomms10217_CR6 publication-title: Anal. Chem. doi: 10.1021/ac3035025 – volume: 217 start-page: 1252 year: 1982 ident: BFncomms10217_CR29 publication-title: Science doi: 10.1126/science.7112126 – volume: 5 start-page: 874 year: 2010 ident: BFncomms10217_CR37 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.237 – volume: 93 start-page: 13770 year: 1996 ident: BFncomms10217_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.24.13770 – volume: 8 start-page: 1940 year: 2014 ident: BFncomms10217_CR34 publication-title: ACS Nano doi: 10.1021/nn406586m – volume: 3 start-page: 1638 year: 2013 ident: BFncomms10217_CR5 publication-title: Sci. Rep. doi: 10.1038/srep01638 – volume: 14 start-page: 2006 year: 2014 ident: BFncomms10217_CR35 publication-title: Nano Lett. doi: 10.1021/nl500149h – volume: 140 start-page: 4828 year: 2015 ident: BFncomms10217_CR24 publication-title: Analyst doi: 10.1039/C5AN01001B – volume: 33 start-page: 2668 year: 2012 ident: BFncomms10217_CR31 publication-title: Electrophoresis doi: 10.1002/elps.201200099 – volume: 15 start-page: 732 year: 2014 ident: BFncomms10217_CR9 publication-title: Nano Lett. doi: 10.1021/nl504375c – volume: 1493 start-page: 151 year: 2000 ident: BFncomms10217_CR27 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4781(00)00176-7 – volume: 13 start-page: 1877 year: 2013 ident: BFncomms10217_CR38 publication-title: Nano Lett. doi: 10.1021/nl304247n – volume: 127 start-page: 5000 year: 2005 ident: BFncomms10217_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043910f – reference: 21644785 - Anal Chem. 1998 Jul 1;70(13):2651-9 – reference: 18392027 - Nat Biotechnol. 2008 Apr;26(4):417-26 – reference: 23802688 - Nano Lett. 2013 Jul 10;13(7):3048-52 – reference: 21113160 - Nat Nanotechnol. 2010 Dec;5(12):874-7 – reference: 24021086 - Nano Lett. 2013 Oct 9;13(10):4602-9 – reference: 23572157 - Sci Rep. 2013;3:1638 – reference: 25794527 - ACS Nano. 2015;9(4):3587-95 – reference: 23137928 - Nanotechnology. 2012 Dec 7;23(48):485707 – reference: 8943010 - Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770-3 – reference: 24446951 - ACS Nano. 2014 Feb 25;8(2):1940-8 – reference: 10978517 - Biochim Biophys Acta. 2000 Sep 7;1493(1-2):151-8 – reference: 15173852 - Nat Mater. 2004 Jun;3(6):355-6 – reference: 22965710 - Electrophoresis. 2012 Sep;33(17):2668-73 – reference: 12443155 - Phys Rev Lett. 2002 Nov 4;89(19):198103 – reference: 25541619 - ACS Photonics. 2014 May 21;1(5):464-470 – reference: 15339163 - J Am Chem Soc. 2004 Sep 8;126(35):10850-1 – reference: 19350039 - Nat Nanotechnol. 2009 Apr;4(4):265-70 – reference: 24646075 - Nano Lett. 2014;14(4):2006-12 – reference: 21800889 - J Am Chem Soc. 2011 Aug 31;133(34):13300-3 – reference: 23327569 - Anal Chem. 2013 Feb 19;85(4):2449-56 – reference: 25496458 - Nano Lett. 2015 Jan 14;15(1):732-7 – reference: 24964173 - Nat Biotechnol. 2014 Aug;32(8):829-33 – reference: 26066550 - Analyst. 2015 Jul 21;140(14):4828-34 – reference: 7112126 - Science. 1982 Sep 24;217(4566):1252-5 – reference: 15810817 - J Am Chem Soc. 2005 Apr 13;127(14):5000-1 – reference: 20023645 - Nat Nanotechnol. 2010 Feb;5(2):160-5 – reference: 19060213 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19720-5 – reference: 22670559 - ACS Nano. 2012 Jul 24;6(7):6236-43 – reference: 24861167 - ACS Nano. 2014 Jun 24;8(6):6425-30 – reference: 20690609 - Anal Chem. 2010 Sep 1;82(17):7141-9 – reference: 22990878 - Chem Soc Rev. 2013 Jan 7;42(1):15-28 – reference: 24441471 - Nat Biotechnol. 2014 Feb;32(2):179-81 – reference: 23547650 - Nano Lett. 2013 May 8;13(5):1877-82 |
| SSID | ssj0000391844 |
| Score | 2.5884607 |
| Snippet | Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and... Nanopore sensors have shown tremendous potential for biomolecule sensing, though the diffusion-controlled capture can limit the speed of analysis. Here, the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10217 |
| SubjectTerms | 639/638/11 639/925/350/1058 9/10 9/74 Biosensing Techniques - instrumentation Biosensing Techniques - methods DNA - chemistry DNA - genetics Electrochemical Techniques Electrodes Experiments Health care industry Humanities and Social Sciences Membranes, Artificial multidisciplinary Nanopores Science Science (multidisciplinary) Trapping |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFdyHQoiCVC5LVTezEzgkBasWp6gGkXlBkT-ztSttk2eyC-u8743hDl1ZcuOQQT6KJx_OIH9_H2EGlvILMa-7BKC6Ns7xyUHDQua0UZkRvTCCbUCcn-uysOo0Tbn3cVrmJiSFQNx3QHPkhIUoSmFYlPy5-cmKNotXVSKFxl90jlAQRtu6djnMshH6upYzH8iZCH7b4youe6KzVViIKeP23FZk390r-tWAa8tDx4__9gifsUaxA00_DkHnK7rj2GXswcFJePmc_MN52WJS7tKe97e00Nat0PUet-Lz7nQIdc2wj1m6froMEXeaOXwxUuy5tZpFdZ3E-nJJM8QECgpi-YN-Pj759-cojBwMH9OUVh8xabYVxhcocWKO8Be-VcFlTlMqXNhMOsAQq0creucLmQoEAV1WNskQpust22q51r1hqTKMwZ0pTYErUHipnrCW8tmYipZVNwj5sDFJDBCgnnox5HRbKha6vWS9hB6PwYsDluF3sM1l2FCEw7XCjW07r6Jt1jiUgGkeKZgLS4h9oab0GwMiVO4NRKmF7G4PW0cP7-o81E_ZubEbfpAUX07puHWRkQSUryrwchtGoSY59gwpmCVNbA2xL1e2WdnYe8L8l_hDpHL_t_WYoXlPrZh-8_rf6b9hDLAKHaaVyj-2slmu3z-7Dr9WsX74NDnUFDcExgg priority: 102 providerName: ProQuest |
| Title | Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping |
| URI | https://link.springer.com/article/10.1038/ncomms10217 https://www.ncbi.nlm.nih.gov/pubmed/26732171 https://www.proquest.com/docview/1753445194 https://www.proquest.com/docview/1754523244 https://pubmed.ncbi.nlm.nih.gov/PMC4729827 https://doaj.org/article/262317543d0c4b2896bf8cc7932ea005 |
| Volume | 7 |
| WOSCitedRecordID | wos000369020000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (New) (NC LIVE) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0VPBF_Dyr5xLhfBHKbZu0SR49uUMfXIoorIKUJE3uFva6x3VX8b938rHLrnfgiy95aKZlOpl0Zprk9wM4lNxxUziRO6N4zpTVubSmyo0oteQYEZ1SgWyCTyZiOpXNFtWX3xMW4YGj4Y5KjM8Y4hjtxoZpLA9q7YQx6FalVQm9FLOerWIqfIOpxNKFpQN5YyqOehzAi8ETWfOdEBSQ-m9KL6_vkvxrqTREoNOH8CCljuRdVPkR3LL9Y7gXySR_P4Ef-KFcYDZtyeA3pfdnRC3Jao4PzeeLX8T484l9AskdyCpI-GZu84vIkWtJN0u0OJfn8XgjwRs8gsPZU_h6evLl_Yc8kSfkBifhMjeF1kJTZSteWKMVd9o4x6ktuqrmrtYFtQZzlxqHx1lb6ZJyQ42VsuPac4E-g71-0dvnQJTqOAY7piqMZcIZaZXWHmitGzOmWZfB27U9W5OQxT3BxbwNK9xUtFvGz-BwI3wZATVuFjv2A7MR8SjY4QL6Rpt8o_2Xb2RwsB7WNk3NofXQpB6VTbIMXm-6cVL5lRLV28UqyLDK55oosx-9YKNJibZBBYsM-I5_7Ki629PPzgNwN8NKRpT4bm_WnrSl1nUbvPgfNngJ9zHHi3-N6gPYW16t7Cu4a34uZ8PVCG7zKQ-tGMGd45NJ83kUZtLIb4JtsG2q79jTfPzUfPsDFPEpZA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3g9DgUVqL0irxvbauz4gxKtq1DbKoUjlgNzd9W4aKbVDnFD1T_EbmfWLhlbceuCSQzyJZtffzsy-vg9gM-GWa98KarXklEmjaGJ0RLUIVMIxI1opK7EJPhyKo6NktAa_2rsw7lhlGxOrQJ0V2q2RbztGSUemlbD3sx_UqUa53dVWQqOGxZ45P8MpW_lu8Bnf71YQ7Hw5_LRLG1UBqhGdC6p9pYQKpYm4b7SS3CptLQ-Nn0Uxt7HyQ6MxqcfotzUmUkHIdahNkmRcOZFM_N8bsM4Q7KIH66PBwehbt6rj-NYFY81FwH4otnNsxGnpBLT5SuqrFAKuKmsvn878a4u2ynw79_63PrsPd5sam3yoB8UDWDP5Q7hVq26eP4LvmFEKnHYYUrrT-_mYyAVZTrEX6LQ4I9pd5MwbNuGSLCsL9zE19LQWEzYkmzT6QbOT-h4owR84qovxY_h6LW17Ar28yM0zIFJmHKsCJiNM-sLqxEilHCNd1mdMscyDty0AUt1QsDslkGlaHQUIRXoBLR5sdsazmnnkarOPDkmdiaMLr74o5uO0iT5pgEUugoGFWV8zhXPsWFmhNcbmwEiMwx5stABKmxhWpn_Q48Gb7jFGH7elJHNTLCsbFrmiHG2e1rDtPAmwb9BB3wO-AugVV1ef5JOTiuGc4ZRPBNi2rRb6F9y63AfP_-3-a7i9e3iwn-4Phnsv4A6WvPUiWrwBvcV8aV7CTf1zMSnnr5rhTOD4ukfDb5KBlOM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6V8lAvPAsNFDBSe0Gykt31rr0HhIASURVFOYDUC1psr51GSndDNqHqX-PXMfY-aGjFrQcuOWQn0dg7L9vj7wPYS7nlOrCCWi05ZdIomhodUy1ClXLMiFZKTzbBRyNxfJyON-BXexfGtVW2MdEH6rzUbo-87xAlHZhWyvq2aYsYHwzfzn9QxyDlTlpbOo3aRI7M-Rku36o3hwf4rvfDcPjxy4dPtGEYoBotdUl1oJRQkTQxD4xWklulreWRCfI44TZRQWQ0JvgEx2CNiVUYcR1pk6Y5V44wE__3BtzkDrTctw2Ou_0dh7wuGGuuBA4i0S9wOKeVo9Lma0nQcwVcVeBe7tP867DW58Dhvf959u7D3abyJu9qV3kAG6Z4CLdrLs7zR_AN80yJixFDKtfTX0yIXJLVDGeEzsozot31zqLBGK7Iyku4j5mhpzXFsCH5tGEVmp_Ut0MJ_sABYEy24eu1jO0xbBZlYXaASJlzrBWYjLEUEFanRirlcOryAWOK5T143RpDphtgdscPMst8g0AksguW04O9Tnhe45FcLfbeWVUn4kDE_RflYpI1MSkLsfRFw2BRPtBM4co7UVZojRE7NBKjcw92W2PKmshWZX8sqQevuscYk9xBkyxMufIyLHalOso8qU240yTEuUEFgx7wNeNeU3X9STE98bjnDBeCIsSx7bducEGty3Pw9N_qv4Q76ALZ58PR0TPYwjq43llLdmFzuViZ53BL_1xOq8UL79cEvl-3K_wGDTecIg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopore+sensing+at+ultra-low+concentrations+using+single-molecule+dielectrophoretic+trapping&rft.jtitle=Nature+communications&rft.au=Freedman%2C+Kevin+J&rft.au=Otto%2C+Lauren+M&rft.au=Ivanov%2C+Aleksandar+P&rft.au=Barik%2C+Avijit&rft.date=2016-01-06&rft.eissn=2041-1723&rft.volume=7&rft.spage=10217&rft_id=info:doi/10.1038%2Fncomms10217&rft_id=info%3Apmid%2F26732171&rft.externalDocID=26732171 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |