Interpretable metric learning in comparative metagenomics: The adaptive Haar-like distance
Random forests have emerged as a promising tool in comparative metagenomics because they can predict environmental characteristics based on microbial composition in datasets where β -diversity metrics fall short of revealing meaningful relationships between samples. Nevertheless, despite this effica...
Gespeichert in:
| Veröffentlicht in: | PLoS computational biology Jg. 20; H. 5; S. e1011543 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
01.05.2024
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!