Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas

Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the N...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Oncogene Ročník 29; číslo 47; s. 6216 - 6221
Hlavní autoři: Hadfield, K D, Smith, M J, Urquhart, J E, Wallace, A J, Bowers, N L, King, A T, Rutherford, S A, Trump, D, Newman, W G, Evans, D G
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 25.11.2010
Nature Publishing Group
Témata:
ISSN:0950-9232, 1476-5594, 1476-5594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4 Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1 -negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1 -positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context.
AbstractList Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4 Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1 -negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1 -positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context.
Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4 Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1-negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1-positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context. [PUBLICATION ABSTRACT]
Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4 Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1-negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1-positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context. Oncogene (2010) 29, 6216-6221; doi: 10.1038/onc.2010.363; published online 23 August 2010 Keywords: mitotic recombination; schwannomatosis; SMARCB1; NF2; vestibular schwannoma
Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4 Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1-negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1-positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context.
Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1-negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1-positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context.
Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4 Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1-negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1-positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context.Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in conjunction with either a second point mutation or loss of heterozygosity (LOH). We have performed DNA sequence and dosage analysis of the NF2 gene in a panel of 239 schwannoma tumours: 97 neurofibromatosis type 2 (NF2)-related schwannomas, 104 sporadic vestibular schwannomas (VS) and 38 schwannomatosis-related schwannomas. In total, we identified germline NF2 mutations in 86 out of 97 (89%) NF2 patients and a second mutational event in 77 out of 97 (79%). LOH was by far the most common form of second hit. A combination of microsatellite analysis with either conventional comparative genomic hybridization (CGH) or multiplex ligation-dependent probe amplification (MLPA) identified mitotic recombination (MR) as the cause of LOH in 14 out of 72 (19%) total evaluable tumours. Among sporadic VS, at least one NF2 mutation was identified by sequence analysis or MLPA in 65 out of 98 (66%) tumours. LOH occurred in 54 out of 96 (56%) evaluable tumours, but MR only accounted for 5 out of 77 (6%) tested. LOH was present in 28 out of 34 (82%) schwannomatosis-related schwannomas. In all eight patients who had previously tested positive for a germline SMARCB1 mutation, this involved loss of the whole, or part of the long arm, of chromosome 22. In contrast, 5 out of 22 (23%) tumours from patients with no germline SMARCB1 mutation exhibited MR. High-resolution Affymetrix SNP6 genotyping and copy number (CN) analysis (Affymetrix, Santa Clara, CA, USA) were used to determine the chromosomal breakpoint locations in tumours with MR. A range of unique recombination sites, spanning approximately 11.4 Mb, were identified. This study shows that MR is a mechanism of LOH in NF2 and SMARCB1-negative schwannomatosis-related schwannomas, occurring less frequently in sporadic VS. We found no evidence of MR in SMARCB1-positive schwannomatosis, suggesting that susceptibility to MR varies according to the disease context.
Audience Academic
Author Smith, M J
Trump, D
Newman, W G
Hadfield, K D
Bowers, N L
Rutherford, S A
Urquhart, J E
Evans, D G
King, A T
Wallace, A J
Author_xml – sequence: 1
  givenname: K D
  surname: Hadfield
  fullname: Hadfield, K D
  organization: Department of Genetic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester
– sequence: 2
  givenname: M J
  surname: Smith
  fullname: Smith, M J
  organization: Department of Genetic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester
– sequence: 3
  givenname: J E
  surname: Urquhart
  fullname: Urquhart, J E
  organization: Department of Genetic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester
– sequence: 4
  givenname: A J
  surname: Wallace
  fullname: Wallace, A J
  organization: Department of Genetic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester
– sequence: 5
  givenname: N L
  surname: Bowers
  fullname: Bowers, N L
  organization: Department of Genetic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester
– sequence: 6
  givenname: A T
  surname: King
  fullname: King, A T
  organization: Department of Neurosurgery, Hope Hospital
– sequence: 7
  givenname: S A
  surname: Rutherford
  fullname: Rutherford, S A
  organization: Department of Neurosurgery, Hope Hospital
– sequence: 8
  givenname: D
  surname: Trump
  fullname: Trump, D
  organization: Department of Genetic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester
– sequence: 9
  givenname: W G
  surname: Newman
  fullname: Newman, W G
  organization: Department of Genetic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester
– sequence: 10
  givenname: D G
  surname: Evans
  fullname: Evans, D G
  email: gareth.evans@cmft.nhs.uk
  organization: Department of Genetic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, University of Manchester
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23629989$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20729918$$D View this record in MEDLINE/PubMed
BookMark eNqF0stu1DAUBmALFdFpYccaRaCKTTM4viT2sqpaQKpAQrCOHMeeukrswXaKhnfgnTlzgSlVK5SF5eQ75zjWf4QOfPAGoZcVnleYinfB6znBsKM1fYJmFWvqknPJDtAMS45LSSg5REcp3WCMG4nJM3RIcEOkrMQM_fqisklFsMUQ0ma9NtnE8HO1CMnlVaF8X4wuh-x0EY0OY-e8yi74wvni0yUpkr7-obwPo0qnRVqGqHqgtyZl102DinfBptt-n2FEuvv9OXpq1ZDMi916jL5dXnw9_1BefX7_8fzsqtS8EbmUteolqZTUpLed1pIILi01VAmlRUWlMoKI3krcCEoVq23T47rjXDOuObH0GL3d9l3G8H2Co7ajS9oMg_ImTKkVNZOc1kT8X1aM1QwzDPL1PXkTpujhNwDxinIh1ujNY4jUrII2tSB7tVCDaZ23IUel14PbM8IoJ4AYqPkDCp7ejE5DSKyD9_8UvNoNn7rR9O0yulHFVfsnDQBOdkAlrQYbldcu7R3ciJRCgjvdOh0hNNHYv6TC7TqULYSyXYeyhVACJ_e4dnmTITiwGx4rKrdFCXr7hYn7m3rQ_wao4_Nf
CODEN ONCNES
CitedBy_id crossref_primary_10_1002_ajmg_a_34359
crossref_primary_10_1038_s41598_017_05769_0
crossref_primary_10_1038_s41467_017_00346_5
crossref_primary_10_1016_j_modpat_2024_100427
crossref_primary_10_1097_MAO_0000000000002096
crossref_primary_10_1038_cdd_2016_54
crossref_primary_10_1038_s41598_018_23609_7
crossref_primary_10_3390_cancers16213639
crossref_primary_10_3390_diagnostics12051044
crossref_primary_10_1016_j_wneu_2018_06_010
crossref_primary_10_1007_s00401_016_1583_8
crossref_primary_10_3390_cancers12040835
crossref_primary_10_1007_s00405_012_2269_z
crossref_primary_10_1093_neuonc_noab287
crossref_primary_10_1093_neuonc_nor101
crossref_primary_10_1016_j_survophthal_2016_08_002
crossref_primary_10_1097_MAO_0000000000002613
crossref_primary_10_1093_neuonc_not242
crossref_primary_10_3171_2014_6_JNS131433
crossref_primary_10_1093_brain_awac478
crossref_primary_10_1097_PAS_0b013e31825798f1
crossref_primary_10_1186_s12920_021_01049_z
crossref_primary_10_1097_NEN_0000000000000238
crossref_primary_10_1097_MAO_0000000000004163
crossref_primary_10_1016_j_neuchi_2015_03_012
crossref_primary_10_1155_2012_856157
crossref_primary_10_1016_j_clineuro_2018_12_004
crossref_primary_10_3171_2020_3_JNS193230
crossref_primary_10_1053_j_semdp_2021_03_003
crossref_primary_10_1007_s40487_024_00279_2
crossref_primary_10_1007_s00428_012_1342_8
crossref_primary_10_1097_MAO_0000000000001932
crossref_primary_10_3390_cancers17010064
crossref_primary_10_1111_jop_12337
crossref_primary_10_1002_ajmg_a_34376
crossref_primary_10_1007_s11060_019_03176_1
crossref_primary_10_1097_PAS_0b013e31824d3155
crossref_primary_10_3390_ijms22115850
crossref_primary_10_1007_s40136_014_0061_x
crossref_primary_10_4103_1673_5374_211172
crossref_primary_10_1038_cddiscovery_2015_21
crossref_primary_10_1007_s00439_016_1753_8
crossref_primary_10_1093_mutage_gew003
crossref_primary_10_1186_s40478_014_0082_1
crossref_primary_10_1136_jmedgenet_2020_107022
crossref_primary_10_1371_journal_pone_0252048
crossref_primary_10_1186_s12935_019_0989_5
crossref_primary_10_1093_neuonc_nou317
crossref_primary_10_3389_fneur_2019_00978
crossref_primary_10_1186_s12920_015_0076_2
crossref_primary_10_1371_journal_pone_0065868
crossref_primary_10_1007_s11010_014_2011_9
crossref_primary_10_1038_s41598_023_33812_w
crossref_primary_10_1097_MAO_0b013e318298ac79
crossref_primary_10_3892_ijo_2013_1798
crossref_primary_10_1002_gcc_22338
crossref_primary_10_3892_or_2014_3526
crossref_primary_10_1038_s41416_022_01955_8
crossref_primary_10_1016_j_cancergen_2014_04_001
crossref_primary_10_1177_1535370213480744
crossref_primary_10_1371_journal_pone_0030418
crossref_primary_10_3390_cancers17030393
crossref_primary_10_1007_s12253_013_9644_y
crossref_primary_10_1111_cge_13099
crossref_primary_10_3390_cells10071840
crossref_primary_10_1016_j_ebiom_2018_09_042
crossref_primary_10_1007_s10048_011_0300_y
crossref_primary_10_1002_ajmg_a_35760
crossref_primary_10_1111_nan_12330
crossref_primary_10_1007_s10689_025_00486_4
crossref_primary_10_1097_MAO_0000000000000788
crossref_primary_10_1186_s40478_025_01937_w
crossref_primary_10_1007_s11060_016_2150_9
crossref_primary_10_1212_WNL_0000000000001129
crossref_primary_10_1002_1878_0261_12307
crossref_primary_10_1007_s00439_018_1909_9
Cites_doi 10.1038/990031
10.1086/513207
10.1038/sj.bjc.6990691
10.1136/jmg.2007.056499
10.1038/90148
10.1136/jmg.24.2.65
10.1371/journal.pgen.1000538
10.1111/j.1399-0004.2008.01060.x
10.1046/j.1365-2443.2001.00432.x
10.1212/01.WNL.0000070184.08740.E0
10.1007/BF02259711
10.1002/gcc.20353
10.1086/302343
10.1002/humu.20679
10.1136/jmg.40.11.802
ContentType Journal Article
Copyright Macmillan Publishers Limited 2010
2015 INIST-CNRS
COPYRIGHT 2010 Nature Publishing Group
Macmillan Publishers Limited 2010.
Copyright Nature Publishing Group Nov 25, 2010
Copyright_xml – notice: Macmillan Publishers Limited 2010
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2010 Nature Publishing Group
– notice: Macmillan Publishers Limited 2010.
– notice: Copyright Nature Publishing Group Nov 25, 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
7TK
DOI 10.1038/onc.2010.363
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Research Library Prep

Research Library Prep
Genetics Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1476-5594
EndPage 6221
ExternalDocumentID 2201482641
A243526824
20729918
23629989
10_1038_onc_2010_363
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
-Q-
0R~
123
29N
2WC
36B
39C
3O-
3V.
4.4
406
53G
5RE
70F
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AANZL
AAYZH
AAZLF
ABAKF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACMJI
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADFRT
ADHDB
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFSHS
AGHAI
AGQEE
AHMBA
AHSBF
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DU5
DWQXO
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FDQFY
FEDTE
FERAY
FIZPM
FRP
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
IWAJR
JSO
JZLTJ
KQ8
L7B
LK8
M0L
M1P
M2O
M7P
N9A
NAO
NQJWS
NXXTH
O9-
OK1
OVD
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TSG
TUS
UKHRP
W2D
WH7
~8M
AASML
AATNV
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEFQL
AEZWR
AFDZB
AFFHD
AFHIU
AHWEU
AIGIU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
.55
.GJ
AACDK
ABEFU
AFFNX
BAWUL
FIGPU
IQODW
LGEZI
LOTEE
NADUK
RNS
TR2
UDS
X7M
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7TO
7U9
7XB
8FD
8FK
FR3
H94
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
7TK
ID FETCH-LOGICAL-c578t-96ad921a9c2dfbcc92859f3e3a8ac8139ae828df907833a46f7d06b55c45c52f3
IEDL.DBID M7P
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284601700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-9232
1476-5594
IngestDate Thu Oct 02 17:48:37 EDT 2025
Thu Oct 02 11:16:40 EDT 2025
Tue Nov 04 00:18:16 EST 2025
Tue Oct 07 06:01:06 EDT 2025
Sat Nov 29 13:59:02 EST 2025
Sat Nov 29 10:39:02 EST 2025
Mon Jul 21 05:53:21 EDT 2025
Mon Jul 21 09:12:16 EDT 2025
Sat Nov 29 03:40:50 EST 2025
Tue Nov 18 21:00:17 EST 2025
Fri Feb 21 02:38:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords mitotic recombination
schwannomatosis
vestibular schwannoma
Nervous system diseases
SMARCB1
Mitotic recombination
Sporadic
Neurinoma
Loss of heterozygosity
Benign neoplasm
NF2
Carcinogenesis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-96ad921a9c2dfbcc92859f3e3a8ac8139ae828df907833a46f7d06b55c45c52f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20729918
PQID 2641403682
PQPubID 36330
PageCount 6
ParticipantIDs proquest_miscellaneous_864953628
proquest_miscellaneous_814464040
proquest_journals_815135880
proquest_journals_2641403682
gale_infotracmisc_A243526824
gale_infotracacademiconefile_A243526824
pubmed_primary_20729918
pascalfrancis_primary_23629989
crossref_primary_10_1038_onc_2010_363
crossref_citationtrail_10_1038_onc_2010_363
springer_journals_10_1038_onc_2010_363
PublicationCentury 2000
PublicationDate 20101125
PublicationDateYYYYMMDD 2010-11-25
PublicationDate_xml – month: 11
  year: 2010
  text: 20101125
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Basingstoke
– name: England
– name: New York
PublicationTitle Oncogene
PublicationTitleAbbrev Oncogene
PublicationTitleAlternate Oncogene
PublicationYear 2010
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kino, Takeshima, Nakao, Nishi, Yamamoto, Kimura (CR13) 2001; 6
Sestini, Bacci, Provenzano, Genuardi, Papi (CR16) 2008; 29
Evans, Huson, Donnai, Neary, Blair, Newton (CR6) 1992; 84
Gonzalez-Gomez, Bello, Alonso, Lomas, Arjona, Campos (CR7) 2003; 9
Hulsebos, Plomp, Wolterman, Robanus-Maandag, Baas, Wesseling (CR9) 2007; 80
Serra, Rosenbaum, Nadal, Winner, Ars, Estivill (CR15) 2001; 28
Kaplan, Aurias, Julier, Prieur, Szajnert (CR12) 1987; 24
Boyd, Smith, Kluwe, Balogh, Maccollin, Plotkin (CR1) 2008; 74
Carbone, Harris, Vessere, Mootnick, Humphray, Rogers (CR2) 2009; 5
Dunham, Shimizu, Roe, Chissoe, Hunt, Collins (CR4) 1999; 402
James, Varley (CR10) 1996; 4
De Raedt, Maertens, Chmara, Brems, Heyns, Sciot (CR3) 2006; 45
MacCollin, Willett, Heinrich, Jacoby, Acierno (CR14) 2003; 60
Hadfield, Newman, Bowers, Wallace, Bolger, Colley (CR8) 2008; 45
Edelmann, Pandita, Morrow (CR5) 1999; 64
Warren, James, Ramsden, Wallace, Baser, Varley (CR17) 2003; 40
James, Kelsey, Birch, Varley (CR11) 1999; 81
P Gonzalez-Gomez (BFonc2010363_CR7) 2003; 9
DG Evans (BFonc2010363_CR6) 1992; 84
E Serra (BFonc2010363_CR15) 2001; 28
KD Hadfield (BFonc2010363_CR8) 2008; 45
T Kino (BFonc2010363_CR13) 2001; 6
LA James (BFonc2010363_CR11) 1999; 81
C Warren (BFonc2010363_CR17) 2003; 40
T De Raedt (BFonc2010363_CR3) 2006; 45
M MacCollin (BFonc2010363_CR14) 2003; 60
I Dunham (BFonc2010363_CR4) 1999; 402
R Sestini (BFonc2010363_CR16) 2008; 29
TJ Hulsebos (BFonc2010363_CR9) 2007; 80
L Carbone (BFonc2010363_CR2) 2009; 5
L James (BFonc2010363_CR10) 1996; 4
C Boyd (BFonc2010363_CR1) 2008; 74
JC Kaplan (BFonc2010363_CR12) 1987; 24
L Edelmann (BFonc2010363_CR5) 1999; 64
References_xml – volume: 402
  start-page: 489
  year: 1999
  end-page: 495
  ident: CR4
  article-title: The DNA sequence of human chromosome 22
  publication-title: Nature
  doi: 10.1038/990031
– volume: 80
  start-page: 805
  year: 2007
  end-page: 810
  ident: CR9
  article-title: Germline mutation of INI1/SMARCB1 in familial schwannomatosis
  publication-title: Am J Hum Genet
  doi: 10.1086/513207
– volume: 81
  start-page: 300
  year: 1999
  end-page: 304
  ident: CR11
  article-title: Highly consistent genetic alterations in childhood adrenocortical tumours detected by comparative genomic hybridization
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6990691
– volume: 45
  start-page: 332
  year: 2008
  end-page: 339
  ident: CR8
  article-title: Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis
  publication-title: J Med Genet
  doi: 10.1136/jmg.2007.056499
– volume: 28
  start-page: 294
  year: 2001
  end-page: 296
  ident: CR15
  article-title: Mitotic recombination effects homozygosity for NF1 germline mutations in neurofibromas
  publication-title: Nat Genet
  doi: 10.1038/90148
– volume: 84
  start-page: 603
  year: 1992
  end-page: 618
  ident: CR6
  article-title: A clinical study of type 2 neurofibromatosis
  publication-title: Q J Med
– volume: 24
  start-page: 65
  year: 1987
  end-page: 78
  ident: CR12
  article-title: Human chromosome 22
  publication-title: J Med Genet
  doi: 10.1136/jmg.24.2.65
– volume: 5
  start-page: e1000538
  year: 2009
  ident: CR2
  article-title: Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000538
– volume: 74
  start-page: 358
  year: 2008
  end-page: 366
  ident: CR1
  article-title: Alterations in the SMARCB1 (INI1) tumor suppressor gene in familial schwannomatosis
  publication-title: Clin Genet
  doi: 10.1111/j.1399-0004.2008.01060.x
– volume: 6
  start-page: 441
  year: 2001
  end-page: 454
  ident: CR13
  article-title: Identification of the cis-acting region in the NF2 gene promoter as a potential target for mutation and methylation-dependent silencing in schwannoma
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2001.00432.x
– volume: 60
  start-page: 1968
  year: 2003
  end-page: 1974
  ident: CR14
  article-title: Familial schwannomatosis: exclusion of the NF2 locus as the germline event
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000070184.08740.E0
– volume: 4
  start-page: 163
  year: 1996
  end-page: 164
  ident: CR10
  article-title: Preparation, labelling and detection of DNA from archival tissue sections suitable for comparative genomic hybridization
  publication-title: Chromosome Res
  doi: 10.1007/BF02259711
– volume: 45
  start-page: 893
  year: 2006
  end-page: 904
  ident: CR3
  article-title: Somatic loss of wild type NF1 allele in neurofibromas: Comparison of NF1 microdeletion and non-microdeletion patients
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20353
– volume: 9
  start-page: 5601
  year: 2003
  end-page: 5606
  ident: CR7
  article-title: CpG island methylation in sporadic and neurofibromatis type 2-associated schwannomas
  publication-title: Clin Cancer Res
– volume: 64
  start-page: 1076
  year: 1999
  end-page: 1086
  ident: CR5
  article-title: Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome
  publication-title: Am J Hum Genet
  doi: 10.1086/302343
– volume: 29
  start-page: 227
  year: 2008
  end-page: 231
  ident: CR16
  article-title: Evidence of a four-hit mechanism involving SMARCB1 and NF2 in schwannomatosis-associated schwannomas
  publication-title: Hum Mutat
  doi: 10.1002/humu.20679
– volume: 40
  start-page: 802
  year: 2003
  end-page: 806
  ident: CR17
  article-title: Identification of recurrent regions of chromosome loss and gain in vestibular schwannomas using comparative genomic hybridisation
  publication-title: J Med Genet
  doi: 10.1136/jmg.40.11.802
– volume: 74
  start-page: 358
  year: 2008
  ident: BFonc2010363_CR1
  publication-title: Clin Genet
  doi: 10.1111/j.1399-0004.2008.01060.x
– volume: 40
  start-page: 802
  year: 2003
  ident: BFonc2010363_CR17
  publication-title: J Med Genet
  doi: 10.1136/jmg.40.11.802
– volume: 84
  start-page: 603
  year: 1992
  ident: BFonc2010363_CR6
  publication-title: Q J Med
– volume: 45
  start-page: 893
  year: 2006
  ident: BFonc2010363_CR3
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20353
– volume: 60
  start-page: 1968
  year: 2003
  ident: BFonc2010363_CR14
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000070184.08740.E0
– volume: 29
  start-page: 227
  year: 2008
  ident: BFonc2010363_CR16
  publication-title: Hum Mutat
  doi: 10.1002/humu.20679
– volume: 64
  start-page: 1076
  year: 1999
  ident: BFonc2010363_CR5
  publication-title: Am J Hum Genet
  doi: 10.1086/302343
– volume: 81
  start-page: 300
  year: 1999
  ident: BFonc2010363_CR11
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6990691
– volume: 45
  start-page: 332
  year: 2008
  ident: BFonc2010363_CR8
  publication-title: J Med Genet
  doi: 10.1136/jmg.2007.056499
– volume: 5
  start-page: e1000538
  year: 2009
  ident: BFonc2010363_CR2
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000538
– volume: 402
  start-page: 489
  year: 1999
  ident: BFonc2010363_CR4
  publication-title: Nature
  doi: 10.1038/990031
– volume: 80
  start-page: 805
  year: 2007
  ident: BFonc2010363_CR9
  publication-title: Am J Hum Genet
  doi: 10.1086/513207
– volume: 9
  start-page: 5601
  year: 2003
  ident: BFonc2010363_CR7
  publication-title: Clin Cancer Res
– volume: 4
  start-page: 163
  year: 1996
  ident: BFonc2010363_CR10
  publication-title: Chromosome Res
  doi: 10.1007/BF02259711
– volume: 24
  start-page: 65
  year: 1987
  ident: BFonc2010363_CR12
  publication-title: J Med Genet
  doi: 10.1136/jmg.24.2.65
– volume: 28
  start-page: 294
  year: 2001
  ident: BFonc2010363_CR15
  publication-title: Nat Genet
  doi: 10.1038/90148
– volume: 6
  start-page: 441
  year: 2001
  ident: BFonc2010363_CR13
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2001.00432.x
SSID ssj0007902
Score 2.3253798
Snippet Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in...
Biallelic inactivation of the NF2 gene occurs in the majority of schwannomas. This usually involves a combination of a point mutation or multiexon deletion, in...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6216
SubjectTerms 631/208/68
692/699/67/1922
Acoustic neuroma
Adolescent
Adult
Apoptosis
Biological and medical sciences
Cancer
Cell Biology
Cell division
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Child
Chromosome 22
Chromosome Breakpoints
Copy number
Fundamental and applied biological sciences. Psychology
Gene deletion
Gene Dosage - genetics
Gene mutations
Genes, Neurofibromatosis 2
Genetic aspects
Genetic disorders
Genotype & phenotype
Genotyping
Health aspects
Heterozygosity
Homozygote
Human Genetics
Humans
Hybridization
Internal Medicine
Loss of heterozygosity
Loss of Heterozygosity - genetics
Medical sciences
Medicine
Medicine & Public Health
Mitosis - genetics
Molecular and cellular biology
Mutation
Nervous system
Neurilemmoma - genetics
Neurofibromatoses - genetics
Neurofibromatosis
Neurofibromatosis 2
Neurofibromatosis 2 - genetics
Neurofibromin 2
Neurological disorders
Neurology
Nucleotide sequence
Oncology
original-article
Point mutation
Polymorphism, Single Nucleotide - genetics
Recombination
Recombination, Genetic - genetics
Risk factors
Schwann cells
Sequence analysis
Single nucleotide polymorphisms
Skin Neoplasms - genetics
Tumors
Tumors of the nervous system. Phacomatoses
Vestibular system
Young Adult
Title Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas
URI https://link.springer.com/article/10.1038/onc.2010.363
https://www.ncbi.nlm.nih.gov/pubmed/20729918
https://www.proquest.com/docview/2641403682
https://www.proquest.com/docview/815135880
https://www.proquest.com/docview/814464040
https://www.proquest.com/docview/864953628
Volume 29
WOSCitedRecordID wos000284601700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: M7P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest research library
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: 8C1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db5swED-t7b6kaR_pPli7yA_7eNhQwTZgnqYuarSXZlG1SXlDxsBaqYWsSTdl_8P-590ZkzRq15dJCITusDE-znfcjzuA1-hylFxHhZ_wivtSFfjOVXnghzoqRZjjAsQLW2wiGY3UZJKO3Qe3mYNVdjrRKuqiMfSNfA8XbkotFyv-cfrDp6pRFF11JTQ2YIuyJAgL3RsvNXHSYg7Righ8NGS4A74HQu01tWlxXSIWa0uSU8wPpnqGD6lqq1tcZ35eCZ3aFWn46H_H8hgeOluU7bfC8wRulXUP7rTVKRc9uDfoisH14O6hi8Fvw58jMk9ZU7FTHA0djwlS0_xefCcA2ILpumBnqCiwVUb-9hk633b-2UnNRkPO0KH-peuakEkfGLnVGttmNt9HTqjYywy2tdX5HLuYXaY_hW_Dg6-Dz74r6uAbVA5zP411kfJQp4YXVW5MShn0KlEKrbRRaI_qEp3Aokopvii0jKukCOI8ioyMTMQr8Qw266YuXwArjNR5GuQyLmOZ4xZVmv4DTqJc6FBqD95385oZl_GcCm-cZjbyLlSGUpCRFGQoBR68WXJP20wf_-B7RyKSkQLA1ox2_zHgPVEqrWyfS6o5oLj0YHeNE6fMrJH7a0K27JWjUYFecIrXd-KTOc0yy1ay48HOVbJCC05EqJQ9YEsqdUxYurpsLohFylii8r6BJSbYccyVB89baV_dHKWaT0OkvO3Ef9X7dc_r5c2j2IH7FpARhj6PdmFzfn5RvoLb5uf8ZHbeh41kkti9wr0ahH3Y-nQwGh_h2SH_0rfv-19NFlkd
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAzYkxKXjEjaGHxg8QLTGdhLnAaFpUG3aVk1oSHszjpOwSltSlo6p_Af-Cr-Rc3JpV23sbQ9IlarqnNqJfW62P58D8BqXHCk3fuKGPOOuVAnqXBZ3Xc_4qfBidEA8qYpNhP2-OjyM9ufgT3sXhmCVrU2sDHVSWNojX0fHTanlAsU_Dn-4VDWKTlfbEhq1WOyk43NcspUftj_h_K5x3vt8sLnlNlUFXIvSOXKjwCQR90xkeZLF1kaUwi0TqTDKWIUBkUlxFZJkER1wCSODLEy6Qez7VvrW55nAdm_BbQwjuKqggvsTyx_WGEeMWrouBk68Adp3hVovclvjyEQgZlxg4wjuD02Jk5LV1TSuCncvHdVWHrD38H8bu0fwoIm12UatHI9hLs07cLeuvjnuwOJmW-yuAwt7DcZgCX5_ofCbFRk7xtGj7yOCDBW_xt8J4DZmJk_YCRpCbJXRfsJJPKi3VNkgZ_0eZ6U9Ojd5Tsir94y2DQy2zap8JjGhfi8yVK1Nf4-wi_Ii_Ql8vZEhegrzeZGnz4ElVpo46sYySAMZ48fPDN1zDv1YGE8aB961cqRtk9GdCosc6wpZIJRGqdMkdRqlzoG1CfewzmTyD763JJKaDBy2Zk1zTwOfiVKF6Q0uqaaC4tKBlRlOnDI7Q16dEepJrxyDJlzlR_j_Vlx1YzlLPZVVB5YvkxVGqMJHp-MAm1CpY8IK5mlxRixSBhKd0zUsAcGqA64ceFZr1_ThKJV-5CHlTatu096vGq8X17_FK1jcOtjb1bvb_Z1luFeBTzzP5f4KzI9Oz9KXcMf-HA3K09XKljD4dtMK-BfuBLGO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwYS4lJuYWP4gcEDRE1s5_aA0NRRMQ2qCTFpb8FxYlZpS8rSMZX_wB_i13FOLs2qjb3tAalSVZ1TO7HPzfbncwBe4pIj48pL7YAbbsswRZ0ziWO7ysuEm6AD4mlVbCIYjcL9_Wh3Cf60d2EIVtnaxMpQp4WmPfI-Om5KLeeHvG8aWMTu1vD95IdNFaTopLUtp1GLyE42O8XlW_luewvneoPz4Yevg492U2HA1iipUzvyVRpxV0WapybROqJ0bkZkQoVKhxgcqQxXJKmJ6LBLKOmbIHX8xPO09LTHjcB2r8H1QKAU0y31QQcvCWq8I0Ywjo1BFG9A944I-0Wua0yZ8MWCO2ycwp2JKnGCTF1Z46LQ99yxbeUNh_f-53G8D3ebGJxt1krzAJayvAc366qcsx7cGrRF8Hqw8rnBHjyE318oLGeFYYc4kvR9QFCi4tfsOwHfZkzlKTtCA4mtMtpnOErG9VYrG-dsNOSs1AenKs8JkfWW0XaCwrZZleckITTwWYaqte73FLsoz9Ifwd6VDNFjWM6LPHsKLNVSJZGTSD_zZYIfzyi6_xx4iVCuVBa8aWUq1k2mdyo4chhXiAMRxiiBMUlgjBJowcace1JnOPkH32sSz5gMH7amVXN_A5-JUojFm1xSrYWQSwvWFjhxyvQCeX1BwOe9cgymcPUf4f9b0Y0bi1rGndxasHqeHGLkKjx0RhawOZU6JgxhnhUnxCKlL9FpXcLiE9za56EFT2pN6x6OUuxHLlJetarX9X7ReD27_C1ewArqXfxpe7SzCrcrTIrr2txbg-Xp8Un2HG7on9NxebxemRUG365a__4CzDG6BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rates+of+loss+of+heterozygosity+and+mitotic+recombination+in+NF2+schwannomas%2C+sporadic+vestibular+schwannomas+and+schwannomatosis+schwannomas&rft.jtitle=Oncogene&rft.au=Hadfield%2C+K+D&rft.au=Smith%2C+M+J&rft.au=Urquhart%2C+J+E&rft.au=Wallace%2C+A+J&rft.date=2010-11-25&rft.issn=0950-9232&rft.volume=29&rft.issue=47&rft.spage=6216&rft.epage=6221&rft_id=info:doi/10.1038%2Fonc.2010.363&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-9232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-9232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-9232&client=summon