A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells
Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that...
Saved in:
| Published in: | Nature communications Vol. 7; no. 1; pp. 11748 - 14 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
08.06.2016
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin
(HBB)
locus. At
HBB
, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins.
Origins of mammalian DNA replication are poorly characterised because they lack an Identifiable consensus sequence. Here the authors identify RepID, a protein that binds to a subset of G-rich replication origins and facilitates initiation from those origins. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/ncomms11748 |