Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine

In this paper, we propose a novel hybrid model that extends prior work involving ensemble empirical mode decomposition (EEMD) by using fuzzy entropy and extreme learning machine (ELM) methods. We demonstrate this 3-stage model by applying it to forecast carbon futures prices which are characterized...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of operations research Ročník 313; číslo 1; s. 559 - 601
Hlavní autoři: Chen, Peng, Vivian, Andrew, Ye, Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2022
Springer
Springer Nature B.V
Témata:
ISSN:0254-5330, 1572-9338
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a novel hybrid model that extends prior work involving ensemble empirical mode decomposition (EEMD) by using fuzzy entropy and extreme learning machine (ELM) methods. We demonstrate this 3-stage model by applying it to forecast carbon futures prices which are characterized by chaos and complexity. First, we employ the EEMD method to decompose carbon futures prices into a couple of intrinsic mode functions (IMFs) and one residue. Second, the fuzzy entropy and K-means clustering methods are used to reconstruct the IMFs and the residue to obtain three reconstructed components, specifically a high frequency series, a low frequency series, and a trend series. Third, the ARMA model is implemented for the stationary high and low frequency series, while the extreme learning machine (ELM) model is utilized for the non-stationary trend series. Finally, all the component forecasts are aggregated to form final forecasts of the carbon price for each model. The empirical results show that the proposed reconstruction algorithm can bring more than 40% improvement in prediction accuracy compared to the traditional fine-to-coarse reconstruction algorithm under the same forecasting framework. The hybrid forecasting model proposed in this paper also well captures the direction of the price changes, with strong and robust forecasting ability, which is significantly better than the single forecasting models and the other hybrid forecasting models.
AbstractList In this paper, we propose a novel hybrid model that extends prior work involving ensemble empirical mode decomposition (EEMD) by using fuzzy entropy and extreme learning machine (ELM) methods. We demonstrate this 3-stage model by applying it to forecast carbon futures prices which are characterized by chaos and complexity. First, we employ the EEMD method to decompose carbon futures prices into a couple of intrinsic mode functions (IMFs) and one residue. Second, the fuzzy entropy and K-means clustering methods are used to reconstruct the IMFs and the residue to obtain three reconstructed components, specifically a high frequency series, a low frequency series, and a trend series. Third, the ARMA model is implemented for the stationary high and low frequency series, while the extreme learning machine (ELM) model is utilized for the non-stationary trend series. Finally, all the component forecasts are aggregated to form final forecasts of the carbon price for each model. The empirical results show that the proposed reconstruction algorithm can bring more than 40% improvement in prediction accuracy compared to the traditional fine-to-coarse reconstruction algorithm under the same forecasting framework. The hybrid forecasting model proposed in this paper also well captures the direction of the price changes, with strong and robust forecasting ability, which is significantly better than the single forecasting models and the other hybrid forecasting models.
In this paper, we propose a novel hybrid model that extends prior work involving ensemble empirical mode decomposition (EEMD) by using fuzzy entropy and extreme learning machine (ELM) methods. We demonstrate this 3-stage model by applying it to forecast carbon futures prices which are characterized by chaos and complexity. First, we employ the EEMD method to decompose carbon futures prices into a couple of intrinsic mode functions (IMFs) and one residue. Second, the fuzzy entropy and K-means clustering methods are used to reconstruct the IMFs and the residue to obtain three reconstructed components, specifically a high frequency series, a low frequency series, and a trend series. Third, the ARMA model is implemented for the stationary high and low frequency series, while the extreme learning machine (ELM) model is utilized for the non-stationary trend series. Finally, all the component forecasts are aggregated to form final forecasts of the carbon price for each model. The empirical results show that the proposed reconstruction algorithm can bring more than 40% improvement in prediction accuracy compared to the traditional fine-to-coarse reconstruction algorithm under the same forecasting framework. The hybrid forecasting model proposed in this paper also well captures the direction of the price changes, with strong and robust forecasting ability, which is significantly better than the single forecasting models and the other hybrid forecasting models.In this paper, we propose a novel hybrid model that extends prior work involving ensemble empirical mode decomposition (EEMD) by using fuzzy entropy and extreme learning machine (ELM) methods. We demonstrate this 3-stage model by applying it to forecast carbon futures prices which are characterized by chaos and complexity. First, we employ the EEMD method to decompose carbon futures prices into a couple of intrinsic mode functions (IMFs) and one residue. Second, the fuzzy entropy and K-means clustering methods are used to reconstruct the IMFs and the residue to obtain three reconstructed components, specifically a high frequency series, a low frequency series, and a trend series. Third, the ARMA model is implemented for the stationary high and low frequency series, while the extreme learning machine (ELM) model is utilized for the non-stationary trend series. Finally, all the component forecasts are aggregated to form final forecasts of the carbon price for each model. The empirical results show that the proposed reconstruction algorithm can bring more than 40% improvement in prediction accuracy compared to the traditional fine-to-coarse reconstruction algorithm under the same forecasting framework. The hybrid forecasting model proposed in this paper also well captures the direction of the price changes, with strong and robust forecasting ability, which is significantly better than the single forecasting models and the other hybrid forecasting models.
Audience Academic
Author Vivian, Andrew
Ye, Cheng
Chen, Peng
Author_xml – sequence: 1
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: Department of Finance and Institute of Finance, School of Economics, Jinan University
– sequence: 2
  givenname: Andrew
  orcidid: 0000-0002-6036-4477
  surname: Vivian
  fullname: Vivian, Andrew
  email: A.J.Vivian@lboro.ac.uk
  organization: School of Business and Economics, Loughborough University
– sequence: 3
  givenname: Cheng
  surname: Ye
  fullname: Ye, Cheng
  organization: Department of Finance, School of Economics, Jinan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35002000$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFv1DAUhCNURLeFP8ABWeLCgZTn2I69HJCqigJSJS5wthzHyXqV2IudILa_nrfd0nYrVEVK5OSbsd9kToqjEIMritcUziiA_JApcLksoaIlcA51yZ8VCypkVS4ZU0fFAirBS8EYHBcnOa8BgFIlXhTHTABUuFwU68uYnDV58qEn1qQmBtLN05xcJpvkrftIDFltm-RbMrppFVvig41pE5O50XTz9fWWuDCluNkSE1ri_kzJjY4MzqSwQ0ZjVz64l8XzzgzZvbp9nhY_Lz__uPhaXn3_8u3i_Kq0QqoJzyusrA04RSXrDO8obaihouIKZ6tbYELU1LQNAHdNyyVidVXRpWVWLiVlp8Wnve9mbkbX2t3ZzKBxmtGkrY7G68Mvwa90H39rhVaKARq8uzVI8dfs8qRHn60bBhNcnLOuakyRsopLRN8-QtdxTgHHQ0oKdFNA76neDE770EXc1-5M9bkECUrUSiB19h8Kr9aN3uKv7zy-PxC8fyBo5owhZ7xl36-m3Js550P8zcNc7gL5VwYEqj1gU8w5ue4OoaB3jdP7xmlsnL5pnOYoUo9E1k9YjbjL1g9PS9lemnGf0Lt0H94Tqr997ejJ
CitedBy_id crossref_primary_10_1007_s10479_023_05434_y
crossref_primary_10_1016_j_jclepro_2024_144309
crossref_primary_10_12677_ecl_2024_1341615
crossref_primary_10_1108_CFRI_09_2023_0237
crossref_primary_10_1016_j_omega_2025_103281
crossref_primary_10_1007_s11356_023_25151_0
crossref_primary_10_1016_j_psep_2023_07_015
crossref_primary_10_1007_s10479_025_06525_8
crossref_primary_10_3390_math11132883
crossref_primary_10_1007_s11356_022_24570_9
crossref_primary_10_1007_s10479_022_04723_2
crossref_primary_10_1007_s11356_023_29028_0
crossref_primary_10_1016_j_energy_2024_132338
crossref_primary_10_1016_j_heliyon_2023_e23434
crossref_primary_10_1016_j_jclepro_2025_144960
crossref_primary_10_1016_j_eneco_2024_107833
crossref_primary_10_1007_s11071_024_10404_5
crossref_primary_10_1007_s10479_023_05347_w
crossref_primary_10_1016_j_ins_2024_121651
crossref_primary_10_1016_j_najef_2024_102147
crossref_primary_10_1007_s11356_022_22286_4
crossref_primary_10_1016_j_apenergy_2023_122613
crossref_primary_10_1007_s10479_024_05830_y
crossref_primary_10_1016_j_asoc_2023_110948
Cites_doi 10.1016/j.omega.2012.06.005
10.1016/j.enpol.2016.09.021
10.1007/s10479-020-03690-w
10.1007/s10479-018-2982-0
10.1016/j.apenergy.2012.04.001
10.1016/j.rser.2016.11.060
10.1016/j.apenergy.2009.12.019
10.1007/s10479-015-1864-y
10.1016/j.eneco.2011.03.003
10.1016/j.ecolecon.2018.10.001
10.1016/j.eneco.2007.02.012
10.1016/j.apenergy.2012.01.070
10.7763/IJESD.2013.V4.327
10.1016/j.renene.2016.03.103
10.1016/j.apenergy.2010.06.017
10.1016/j.enpol.2015.02.024
10.1109/TSTE.2014.2365580
10.1142/S1793536909000047
10.1016/j.apenergy.2017.01.076
10.1016/j.eneco.2017.12.030
10.1016/j.enconman.2016.02.013
10.1016/j.eneco.2020.104870
10.1016/j.eneco.2018.05.008
10.1016/j.renene.2011.06.023
10.1016/j.physa.2017.02.072
10.1080/07350015.1995.10524599
10.1016/j.eneco.2013.02.006
10.1016/j.eneco.2015.12.002
10.1016/j.eswa.2014.12.047
10.1016/j.eneco.2008.07.003
10.1016/j.apenergy.2021.116485
10.1016/j.eneco.2013.06.017
10.1007/s11269-015-0962-6
10.1098/rspa.1998.0193
10.1016/j.apenergy.2015.11.082
10.1016/j.enpol.2011.10.057
10.1016/j.medengphy.2008.04.005
10.1109/TNSRE.2007.897025
10.1016/j.eswa.2013.06.071
10.1016/j.econmod.2011.11.003
10.1016/j.apenergy.2015.07.025
10.1016/j.eneco.2010.04.001
10.1016/j.jhydrol.2015.08.022
10.1016/j.jclepro.2017.06.016
10.3390/en5020355
10.2991/emeeit-15.2015.61
10.1016/S0169-2070(96)00719-4
10.1007/978-1-4757-2440-0
10.3982/ECTA5771
10.1016/j.neucom.2005.12.126
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021.
COPYRIGHT 2022 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021.
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
N95
3V.
7TA
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
KR7
L.-
L6V
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOI 10.1007/s10479-021-04406-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale Business: Insights
ProQuest Central (Corporate)
Materials Business File
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database



MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 601
ExternalDocumentID PMC8717830
A707085685
35002000
10_1007_s10479_021_04406_4
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
NPM
7TA
7TB
7XB
8AL
8FD
8FK
FR3
JG9
JQ2
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c578t-535c76a0e8173fa4f11b1a152481576d035561adb004ebd4717362219c3c79713
IEDL.DBID RSV
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736409300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Tue Nov 04 01:56:44 EST 2025
Thu Oct 02 06:37:14 EDT 2025
Wed Nov 05 14:44:42 EST 2025
Sat Nov 29 14:02:11 EST 2025
Sat Nov 29 10:36:06 EST 2025
Sat Nov 29 09:28:27 EST 2025
Wed Feb 19 02:25:12 EST 2025
Sat Nov 29 02:36:45 EST 2025
Tue Nov 18 22:00:55 EST 2025
Fri Feb 21 02:49:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Carbon futures price
Fuzzy entropy
ARMA
Extreme learning machine
K-means clustering method
EEMD
Language English
License The Author(s) 2021.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-535c76a0e8173fa4f11b1a152481576d035561adb004ebd4717362219c3c79713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6036-4477
OpenAccessLink https://link.springer.com/10.1007/s10479-021-04406-4
PMID 35002000
PQID 2675830801
PQPubID 25585
PageCount 43
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8717830
proquest_miscellaneous_2618513247
proquest_journals_2675830801
gale_infotracmisc_A707085685
gale_infotracacademiconefile_A707085685
gale_businessinsightsgauss_A707085685
pubmed_primary_35002000
crossref_primary_10_1007_s10479_021_04406_4
crossref_citationtrail_10_1007_s10479_021_04406_4
springer_journals_10_1007_s10479_021_04406_4
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationTitleAlternate Ann Oper Res
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References ChenWZhuangJYuWMeasuring complexity using FuzzyEn, ApEn, and SampEnMedical Engineering & Physics20093116168
SongYLiuTLiangDLiYSongXA Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon MarketEcological Economics2019157253265
ChenWWangZXieHCharacterization of surface EMG signal based on fuzzy entropyIEEE Transactions on Neural Systems and Rehabilitation Engineering2007152266272
Jiang, M., Jia, L., Chen, Z., & Chen, W. (2020). The two-stage machine learning ensemble models for stock price prediction by combining mode decomposition, extreme learning machine and improved harmony search algorithm. Annals of Operations Research, 1–33. https://doi.org/10.1007/s10479-020-03690-w
TanXSirichandKVivianAWangXHow connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamicsEnergy Economics202090104870
WuZHuangNEEnsemble empirical mode decomposition: A noise-assisted data analysis methodAdvances in Adaptive Data Analysis200911141
SegnonMLuxTGuptaRModeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility modelsRenewable and Sustainable Energy Reviews201769692704
TangBJGongPQShenCFactors of carbon price volatility in a comparative analysis of the EUA and sCERAnnals of Operations Research20172551157168
Huang, Y., Dai, X., Wang, Q., & Zhou, D. (2021). A hybrid model for carbon price forecasting using GARCH and long short-term memory network. Applied Energy, 285, 116485.
ZhangYJWeiYMAn overview of current research on EU ETS: Evidence from its operating mechanism and economic effectApplied Energy201087618041814
BenzETrückSModeling the price dynamics of CO 2 emission allowancesEnergy Economics2009311415
Arouri, M. E. H., Jawadi, F., & Nguyen, D. K. (2012). Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS. Economic Modelling, 29(3), 884–892.
ZhuBHanDWangPWuZCForecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regressionApplied Energy2017191521530
Yu, L., Wang, Z., & Tang, L. (2015). A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. Applied Energy, 156, 251–267.
ZhangNLinAShangPMultidimensional k-nearest neighbor model based on EEMD for financial time series forecastingPhysica a: Statistical Mechanics and Its Applications2017477161173
SaninMEViolanteFMansanet-BatallerMUnderstanding volatility dynamics in the EU-ETS marketEnergy Policy201582321331
ZhuBYeSHeKChevallierJXieRMeasuring the risk of European carbon market: An empirical mode decomposition-based value at risk approachAnnals of Operations Research20192811373395
ZhangXKarplusVJQiTCarbon emissions in China: How far can new efforts bend the curve?Energy Economics201654388395
ZhangXLaiKKWangSYA new approach for crude oil price analysis based on empirical mode decompositionEnergy Economics2008303905918
VapnikVNThe nature of statistical learning theory1995Springer
ChevallierJNonparametric modeling of carbon pricesEnergy Economics201133612671282
HuangGBZhuQYSiewCKExtreme learning machine: Theory and applicationsNeurocomputing2006701489501
DieboldFXMarianoRSComparing Predictive AccuracyJournal of Business & Economic Statistics1995133253263
MengAGeJYinHWind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithmEnergy Conversion and Management20161147588
FengZHWeiYMWangKEstimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETSApplied Energy20129997108
WangWChauKXuDImproving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decompositionWater Resources Management201529826552675
HuangNEShenZLongSRThe empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysisProceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences19984541971903995
LiuHShiJApplying ARMA–GARCH approaches to forecasting short-term electricity pricesEnergy Economics201337152166
LiuHTianHLiYComparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed predictionApplied Energy201298415424
HarveyDLeybourneSNewboldPTesting the equality of prediction mean squared errorsInternational Journal of Forecasting1997132281291
ZhuBA novel multiscale ensemble carbon price prediction model integrating empirical mode decomposition, genetic algorithm and artificial neural networkEnergies201252355370
de Oliveira, F. A., Nobre, C. N., & Zárate, L. E. (2013). Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index–Case study of PETR4, Petrobras, Brazil. Expert Systems with Applications, 40(18), 7596–7606.
Zhu, B., Ye, S., Wang, P., He, K., Zhang, T., & Wei, Y. M. (2018). A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting. Energy Economics, 70, 143–157.
FengZHZouLLWeiYMCarbon price volatility: Evidence from EU ETSApplied Energy2011883590598
MontagnoliADe VriesFPCarbon trading thickness and market efficiencyEnergy Economics201032613311336
ByunSJChoHForecasting carbon futures volatility using GARCH models with energy volatilitiesEnergy Economics201340207221
TaorminaRChauKWData-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and Extreme Learning MachinesJournal of Hydrology201552916171632
Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.
Ortiz-CruzARodriguezEIbarra-ValdezCEfficiency of crude oil markets: Evidences from informational entropy analysisEnergy Policy201241365373
WangSZhangNWuLWind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network methodRenewable Energy201694629636
RootzénJJohnssonFPaying the full price of steel–Perspectives on the cost of reducing carbon dioxide emissions from the steel industryEnergy Policy201698459469
SunWWangCFZhangCFactor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimizationJournal of Cleaner Production201716210951101
Tsai, M. T., & Kuo, Y. T. (2013). A forecasting system of carbon price in the carbon trading markets using artificial neural network. International Journal of Environmental Science and Development, 4(2), 163.
FanXLiSTianLChaotic characteristic identification for carbon price and a multi-layer perceptron network prediction modelExpert Systems with Applications201542839453952
JiaoLLiaoYZhouQPredicting carbon market risk using information from macroeconomic fundamentalsEnergy Economics201873212227
ZhuBWeiYCarbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodologyOmega2013413517524
LiMJHeYLTaoWQModeling a hybrid methodology for evaluating and forecasting regional energy efficiency in ChinaApplied Energy201718517691777
Jiang, L., & Wu, P. (2015). International carbon market price forecasting using an integration model based on SVR. In International Conference on Engineering Management, Engineering Education and Information Technology.
GuoZZhaoWLuHMulti-step forecasting for wind speed using a modified EMD-based artificial neural network modelRenewable Energy2012371241249
RenYSuganthanPNSrikanthNA comparative study of empirical mode decomposition-based short-term wind speed forecasting methodsIEEE Transactions on Sustainable Energy201561236244
Z Wu (4406_CR37) 2009; 1
X Zhang (4406_CR40) 2008; 30
X Fan (4406_CR9) 2015; 42
A Ortiz-Cruz (4406_CR24) 2012; 41
4406_CR85
H Liu (4406_CR21) 2012; 98
4406_CR83
4406_CR80
4406_CR81
B Zhu (4406_CR45) 2013; 41
ZH Feng (4406_CR10) 2012; 99
M Segnon (4406_CR28) 2017; 69
B Zhu (4406_CR44) 2017; 191
4406_CR17
SJ Byun (4406_CR3) 2013; 40
X Zhang (4406_CR39) 2016; 54
W Chen (4406_CR6) 2009; 31
MJ Li (4406_CR19) 2017; 185
Y Ren (4406_CR25) 2015; 6
4406_CR91
A Meng (4406_CR22) 2016; 114
W Chen (4406_CR5) 2007; 15
X Tan (4406_CR32) 2020; 90
S Wang (4406_CR36) 2016; 94
J Rootzén (4406_CR26) 2016; 98
D Harvey (4406_CR13) 1997; 13
E Benz (4406_CR2) 2009; 31
B Zhu (4406_CR43) 2012; 5
ZH Feng (4406_CR11) 2011; 88
Z Guo (4406_CR12) 2012; 37
L Jiao (4406_CR16) 2018; 73
R Taormina (4406_CR31) 2015; 529
W Sun (4406_CR30) 2017; 162
ME Sanin (4406_CR27) 2015; 82
4406_CR444
H Liu (4406_CR20) 2013; 37
Y Song (4406_CR29) 2019; 157
4406_CR79
4406_CR78
GB Huang (4406_CR14) 2006; 70
B Zhu (4406_CR46) 2019; 281
NE Huang (4406_CR15) 1998; 454
YJ Zhang (4406_CR41) 2010; 87
A Montagnoli (4406_CR23) 2010; 32
N Zhang (4406_CR38) 2017; 477
J Chevallier (4406_CR7) 2011; 33
BJ Tang (4406_CR33) 2017; 255
W Wang (4406_CR35) 2015; 29
VN Vapnik (4406_CR34) 1995
FX Diebold (4406_CR8) 1995; 13
References_xml – reference: RootzénJJohnssonFPaying the full price of steel–Perspectives on the cost of reducing carbon dioxide emissions from the steel industryEnergy Policy201698459469
– reference: TangBJGongPQShenCFactors of carbon price volatility in a comparative analysis of the EUA and sCERAnnals of Operations Research20172551157168
– reference: ByunSJChoHForecasting carbon futures volatility using GARCH models with energy volatilitiesEnergy Economics201340207221
– reference: HuangNEShenZLongSRThe empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysisProceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences19984541971903995
– reference: ZhuBYeSHeKChevallierJXieRMeasuring the risk of European carbon market: An empirical mode decomposition-based value at risk approachAnnals of Operations Research20192811373395
– reference: ZhangNLinAShangPMultidimensional k-nearest neighbor model based on EEMD for financial time series forecastingPhysica a: Statistical Mechanics and Its Applications2017477161173
– reference: ChenWWangZXieHCharacterization of surface EMG signal based on fuzzy entropyIEEE Transactions on Neural Systems and Rehabilitation Engineering2007152266272
– reference: ZhangXKarplusVJQiTCarbon emissions in China: How far can new efforts bend the curve?Energy Economics201654388395
– reference: WuZHuangNEEnsemble empirical mode decomposition: A noise-assisted data analysis methodAdvances in Adaptive Data Analysis200911141
– reference: MontagnoliADe VriesFPCarbon trading thickness and market efficiencyEnergy Economics201032613311336
– reference: ZhuBWeiYCarbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodologyOmega2013413517524
– reference: TaorminaRChauKWData-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and Extreme Learning MachinesJournal of Hydrology201552916171632
– reference: Ortiz-CruzARodriguezEIbarra-ValdezCEfficiency of crude oil markets: Evidences from informational entropy analysisEnergy Policy201241365373
– reference: ZhangXLaiKKWangSYA new approach for crude oil price analysis based on empirical mode decompositionEnergy Economics2008303905918
– reference: SegnonMLuxTGuptaRModeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility modelsRenewable and Sustainable Energy Reviews201769692704
– reference: ZhangYJWeiYMAn overview of current research on EU ETS: Evidence from its operating mechanism and economic effectApplied Energy201087618041814
– reference: VapnikVNThe nature of statistical learning theory1995Springer
– reference: FengZHWeiYMWangKEstimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETSApplied Energy20129997108
– reference: LiuHTianHLiYComparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed predictionApplied Energy201298415424
– reference: ZhuBHanDWangPWuZCForecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regressionApplied Energy2017191521530
– reference: de Oliveira, F. A., Nobre, C. N., & Zárate, L. E. (2013). Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index–Case study of PETR4, Petrobras, Brazil. Expert Systems with Applications, 40(18), 7596–7606.
– reference: FengZHZouLLWeiYMCarbon price volatility: Evidence from EU ETSApplied Energy2011883590598
– reference: ChenWZhuangJYuWMeasuring complexity using FuzzyEn, ApEn, and SampEnMedical Engineering & Physics20093116168
– reference: Yu, L., Wang, Z., & Tang, L. (2015). A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. Applied Energy, 156, 251–267.
– reference: MengAGeJYinHWind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithmEnergy Conversion and Management20161147588
– reference: SaninMEViolanteFMansanet-BatallerMUnderstanding volatility dynamics in the EU-ETS marketEnergy Policy201582321331
– reference: HarveyDLeybourneSNewboldPTesting the equality of prediction mean squared errorsInternational Journal of Forecasting1997132281291
– reference: LiMJHeYLTaoWQModeling a hybrid methodology for evaluating and forecasting regional energy efficiency in ChinaApplied Energy201718517691777
– reference: DieboldFXMarianoRSComparing Predictive AccuracyJournal of Business & Economic Statistics1995133253263
– reference: Zhu, B., Ye, S., Wang, P., He, K., Zhang, T., & Wei, Y. M. (2018). A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting. Energy Economics, 70, 143–157.
– reference: LiuHShiJApplying ARMA–GARCH approaches to forecasting short-term electricity pricesEnergy Economics201337152166
– reference: GuoZZhaoWLuHMulti-step forecasting for wind speed using a modified EMD-based artificial neural network modelRenewable Energy2012371241249
– reference: ZhuBA novel multiscale ensemble carbon price prediction model integrating empirical mode decomposition, genetic algorithm and artificial neural networkEnergies201252355370
– reference: Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453–497.
– reference: Tsai, M. T., & Kuo, Y. T. (2013). A forecasting system of carbon price in the carbon trading markets using artificial neural network. International Journal of Environmental Science and Development, 4(2), 163.
– reference: JiaoLLiaoYZhouQPredicting carbon market risk using information from macroeconomic fundamentalsEnergy Economics201873212227
– reference: Jiang, L., & Wu, P. (2015). International carbon market price forecasting using an integration model based on SVR. In International Conference on Engineering Management, Engineering Education and Information Technology.
– reference: WangWChauKXuDImproving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decompositionWater Resources Management201529826552675
– reference: SongYLiuTLiangDLiYSongXA Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon MarketEcological Economics2019157253265
– reference: BenzETrückSModeling the price dynamics of CO 2 emission allowancesEnergy Economics2009311415
– reference: HuangGBZhuQYSiewCKExtreme learning machine: Theory and applicationsNeurocomputing2006701489501
– reference: ChevallierJNonparametric modeling of carbon pricesEnergy Economics201133612671282
– reference: FanXLiSTianLChaotic characteristic identification for carbon price and a multi-layer perceptron network prediction modelExpert Systems with Applications201542839453952
– reference: Arouri, M. E. H., Jawadi, F., & Nguyen, D. K. (2012). Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS. Economic Modelling, 29(3), 884–892.
– reference: WangSZhangNWuLWind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network methodRenewable Energy201694629636
– reference: TanXSirichandKVivianAWangXHow connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamicsEnergy Economics202090104870
– reference: RenYSuganthanPNSrikanthNA comparative study of empirical mode decomposition-based short-term wind speed forecasting methodsIEEE Transactions on Sustainable Energy201561236244
– reference: SunWWangCFZhangCFactor analysis and forecasting of CO2 emissions in Hebei, using extreme learning machine based on particle swarm optimizationJournal of Cleaner Production201716210951101
– reference: Huang, Y., Dai, X., Wang, Q., & Zhou, D. (2021). A hybrid model for carbon price forecasting using GARCH and long short-term memory network. Applied Energy, 285, 116485.
– reference: Jiang, M., Jia, L., Chen, Z., & Chen, W. (2020). The two-stage machine learning ensemble models for stock price prediction by combining mode decomposition, extreme learning machine and improved harmony search algorithm. Annals of Operations Research, 1–33. https://doi.org/10.1007/s10479-020-03690-w
– volume: 41
  start-page: 517
  issue: 3
  year: 2013
  ident: 4406_CR45
  publication-title: Omega
  doi: 10.1016/j.omega.2012.06.005
– volume: 98
  start-page: 459
  year: 2016
  ident: 4406_CR26
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2016.09.021
– ident: 4406_CR17
  doi: 10.1007/s10479-020-03690-w
– volume: 281
  start-page: 373
  issue: 1
  year: 2019
  ident: 4406_CR46
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-018-2982-0
– volume: 98
  start-page: 415
  year: 2012
  ident: 4406_CR21
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2012.04.001
– volume: 69
  start-page: 692
  year: 2017
  ident: 4406_CR28
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2016.11.060
– volume: 87
  start-page: 1804
  issue: 6
  year: 2010
  ident: 4406_CR41
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2009.12.019
– volume: 255
  start-page: 157
  issue: 1
  year: 2017
  ident: 4406_CR33
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-015-1864-y
– volume: 33
  start-page: 1267
  issue: 6
  year: 2011
  ident: 4406_CR7
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2011.03.003
– volume: 157
  start-page: 253
  year: 2019
  ident: 4406_CR29
  publication-title: Ecological Economics
  doi: 10.1016/j.ecolecon.2018.10.001
– volume: 30
  start-page: 905
  issue: 3
  year: 2008
  ident: 4406_CR40
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2007.02.012
– volume: 99
  start-page: 97
  year: 2012
  ident: 4406_CR10
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2012.01.070
– ident: 4406_CR80
  doi: 10.7763/IJESD.2013.V4.327
– volume: 94
  start-page: 629
  year: 2016
  ident: 4406_CR36
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.03.103
– volume: 88
  start-page: 590
  issue: 3
  year: 2011
  ident: 4406_CR11
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2010.06.017
– volume: 82
  start-page: 321
  year: 2015
  ident: 4406_CR27
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.02.024
– volume: 6
  start-page: 236
  issue: 1
  year: 2015
  ident: 4406_CR25
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2014.2365580
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 4406_CR37
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S1793536909000047
– volume: 191
  start-page: 521
  year: 2017
  ident: 4406_CR44
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.01.076
– ident: 4406_CR444
  doi: 10.1016/j.eneco.2017.12.030
– volume: 114
  start-page: 75
  year: 2016
  ident: 4406_CR22
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2016.02.013
– volume: 90
  start-page: 104870
  year: 2020
  ident: 4406_CR32
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2020.104870
– volume: 73
  start-page: 212
  year: 2018
  ident: 4406_CR16
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2018.05.008
– volume: 37
  start-page: 241
  issue: 1
  year: 2012
  ident: 4406_CR12
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.06.023
– volume: 477
  start-page: 161
  year: 2017
  ident: 4406_CR38
  publication-title: Physica a: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2017.02.072
– volume: 13
  start-page: 253
  issue: 3
  year: 1995
  ident: 4406_CR8
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.1995.10524599
– volume: 37
  start-page: 152
  year: 2013
  ident: 4406_CR20
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2013.02.006
– volume: 54
  start-page: 388
  year: 2016
  ident: 4406_CR39
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2015.12.002
– volume: 42
  start-page: 3945
  issue: 8
  year: 2015
  ident: 4406_CR9
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.12.047
– volume: 31
  start-page: 4
  issue: 1
  year: 2009
  ident: 4406_CR2
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2008.07.003
– ident: 4406_CR83
  doi: 10.1016/j.apenergy.2021.116485
– volume: 40
  start-page: 207
  year: 2013
  ident: 4406_CR3
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2013.06.017
– volume: 29
  start-page: 2655
  issue: 8
  year: 2015
  ident: 4406_CR35
  publication-title: Water Resources Management
  doi: 10.1007/s11269-015-0962-6
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 4406_CR15
  publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume: 185
  start-page: 1769
  year: 2017
  ident: 4406_CR19
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2015.11.082
– volume: 41
  start-page: 365
  year: 2012
  ident: 4406_CR24
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.10.057
– volume: 31
  start-page: 61
  issue: 1
  year: 2009
  ident: 4406_CR6
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2008.04.005
– volume: 15
  start-page: 266
  issue: 2
  year: 2007
  ident: 4406_CR5
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2007.897025
– ident: 4406_CR79
  doi: 10.1016/j.eswa.2013.06.071
– ident: 4406_CR78
  doi: 10.1016/j.econmod.2011.11.003
– ident: 4406_CR91
  doi: 10.1016/j.apenergy.2015.07.025
– volume: 32
  start-page: 1331
  issue: 6
  year: 2010
  ident: 4406_CR23
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2010.04.001
– volume: 529
  start-page: 1617
  year: 2015
  ident: 4406_CR31
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.08.022
– volume: 162
  start-page: 1095
  year: 2017
  ident: 4406_CR30
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.06.016
– volume: 5
  start-page: 355
  issue: 2
  year: 2012
  ident: 4406_CR43
  publication-title: Energies
  doi: 10.3390/en5020355
– ident: 4406_CR81
  doi: 10.2991/emeeit-15.2015.61
– volume: 13
  start-page: 281
  issue: 2
  year: 1997
  ident: 4406_CR13
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(96)00719-4
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 4406_CR34
  doi: 10.1007/978-1-4757-2440-0
– ident: 4406_CR85
  doi: 10.3982/ECTA5771
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 4406_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
SSID ssj0001185
Score 2.4828436
Snippet In this paper, we propose a novel hybrid model that extends prior work involving ensemble empirical mode decomposition (EEMD) by using fuzzy entropy and...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 559
SubjectTerms Algorithms
Artificial neural networks
Business and Management
Carbon
Cluster analysis
Clustering
Combinatorics
Emissions credit trading
Entropy
Forecasting
Futures
Low frequencies
Machine learning
Mathematical models
Operations research
Operations Research/Decision Theory
Original Research
Pricing
Reconstruction
Residues
Theory of Computation
Vector quantization
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQQgOFJavQEFGAnGgFnEcxwkXVCEqJFDFAVBvkeM4bREky2YXafvrmUmcbLMSvXDJxWMljifj8eT5PYAXhaxSIcqUJ4nKeOxkzDNVpLy0uCMqsyKVHRjz-2d9dJQeH2dffMGt9bDKISZ2gbpsLNXI30SU2UrMb8S7-W9OqlH0d9VLaFyFayKKBPn5J83HSIzJcwdhxE0QJxSlPzTjj87FOuMEUCDR5YTHk4VpOzxfWJ-2sZNbP1C7delw939HdAdu-4yUHfQudBeuuHoGNwZA_Ax2B-EH5uPADG5dYDG8Bz9I3tOalgDUzJpF0dSspypp2Zw4i94yw07XdDSM9YLVjCghegZl6lOtzs_XjEbazNfM1CXDFYPqlsxrWpywXx3m092Hb4cfvr7_yL2EA7cYCpb41pXViQldKrSsTFwJUQiDOQNxxOikDCXJc5qSgocrypgwAQnOZGal1Rm6ywPYqZvaPQJWaaMSGWVpqIrYqaTIMNVSUgtnK9xzygDEMH-59fzmJLPxM98wM9Oc5zjneTfneRzA67HPvGf3uNT6JblF7uVB8dJSAaU9Mau2zQ80Rs9UJakK4FVnRyECn8Aaf9IBx0FkWxPLvYklftp22jx4Tu5DS5tv3CaA52Mz9SS4XO2aFdmg5wvMlXUAD3t_HccnFW0RwjAAPfHk0YAIx6ct9dlpRzyOm2uNtw5gf_D5zWP9-7U9vnwUT-BmREdKusrWHuwsFyv3FK7bP8uzdvGs-6D_AjphTkE
  priority: 102
  providerName: ProQuest
Title Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine
URI https://link.springer.com/article/10.1007/s10479-021-04406-4
https://www.ncbi.nlm.nih.gov/pubmed/35002000
https://www.proquest.com/docview/2675830801
https://www.proquest.com/docview/2618513247
https://pubmed.ncbi.nlm.nih.gov/PMC8717830
Volume 313
WOSCitedRecordID wos000736409300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSF4YFBgBEZlJBAPECmJ49jhbUybkICq2mCUvUSO4-xDkFZNi9T99dzlo2sqQIKXkyqfk9g9n-_su98BvEh5rnw_U24UidgNLQ_dWKTKzQx6RFmcKl4FY558lIOBGo3iYZMUVrbR7u2VZKWpV5LdQhm7FFJAZZIjN9yALdzuFC3Ho-OTpf5Fk7kKXETXx6XYySZV5vfP6GxH60p5ZVdaj5hcuzatdqPD7f8bxz2421ifbK8Wl_twwxY9uNUGv_dguy3ywJo134M7K4iFD-CSSnkaXVKwNDN6mo4LVsOSlGxC-ERvmWbnC0oDY3VxakbwDzVaMvXJ51dXC0bjG08WTBcZw92BzihZU7_ijP2o4jvtQ_hyePB5_73blGtwDS77Gc61MDLSnlW-5LkOc99PfY32AeHByCjzOJXi1BkpCptmId3_RwFqTMONjFE0HsFmMS7sY2C51CLiQaw8kYZWRGmMZpXg0rcmR_-SO-C3_1piGixzKqnxPblGYaZZTnCWk2qWk9CB18s-kxrJ46_cL0kYkqYUKJKSDkvKMz0vy2RPoqZUIlLCgVcVH6kD_AKjm6wGHAcBa3U4dzucuIxNt7kVu6RRI2USkDvH0aj3HXi-bKaeFBpX2PGceFDefbSLpQM7tZQux8cFuQOe54DsyO-SgcDFuy3FxXkFMo6OtMRXO_CmleLrz_rztD35N_ancDugdJLqVGsXNmfTuX0GN83P2UU57cOG_PqN6Ej1YevdwWB4hL8-SBfpJ2-faDAkKo-RDsVpv1IEvwDNTEys
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aAzE4MCgDAgOMxMQBLJI4jhMkhKbBtGml4jDQbsFxnG0I0tK0oO6P4m_kvXy0SyV224FLL35OY-d92u_9HsDzVOSR52URD0MZ88CKgMcyjXhmMCLK4jQSVTLml74aDKKjo_jTCvxpa2EorbLViZWizoaGzshf--TZCvRvvHejn5y6RtHtattCo2aLAzv7jSFb-Xb_PX7fLd_f_XC4s8ebrgLcIHdOuBTSqFC7NvKUyHWQe17qaTRjBFuiwswV1DFSZ8TPNs0CuqYOfRRsI4yKcQX43CtwNQhQHChV0N2Za3501quUSQy6OGVtNkU6TaleoGJOCRHU5DnkQccQLpuDc_ZwOVdz6cK2soO76__bDt6GW43HzbZrEbkDK7bowfU24b8H621jC9bouR7cPIfSeBe-UftSo0tKEGdGj9NhwWoolpKNCJPpDdPsZEalb6xuyM0I8qJGiKY5-fTsbMZoZ4ejGdNFxtAi0rksa3p2HLMfVU6r3YDPl7IV92C1GBb2AbBcaRkKP45cmQZWhmmMrqQUyrMmx5haOOC1_JKYBr-d2oh8TxbI08RjCfJYUvFYEjjwcj5nVKOXXEi9RWyYNO1P8aekA6LyWE_LMtlWaB0iGUbSgRcVHalAfAOjm0oOXAeBiXUoNzuUqLpMd7jl1KRRnWWyYFMHns2HaSalAxZ2OCUalDQPYwHlwP1aPubrE5JCINd1QHUkZ05AgOrdkeL0pAJWj_Dz4F878KqVscVr_XvbHl68iqewtnf4sZ_09wcHj-CGT-Uz1SneJqxOxlP7GK6ZX5PTcvykUiYMvl627P0FUVem3w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgSZ4YFC-AgOMxMQDRGviOE6QEJoYFdOmqg-AJl6C4zjbECSlaUHdn8Zfx13itEsl9rYHXvricxpf7sNn3_0O4HnK88jzssgNQxG7geGBG4s0cjONEVEWpxGvkzE_H8rhMDo6ikdr8KethaG0ytYm1oY6KzWdke_4tLPluL_xdnKbFjHaG7wd_3SpgxTdtLbtNBoROTDz3xi-VW_29_Bbb_v-4P3Hdx9c22HA1SipU1dwoWWo-ibyJM9VkHte6il0aQRhIsOsz6l7pMpItk2aBXRlHfqo5JprGeNq8LlX4KrEGJMCv5H4svACuHGv0ycxAHMpg9MW7NiyvUDGLiVHUMPn0A06TnHVNZzzjat5myuXt7VPHGz-z9y8BTftTpztNqpzG9ZM0YONthCgB5ttwwtm7V8PbpxDb7wD36itqVYVJY4zrSZpWbAGoqViY8Jqes0UO5lTSRxrGnUzgsJokKNpTj47O5sz4nI5njNVZAwZROe1zPbyOGY_6lxXcxc-XQor7sF6URbmAbBcKhFyP476Ig2MCNMYt5iCS8_oHGNt7oDXyk6iLa47tRf5niwRqUneEpS3pJa3JHDg5WLOuEE1uZB6m0QysW1R8aeig6PqWM2qKtmV6DUiEUbCgRc1HZlGfAOtbIUHroNAxjqUWx1KNGm6O9xKbWJNapUsRdaBZ4thmklpgoUpZ0SDWudhjCAduN_oymJ9XFBo1O87IDtatCAgoPXuSHF6UgOuR_h58K8deNXq2_K1_s22hxev4ilsoMolh_vDg0dw3aeqmvpwbwvWp5OZeQzX9K_paTV5UtsVBl8vW_X-Ar87r_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+carbon+futures+price%3A+a+hybrid+method+incorporating+fuzzy+entropy+and+extreme+learning+machine&rft.jtitle=Annals+of+operations+research&rft.au=Chen%2C+Peng&rft.au=Vivian%2C+Andrew&rft.au=Ye%2C+Cheng&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=0254-5330&rft.eissn=1572-9338&rft.volume=313&rft.issue=1&rft.spage=559&rft.epage=601&rft_id=info:doi/10.1007%2Fs10479-021-04406-4&rft.externalDocID=10_1007_s10479_021_04406_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon