Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce...

Full description

Saved in:
Bibliographic Details
Published in:Nature climate change Vol. 6; no. 12; pp. 1130 - 1136
Main Authors: Liu, Bing, Asseng, Senthold, Muller, Christoph, Ewart, Frank, Elliott, Joshua, Lobell, David B., Martre, Pierre, Ruane, Alex C., Wallach, Daniel, Jones, James W., Rosenzweig, Cynthia, Deryng, Delphine
Format: Journal Article
Language:English
Published: Goddard Space Flight Center Nature Publishing Group UK 01.12.2016
Nature Publishing Group
Subjects:
ISSN:1758-678X, 1758-6798
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.
AbstractList The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.
The potential impact of global temperature change on global wheat production has recently been assessed with different methods, scaling and aggregation approaches. Here we show that grid-based simulations, point-based simulations, and statistical regressions produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1°C global temperature increase, global wheat yield is projected to decline by between 4.1% and 6.0%, a relatively narrow range considering the different methods used. Projected temperature impacts from different methods were very similar for major wheat producing countries China, India, USA and France, but less so for Russia. At the location scale, the point-based method simulated higher responses to temperature than the grid-based method. Specifically, the point-based method tended to predict more yield loss with increasing temperature at cooler locations and less yield loss at warmer locations. However, both point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in predicting that warmer regions are likely to suffer more yield reductions with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. Use of multi-methods model ensembles should significantly improves the accuracy of estimates of climate impacts on global food security.
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO 2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO sub(2) fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 degree C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO 2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security. The impact of climate change on crop yield can be estimated using a variety of methods. Here, a multi-method ensemble is used to quantify ‘method uncertainty’ and improve overall confidence in projections of climate impacts on wheat yields.
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.
Audience PUBLIC
Author Lobell, David B.
Liu, Bing
Deryng, Delphine
Wallach, Daniel
Rosenzweig, Cynthia
Martre, Pierre
Jones, James W.
Elliott, Joshua
Asseng, Senthold
Muller, Christoph
Ewart, Frank
Ruane, Alex C.
Author_xml – sequence: 1
  givenname: Bing
  surname: Liu
  fullname: Liu, Bing
  organization: Nanjing Agricultural Univ
– sequence: 2
  givenname: Senthold
  surname: Asseng
  fullname: Asseng, Senthold
  organization: Florida Univ
– sequence: 3
  givenname: Christoph
  surname: Muller
  fullname: Muller, Christoph
  organization: Potsdam-Inst. fuer Klimafolgenforschung
– sequence: 4
  givenname: Frank
  surname: Ewart
  fullname: Ewart, Frank
  organization: Bonn Univ
– sequence: 5
  givenname: Joshua
  surname: Elliott
  fullname: Elliott, Joshua
  organization: Columbia Univ
– sequence: 6
  givenname: David B.
  surname: Lobell
  fullname: Lobell, David B.
  organization: Stanford Univ
– sequence: 7
  givenname: Pierre
  surname: Martre
  fullname: Martre, Pierre
  organization: Institut National de la Recherche Agronomique
– sequence: 8
  givenname: Alex C.
  surname: Ruane
  fullname: Ruane, Alex C.
  organization: NASA Goddard Inst. for Space Studies
– sequence: 9
  givenname: Daniel
  surname: Wallach
  fullname: Wallach, Daniel
  organization: Institut National de la Recherche Agronomique
– sequence: 10
  givenname: James W.
  surname: Jones
  fullname: Jones, James W.
  organization: Florida Univ
– sequence: 11
  givenname: Cynthia
  surname: Rosenzweig
  fullname: Rosenzweig, Cynthia
  organization: NASA Goddard Inst. for Space Studies
– sequence: 12
  givenname: Delphine
  surname: Deryng
  fullname: Deryng, Delphine
  organization: Columbia Univ
BackLink https://hal.science/hal-01604315$$DView record in HAL
BookMark eNqFks9rFTEQxxepYK29efSw4EXB1WTz8mO9lVLbwhMPPlHxELLZWV9KNrsmWUv_e2ddlVIUc5gJw-c7zHyZh8VBGAMUxWNKXlLC1KtgvRtMBkYpv1ccUslVJWSjDv781acHxXFKVwSfpIKJ5rD48t4NzptYnqX8U57KsS93MEwQTZ4jlJfDZGzGcijP_dgaX37cg8nlZwe-K9ubcrePgFjoYAIMIZdvIe_HLj0q7vfGJzj-lY-KD2_OdqcX1fbd-eXpybayXMpc9aJvZA89UKGAgwBSc6Ns1zaC2K4DxjbU1rbjXBrWqrZpSN3KtgYhBe8YsKPi9dr32nyF4AIGHUy0LunROO1dG0280ddz1MEvaZrbpDm6xhWKn6_ivfF6iugBoovs4mSrlxqhgmwY5d8pss9WdorjtxlS1oNLFrw3AcY56RqNrQXhDf8vSpVQjFAmJaJP76BX4xwDOoYU54rWG8WQqlfKxjGlCL22LpvsxpCjcV5Topcz0LfPAEUv7oh-b_gPvFrxhBjaGG9N8nf-ycoHk4zGQRYL0C5C6QZ3-wFmEtB8
CitedBy_id crossref_primary_10_1002_joc_6792
crossref_primary_10_1038_s41598_022_11423_1
crossref_primary_10_3389_fpls_2022_844292
crossref_primary_10_1111_gcb_14885
crossref_primary_10_1016_j_envexpbot_2022_104902
crossref_primary_10_1029_2018JD029996
crossref_primary_10_1007_s10142_024_01488_8
crossref_primary_10_1038_s41598_023_37634_8
crossref_primary_10_3390_land11081152
crossref_primary_10_1111_gcb_70351
crossref_primary_10_7717_peerj_cs_233
crossref_primary_10_1111_1477_8947_70007
crossref_primary_10_1093_jxb_erab090
crossref_primary_10_3390_agronomy12092071
crossref_primary_10_1029_2022EF003106
crossref_primary_10_1080_17441730_2018_1543960
crossref_primary_10_1016_j_compag_2024_108962
crossref_primary_10_1038_s41558_021_01000_1
crossref_primary_10_56093_ijas_v94i6_144358
crossref_primary_10_1111_nph_16937
crossref_primary_10_1002_joc_5473
crossref_primary_10_1002_joc_7652
crossref_primary_10_1088_1748_9326_ab7b24
crossref_primary_10_1017_S0021859621000903
crossref_primary_10_3390_su9050851
crossref_primary_10_3390_rs15184615
crossref_primary_10_1016_j_fcr_2018_08_014
crossref_primary_10_31083_j_fbe1601002
crossref_primary_10_1002_fes3_503
crossref_primary_10_1038_s41598_025_07405_8
crossref_primary_10_1088_2976_601X_ad5727
crossref_primary_10_1111_1752_1688_12873
crossref_primary_10_3389_fpls_2024_1410388
crossref_primary_10_1088_1748_9326_aa6cb9
crossref_primary_10_1016_j_fcr_2017_06_007
crossref_primary_10_1002_tpg2_20414
crossref_primary_10_3390_agronomy14010159
crossref_primary_10_3390_agriculture13010099
crossref_primary_10_1002_ird_2373
crossref_primary_10_1088_1748_9326_aa8da6
crossref_primary_10_3390_plants9091094
crossref_primary_10_1088_1748_9326_aa6b0c
crossref_primary_10_3389_fsufs_2023_1291866
crossref_primary_10_1007_s00299_021_02696_3
crossref_primary_10_3390_agronomy11040689
crossref_primary_10_1002_ppp3_70039
crossref_primary_10_1016_j_fcr_2020_107756
crossref_primary_10_1088_1748_9326_ab1e75
crossref_primary_10_1038_s41598_025_02502_0
crossref_primary_10_1111_pce_70039
crossref_primary_10_1016_j_scitotenv_2019_06_153
crossref_primary_10_1002_agg2_20453
crossref_primary_10_3389_fpls_2022_895742
crossref_primary_10_3389_fmicb_2022_926059
crossref_primary_10_3389_fpls_2017_01950
crossref_primary_10_1016_j_pmpp_2021_101646
crossref_primary_10_2478_plua_2025_0010
crossref_primary_10_3390_agronomy14091999
crossref_primary_10_1007_s13593_019_0562_6
crossref_primary_10_1371_journal_pone_0204932
crossref_primary_10_1007_s10584_017_1965_5
crossref_primary_10_1111_gcb_14542
crossref_primary_10_1002_jsfa_11300
crossref_primary_10_1073_pnas_1701762114
crossref_primary_10_1016_j_scitotenv_2020_139616
crossref_primary_10_1111_gcb_14411
crossref_primary_10_1038_s43016_021_00341_6
crossref_primary_10_1016_j_scitotenv_2017_10_247
crossref_primary_10_1007_s10343_023_00874_9
crossref_primary_10_1016_j_eja_2020_126149
crossref_primary_10_1016_j_agrformet_2021_108478
crossref_primary_10_1016_j_jenvman_2025_124716
crossref_primary_10_1038_s41598_019_54328_2
crossref_primary_10_3389_fpls_2023_1101271
crossref_primary_10_1016_j_jcs_2020_102960
crossref_primary_10_1080_23311932_2023_2288394
crossref_primary_10_1111_jac_12674
crossref_primary_10_1007_s00438_018_1455_0
crossref_primary_10_1007_s11356_022_24478_4
crossref_primary_10_1016_j_agrformet_2022_109230
crossref_primary_10_1016_j_agrformet_2017_02_033
crossref_primary_10_3390_plants10122792
crossref_primary_10_1038_s41598_025_09820_3
crossref_primary_10_1016_j_eja_2023_127066
crossref_primary_10_3390_agronomy15092148
crossref_primary_10_1016_j_scitotenv_2022_158822
crossref_primary_10_1016_j_biombioe_2025_107590
crossref_primary_10_1016_j_eja_2022_126610
crossref_primary_10_1016_j_pbi_2019_12_006
crossref_primary_10_3390_rs14102340
crossref_primary_10_1111_mec_14903
crossref_primary_10_3390_ijms24076603
crossref_primary_10_1016_j_oneear_2022_07_004
crossref_primary_10_1007_s42976_022_00307_9
crossref_primary_10_1016_j_nexres_2025_100307
crossref_primary_10_3390_su16177742
crossref_primary_10_1016_j_compag_2025_110604
crossref_primary_10_1371_journal_pone_0217148
crossref_primary_10_1007_s10584_019_02532_4
crossref_primary_10_1016_j_agwat_2020_106020
crossref_primary_10_1016_j_scitotenv_2023_163105
crossref_primary_10_1038_s41598_025_87047_y
crossref_primary_10_1111_jam_15375
crossref_primary_10_1038_s41598_025_06370_6
crossref_primary_10_3389_fpls_2023_1241281
crossref_primary_10_1016_j_agsy_2020_102844
crossref_primary_10_1016_j_jenvman_2025_126472
crossref_primary_10_5937_ratpov61_48887
crossref_primary_10_1088_1748_9326_aa6eb2
crossref_primary_10_3390_plants10081596
crossref_primary_10_1088_1748_9326_ab374a
crossref_primary_10_1002_joc_6882
crossref_primary_10_1073_pnas_1706383114
crossref_primary_10_1002_joc_5314
crossref_primary_10_1093_pcp_pcaa072
crossref_primary_10_1007_s10681_024_03424_0
crossref_primary_10_1016_j_envsoft_2024_106119
crossref_primary_10_1038_s41558_022_01334_4
crossref_primary_10_1016_j_jenvman_2025_125158
crossref_primary_10_1016_j_eja_2024_127386
crossref_primary_10_3390_agronomy12020374
crossref_primary_10_1016_j_indcrop_2023_117167
crossref_primary_10_1111_jac_70048
crossref_primary_10_1111_jipb_13963
crossref_primary_10_1186_s40066_021_00315_8
crossref_primary_10_1111_gcb_14157
crossref_primary_10_1016_j_agwat_2025_109540
crossref_primary_10_1038_s43016_020_00148_x
crossref_primary_10_1002_met_1738
crossref_primary_10_1016_j_agwat_2023_108334
crossref_primary_10_1016_j_onehlt_2025_101084
crossref_primary_10_3354_cr01519
crossref_primary_10_1016_j_fcr_2024_109695
crossref_primary_10_1002_jsfa_11576
crossref_primary_10_1007_s11105_024_01500_2
crossref_primary_10_1088_1748_9326_acf147
crossref_primary_10_1016_j_agrformet_2018_09_008
crossref_primary_10_1016_j_fcr_2025_110090
crossref_primary_10_1007_s00122_021_03795_1
crossref_primary_10_3389_fpls_2025_1572901
crossref_primary_10_1016_j_eja_2019_03_002
crossref_primary_10_1016_j_eja_2020_126113
crossref_primary_10_3724_aauj_2024001
crossref_primary_10_1038_s41558_024_02069_0
crossref_primary_10_1038_s43016_023_00891_x
crossref_primary_10_1016_j_jhazmat_2025_138720
crossref_primary_10_3390_w15030600
crossref_primary_10_1111_pbi_13529
crossref_primary_10_1088_1748_9326_ac5716
crossref_primary_10_1111_pce_13756
crossref_primary_10_3390_su12198256
crossref_primary_10_1016_j_agrformet_2019_02_025
crossref_primary_10_1007_s10584_018_2150_1
crossref_primary_10_1016_j_eja_2024_127295
crossref_primary_10_1016_j_scitotenv_2023_166711
crossref_primary_10_3390_ijgi11080433
crossref_primary_10_3389_fsufs_2024_1349840
crossref_primary_10_1088_1748_9326_ab27fc
crossref_primary_10_3389_fpls_2023_1232675
crossref_primary_10_1007_s00704_018_2618_y
crossref_primary_10_1007_s40808_020_00932_5
crossref_primary_10_1016_j_envexpbot_2025_106113
crossref_primary_10_1016_j_jclepro_2022_132993
crossref_primary_10_1088_1748_9326_aaaa99
crossref_primary_10_1111_jac_70030
crossref_primary_10_1002_jaa2_92
crossref_primary_10_1093_erae_jbae015
crossref_primary_10_1007_s12665_018_8033_y
crossref_primary_10_3390_agronomy9080414
crossref_primary_10_1016_j_pep_2018_04_007
crossref_primary_10_3390_cimb47030177
crossref_primary_10_1016_j_pmpp_2021_101679
crossref_primary_10_3389_fpls_2021_628726
crossref_primary_10_3390_agronomy13092251
crossref_primary_10_1093_jxb_erae291
crossref_primary_10_1007_s00704_019_02939_0
crossref_primary_10_1016_j_agrformet_2025_110637
crossref_primary_10_1007_s42106_024_00282_7
crossref_primary_10_1007_s42976_020_00112_2
crossref_primary_10_1016_j_agrformet_2025_110632
crossref_primary_10_1016_j_envexpbot_2021_104589
crossref_primary_10_1016_j_fcr_2017_07_018
crossref_primary_10_1007_s10725_025_01336_0
crossref_primary_10_1029_2023EF004063
crossref_primary_10_1080_00380768_2018_1525573
crossref_primary_10_1016_j_scitotenv_2017_06_211
crossref_primary_10_1016_j_worlddev_2024_106826
crossref_primary_10_3389_fgeed_2025_1533197
crossref_primary_10_1016_j_envsoft_2020_104807
crossref_primary_10_11648_j_aff_20251403_12
crossref_primary_10_1007_s11027_019_09874_5
crossref_primary_10_1007_s00704_020_03492_x
crossref_primary_10_1088_1748_9326_abc71a
crossref_primary_10_1002_agj2_20112
crossref_primary_10_1016_j_agee_2024_109230
crossref_primary_10_1111_pbi_13946
crossref_primary_10_1016_j_agrformet_2024_110087
crossref_primary_10_1007_s42106_023_00254_3
crossref_primary_10_1007_s42729_021_00474_4
crossref_primary_10_1088_1748_9326_ac3870
crossref_primary_10_1016_j_agwat_2019_105991
crossref_primary_10_1016_j_fcr_2023_109122
crossref_primary_10_1038_s43016_021_00400_y
crossref_primary_10_1007_s42106_021_00140_w
crossref_primary_10_3390_ijerph15112540
crossref_primary_10_1016_j_agwat_2019_105890
crossref_primary_10_1029_2024JG008150
crossref_primary_10_3390_w13243624
crossref_primary_10_1029_2018EF001130
crossref_primary_10_1007_s00344_023_11029_5
crossref_primary_10_1590_1519_6984_253898
crossref_primary_10_1088_1748_9326_aa518a
crossref_primary_10_3389_fpls_2022_886541
crossref_primary_10_3390_agriculture15050449
crossref_primary_10_1007_s10343_023_00938_w
crossref_primary_10_3389_fagro_2021_806146
crossref_primary_10_1007_s00704_021_03832_5
crossref_primary_10_1016_j_gfs_2019_04_002
crossref_primary_10_1016_j_agrformet_2023_109396
crossref_primary_10_3390_plants12152851
crossref_primary_10_1111_gcb_14110
crossref_primary_10_1016_j_agwat_2023_108410
crossref_primary_10_2139_ssrn_5006753
crossref_primary_10_3390_su151813706
crossref_primary_10_1016_j_fcr_2023_109112
crossref_primary_10_1038_s41598_017_01599_2
crossref_primary_10_1093_ajae_aaz027
crossref_primary_10_1017_sus_2018_11
crossref_primary_10_3389_fnut_2024_1393076
crossref_primary_10_3389_fpls_2022_826205
crossref_primary_10_3390_su16135688
crossref_primary_10_1016_j_eja_2023_126917
crossref_primary_10_1007_s00122_024_04748_0
crossref_primary_10_3390_ijms19103196
crossref_primary_10_1111_gcb_13738
crossref_primary_10_1007_s41101_024_00329_w
crossref_primary_10_1016_j_jenvman_2021_112874
crossref_primary_10_1093_jxb_eraf070
crossref_primary_10_1111_pce_14015
crossref_primary_10_1016_j_ecoser_2017_08_015
crossref_primary_10_1093_plphys_kiab113
crossref_primary_10_1111_pbi_13296
crossref_primary_10_3389_fpls_2020_00544
crossref_primary_10_1016_j_agsy_2016_10_006
crossref_primary_10_1093_jxb_erab256
crossref_primary_10_1002_agj2_21351
crossref_primary_10_1111_pbi_14025
crossref_primary_10_3390_foods10061414
crossref_primary_10_1017_sus_2024_27
crossref_primary_10_1007_s42976_025_00634_7
crossref_primary_10_1016_j_agwat_2019_06_004
crossref_primary_10_5194_acp_22_2625_2022
crossref_primary_10_1093_jxb_ery081
crossref_primary_10_1016_j_scitotenv_2020_138235
crossref_primary_10_1016_j_fcr_2017_12_015
crossref_primary_10_3389_fpls_2020_00891
crossref_primary_10_1088_1748_9326_ab17fb
crossref_primary_10_1002_joc_8371
crossref_primary_10_1093_jxb_erz296
crossref_primary_10_1038_s41467_022_33265_1
crossref_primary_10_1038_s41477_021_00988_w
crossref_primary_10_1038_s41598_021_84308_4
crossref_primary_10_1080_0952813X_2022_2062458
crossref_primary_10_1007_s11442_023_2073_2
crossref_primary_10_3390_agriculture14111961
crossref_primary_10_1016_j_agrformet_2022_109191
crossref_primary_10_1175_WCAS_D_19_0026_1
crossref_primary_10_3390_agronomy8050068
crossref_primary_10_3389_fpls_2024_1459283
crossref_primary_10_1016_j_eja_2022_126579
crossref_primary_10_1186_s12870_024_05116_2
crossref_primary_10_1007_s00484_021_02209_7
crossref_primary_10_3390_antiox10010108
crossref_primary_10_1016_j_eja_2022_126574
crossref_primary_10_3389_fpls_2023_1101818
crossref_primary_10_1002_joc_4975
crossref_primary_10_3390_agronomy10040499
crossref_primary_10_1016_j_landusepol_2021_105394
crossref_primary_10_1007_s42976_025_00682_z
crossref_primary_10_1016_j_agrformet_2023_109458
crossref_primary_10_1016_j_scitotenv_2020_143206
crossref_primary_10_3390_plants11243471
crossref_primary_10_1016_j_fcr_2018_02_023
crossref_primary_10_1016_j_stress_2024_100636
crossref_primary_10_3390_agronomy12112767
crossref_primary_10_5194_nhess_19_1215_2019
crossref_primary_10_1038_s41893_020_0569_7
crossref_primary_10_1111_agec_12448
crossref_primary_10_1038_s44264_025_00067_z
crossref_primary_10_1111_tpj_70253
crossref_primary_10_1038_s41598_017_08214_4
crossref_primary_10_1038_s41477_024_01739_3
crossref_primary_10_1016_j_agee_2025_109722
crossref_primary_10_1002_jsfa_10993
crossref_primary_10_3354_cr01485
crossref_primary_10_1088_1748_9326_aa95ae
crossref_primary_10_1111_gcb_15649
crossref_primary_10_1007_s00704_018_2637_8
crossref_primary_10_1007_s13351_019_8143_9
crossref_primary_10_1016_j_foodpol_2017_05_001
crossref_primary_10_1038_s41598_022_10670_6
crossref_primary_10_1088_1748_9326_aafa3e
crossref_primary_10_1016_j_agee_2022_108179
crossref_primary_10_1155_2019_2767018
crossref_primary_10_3390_agronomy8040034
crossref_primary_10_3390_ijms24043099
crossref_primary_10_3390_agronomy11040695
crossref_primary_10_1016_j_compag_2023_108250
crossref_primary_10_1007_s40009_022_01125_7
crossref_primary_10_1088_1748_9326_ab66cb
crossref_primary_10_1088_1748_9326_ac2196
crossref_primary_10_1088_1748_9326_aca77c
crossref_primary_10_1038_s41558_022_01376_8
crossref_primary_10_1016_j_eja_2022_126678
crossref_primary_10_1038_s42003_024_06525_7
crossref_primary_10_1007_s00122_018_3206_3
crossref_primary_10_1017_S0021859619000492
crossref_primary_10_1111_agec_12551
crossref_primary_10_1016_j_envpol_2019_07_114
crossref_primary_10_3390_microbiolres14030064
crossref_primary_10_3389_fpls_2020_01273
crossref_primary_10_1016_j_resconrec_2021_105811
crossref_primary_10_1016_j_agsy_2021_103278
crossref_primary_10_1088_1748_9326_abeb9f
crossref_primary_10_1111_1462_2920_14945
crossref_primary_10_1002_jsfa_13247
crossref_primary_10_1038_s41612_023_00361_y
crossref_primary_10_1093_ajae_aay103
crossref_primary_10_3390_agriculture12030348
crossref_primary_10_3390_agronomy8070128
crossref_primary_10_1038_s41598_019_55483_2
crossref_primary_10_3390_agronomy13030891
crossref_primary_10_1016_j_eja_2019_01_009
crossref_primary_10_1016_j_ijbiomac_2023_128379
crossref_primary_10_3390_agronomy12010037
crossref_primary_10_1007_s10681_024_03404_4
crossref_primary_10_5194_hess_25_551_2021
crossref_primary_10_1016_j_scitotenv_2018_06_344
crossref_primary_10_1111_gcb_13808
crossref_primary_10_1038_nplants_2017_102
crossref_primary_10_1007_s42106_022_00208_1
crossref_primary_10_1016_j_heliyon_2022_e09893
crossref_primary_10_1016_j_agsy_2017_07_010
crossref_primary_10_1111_1467_8489_12469
crossref_primary_10_1016_j_jclepro_2022_135759
crossref_primary_10_1088_1748_9326_aa8d27
crossref_primary_10_1016_j_agwat_2025_109727
crossref_primary_10_1007_s10113_023_02172_6
crossref_primary_10_1016_j_agrformet_2019_107770
crossref_primary_10_1038_s41558_021_01102_w
crossref_primary_10_1016_j_fcr_2022_108624
crossref_primary_10_1088_2515_7620_ace2a0
Cites_doi 10.1002/joc.3463
10.1071/PP9940695
10.1016/j.agrformet.2012.12.008
10.1111/gcb.12768
10.1111/j.1365-2486.2010.02262.x
10.1029/2008GB003435
10.1016/j.eja.2010.07.002
10.1126/science.1185383
10.1142/9781783265640_0010
10.1038/nclimate1356
10.1073/pnas.1407302112
10.1111/j.1469-8137.2008.02500.x
10.1088/1748-9326/2/1/014002
10.1016/j.agrformet.2012.09.011
10.1111/gcb.12520
10.1016/j.fcr.2005.01.007
10.1016/j.agrformet.2013.02.010
10.1038/367133a0
10.5194/esd-4-219-2013
10.1098/rsta.2010.0246
10.1073/pnas.1415181112
10.1038/nclimate1916
10.1071/AR9890001
10.1104/pp.112.207753
10.1038/nclimate2153
10.1038/nclimate2995
10.1073/pnas.1222463110
10.1111/gcb.12830
10.1088/1748-9326/10/11/115002
10.1126/science.1164363
10.1126/science.1204531
10.1088/1748-9326/10/4/045003
10.1142/9781783265640_0009
10.3354/cr01322
10.1111/j.1365-2486.2012.02724.x
10.1038/nclimate2470
10.1017/S0021859610000675
10.1038/nclimate1043
10.1016/j.envsoft.2014.12.003
10.1016/j.fcr.2013.11.008
10.1073/pnas.0906865106
10.1016/S1161-0301(97)00022-1
10.1007/s10113-013-0418-6
10.3354/cr01212
10.1038/nclimate1585
10.1016/j.agee.2011.05.016
ContentType Journal Article
Copyright Springer Nature Limited 2016
Copyright Nature Publishing Group Dec 2016
licence_http://creativecommons.org/publicdomain/zero
Wageningen University & Research
Copyright_xml – notice: Springer Nature Limited 2016
– notice: Copyright Nature Publishing Group Dec 2016
– notice: licence_http://creativecommons.org/publicdomain/zero
– notice: Wageningen University & Research
DBID CYE
CYI
AAYXX
CITATION
3V.
7ST
7TG
7TN
7XB
88I
8AF
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
KL.
L.G
M2P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
SOI
7S9
L.6
1XC
VOOES
QVL
DOI 10.1038/nclimate3115
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
NARCIS:Publications
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional



Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Environmental Sciences
EISSN 1758-6798
EndPage 1136
ExternalDocumentID oai_library_wur_nl_wurpubs_510358
oai:HAL:hal-01604315v1
4294345131
10_1038_nclimate3115
20160011401
GeographicLocations ANE, France
INW, Russia
USA
China, People's Rep
India
France
United States
China
Russia
GeographicLocations_xml – name: ANE, France
– name: USA
– name: INW, Russia
– name: China, People's Rep
– name: India
– name: China
– name: Russia
– name: United States
– name: France
GroupedDBID 0R~
39C
4.4
53G
70F
88I
8AF
8FE
8FH
AAHBH
AARCD
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACHQT
ADBBV
AENEX
AEUYN
AFANA
AFFHD
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHDO
AGSTI
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
CYE
CYI
D1K
DWQXO
EBS
EE.
EJD
EXGXG
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
K6-
M2P
NNMJJ
O9-
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
3V.
5BI
AAEEF
AAYZH
AAZLF
ABAWZ
AGHTU
EDH
ODYON
AAYXX
CITATION
7ST
7TG
7TN
7XB
8FK
C1K
F1W
H96
H97
KL.
L.G
PKEHL
PQEST
PQUKI
PUEGO
Q9U
SOI
7S9
L.6
1XC
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
BANNL
NFIDA
VOOES
0R
AADWK
AAPBV
AAYJO
ABGIJ
ADQMX
AEDAW
AGEZK
AHGBK
AIFFX
HZ
PRINS
QVL
RIG
ID FETCH-LOGICAL-c577t-f6f97fefe168e5e6e025a8cdb960cdde3341c2cd557a3b8b9902b7b2e6765d3e3
IEDL.DBID BENPR
ISICitedReferencesCount 399
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389432200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1758-678X
IngestDate Tue Jan 05 18:09:26 EST 2021
Tue Nov 18 06:20:57 EST 2025
Sat Sep 27 16:46:13 EDT 2025
Tue Oct 07 09:25:33 EDT 2025
Sat Aug 23 14:04:59 EDT 2025
Sat Nov 29 04:24:58 EST 2025
Tue Nov 18 22:40:03 EST 2025
Fri Feb 21 02:38:23 EST 2025
Fri Nov 21 15:48:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Climate Impacts
Impact Method Cmparison
Wheat Yield
Temperature
Global Warming
Food Security
sécurité alimentaire
incertitude
simulation
statistical regression
modèle de récolte
réchauffement climatique
uncertainty
impact sur le rendement
changement climatique
comparaison de modèles
global change
wheat
régression statistique
température
blé
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-f6f97fefe168e5e6e025a8cdb960cdde3341c2cd557a3b8b9902b7b2e6765d3e3
Notes GSFC
Report Number: GSFC-E-DAA-TN35739
GSFC-E-DAA-TN35739
E-ISSN: 1758-6798
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6632-3361
0000-0001-7608-9097
0000-0002-1555-0537
0000-0003-2603-8034
0000-0002-6639-1273
0000-0002-7419-6558
0000-0002-8551-6617
0000-0001-6214-7241
0000-0002-6738-5238
0000-0003-2234-6902
0000-0003-0222-2531
0000-0002-1561-7113
0000-0001-7342-3782
OpenAccessLink https://hal.science/hal-01604315
PQID 1855812483
PQPubID 1056412
PageCount 7
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_510358
hal_primary_oai_HAL_hal_01604315v1
proquest_miscellaneous_2000260595
proquest_miscellaneous_1868301377
proquest_journals_1855812483
crossref_citationtrail_10_1038_nclimate3115
crossref_primary_10_1038_nclimate3115
springer_journals_10_1038_nclimate3115
nasa_ntrs_20160011401
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: London
PublicationTitle Nature climate change
PublicationTitleAbbrev Nature Clim Change
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References WingISMonierESternAMundraAUS major crops’ uncertain climate change risks and greenhouse gas mitigation benefitsEnviron. Res. Lett.20151011500210.1088/1748-9326/10/11/115002
RosenzweigCAssessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparisonProc. Natl Acad. Sci. USA2014111326832731:CAS:528:DC%2BC2cXjtl2isL8%3D10.1073/pnas.1222463110
BattsGMorisonJEllisRHadleyPWheelerTEffects of CO2 and temperature on growth and yield of crops of winter wheat over four seasonsEur. J. Agron.19977435210.1016/S1161-0301(97)00022-1
PirttiojaNTemperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfacesClim. Res.2015658710510.3354/cr01322
BassuSHow do various maize crop models vary in their responses to climate change factors?Glob. Change Biol.2014202301232010.1111/gcb.12520
WardlawIDawsonIMunibiPFewsterRThe tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patternsCrop Pasture Sci.19894011310.1071/AR9890001
XiongWHolmanIPYouLYangJWuWImpacts of observed growing-season warming trends since 1980 on crop yields in ChinaReg. Environ. Change20141471610.1007/s10113-013-0418-6
LvZFLiuXJCaoWXZhuYClimate change impacts on regional winter wheat production in main wheat production regions of ChinaAgric. Forest Meteorol.201317123424810.1016/j.agrformet.2012.12.008
FischerRAByerleeDEdmeadesGOCrop Yields and Global Food Security: Will Yield Increase Continue to Feed the World?2014
KumarSNVulnerability of wheat production to climate change in IndiaClim. Res.20145917318710.3354/cr01212
MartrePMultimodel ensembles of wheat growth: many models are better than oneGlob. Change Biol.20152191192510.1111/gcb.12768
ButlerEEHuybersPAdaptation of US maize to temperature variationsNat. Clim. Change20133687210.1038/nclimate1585
LiHJiangDWollenweberBDaiTCaoWEffects of shading on morphology, physiology and grain yield of winter wheatEur. J. Agron.20103326727510.1016/j.eja.2010.07.002
CollinsMLong-term Climate Change: Projections, Commitments and Irreversibility2013
ChallinorAJA meta-analysis of crop yield under climate change and adaptationNat. Clim. Change2014428729110.1038/nclimate2153
Food and Agriculture Organization of the United Nations (FAO, 2011); http://faostat.fao.org
LobellDBSibleyAOrtiz-MonasterioJIExtreme heat effects on wheat senescence in IndiaNat. Clim. Change2012218618910.1038/nclimate1356
WilcoxJMakowskiDA meta-analysis of the predicted effects of climate change on wheat yields using simulation studiesField Crop Res.201415618019010.1016/j.fcr.2013.11.008
Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision Report No. 12-03 (FAO, 2012).
LobellDBFieldCBGlobal scale climate-crop yield relationships and the impacts of recent warmingEnviron. Res. Lett.200721710.1088/1748-9326/2/1/014002
LobellDBBänzigerMMagorokoshoCVivekBNonlinear heat effects on African maize as evidenced by historical yield trialsNat. Clim. Change20111424510.1038/nclimate1043
HempelSFrielerKWarszawskiLScheweJPiontekFA trend-preserving bias correction–the ISI-MIP approachEarth Syst. Dyn.2013421923610.5194/esd-4-219-2013
LobellDBSchlenkerWCosta-RobertsJClimate trends and global crop production since 1980Science20113336166201:CAS:528:DC%2BC3MXpt1yisLs%3D10.1126/science.1204531
AssengSUncertainty in simulating wheat yields under climate changeNat. Clim. Change201338278321:CAS:528:DC%2BC3sXhtl2ksLfI10.1038/nclimate1916
GodfrayHCJFood security: the challenge of feeding 9 billion peopleScience20103278128181:CAS:528:DC%2BC3cXhslWisLo%3D10.1126/science.1185383
WallachDMearnsLORivingtonMAntleJMRuaneACHandbook of Climate Change and Agroecosystems201522325910.1142/9781783265640_0009
KristensenKScheldeKOlesenJEWinter wheat yield response to climate variability in DenmarkJ. Agric. Sci.2011149334710.1017/S0021859610000675
ThorntonPKJonesPGEricksenPJChallinorAJAgriculture and food systems in sub-Saharan Africa in a 4 °C+ worldPhil. Trans. R. Soc. A201136911713610.1098/rsta.2010.0246
WardlawIWrigleyCHeat tolerance in temperate cereals: an overviewFunct. Plant Biol.19942169570310.1071/PP9940695
GallaisAGatePOuryF-XÉvolution des rendements de plusieurs plantes de grande culture une réaction différente au réchauffement climatique selon les espècesC. R. Acad. Sci.201096416
CossaniCMReynoldsMPPhysiological traits for improving heat tolerance in wheatPlant Physiol.2012160171017181:CAS:528:DC%2BC38XhvVKmt7rM10.1104/pp.112.207753
O’LearyGJResponse of wheat growth, grain yield and water use to elevated CO under a Free-Air CO Enrichment (FACE) experiment and modelling in a semi-arid environmentGlob. Change Biol.2015212670268610.1111/gcb.12830
AinsworthEALeakeyADOrtDRLongSPFACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supplyNew Phytol.2008179591:CAS:528:DC%2BD1cXosFWhsb8%3D10.1111/j.1469-8137.2008.02500.x
AssengSRising temperatures reduce global wheat productionNat. Clim. Change2015514314710.1038/nclimate2470
BattistiDSNaylorRLHistorical warnings of future food insecurity with unprecedented seasonal heatScience20093232402441:CAS:528:DC%2BD1MXhvFelsg%3D%3D10.1126/science.1164363
ZhangTHuangYEstimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level dataInt. J. Climatol.20133369970810.1002/joc.3463
LobellDBAnalysis of wheat yield and climatic trends in MexicoField Crop Res.20059425025610.1016/j.fcr.2005.01.007
EwertFScale changes and model linking methods for integrated assessment of agri-environmental systemsAgric. Ecosys. Environ.201114261710.1016/j.agee.2011.05.016
SchimelDStephensBBFisherJBEffect of increasing CO2 on the terrestrial carbon cycleProc. Natl Acad. Sci. USA20151124364411:CAS:528:DC%2BC2MXltVCh10.1073/pnas.1407302112
EwertFvan BusselLZhaoGHoffmannHGaiserTHandbook of Climate Change and Agroecosystems201526127710.1142/9781783265640_0010
AssengSFosterITurnerNCThe impact of temperature variability on wheat yieldsGlob. Change Biol.201117997101210.1111/j.1365-2486.2010.02262.x
RosenzweigCThe agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studiesAgric. Forest Meteorol.201317016618210.1016/j.agrformet.2012.09.011
LickerRKucharikC JDoréTLindemanM JMakowskiDClimatic impacts on winter wheat yields in Picardy, France and Rostov, Russia: 1973–2010Agric. Forest Meteorol.2013176253710.1016/j.agrformet.2013.02.010
EwertFCrop modelling for integrated assessment of risk to food production from climate changeEnviron. Model Softw.20157228730310.1016/j.envsoft.2014.12.003
PortmannF TSiebertSDöllPMIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modelingGlob. Biogeochem. Cycles2010242013202410.1029/2008GB003435
RosenzweigCParryMLPotential impact of climate change on world food supplyNature199436713313810.1038/367133a0
DeryngDRegional disparities in the beneficial effects of rising CO2 concentrations on crop water productivityNat. Clim. Change2016678679010.1038/nclimate2995
ZhengBChenuKFernanda DreccerMChapmanSCBreeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties?Glob. Change Biol.2012182899291410.1111/j.1365-2486.2012.02724.x
SchlenkerWRobertsMJNonlinear temperature effects indicate severe damages to U. S. crop yields under climate changeProc. Natl Acad. Sci. USA200910615594155981:CAS:528:DC%2BD1MXhtFyjsLvP10.1073/pnas.0906865106
UrbanDWSheffieldJLobellDBThe impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenariosEnviron. Res. Lett.20151004500310.1088/1748-9326/10/4/045003
TackJBarkleyANalleyL LEffect of warming temperatures on US wheat yieldsProc. Natl Acad. Sci. USA2015112693169361:CAS:528:DC%2BC2MXotFCmsLk%3D10.1073/pnas.1415181112
F T Portmann (BFnclimate3115_CR51) 2010; 24
RA Fischer (BFnclimate3115_CR18) 2014
G Batts (BFnclimate3115_CR41) 1997; 7
D Wallach (BFnclimate3115_CR43) 2015
DW Urban (BFnclimate3115_CR33) 2015; 10
F Ewert (BFnclimate3115_CR14) 2015
AJ Challinor (BFnclimate3115_CR3) 2014; 4
CM Cossani (BFnclimate3115_CR47) 2012; 160
DB Lobell (BFnclimate3115_CR30) 2012; 2
W Xiong (BFnclimate3115_CR45) 2014; 14
HCJ Godfray (BFnclimate3115_CR42) 2010; 327
S Bassu (BFnclimate3115_CR28) 2014; 20
P Martre (BFnclimate3115_CR44) 2015; 21
SN Kumar (BFnclimate3115_CR6) 2014; 59
K Kristensen (BFnclimate3115_CR12) 2011; 149
DS Battisti (BFnclimate3115_CR29) 2009; 323
DB Lobell (BFnclimate3115_CR34) 2005; 94
J Tack (BFnclimate3115_CR20) 2015; 112
C Rosenzweig (BFnclimate3115_CR2) 1994; 367
BFnclimate3115_CR1
BFnclimate3115_CR23
H Li (BFnclimate3115_CR24) 2010; 33
F Ewert (BFnclimate3115_CR32) 2011; 142
ZF Lv (BFnclimate3115_CR5) 2013; 171
A Gallais (BFnclimate3115_CR21) 2010; 96
D Schimel (BFnclimate3115_CR36) 2015; 112
F Ewert (BFnclimate3115_CR4) 2015; 72
S Asseng (BFnclimate3115_CR8) 2015; 5
IS Wing (BFnclimate3115_CR13) 2015; 10
R Licker (BFnclimate3115_CR19) 2013; 176
EA Ainsworth (BFnclimate3115_CR37) 2008; 179
C Rosenzweig (BFnclimate3115_CR9) 2014; 111
DB Lobell (BFnclimate3115_CR11) 2007; 2
N Pirttioja (BFnclimate3115_CR22) 2015; 65
DB Lobell (BFnclimate3115_CR10) 2011; 333
M Collins (BFnclimate3115_CR17) 2013
B Zheng (BFnclimate3115_CR48) 2012; 18
PK Thornton (BFnclimate3115_CR7) 2011; 369
S Hempel (BFnclimate3115_CR50) 2013; 4
J Wilcox (BFnclimate3115_CR16) 2014; 156
DB Lobell (BFnclimate3115_CR27) 2011; 1
I Wardlaw (BFnclimate3115_CR39) 1989; 40
D Deryng (BFnclimate3115_CR38) 2016; 6
T Zhang (BFnclimate3115_CR49) 2013; 33
EE Butler (BFnclimate3115_CR46) 2013; 3
S Asseng (BFnclimate3115_CR31) 2011; 17
S Asseng (BFnclimate3115_CR25) 2013; 3
I Wardlaw (BFnclimate3115_CR40) 1994; 21
W Schlenker (BFnclimate3115_CR26) 2009; 106
GJ O’Leary (BFnclimate3115_CR35) 2015; 21
C Rosenzweig (BFnclimate3115_CR15) 2013; 170
References_xml – reference: AssengSFosterITurnerNCThe impact of temperature variability on wheat yieldsGlob. Change Biol.201117997101210.1111/j.1365-2486.2010.02262.x
– reference: XiongWHolmanIPYouLYangJWuWImpacts of observed growing-season warming trends since 1980 on crop yields in ChinaReg. Environ. Change20141471610.1007/s10113-013-0418-6
– reference: RosenzweigCThe agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studiesAgric. Forest Meteorol.201317016618210.1016/j.agrformet.2012.09.011
– reference: CossaniCMReynoldsMPPhysiological traits for improving heat tolerance in wheatPlant Physiol.2012160171017181:CAS:528:DC%2BC38XhvVKmt7rM10.1104/pp.112.207753
– reference: WallachDMearnsLORivingtonMAntleJMRuaneACHandbook of Climate Change and Agroecosystems201522325910.1142/9781783265640_0009
– reference: SchimelDStephensBBFisherJBEffect of increasing CO2 on the terrestrial carbon cycleProc. Natl Acad. Sci. USA20151124364411:CAS:528:DC%2BC2MXltVCh10.1073/pnas.1407302112
– reference: CollinsMLong-term Climate Change: Projections, Commitments and Irreversibility2013
– reference: RosenzweigCAssessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparisonProc. Natl Acad. Sci. USA2014111326832731:CAS:528:DC%2BC2cXjtl2isL8%3D10.1073/pnas.1222463110
– reference: ButlerEEHuybersPAdaptation of US maize to temperature variationsNat. Clim. Change20133687210.1038/nclimate1585
– reference: EwertFvan BusselLZhaoGHoffmannHGaiserTHandbook of Climate Change and Agroecosystems201526127710.1142/9781783265640_0010
– reference: FischerRAByerleeDEdmeadesGOCrop Yields and Global Food Security: Will Yield Increase Continue to Feed the World?2014
– reference: ZhangTHuangYEstimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level dataInt. J. Climatol.20133369970810.1002/joc.3463
– reference: Food and Agriculture Organization of the United Nations (FAO, 2011); http://faostat.fao.org
– reference: SchlenkerWRobertsMJNonlinear temperature effects indicate severe damages to U. S. crop yields under climate changeProc. Natl Acad. Sci. USA200910615594155981:CAS:528:DC%2BD1MXhtFyjsLvP10.1073/pnas.0906865106
– reference: EwertFCrop modelling for integrated assessment of risk to food production from climate changeEnviron. Model Softw.20157228730310.1016/j.envsoft.2014.12.003
– reference: ChallinorAJA meta-analysis of crop yield under climate change and adaptationNat. Clim. Change2014428729110.1038/nclimate2153
– reference: O’LearyGJResponse of wheat growth, grain yield and water use to elevated CO under a Free-Air CO Enrichment (FACE) experiment and modelling in a semi-arid environmentGlob. Change Biol.2015212670268610.1111/gcb.12830
– reference: UrbanDWSheffieldJLobellDBThe impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenariosEnviron. Res. Lett.20151004500310.1088/1748-9326/10/4/045003
– reference: BassuSHow do various maize crop models vary in their responses to climate change factors?Glob. Change Biol.2014202301232010.1111/gcb.12520
– reference: ZhengBChenuKFernanda DreccerMChapmanSCBreeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties?Glob. Change Biol.2012182899291410.1111/j.1365-2486.2012.02724.x
– reference: AinsworthEALeakeyADOrtDRLongSPFACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supplyNew Phytol.2008179591:CAS:528:DC%2BD1cXosFWhsb8%3D10.1111/j.1469-8137.2008.02500.x
– reference: DeryngDRegional disparities in the beneficial effects of rising CO2 concentrations on crop water productivityNat. Clim. Change2016678679010.1038/nclimate2995
– reference: BattistiDSNaylorRLHistorical warnings of future food insecurity with unprecedented seasonal heatScience20093232402441:CAS:528:DC%2BD1MXhvFelsg%3D%3D10.1126/science.1164363
– reference: GodfrayHCJFood security: the challenge of feeding 9 billion peopleScience20103278128181:CAS:528:DC%2BC3cXhslWisLo%3D10.1126/science.1185383
– reference: LvZFLiuXJCaoWXZhuYClimate change impacts on regional winter wheat production in main wheat production regions of ChinaAgric. Forest Meteorol.201317123424810.1016/j.agrformet.2012.12.008
– reference: TackJBarkleyANalleyL LEffect of warming temperatures on US wheat yieldsProc. Natl Acad. Sci. USA2015112693169361:CAS:528:DC%2BC2MXotFCmsLk%3D10.1073/pnas.1415181112
– reference: LobellDBAnalysis of wheat yield and climatic trends in MexicoField Crop Res.20059425025610.1016/j.fcr.2005.01.007
– reference: WingISMonierESternAMundraAUS major crops’ uncertain climate change risks and greenhouse gas mitigation benefitsEnviron. Res. Lett.20151011500210.1088/1748-9326/10/11/115002
– reference: KristensenKScheldeKOlesenJEWinter wheat yield response to climate variability in DenmarkJ. Agric. Sci.2011149334710.1017/S0021859610000675
– reference: EwertFScale changes and model linking methods for integrated assessment of agri-environmental systemsAgric. Ecosys. Environ.201114261710.1016/j.agee.2011.05.016
– reference: HempelSFrielerKWarszawskiLScheweJPiontekFA trend-preserving bias correction–the ISI-MIP approachEarth Syst. Dyn.2013421923610.5194/esd-4-219-2013
– reference: RosenzweigCParryMLPotential impact of climate change on world food supplyNature199436713313810.1038/367133a0
– reference: MartrePMultimodel ensembles of wheat growth: many models are better than oneGlob. Change Biol.20152191192510.1111/gcb.12768
– reference: LobellDBBänzigerMMagorokoshoCVivekBNonlinear heat effects on African maize as evidenced by historical yield trialsNat. Clim. Change20111424510.1038/nclimate1043
– reference: KumarSNVulnerability of wheat production to climate change in IndiaClim. Res.20145917318710.3354/cr01212
– reference: WardlawIDawsonIMunibiPFewsterRThe tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patternsCrop Pasture Sci.19894011310.1071/AR9890001
– reference: WardlawIWrigleyCHeat tolerance in temperate cereals: an overviewFunct. Plant Biol.19942169570310.1071/PP9940695
– reference: PirttiojaNTemperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfacesClim. Res.2015658710510.3354/cr01322
– reference: GallaisAGatePOuryF-XÉvolution des rendements de plusieurs plantes de grande culture une réaction différente au réchauffement climatique selon les espècesC. R. Acad. Sci.201096416
– reference: LobellDBSibleyAOrtiz-MonasterioJIExtreme heat effects on wheat senescence in IndiaNat. Clim. Change2012218618910.1038/nclimate1356
– reference: BattsGMorisonJEllisRHadleyPWheelerTEffects of CO2 and temperature on growth and yield of crops of winter wheat over four seasonsEur. J. Agron.19977435210.1016/S1161-0301(97)00022-1
– reference: AssengSRising temperatures reduce global wheat productionNat. Clim. Change2015514314710.1038/nclimate2470
– reference: LickerRKucharikC JDoréTLindemanM JMakowskiDClimatic impacts on winter wheat yields in Picardy, France and Rostov, Russia: 1973–2010Agric. Forest Meteorol.2013176253710.1016/j.agrformet.2013.02.010
– reference: WilcoxJMakowskiDA meta-analysis of the predicted effects of climate change on wheat yields using simulation studiesField Crop Res.201415618019010.1016/j.fcr.2013.11.008
– reference: AssengSUncertainty in simulating wheat yields under climate changeNat. Clim. Change201338278321:CAS:528:DC%2BC3sXhtl2ksLfI10.1038/nclimate1916
– reference: Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision Report No. 12-03 (FAO, 2012).
– reference: PortmannF TSiebertSDöllPMIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modelingGlob. Biogeochem. Cycles2010242013202410.1029/2008GB003435
– reference: LiHJiangDWollenweberBDaiTCaoWEffects of shading on morphology, physiology and grain yield of winter wheatEur. J. Agron.20103326727510.1016/j.eja.2010.07.002
– reference: LobellDBFieldCBGlobal scale climate-crop yield relationships and the impacts of recent warmingEnviron. Res. Lett.200721710.1088/1748-9326/2/1/014002
– reference: ThorntonPKJonesPGEricksenPJChallinorAJAgriculture and food systems in sub-Saharan Africa in a 4 °C+ worldPhil. Trans. R. Soc. A201136911713610.1098/rsta.2010.0246
– reference: LobellDBSchlenkerWCosta-RobertsJClimate trends and global crop production since 1980Science20113336166201:CAS:528:DC%2BC3MXpt1yisLs%3D10.1126/science.1204531
– volume: 33
  start-page: 699
  year: 2013
  ident: BFnclimate3115_CR49
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3463
– volume: 21
  start-page: 695
  year: 1994
  ident: BFnclimate3115_CR40
  publication-title: Funct. Plant Biol.
  doi: 10.1071/PP9940695
– volume: 171
  start-page: 234
  year: 2013
  ident: BFnclimate3115_CR5
  publication-title: Agric. Forest Meteorol.
  doi: 10.1016/j.agrformet.2012.12.008
– volume-title: Long-term Climate Change: Projections, Commitments and Irreversibility
  year: 2013
  ident: BFnclimate3115_CR17
– volume: 21
  start-page: 911
  year: 2015
  ident: BFnclimate3115_CR44
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12768
– volume: 17
  start-page: 997
  year: 2011
  ident: BFnclimate3115_CR31
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2010.02262.x
– volume: 24
  start-page: 2013
  year: 2010
  ident: BFnclimate3115_CR51
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2008GB003435
– volume: 33
  start-page: 267
  year: 2010
  ident: BFnclimate3115_CR24
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2010.07.002
– volume: 327
  start-page: 812
  year: 2010
  ident: BFnclimate3115_CR42
  publication-title: Science
  doi: 10.1126/science.1185383
– start-page: 261
  volume-title: Handbook of Climate Change and Agroecosystems
  year: 2015
  ident: BFnclimate3115_CR14
  doi: 10.1142/9781783265640_0010
– volume: 2
  start-page: 186
  year: 2012
  ident: BFnclimate3115_CR30
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1356
– volume: 112
  start-page: 436
  year: 2015
  ident: BFnclimate3115_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1407302112
– volume: 179
  start-page: 5
  year: 2008
  ident: BFnclimate3115_CR37
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02500.x
– volume: 2
  start-page: 1
  year: 2007
  ident: BFnclimate3115_CR11
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/2/1/014002
– ident: BFnclimate3115_CR1
– volume: 170
  start-page: 166
  year: 2013
  ident: BFnclimate3115_CR15
  publication-title: Agric. Forest Meteorol.
  doi: 10.1016/j.agrformet.2012.09.011
– volume: 20
  start-page: 2301
  year: 2014
  ident: BFnclimate3115_CR28
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12520
– volume: 94
  start-page: 250
  year: 2005
  ident: BFnclimate3115_CR34
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2005.01.007
– volume: 176
  start-page: 25
  year: 2013
  ident: BFnclimate3115_CR19
  publication-title: Agric. Forest Meteorol.
  doi: 10.1016/j.agrformet.2013.02.010
– volume-title: Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World?
  year: 2014
  ident: BFnclimate3115_CR18
– ident: BFnclimate3115_CR23
– volume: 96
  start-page: 4
  year: 2010
  ident: BFnclimate3115_CR21
  publication-title: C. R. Acad. Sci.
– volume: 367
  start-page: 133
  year: 1994
  ident: BFnclimate3115_CR2
  publication-title: Nature
  doi: 10.1038/367133a0
– volume: 4
  start-page: 219
  year: 2013
  ident: BFnclimate3115_CR50
  publication-title: Earth Syst. Dyn.
  doi: 10.5194/esd-4-219-2013
– volume: 369
  start-page: 117
  year: 2011
  ident: BFnclimate3115_CR7
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2010.0246
– volume: 112
  start-page: 6931
  year: 2015
  ident: BFnclimate3115_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1415181112
– volume: 3
  start-page: 827
  year: 2013
  ident: BFnclimate3115_CR25
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1916
– volume: 40
  start-page: 1
  year: 1989
  ident: BFnclimate3115_CR39
  publication-title: Crop Pasture Sci.
  doi: 10.1071/AR9890001
– volume: 160
  start-page: 1710
  year: 2012
  ident: BFnclimate3115_CR47
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.207753
– volume: 4
  start-page: 287
  year: 2014
  ident: BFnclimate3115_CR3
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2153
– volume: 6
  start-page: 786
  year: 2016
  ident: BFnclimate3115_CR38
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2995
– volume: 111
  start-page: 3268
  year: 2014
  ident: BFnclimate3115_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1222463110
– volume: 21
  start-page: 2670
  year: 2015
  ident: BFnclimate3115_CR35
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12830
– volume: 10
  start-page: 115002
  year: 2015
  ident: BFnclimate3115_CR13
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/11/115002
– volume: 323
  start-page: 240
  year: 2009
  ident: BFnclimate3115_CR29
  publication-title: Science
  doi: 10.1126/science.1164363
– volume: 333
  start-page: 616
  year: 2011
  ident: BFnclimate3115_CR10
  publication-title: Science
  doi: 10.1126/science.1204531
– volume: 10
  start-page: 045003
  year: 2015
  ident: BFnclimate3115_CR33
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/4/045003
– start-page: 223
  volume-title: Handbook of Climate Change and Agroecosystems
  year: 2015
  ident: BFnclimate3115_CR43
  doi: 10.1142/9781783265640_0009
– volume: 65
  start-page: 87
  year: 2015
  ident: BFnclimate3115_CR22
  publication-title: Clim. Res.
  doi: 10.3354/cr01322
– volume: 18
  start-page: 2899
  year: 2012
  ident: BFnclimate3115_CR48
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2012.02724.x
– volume: 5
  start-page: 143
  year: 2015
  ident: BFnclimate3115_CR8
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2470
– volume: 149
  start-page: 33
  year: 2011
  ident: BFnclimate3115_CR12
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859610000675
– volume: 1
  start-page: 42
  year: 2011
  ident: BFnclimate3115_CR27
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1043
– volume: 72
  start-page: 287
  year: 2015
  ident: BFnclimate3115_CR4
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2014.12.003
– volume: 156
  start-page: 180
  year: 2014
  ident: BFnclimate3115_CR16
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2013.11.008
– volume: 106
  start-page: 15594
  year: 2009
  ident: BFnclimate3115_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0906865106
– volume: 7
  start-page: 43
  year: 1997
  ident: BFnclimate3115_CR41
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(97)00022-1
– volume: 14
  start-page: 7
  year: 2014
  ident: BFnclimate3115_CR45
  publication-title: Reg. Environ. Change
  doi: 10.1007/s10113-013-0418-6
– volume: 59
  start-page: 173
  year: 2014
  ident: BFnclimate3115_CR6
  publication-title: Clim. Res.
  doi: 10.3354/cr01212
– volume: 3
  start-page: 68
  year: 2013
  ident: BFnclimate3115_CR46
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1585
– volume: 142
  start-page: 6
  year: 2011
  ident: BFnclimate3115_CR32
  publication-title: Agric. Ecosys. Environ.
  doi: 10.1016/j.agee.2011.05.016
SSID ssj0000716369
Score 2.6357949
Snippet The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and...
The potential impact of global temperature change on global wheat production has recently been assessed with different methods, scaling and aggregation...
SourceID wageningen
hal
proquest
crossref
springer
nasa
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1130
SubjectTerms 704/106/694/2739
706/1143
Agricultural production
Agricultural sciences
Alterra - Climate change and adaptive land and water management
Alterra - Klimaatverandering en adaptief land- en watermanagement
Carbon dioxide
China
climate
Climate Change
Climate Change and Adaptive Land and Water Management
Climate Change/Climate Change Impacts
Computer Programming And Software
Corn
Crop yield
Earth Resources And Remote Sensing
Earth System Science
Environment
Environmental Law/Policy/Ecojustice
Environmental Sciences
Estimates
Food security
France
Global Changes
Global temperatures
global warming
grain yield
India
Klimaatverandering
Klimaatverandering en adaptief land- en watermanagement
Leerstoelgroep Aardsysteemkunde
Leerstoelgroep Plantaardige productiesystemen
Life Sciences
Methods
model uncertainty
PE&RC
Plant Production Systems
Plantaardige Productiesystemen
prediction
Russia
Simulation
Temperature
Triticum aestivum
United States
Vegetal Biology
Wheat
WIMEK
Title Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods
URI https://ntrs.nasa.gov/citations/20160011401
https://link.springer.com/article/10.1038/nclimate3115
https://www.proquest.com/docview/1855812483
https://www.proquest.com/docview/1868301377
https://www.proquest.com/docview/2000260595
https://hal.science/hal-01604315
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F510358
Volume 6
WOSCitedRecordID wos000389432200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1758-6798
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0000716369
  issn: 1758-678X
  databaseCode: PCBAR
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-6798
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0000716369
  issn: 1758-678X
  databaseCode: BENPR
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1758-6798
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0000716369
  issn: 1758-678X
  databaseCode: M2P
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdLuofuYd1Hx7y1RRtbX4apY1kffhppaOlDG0K3QWAPwpZlGsjsLnYa-t_vzlbcFNq-7MlYPrDPd7o7nU6_I-SL5CILjQr8EPyJD_449WMrIj_ieR6rME5YK-lzOR6r6TSeuIRb5coq1zaxMdRZaTBHfgR-haMzUuz79V8fu0bh7qprodEjW4hUFvXJ1vHJeHLZZVnAgQrW9LUDN6l8sMxTV_0eMHVUmPkM4kKLiDP3_FLvCqsi-0VSJfciz26z9AXZXsF8L5oDUBsO6XTnf1l5RV66UJQOW915TZ7Z4g3xLiCKLhdNsp0e0lHz6c3dW_L7x-zPDFbCFJE5kKOKljlFcCuHzEzbM5cwXNAWaYSu0NjTW6yTo-ktrUF1gKzrvVvTtoV1tUt-nZ78HJ35rjmDb7iUtZ-LPJa5ze1AKMutsBA8JcpkKSyJDNhMBu7RhCbjXCYsVSl4vTCVaWiFFDxjlr2D_1sW9j2hmQmsSqRVAxFENhNg95LcmjBgkU1kJDzybS0abRxyOTbQmOtmB50pvSlIj3ztqK9bxI5H6D6DlDsShNk-G55rHEPUPQis-M3AI7uoBBreV-kQx3EBGcD43lq02k36St_J1SOfuscwXXEPJilsuUQaoVgD8_g4DZ6ewmVmDN94uNa4jdc8yAy700ddYBuqqmHJ5QL1arnQxRwvMM0rjTiKXH14mouPZBtZbot39ki_XiztPnlubupZtThwU-2A9C7CCdxNRsfDy3-QQjfl
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9tHRLjgc8hCgMMYn1B0dI4dpwHHkph6rSummBIk_ZgEscRlUo6mnZV_yn-Ru7ytU5ivO2Bp6ruqYntu_ud7fPvAN4FQiaeUa7jIZ44iMexE1rpO75I01B5YcTLmR4Go5E6OwtPNuB3fReG0iprn1g46mRqaI98H3FFEBipulL1kV0tcX2Wfzj8hJO553kHn0_7A6cqIeAYEQRzJ5VpGKQ2tV2prLDSIsRHyiQxBu4GLZujEzeeSYQIIh6rGH2zFwexZ2UgRcItx__tXPxyqEoVneZWJTs2YUvJUPgt2Drpf-x9aXZ1ELAlL-roISwrB5HgrMq2d7naz8xkjHGoJYabazi4-YOyMFtZlEfXIt3mcPYebC_Rv2TFhas1ADx48L8N3UO4X4XarFfaxiPYsNljaB_jKmE6Kw4TWIf1i6Eqvj2B86_jn2Nc6TNiHqERzNk0ZUTeVTFPs_JOKTZnrGRSYUsCM7aiPEAWr9gcTQPFmtrCc1aW6M534NutdP8pzuc0s8-AJca1Kgqs6krXt4lEvx6l1ngu920U-LIN72tV0KZiZqcCIRNdZAhwpdcVpw17jfRFyUhyg9xb1KpGhGjEB72hpjZiFcTAUVx227BDSqfxebn2qJ0WyC6279aqpCunlusrPWrDm-ZndEd0xhRldrogGal4QWN5swzdDqNldIjv2Kk1fO0xf-0Mv9J_nVGZrbzoUrXXqZeLmc4m9IFuLNfEEynU83_34jXcHZweD_XwcHT0Arap-2Wi0i605rOFfQl3zOV8nM9eVWbO4PttW8wf7O6Uiw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9tHULjgc8hCgMMYntBUdO4cZwHhEpHtWmlqviQKu3BJI4jKpVkNOmq_mv8ddzla53EeNsDT1XdUxPbd_c72-ffAbzxXBE5WtqWg3hiIR6Hlm9Ez-q5cexLxw94OdMjbzyW06k_2YLf9V0YSqusfWLhqKNU0x55B3HFJTCSvBNXaRGTo-H7818WVZCik9a6nEapIqdmvcLlW_bu5Ajn-sBxhh-_Do6tqsKApV3Py61YxL4Xm9h0hTSuEQYjgEDqKMS4XqPhc_Tx2tGR63oBD2WIrtsJvdAxwhNuxA3H_92GHSnQblqwMxl86H9udngQvAUvauohREsLUWFaZd7bXHYSPZ9hTGqI7eYKJm7_oIzMVhJkwZWotzmovQO7K_Q1SXH5agMMh_f-52G8D3erEJz1S5t5AFsmeQjtT7h6SBfFIQM7ZINi2Ipvj-Dsy-znbB4sGDGS0GhmLI0ZkXpVjNSsvGuKzQkrGVbYikCOrSk_kIVrlqPJoFhTczhnZenubA--3UhfH-Pcpol5AizStpGBZ2RX2D0TCfT3QWy0Y_OeCbyeaMPbWi2UrhjbqXDIXBWZA1yqTSVqw0EjfV4ylVwj9xo1rBEhevHj_khRG7ENYkDpXnTbsEcKqPB5mXKonRbONrbv12qlKmeXqUudasOr5md0U3T2FCQmXZKMkLygt7xehm6N0fLax3c8rLV94zF_7Qy_tAWVUPmtrOhStQeqVsuFSub0ge4tU8Qf6cqn_-7FS7iNNqFGJ-PTZ7BLvS_zl_ahlS-W5jnc0hf5LFu8qCyewfebto4_ns2dQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Similar+estimates+of+temperature+impacts+on+global+wheat+yield+by+three+independent+methods&rft.jtitle=Nature+climate+change&rft.au=Liu%2C+Bing&rft.au=Asseng%2C+Senthold&rft.au=M%C3%BCller%2C+Christoph&rft.au=Ewert%2C+Frank&rft.date=2016-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1758-678X&rft.eissn=1758-6798&rft.volume=6&rft.spage=1130&rft.epage=1136&rft_id=info:doi/10.1038%2Fnclimate3115&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01604315v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-678X&client=summon