Fine particulate matter (PM 2.5 ) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology

Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics Jg. 19; H. 16; S. 11031 - 11041
Hauptverfasser: Zhai, Shixian, Jacob, Daniel J., Wang, Xuan, Shen, Lu, Li, Ke, Zhang, Yuzhong, Gui, Ke, Zhao, Tianliang, Liao, Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 29.08.2019
Copernicus Publications
Schlagworte:
ISSN:1680-7324, 1680-7316, 1680-7324
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at −5.2 µg m−3 a−1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m−3 a−1 (±95 % confidence interval) for Beijing–Tianjin–Hebei, -6.1±1.1 µg m−3 a−1 for the Yangtze River Delta, -2.7±0.8 µg m−3 a−1 for the Pearl River Delta, -6.7±1.3 µg m−3 a−1 for the Sichuan Basin, and -6.5±2.5 µg m−3 a−1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is −4.6 µg m−3 a−1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m−3 a−1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m−3 a−1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m−3 a−1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m−3 a−1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m−3 a−1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls.
AbstractList Fine particulate matter (PM 2.5 ) is a severe air pollution problem in China. Observations of PM 2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM 2.5 across China over the 2013–2018 period, averaging at −5.2   µ g m −3  a −1 . Trends in the five megacity cluster regions targeted by the government for air quality control are - 9.3 ± 1.8 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="67e7d5508bfc21be30fd653bf13260f6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00001.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00001.png"/></svg:svg>   µ g m −3  a −1 ( ±95  % confidence interval) for Beijing–Tianjin–Hebei, - 6.1 ± 1.1 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="70e03f9522a113a7dc30ece424d49bce"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00002.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00002.png"/></svg:svg>   µ g m −3  a −1 for the Yangtze River Delta, - 2.7 ± 0.8 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="71b4e427f759f6d47412380862ca6397"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00003.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00003.png"/></svg:svg>   µ g m −3  a −1 for the Pearl River Delta, - 6.7 ± 1.3 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1fff5043d3a6bcef3a21679e46fa9888"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00004.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00004.png"/></svg:svg>   µ g m −3  a −1 for the Sichuan Basin, and - 6.5 ± 2.5 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6a19372043f480189dd1e052a5f0d922"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00005.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00005.png"/></svg:svg>   µ g m −3  a −1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide ( SO2 ) and carbon monoxide (CO) show that the declines in PM 2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM 2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM 2.5 trends across China. The MLR model correlates the 10 d PM 2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM 2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM 2.5 decrease across China is −4.6   µ g m −3  a −1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM 2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are - 8.0 ± 1.1 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="a49cc43b6a622598226746c04cd91382"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00006.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00006.png"/></svg:svg>   µ g m −3  a −1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), - 6.3 ± 0.9 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="21c3b8035c0e46ee1bb9baf457471ef6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00007.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00007.png"/></svg:svg>   µ g m −3  a −1 for the Yangtze River Delta (3 % stronger), - 2.2 ± 0.5 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d7c66650fd7b0217febd6a6b5883da2d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00008.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00008.png"/></svg:svg>   µ g m −3  a −1 for the Pearl River Delta (19 % weaker), - 4.9 ± 0.9 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d6a4f57abc59de71a45d0091beeca176"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00009.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00009.png"/></svg:svg>   µ g m −3  a −1 for the Sichuan Basin (27 % weaker), and - 5.0 ± 1.9 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="fb5169ee41fe1cecbd62eba02ef83cc4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00010.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00010.png"/></svg:svg>   µ g m −3  a −1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM 2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls.
Fine particulate matter (PM.sub.2.5) is a severe air pollution problem in China. Observations of PM.sub.2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %-50 % decrease in annual mean PM.sub.2.5 across China over the 2013-2018 period, averaging at -5.2 µg m.sup.-3  a.sup.-1 . Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m.sup.-3  a.sup.-1 (±95 % confidence interval) for Beijing-Tianjin-Hebei, -6.1±1.1 µg m.sup.-3  a.sup.-1 for the Yangtze River Delta, -2.7±0.8 µg m.sup.-3  a.sup.-1 for the Pearl River Delta, -6.7±1.3 µg m.sup.-3  a.sup.-1 for the Sichuan Basin, and -6.5±2.5 µg m.sup.-3  a.sup.-1 for the Fenwei Plain (Xi'an). Concurrent 2013-2018 observations of sulfur dioxide (SO.sub.2) and carbon monoxide (CO) show that the declines in PM.sub.2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM.sub.2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM.sub.2.5 trends across China. The MLR model correlates the 10 d PM.sub.2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM.sub.2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM.sub.2.5 decrease across China is -4.6 µg m.sup.-3  a.sup.-1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM.sub.2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m.sup.-3  a.sup.-1 for Beijing-Tianjin-Hebei (14 % weaker than in the original data), -6.3±0.9 µg m.sup.-3  a.sup.-1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m.sup.-3  a.sup.-1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m.sup.-3  a.sup.-1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m.sup.-3  a.sup.-1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015-2017 observations of flattening PM.sub.2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls.
Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at -5.2 µg m-3 a-1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m-3 a-1 (±95 % confidence interval) for Beijing–Tianjin–Hebei,-6.1±1.1 µg m-3 a-1 for the Yangtze River Delta, -2.7±0.8 µg m-3 a-1 for the Pearl River Delta, -6.7±1.3 µg m-3 a-1 for the Sichuan Basin, and -6.5±2.5 µg m-3 a-1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is -4.6 µg m-3 a-1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m-3 a-1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m-3 a-1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m-3 a-1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m-3 a-1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m-3 a-1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls.
Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at −5.2 µg m−3 a−1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m−3 a−1 (±95 % confidence interval) for Beijing–Tianjin–Hebei, -6.1±1.1 µg m−3 a−1 for the Yangtze River Delta, -2.7±0.8 µg m−3 a−1 for the Pearl River Delta, -6.7±1.3 µg m−3 a−1 for the Sichuan Basin, and -6.5±2.5 µg m−3 a−1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is −4.6 µg m−3 a−1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m−3 a−1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m−3 a−1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m−3 a−1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m−3 a−1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m−3 a−1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls.
Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at −5.2 µg m−3 a−1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m−3 a−1 (±95 % confidence interval) for Beijing–Tianjin–Hebei, -6.1±1.1 µg m−3 a−1 for the Yangtze River Delta, -2.7±0.8 µg m−3 a−1 for the Pearl River Delta, -6.7±1.3 µg m−3 a−1 for the Sichuan Basin, and -6.5±2.5 µg m−3 a−1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is −4.6 µg m−3 a−1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m−3 a−1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m−3 a−1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m−3 a−1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m−3 a−1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m−3 a−1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls.
Audience Academic
Author Zhai, Shixian
Liao, Hong
Zhao, Tianliang
Gui, Ke
Li, Ke
Zhang, Yuzhong
Jacob, Daniel J.
Wang, Xuan
Shen, Lu
Author_xml – sequence: 1
  givenname: Shixian
  orcidid: 0000-0002-0073-7809
  surname: Zhai
  fullname: Zhai, Shixian
– sequence: 2
  givenname: Daniel J.
  surname: Jacob
  fullname: Jacob, Daniel J.
– sequence: 3
  givenname: Xuan
  orcidid: 0000-0002-8532-5773
  surname: Wang
  fullname: Wang, Xuan
– sequence: 4
  givenname: Lu
  surname: Shen
  fullname: Shen, Lu
– sequence: 5
  givenname: Ke
  orcidid: 0000-0002-9181-3562
  surname: Li
  fullname: Li, Ke
– sequence: 6
  givenname: Yuzhong
  orcidid: 0000-0001-5431-5022
  surname: Zhang
  fullname: Zhang, Yuzhong
– sequence: 7
  givenname: Ke
  orcidid: 0000-0002-8444-9547
  surname: Gui
  fullname: Gui, Ke
– sequence: 8
  givenname: Tianliang
  surname: Zhao
  fullname: Zhao, Tianliang
– sequence: 9
  givenname: Hong
  surname: Liao
  fullname: Liao, Hong
BookMark eNp9Uk1vEzEQXaEi0RZ-ADdLXKjEBttr73q5VRGFSEUgPs7WrHe8dZTYwXYkeuPCL-Af8ktwEhAEAfJhrPF7b8Zv5qw68cFjVT1kdCZZL56C2dSsrxmjDas5Zf2d6pS1itZdw8XJb_d71VlKS0q5pEycVl-unEeygZid2a4gI1lDzhjJ4zevCJ9JckFyRD8m4jyZ3zgPT0iRb759_lqCekYSFjJk5ydigs_RDdvsgk_ExrAm4PNNDJswoXeG4NqltH8EP5I1ZgwxrMJ0e7-6a2GV8MGPeF59uHr-fv6yvn79YjG_vK6N7Lpct6ZrZK8GBlyOYoAWsW2FaRrOkQ3N2AracmulAiFsNwqreiZwYOWrVrJONOfV4qA7BljqTXRriLc6gNP7RIiT3juxQq2oFVTAKIRoBVIxoKGqH7gqVQAMLVqPDlqbGD5uMWW9DNvoS_uaCyaE7HrJ_4viivVK0U7-Qk1QSjtvQ45giltGX8q-U0wqvut-9hdUOWMxtpiP1pX8EeHiiLAbEH7KE2xT0ot3b4-x3QFrYkgpotXGZdiNshRxK82o3i2aLoumWa_3i6Z3i1aY7A_mT2P_zfkOttfUZA
CitedBy_id crossref_primary_10_1016_j_envres_2023_116854
crossref_primary_10_3390_atmos16040446
crossref_primary_10_1016_j_apm_2021_06_025
crossref_primary_10_1038_s41561_021_00792_3
crossref_primary_10_3390_ijerph192215060
crossref_primary_10_1007_s11783_020_1326_x
crossref_primary_10_1029_2020EA001599
crossref_primary_10_1029_2023GL106527
crossref_primary_10_1038_s41612_024_00667_5
crossref_primary_10_1016_j_envres_2025_121648
crossref_primary_10_5194_amt_17_377_2024
crossref_primary_10_1016_j_envres_2021_110754
crossref_primary_10_1016_j_envres_2021_110875
crossref_primary_10_1016_j_envpol_2022_118932
crossref_primary_10_1016_j_scitotenv_2020_143775
crossref_primary_10_1016_j_atmosenv_2021_118750
crossref_primary_10_3389_fenvs_2022_1115746
crossref_primary_10_1016_j_chemosphere_2021_130653
crossref_primary_10_3390_ijerph182312471
crossref_primary_10_3390_su13041994
crossref_primary_10_1007_s11356_022_19293_w
crossref_primary_10_1016_j_jes_2022_12_009
crossref_primary_10_1038_s41893_024_01366_y
crossref_primary_10_1186_s12302_024_00902_z
crossref_primary_10_1016_j_scitotenv_2023_169516
crossref_primary_10_1007_s00376_023_3156_9
crossref_primary_10_1016_j_atmosenv_2024_120796
crossref_primary_10_1007_s10661_024_13162_4
crossref_primary_10_1016_j_envint_2020_105776
crossref_primary_10_1016_j_scitotenv_2020_144724
crossref_primary_10_1029_2020JD034382
crossref_primary_10_1093_gerona_glaf117
crossref_primary_10_1016_j_jobe_2023_106817
crossref_primary_10_1109_ACCESS_2022_3204284
crossref_primary_10_1038_s41612_023_00397_0
crossref_primary_10_3390_atmos11050461
crossref_primary_10_1016_j_atmosenv_2021_118864
crossref_primary_10_1016_j_scitotenv_2023_164065
crossref_primary_10_1029_2020GL088913
crossref_primary_10_3390_atmos15050616
crossref_primary_10_5194_acp_24_4001_2024
crossref_primary_10_1016_j_scitotenv_2021_151451
crossref_primary_10_3390_rs12030523
crossref_primary_10_1007_s11356_020_09280_4
crossref_primary_10_1016_j_apr_2024_102368
crossref_primary_10_1016_j_atmosenv_2024_120347
crossref_primary_10_1016_j_jes_2021_10_014
crossref_primary_10_3390_ijerph20075396
crossref_primary_10_1016_j_partic_2023_09_014
crossref_primary_10_3390_atmos16080916
crossref_primary_10_1016_j_atmosenv_2021_118610
crossref_primary_10_1016_j_atmosenv_2023_120170
crossref_primary_10_1016_j_scitotenv_2021_151204
crossref_primary_10_1016_j_scitotenv_2021_152778
crossref_primary_10_1029_2023GL105761
crossref_primary_10_1016_j_apr_2024_102132
crossref_primary_10_1016_j_jclepro_2023_140514
crossref_primary_10_1016_j_scitotenv_2021_150011
crossref_primary_10_1016_j_scitotenv_2022_155045
crossref_primary_10_3390_children8110987
crossref_primary_10_1073_pnas_1907956116
crossref_primary_10_1016_j_scitotenv_2022_159592
crossref_primary_10_1016_j_envint_2021_106818
crossref_primary_10_1016_j_aeaoa_2025_100374
crossref_primary_10_1016_j_jclepro_2023_138608
crossref_primary_10_1016_j_jhazmat_2025_139627
crossref_primary_10_1007_s00376_022_1346_5
crossref_primary_10_1016_j_envres_2024_119009
crossref_primary_10_5194_acp_24_1607_2024
crossref_primary_10_1073_pnas_2015797118
crossref_primary_10_3390_atmos12060722
crossref_primary_10_1016_j_atmosenv_2024_120363
crossref_primary_10_1016_j_scitotenv_2024_174196
crossref_primary_10_5194_acp_25_1023_2025
crossref_primary_10_5194_acp_21_9475_2021
crossref_primary_10_1016_j_envpol_2023_123122
crossref_primary_10_1016_j_atmosenv_2024_120369
crossref_primary_10_1016_j_atmosenv_2021_118437
crossref_primary_10_1016_j_envpol_2022_120928
crossref_primary_10_1016_j_atmosenv_2021_118556
crossref_primary_10_1016_j_envpol_2021_118218
crossref_primary_10_1016_j_marpolbul_2022_114131
crossref_primary_10_1016_j_jes_2022_04_045
crossref_primary_10_1016_j_scitotenv_2024_171910
crossref_primary_10_1016_j_scitotenv_2024_170822
crossref_primary_10_3390_ijerph19031440
crossref_primary_10_1016_j_scitotenv_2021_148474
crossref_primary_10_5194_acp_21_7723_2021
crossref_primary_10_1007_s11783_023_1737_6
crossref_primary_10_1029_2021GL093197
crossref_primary_10_3389_fenvs_2023_1254390
crossref_primary_10_3390_atmos14121785
crossref_primary_10_1016_j_envpol_2020_115076
crossref_primary_10_3390_atmos13010021
crossref_primary_10_1021_acsestair_4c00314
crossref_primary_10_1016_j_jclepro_2023_136407
crossref_primary_10_1016_j_atmosres_2023_107181
crossref_primary_10_3390_toxics11060481
crossref_primary_10_1016_j_envpol_2020_116167
crossref_primary_10_1016_j_atmosres_2024_107332
crossref_primary_10_1007_s10584_025_03996_3
crossref_primary_10_1007_s11356_020_09052_0
crossref_primary_10_1088_1748_9326_ad60df
crossref_primary_10_1016_j_scitotenv_2020_143869
crossref_primary_10_1007_s11430_024_1534_1
crossref_primary_10_1016_j_jes_2025_03_010
crossref_primary_10_1029_2023JD038642
crossref_primary_10_5194_acp_21_14959_2021
crossref_primary_10_5194_acp_20_12527_2020
crossref_primary_10_1016_j_scitotenv_2020_140000
crossref_primary_10_1016_j_scs_2025_106575
crossref_primary_10_1038_s41561_021_00726_z
crossref_primary_10_1016_j_earscirev_2021_103562
crossref_primary_10_1016_j_scitotenv_2023_167485
crossref_primary_10_5194_acp_21_16775_2021
crossref_primary_10_3390_rs12101613
crossref_primary_10_5194_acp_25_347_2025
crossref_primary_10_3390_rs15020349
crossref_primary_10_1016_j_atmosres_2024_107586
crossref_primary_10_1016_j_eiar_2025_108147
crossref_primary_10_3390_rs13183664
crossref_primary_10_1016_j_jenvman_2019_110036
crossref_primary_10_1016_j_atmosres_2022_106457
crossref_primary_10_1016_j_atmosres_2024_107225
crossref_primary_10_1038_s41612_023_00560_7
crossref_primary_10_1088_1748_9326_addee1
crossref_primary_10_3390_rs15051295
crossref_primary_10_5194_acp_23_14065_2023
crossref_primary_10_1029_2022JD037865
crossref_primary_10_3389_fenvs_2022_1002610
crossref_primary_10_1016_j_chemosphere_2023_138742
crossref_primary_10_1029_2020GL087721
crossref_primary_10_3390_rs15204973
crossref_primary_10_3390_s22093444
crossref_primary_10_5194_acp_21_10825_2021
crossref_primary_10_1007_s11356_023_29036_0
crossref_primary_10_3390_rs17071151
crossref_primary_10_1016_j_jes_2021_01_022
crossref_primary_10_1016_j_envpol_2023_122079
crossref_primary_10_1016_j_scitotenv_2023_164598
crossref_primary_10_1016_j_scitotenv_2022_158871
crossref_primary_10_1016_j_scitotenv_2022_156575
crossref_primary_10_1016_j_atmosenv_2020_117666
crossref_primary_10_3390_atmos10100563
crossref_primary_10_1093_nsr_nwae369
crossref_primary_10_5194_acp_22_11931_2022
crossref_primary_10_1016_j_scitotenv_2022_155107
crossref_primary_10_1038_s43016_021_00422_6
crossref_primary_10_5194_acp_19_13519_2019
crossref_primary_10_5194_acp_21_16001_2021
crossref_primary_10_1016_j_scitotenv_2022_154375
crossref_primary_10_1186_s13021_023_00229_x
crossref_primary_10_1002_joc_7139
crossref_primary_10_3389_fenvs_2022_841285
crossref_primary_10_1016_j_atmosenv_2023_119677
crossref_primary_10_1016_j_jes_2022_10_003
crossref_primary_10_1016_j_atmosenv_2023_119676
crossref_primary_10_1016_j_envint_2020_105801
crossref_primary_10_1002_asl_1217
crossref_primary_10_5194_acp_20_1483_2020
crossref_primary_10_1016_j_atmosenv_2023_119679
crossref_primary_10_3390_rs13214341
crossref_primary_10_1016_j_envpol_2023_123183
crossref_primary_10_1038_s41560_019_0477_0
crossref_primary_10_1016_j_scitotenv_2022_155334
crossref_primary_10_1136_bmjopen_2021_050159
crossref_primary_10_1016_j_scitotenv_2021_147236
crossref_primary_10_3389_fenvs_2022_1015723
crossref_primary_10_1016_j_apr_2023_102002
crossref_primary_10_5194_acp_23_6525_2023
crossref_primary_10_1016_j_atmosres_2023_106963
crossref_primary_10_1016_j_jhazmat_2024_136460
crossref_primary_10_1016_j_apr_2023_102008
crossref_primary_10_1016_j_atmosres_2023_106836
crossref_primary_10_3390_rs14020419
crossref_primary_10_5194_acp_22_11945_2022
crossref_primary_10_5194_acp_22_4167_2022
crossref_primary_10_1007_s00376_022_1393_y
crossref_primary_10_1016_j_rse_2025_114772
crossref_primary_10_1016_j_apt_2025_104972
crossref_primary_10_1016_j_eiar_2024_107598
crossref_primary_10_1016_j_scitotenv_2024_172487
crossref_primary_10_1016_j_jes_2020_09_007
crossref_primary_10_1016_j_uclim_2025_102399
crossref_primary_10_1016_j_envint_2025_109378
crossref_primary_10_1016_j_envint_2025_109259
crossref_primary_10_1016_j_atmosenv_2024_120854
crossref_primary_10_1016_j_jclepro_2023_136706
crossref_primary_10_1016_j_scitotenv_2020_138472
crossref_primary_10_1016_j_envint_2025_109251
crossref_primary_10_3390_atmos13050818
crossref_primary_10_1016_j_envint_2021_106392
crossref_primary_10_1038_s41598_022_09388_2
crossref_primary_10_1016_j_jes_2024_07_016
crossref_primary_10_1016_j_atmosres_2025_108323
crossref_primary_10_1016_j_apr_2025_102701
crossref_primary_10_3389_fenvs_2022_1104013
crossref_primary_10_1038_s41591_025_03929_8
crossref_primary_10_1016_j_envint_2022_107369
crossref_primary_10_1016_j_apgeochem_2023_105729
crossref_primary_10_1016_j_scitotenv_2023_163189
crossref_primary_10_1080_13658816_2024_2310737
crossref_primary_10_1016_j_atmosenv_2021_118708
crossref_primary_10_5572_KOSAE_2022_38_6_781
crossref_primary_10_3390_atmos12010078
crossref_primary_10_1088_1755_1315_606_1_012017
crossref_primary_10_5194_acp_23_14919_2023
crossref_primary_10_1016_j_eiar_2022_106840
crossref_primary_10_1016_j_scitotenv_2021_148876
crossref_primary_10_3389_fenvs_2021_693513
crossref_primary_10_1016_j_atmosenv_2023_120228
crossref_primary_10_5194_acp_20_11683_2020
crossref_primary_10_1016_j_atmosres_2025_108314
crossref_primary_10_1016_j_envpol_2019_113659
crossref_primary_10_1016_j_jenvman_2020_111017
crossref_primary_10_1016_j_atmosres_2023_106924
crossref_primary_10_1016_j_atmosenv_2020_117991
crossref_primary_10_1038_s41598_024_76223_1
crossref_primary_10_1038_s41612_025_01118_5
crossref_primary_10_3390_rs15133356
crossref_primary_10_1016_j_scitotenv_2023_165350
crossref_primary_10_5194_acp_20_14787_2020
crossref_primary_10_3390_atmos16070756
crossref_primary_10_1016_j_envres_2022_115025
crossref_primary_10_3390_atmos13111834
crossref_primary_10_1016_j_atmosenv_2022_119072
crossref_primary_10_1016_j_scitotenv_2021_145135
crossref_primary_10_1016_j_scitotenv_2022_153197
crossref_primary_10_1016_j_atmosres_2021_105599
crossref_primary_10_1016_j_atmosenv_2022_119192
crossref_primary_10_3390_atmos12050619
crossref_primary_10_3390_rs13061045
crossref_primary_10_1016_j_envpol_2021_118032
crossref_primary_10_1016_j_scitotenv_2022_156312
crossref_primary_10_1007_s11356_022_19825_4
crossref_primary_10_1002_joc_7112
crossref_primary_10_1016_j_envres_2023_116641
crossref_primary_10_1016_j_envpol_2020_115927
crossref_primary_10_1038_s41467_023_41086_z
crossref_primary_10_1029_2022JD036803
crossref_primary_10_1016_j_atmosenv_2024_120772
crossref_primary_10_1016_j_atmosres_2021_105583
crossref_primary_10_1016_j_eti_2025_104238
crossref_primary_10_12677_aep_2025_155077
crossref_primary_10_5194_acp_21_17995_2021
crossref_primary_10_1016_j_chemosphere_2022_134003
crossref_primary_10_1016_j_apgeochem_2023_105614
crossref_primary_10_1016_j_envpol_2021_118266
crossref_primary_10_1016_j_envpol_2022_119777
crossref_primary_10_1016_j_scitotenv_2020_140751
crossref_primary_10_1016_j_atmosenv_2020_117772
crossref_primary_10_5194_acp_21_16051_2021
crossref_primary_10_3390_atmos15070789
crossref_primary_10_1016_j_scitotenv_2024_170235
crossref_primary_10_1155_2020_9724367
crossref_primary_10_1016_j_envint_2022_107725
crossref_primary_10_1007_s11356_021_17889_2
crossref_primary_10_1016_j_jclepro_2022_133468
crossref_primary_10_1007_s11356_023_25530_7
crossref_primary_10_1016_j_atmosenv_2022_119204
crossref_primary_10_1016_j_scitotenv_2023_164871
crossref_primary_10_1016_j_atmosenv_2023_119969
crossref_primary_10_1016_j_scitotenv_2020_137896
crossref_primary_10_1016_j_envpol_2022_119464
crossref_primary_10_1016_j_envpol_2020_114694
crossref_primary_10_1016_j_atmosres_2022_106075
crossref_primary_10_1016_j_atmosres_2022_106197
crossref_primary_10_1016_j_scs_2022_104049
crossref_primary_10_21062_mft_2023_110
crossref_primary_10_3389_fenvs_2022_836191
crossref_primary_10_1016_j_apr_2023_101883
crossref_primary_10_1016_j_apr_2022_101359
crossref_primary_10_3390_su14106210
crossref_primary_10_3390_rs14071716
crossref_primary_10_1016_j_apr_2022_101590
crossref_primary_10_1007_s41810_025_00283_7
crossref_primary_10_1016_j_atmosenv_2023_119954
crossref_primary_10_1016_j_atmosenv_2025_121150
crossref_primary_10_3390_nu16010071
crossref_primary_10_1029_2020JD033600
crossref_primary_10_3390_atmos14081229
crossref_primary_10_1029_2021JD035442
crossref_primary_10_5194_acp_25_3233_2025
crossref_primary_10_1016_j_scitotenv_2020_140837
crossref_primary_10_1016_j_jclepro_2021_126793
crossref_primary_10_1016_j_atmosenv_2022_119421
crossref_primary_10_1016_j_atmosenv_2023_119622
crossref_primary_10_1016_j_envpol_2023_122803
crossref_primary_10_1016_j_scitotenv_2023_166911
crossref_primary_10_1088_1748_9326_aca16a
crossref_primary_10_3390_atmos13020222
crossref_primary_10_1038_s41612_025_00976_3
crossref_primary_10_1016_j_scitotenv_2024_174821
crossref_primary_10_1016_j_atmosenv_2020_117858
crossref_primary_10_1016_j_scitotenv_2022_154634
crossref_primary_10_3390_su152416694
crossref_primary_10_5194_acp_21_15135_2021
crossref_primary_10_1038_s41612_024_00847_3
crossref_primary_10_1016_j_envint_2025_109412
crossref_primary_10_1016_j_scitotenv_2023_163505
crossref_primary_10_5194_acp_22_2351_2022
crossref_primary_10_1007_s00704_021_03898_1
crossref_primary_10_1016_j_apr_2021_101199
crossref_primary_10_1029_2021GL095878
crossref_primary_10_1016_j_apr_2021_101196
crossref_primary_10_3390_atmos13020233
crossref_primary_10_1016_j_scitotenv_2024_172638
crossref_primary_10_3390_ijerph17134828
crossref_primary_10_1016_j_envint_2020_106030
crossref_primary_10_1016_j_envint_2020_106154
crossref_primary_10_1038_s41598_023_27936_2
crossref_primary_10_3390_toxics10050216
crossref_primary_10_1016_j_scitotenv_2023_167818
crossref_primary_10_1016_j_scitotenv_2023_166849
crossref_primary_10_1016_j_jastp_2024_106392
crossref_primary_10_5194_acp_22_3579_2022
crossref_primary_10_1029_2021GL093886
crossref_primary_10_5194_acp_22_7933_2022
crossref_primary_10_1016_j_apr_2023_101738
crossref_primary_10_1016_j_jenvman_2025_124730
crossref_primary_10_1007_s13351_023_3023_8
crossref_primary_10_1016_j_scitotenv_2020_144263
crossref_primary_10_1016_j_jes_2022_02_036
crossref_primary_10_5194_acp_20_7667_2020
crossref_primary_10_1016_j_envpol_2022_119027
crossref_primary_10_12677_OJNS_2023_115091
crossref_primary_10_3390_rs16122145
crossref_primary_10_1007_s40726_022_00246_3
crossref_primary_10_5194_acp_21_915_2021
crossref_primary_10_1080_17538947_2024_2310734
crossref_primary_10_3103_S1068373922110061
crossref_primary_10_1016_j_atmosenv_2025_121068
crossref_primary_10_1016_j_atmosres_2021_105963
crossref_primary_10_1029_2022JD038373
crossref_primary_10_1016_j_apr_2021_101055
crossref_primary_10_1016_j_combustflame_2022_112223
crossref_primary_10_1073_pnas_2500843122
crossref_primary_10_1016_j_envres_2024_118948
crossref_primary_10_1016_j_atmosenv_2023_119998
crossref_primary_10_1016_j_atmosenv_2023_119757
crossref_primary_10_20517_jeea_2024_44
crossref_primary_10_3389_fams_2024_1368147
crossref_primary_10_5194_acp_22_14401_2022
crossref_primary_10_3389_fenvs_2024_1393878
crossref_primary_10_1016_j_atmosenv_2023_119666
crossref_primary_10_5194_acp_25_4291_2025
crossref_primary_10_1016_j_apr_2020_09_013
crossref_primary_10_3390_rs12162518
crossref_primary_10_1016_j_envpol_2020_114556
crossref_primary_10_1029_2020JD033999
crossref_primary_10_3390_rs13071351
crossref_primary_10_1016_j_eiar_2024_107437
crossref_primary_10_1007_s11869_022_01178_z
crossref_primary_10_1016_j_scitotenv_2021_145545
crossref_primary_10_1016_j_scitotenv_2023_166946
crossref_primary_10_5194_acp_25_8719_2025
crossref_primary_10_1016_j_scitotenv_2020_136892
crossref_primary_10_1016_j_epm_2024_11_005
crossref_primary_10_1016_j_scitotenv_2020_138838
crossref_primary_10_5194_acp_21_1_2021
crossref_primary_10_1016_j_jes_2024_06_023
crossref_primary_10_1016_j_rse_2021_112541
crossref_primary_10_5194_acp_20_139_2020
crossref_primary_10_1016_j_scitotenv_2022_161239
crossref_primary_10_1038_s41612_024_00855_3
crossref_primary_10_1016_j_jclepro_2021_128433
crossref_primary_10_1016_j_apr_2025_102469
crossref_primary_10_5194_acp_22_13087_2022
crossref_primary_10_3390_rs16020391
crossref_primary_10_1016_j_ecolind_2020_107214
crossref_primary_10_1016_j_envpol_2023_121535
crossref_primary_10_3389_fevo_2023_1192847
crossref_primary_10_3390_rs13234855
crossref_primary_10_1038_s41561_019_0464_x
crossref_primary_10_5194_acp_22_8385_2022
crossref_primary_10_1016_j_envpol_2020_116233
crossref_primary_10_1016_j_scitotenv_2022_153847
crossref_primary_10_1038_s41612_023_00536_7
crossref_primary_10_3390_ijerph17176274
crossref_primary_10_1016_j_scitotenv_2023_168272
crossref_primary_10_5194_acp_22_8597_2022
crossref_primary_10_1016_j_apr_2025_102451
crossref_primary_10_1016_j_envpol_2022_119072
crossref_primary_10_1016_j_atmosenv_2024_120395
crossref_primary_10_1016_j_apr_2022_101638
crossref_primary_10_1016_j_scitotenv_2023_162718
crossref_primary_10_1007_s11356_020_09646_8
crossref_primary_10_5194_acp_22_10551_2022
crossref_primary_10_1016_j_jclepro_2021_126494
crossref_primary_10_3390_su14073930
crossref_primary_10_1016_j_envpol_2023_121886
crossref_primary_10_1016_j_scitotenv_2020_142275
crossref_primary_10_1021_acs_est_5c03079
crossref_primary_10_1016_j_envpol_2020_115278
crossref_primary_10_1007_s42452_022_05045_5
crossref_primary_10_1016_j_scitotenv_2023_166192
crossref_primary_10_1080_02786826_2023_2294944
crossref_primary_10_1016_j_scitotenv_2023_169466
crossref_primary_10_1007_s11430_022_1070_y
crossref_primary_10_1016_j_envres_2022_113322
crossref_primary_10_1016_j_scitotenv_2024_176037
crossref_primary_10_1016_j_jes_2024_02_017
crossref_primary_10_1016_j_envpol_2025_126098
crossref_primary_10_1016_j_atmosres_2024_107537
crossref_primary_10_1016_j_atmosenv_2025_121437
crossref_primary_10_3389_fenvs_2022_1007530
crossref_primary_10_3390_atmos14061027
crossref_primary_10_1016_j_trac_2022_116866
crossref_primary_10_1016_j_apgeog_2023_102949
crossref_primary_10_1088_1748_9326_ac03db
crossref_primary_10_1016_j_envpol_2021_116970
crossref_primary_10_1016_j_scitotenv_2023_166182
crossref_primary_10_1038_s41561_024_01540_z
crossref_primary_10_1007_s11356_022_18505_7
crossref_primary_10_1016_j_scitotenv_2020_138905
crossref_primary_10_1016_j_scitotenv_2024_171951
crossref_primary_10_1016_j_envint_2023_108361
crossref_primary_10_1016_j_atmosres_2024_107548
crossref_primary_10_1016_j_scitotenv_2021_152272
crossref_primary_10_1016_j_atmosenv_2025_121448
crossref_primary_10_1029_2020GL091105
crossref_primary_10_3390_su13105685
crossref_primary_10_1016_j_apr_2021_101237
crossref_primary_10_1016_j_apr_2025_102556
crossref_primary_10_1016_j_atmosres_2024_107665
crossref_primary_10_1016_j_envpol_2023_122517
crossref_primary_10_1016_j_apr_2021_101111
crossref_primary_10_1016_j_scitotenv_2022_160064
crossref_primary_10_1016_j_atmosenv_2021_118685
crossref_primary_10_1007_s00376_022_1463_1
crossref_primary_10_1016_j_scitotenv_2020_137700
crossref_primary_10_1016_j_jclepro_2024_140938
crossref_primary_10_1016_j_jenvman_2022_116847
crossref_primary_10_5194_amt_15_1075_2022
crossref_primary_10_1038_s41612_025_00984_3
crossref_primary_10_5194_acp_25_10183_2025
crossref_primary_10_1007_s41742_022_00458_x
crossref_primary_10_1016_j_ecolind_2022_109044
crossref_primary_10_1016_j_scitotenv_2024_172732
crossref_primary_10_1016_j_chemosphere_2020_128801
crossref_primary_10_5194_acp_25_4211_2025
crossref_primary_10_1016_j_jenvman_2022_115455
crossref_primary_10_1016_j_apr_2024_102147
crossref_primary_10_1016_j_envpol_2023_121344
crossref_primary_10_1016_j_atmosenv_2022_119520
crossref_primary_10_3390_ijerph19031607
crossref_primary_10_1038_s41598_020_63592_6
crossref_primary_10_3390_ijerph19074333
crossref_primary_10_1016_j_jes_2022_09_019
crossref_primary_10_1029_2020GL091275
crossref_primary_10_1016_j_envpol_2020_115346
crossref_primary_10_1016_j_atmosenv_2023_119923
crossref_primary_10_3390_rs17162758
crossref_primary_10_5194_acp_20_3273_2020
crossref_primary_10_1088_1748_9326_ab6f11
crossref_primary_10_1016_j_toxrep_2025_101949
crossref_primary_10_1029_2020EA001424
crossref_primary_10_1038_s41377_019_0210_6
crossref_primary_10_3390_atmos11111189
crossref_primary_10_1016_j_atmosenv_2021_118270
crossref_primary_10_1016_j_scitotenv_2020_144897
crossref_primary_10_1007_s41748_024_00380_6
crossref_primary_10_1016_j_scitotenv_2023_161552
crossref_primary_10_3390_rs13091798
crossref_primary_10_5194_acp_20_11423_2020
crossref_primary_10_1016_j_jenvman_2024_120121
crossref_primary_10_3389_fpubh_2023_1232715
crossref_primary_10_1007_s00376_022_1343_8
crossref_primary_10_3390_f11090946
crossref_primary_10_1088_1748_9326_ad37ce
crossref_primary_10_3390_atmos13071096
crossref_primary_10_1016_j_chemosphere_2022_133813
crossref_primary_10_1016_j_atmosenv_2025_121479
crossref_primary_10_1016_j_fuel_2022_126159
crossref_primary_10_5194_acp_25_3603_2025
crossref_primary_10_5194_acp_21_16183_2021
crossref_primary_10_1016_j_atmosres_2020_104859
crossref_primary_10_1016_j_atmosenv_2023_119948
crossref_primary_10_5194_acp_20_9855_2020
crossref_primary_10_1016_j_atmosenv_2023_119702
crossref_primary_10_5194_acp_22_16073_2022
crossref_primary_10_1088_1748_9326_abc915
crossref_primary_10_5194_acp_22_5495_2022
crossref_primary_10_1016_j_envpol_2025_126163
crossref_primary_10_1016_j_jes_2022_01_040
crossref_primary_10_1016_j_apr_2023_101905
crossref_primary_10_1088_2515_7620_ae0012
crossref_primary_10_1016_j_atmosenv_2021_118364
crossref_primary_10_1029_2021JD036310
crossref_primary_10_1016_j_jes_2024_04_035
crossref_primary_10_1093_nsr_nwab103
Cites_doi 10.1002/2016JD025136
10.5194/acp-16-4205-2016
10.1029/2012GL051428
10.5194/acp-16-2043-2016
10.1016/j.atmosenv.2010.06.060
10.1016/j.scitotenv.2017.01.027
10.1289/ehp.1409481
10.1073/pnas.1812955115
10.5194/acp-7-2691-2007
10.1038/srep35912
10.1016/S0140-6736(17)30505-6
10.5194/acp-10-6311-2010
10.5194/acp-18-5343-2018
10.1088/1748-9326/10/11/114015
10.1088/1748-9326/aa6cb2
10.5194/acp-15-2031-2015
10.5194/acp-19-1357-2019
10.1038/srep23604
10.5194/acp-15-11919-2015
10.1073/pnas.1800605115
10.1016/j.atmosenv.2008.09.051
10.1002/2017GL076570
10.5194/acp-12-3131-2012
10.1371/journal.pone.0117311
10.4209/aaqr.2016.07.0307
10.1021/acs.estlett.8b00366
10.5194/acp-17-9485-2017
10.1016/j.atmosenv.2016.04.013
10.1038/s41598-018-20437-7
10.1038/srep34275
10.5194/acp-17-4355-2017
10.1029/2018GL080102
10.1038/s41598-017-15909-1
10.1016/j.atmosenv.2018.06.038
10.1002/2016JD024877
10.1007/s11430-013-4773-4
10.1016/j.envpol.2018.10.136
10.1371/journal.pone.0135749
10.5194/acp-12-779-2012
10.1007/s10584-007-9351-3
10.5194/acp-19-6125-2019
10.1002/9781118625590
10.5194/acp-18-5515-2018
10.1038/srep14884
10.1073/pnas.1812168116
10.5194/acp-18-14095-2018
10.1016/j.scitotenv.2015.03.138
10.1007/s11430-013-4774-3
10.5194/acp-14-11949-2014
10.1073/pnas.1604537113
10.1016/j.aeolia.2017.06.004
10.1029/2007GL031450
10.1126/sciadv.1602751
10.1016/j.jaridenv.2003.11.009
10.1016/j.atmosenv.2018.02.045
10.1029/2018GL079309
10.5194/acp-19-6861-2019
10.1088/1748-9326/11/11/114002
10.1088/1748-9326/aae718
10.5194/acp-18-17489-2018
10.5194/acp-18-6733-2018
10.1007/s11430-019-9343-3
10.5194/acp-19-13519-2019
10.5194/acp-17-1775-2017
10.1038/nclimate3249
10.1175/BAMS-D-16-0301.1
10.5194/acp-16-1207-2016
ContentType Journal Article
Copyright COPYRIGHT 2019 Copernicus GmbH
2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2019 Copernicus GmbH
– notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-19-11031-2019
DatabaseName CrossRef
Science in Context
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 11041
ExternalDocumentID oai_doaj_org_article_80f404ad44464e04bec089b28d64aac0
A597815824
10_5194_acp_19_11031_2019
GeographicLocations China
Sichuan Basin
Beijing China
Yangtze River Delta
Pearl River (China)
GeographicLocations_xml – name: China
– name: Yangtze River Delta
– name: Pearl River (China)
– name: Beijing China
– name: Sichuan Basin
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c577t-6c73598b1a25d4ba6ee664c3322e1b3d64062ff58a44f7d4f8914eb1501f51743
IEDL.DBID DOA
ISICitedReferencesCount 567
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483093000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1680-7324
1680-7316
IngestDate Mon Nov 10 04:28:55 EST 2025
Sat Nov 01 15:22:40 EDT 2025
Sun Nov 30 03:55:04 EST 2025
Sat Nov 29 13:04:18 EST 2025
Sat Nov 29 10:02:11 EST 2025
Wed Nov 26 10:02:30 EST 2025
Tue Nov 18 22:11:24 EST 2025
Sat Nov 29 05:52:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-6c73598b1a25d4ba6ee664c3322e1b3d64062ff58a44f7d4f8914eb1501f51743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0073-7809
0000-0001-5431-5022
0000-0002-9181-3562
0000-0002-8444-9547
0000-0002-8532-5773
OpenAccessLink https://doaj.org/article/80f404ad44464e04bec089b28d64aac0
PQID 2281988075
PQPubID 105744
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_80f404ad44464e04bec089b28d64aac0
proquest_journals_2414457952
proquest_journals_2281988075
gale_infotracmisc_A597815824
gale_infotracacademiconefile_A597815824
gale_incontextgauss_ISR_A597815824
crossref_citationtrail_10_5194_acp_19_11031_2019
crossref_primary_10_5194_acp_19_11031_2019
PublicationCentury 2000
PublicationDate 2019-08-29
PublicationDateYYYYMMDD 2019-08-29
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-29
  day: 29
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2019
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref61
  doi: 10.1002/2016JD025136
– ident: ref53
  doi: 10.5194/acp-16-4205-2016
– ident: ref72
  doi: 10.1029/2012GL051428
– ident: ref22
  doi: 10.5194/acp-16-2043-2016
– ident: ref48
  doi: 10.1016/j.atmosenv.2010.06.060
– ident: ref54
  doi: 10.1016/j.scitotenv.2017.01.027
– ident: ref36
  doi: 10.1289/ehp.1409481
– ident: ref69
  doi: 10.1073/pnas.1812955115
– ident: ref16
  doi: 10.5194/acp-7-2691-2007
– ident: ref14
  doi: 10.1038/srep35912
– ident: ref9
– ident: ref13
  doi: 10.1016/S0140-6736(17)30505-6
– ident: ref34
  doi: 10.5194/acp-10-6311-2010
– ident: ref5
  doi: 10.5194/acp-18-5343-2018
– ident: ref46
  doi: 10.1088/1748-9326/10/11/114015
– ident: ref68
  doi: 10.1088/1748-9326/aa6cb2
– ident: ref11
– ident: ref70
  doi: 10.5194/acp-15-2031-2015
– ident: ref47
  doi: 10.5194/acp-19-1357-2019
– ident: ref18
  doi: 10.1038/srep23604
– ident: ref21
  doi: 10.5194/acp-15-11919-2015
– ident: ref23
  doi: 10.1073/pnas.1800605115
– ident: ref20
  doi: 10.1016/j.atmosenv.2008.09.051
– ident: ref27
  doi: 10.1002/2017GL076570
– ident: ref49
  doi: 10.5194/acp-12-3131-2012
– ident: ref59
  doi: 10.1371/journal.pone.0117311
– ident: ref25
  doi: 10.4209/aaqr.2016.07.0307
– ident: ref33
  doi: 10.1021/acs.estlett.8b00366
– ident: ref50
  doi: 10.5194/acp-17-9485-2017
– ident: ref58
  doi: 10.1016/j.atmosenv.2016.04.013
– ident: ref62
  doi: 10.1038/s41598-018-20437-7
– ident: ref3
  doi: 10.1038/srep34275
– ident: ref43
  doi: 10.5194/acp-17-4355-2017
– ident: ref12
– ident: ref40
  doi: 10.1029/2018GL080102
– ident: ref51
  doi: 10.1038/s41598-017-15909-1
– ident: ref42
  doi: 10.1016/j.atmosenv.2018.06.038
– ident: ref29
  doi: 10.1002/2016JD024877
– ident: ref57
  doi: 10.1007/s11430-013-4773-4
– ident: ref63
  doi: 10.1016/j.envpol.2018.10.136
– ident: ref41
  doi: 10.1371/journal.pone.0135749
– ident: ref65
  doi: 10.5194/acp-12-779-2012
– ident: ref24
  doi: 10.1007/s10584-007-9351-3
– ident: ref7
  doi: 10.5194/acp-19-6125-2019
– ident: ref15
  doi: 10.1002/9781118625590
– ident: ref19
  doi: 10.5194/acp-18-5515-2018
– ident: ref67
  doi: 10.1038/srep14884
– ident: ref28
  doi: 10.1073/pnas.1812168116
– ident: ref71
  doi: 10.5194/acp-18-14095-2018
– ident: ref1
  doi: 10.1016/j.scitotenv.2015.03.138
– ident: ref64
  doi: 10.1007/s11430-013-4774-3
– ident: ref17
  doi: 10.5194/acp-14-11949-2014
– ident: ref32
  doi: 10.1073/pnas.1604537113
– ident: ref35
  doi: 10.1016/j.aeolia.2017.06.004
– ident: ref4
  doi: 10.1029/2007GL031450
– ident: ref73
  doi: 10.1126/sciadv.1602751
– ident: ref38
– ident: ref55
  doi: 10.1016/j.jaridenv.2003.11.009
– ident: ref30
  doi: 10.1016/j.atmosenv.2018.02.045
– ident: ref39
  doi: 10.1029/2018GL079309
– ident: ref37
  doi: 10.5194/acp-19-6861-2019
– ident: ref31
  doi: 10.1088/1748-9326/11/11/114002
– ident: ref45
  doi: 10.1088/1748-9326/aae718
– ident: ref44
  doi: 10.5194/acp-18-17489-2018
– ident: ref26
  doi: 10.5194/acp-18-6733-2018
– ident: ref66
  doi: 10.1007/s11430-019-9343-3
– ident: ref6
  doi: 10.5194/acp-19-13519-2019
– ident: ref8
– ident: ref52
  doi: 10.5194/acp-17-1775-2017
– ident: ref2
  doi: 10.1038/nclimate3249
– ident: ref56
  doi: 10.1175/BAMS-D-16-0301.1
– ident: ref60
  doi: 10.5194/acp-16-1207-2016
– ident: ref10
SSID ssj0025014
Score 2.7079246
Snippet Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated...
Fine particulate matter (PM.sub.2.5) is a severe air pollution problem in China. Observations of PM.sub.2.5 have been available since 2013 from a large network...
Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated...
Fine particulate matter (PM 2.5 ) is a severe air pollution problem in China. Observations of PM 2.5 have been available since 2013 from a large network...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11031
SubjectTerms 2010s (Decade) AD
Air cleanliness
Air pollution
Air pollution control
Air quality
Air quality control
Annual variations
Anomalies
Anthropogenic factors
Carbon monoxide
Coal combustion
Confidence intervals
Councils
Data
Emissions
Emissions (Pollution)
Emissions control
Environmental monitoring
Forecasts and trends
Human-environment interactions
Humidity
Interannual variability
Megacities
Meridional wind
Meteorological research
Meteorology
Nitrogen dioxide
Particulate emissions
Particulate matter
Particulate matter emissions
Particulate pollutants
Particulates
Precipitation
Quality control
Regression analysis
Regression models
Relative humidity
Rivers
Satellites
Statistical analysis
Sulfur
Sulfur dioxide
Sulphur
Sulphur dioxide
Suspended particulate matter
Time series
Trends
Wind
Wind speed
Wind velocities
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQxYINUB4i0CILIV4iNHFsx2FXKkYg0aoqD3Vn-VmN1GZGkylrJD6BP-RLuNdxS0fisYDVKOObh31u7Htt5xxCHkLK4G3lXdnB6FLyFhcJTeNLaWrR8hCtSPOQn961e3vq8LDbvyD1hXvCRnrgseG2VBV5xY3nkLfwUHG4Z6U6y5SX3BiH2Tq4Ib6SB6jhllMtXC3DVEuqqkRtpnE9E6IVvmXcvKy7skZ9A_ARpNi5MCIl4v7fdc9pzJlc-4envU6u5kCTbo-nrJNLob9Bil2IkWeLNJVOH9Gd4ykErOnoJvk6gYCTztM9UNMr0JPEvUmf7O-yF-IpXabts3Ta0yS6_ZxCtZrvX77Bj3pJhzCyiPdHNG1_zzpaA8UPWKjJegzgrlNHUWNuSIWm9_Tk5zPdIh8nrz_svCmzREPpRNsuS-lapAC0tWHCc2tkCFJy10A3EWrbQK0ryWIUynAeW8-j6moOwwPgE5Eju7lN1vpZH-4QGqNXlQ9Wdlxwy2qrmDPSth4uwIwSBanOYNIu85ejjMaxhjwGkdWArK47nZDViGxBnp2fMh_JO_5k_ArhPDdE3u30B-CrM776b_gW5AF6jkZmjR637hyZ02HQb98f6G2B9GJCMV6Qx9kozqAGzuQvIaAdkIxrxXJjxRLQcavFZw6qc9czaIZLowo5pn9dzCGFFm0n2N3_UeF75Ao2Hs6ys26DrC0Xp2GTXHafl9NhcT-9lD8AKUM16w
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZg44EX7oiwgSyEuAmzxLEThxe0TatAYlU1Ltqb5dhOVWlLuqbjGYmfwD_kl3CO63ZUgr3wVLU-qeKc4-Nzcb6PkKeQMrg6dZZVsLswUWKT0OSOFSaTpfBNLUMd8uvHcjhUx8fVKBbc-niscukTg6N2ncUa-Q7Hjo9C6Nx30zOGrFHYXY0UGlfJJiKVgZ1v7h0MR0erlAu7ZphyFSplyNG06GtC1CJ2jJ2yrGIZ8hyArSDUzh87UwDw_5ebDnvP4Ob_3vUtciNGnXR3YSa3yRXf3iHJIQTM3SzU1ekzun8ygeg1fLtLfgwg-qTTYFdI8OXpaQDipC9Gh_yNfEnn4SwtnbQ0MHC_pjC3_Nf3n_Ch3tLeLyDF2zENZ-EjqVZP8W0WaiI5A9juxFIknOvDoGkdPb24p3vky-Dg8_57FvkamJVlOWeFLREPsM4Ml07UpvC-KITNwWf4rM5dAcEDbxqpjBBN6USjqkzAXgFKahAwO79PNtqu9Q8IbRqnUufrohJS1DyrFbemqEsHf8CNkglJl7rSNoKZI6fGiYakBtWrQb06q3RQr0b1JuTV6pLpAsnjMuE9NICVIIJwhx-62VjHNa1V2ohUGCcgpRY-FbAcUlXVXMFMjbFpQp6g-WiE2WjxHM_YnPe9_vDpSO9KxBqTiouEPI9CTQczsCa-FgHPAZG51iS31yRBO3Z9eGmCOvqhXl_Y39-HBeTTsqwkf3j51VvkOj4WLKbzaptszGfn_hG5Zr_NJ_3scVx1vwFx_jM_
  priority: 102
  providerName: ProQuest
Title Fine particulate matter (PM 2.5 ) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology
URI https://www.proquest.com/docview/2281988075
https://www.proquest.com/docview/2414457952
https://doaj.org/article/80f404ad44464e04bec089b28d64aac0
Volume 19
WOSCitedRecordID wos000483093000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: RKB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: P5Z
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BFMQW
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PCBAR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PATMY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BENPR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PIMPY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cAF8RSBZWUhxEuETRw7cbi1q61YQauoLGjhYvmVVaXdtGq6nJH4CfxDfgkzTrpsJR4XLrUaT1N7ZmLP2M73EfIYUgZnEmfjEmaXmBe4SagzF-c6FQX3tRFhHfLju2IykUdHZXWB6gvPhHXwwJ3idmVS84RrxyFv4T7h8J-JLA2TLuda25CtJ0W5Tqb6VAt3yzDVymUSIzdTt58J0Qrf1XYRp2WcIr8B-AhC7FyYkQJw_5-G5zDnjG6Q632wSAddI2-SS765RaIxxLnzZVgOp0_o3skMgs7w7Tb5NoKgkS5Cr5CXy9PTgJ9Jn1Vj9ko8p6twBJbOGhqIs19SaFr24-t3KORr2voOCbw5puEIe8-F1VJ8CYXqnlMBXG5mKfLEtaFSN46e_mrTHfJhtH-49ybuaRZiK4piFee2QBg_k2omHDc69z7Puc3gUfepyUDPSc7qWkjNeV04Xssy5TDEg45rxLnO7pKtZt74e4TWtZOJ8yYvueCGpUYyq3NTOLgB01JEJFmrWtkegxypME4U5CJoHQXWUWmpgnUUWiciL85_sugAOP4mPET7nQsidna4AB6leo9S__KoiDxC6ytEx2jw-M2xPmtbdfB-qgYCIcKEZDwiT3uheg49sLp_mwH0gIBaG5LbG5JgHbtZvXYy1Q8frWK4vSkRJ_r31RzSYFGUgt3_Hx1-QK6h8nClnJXbZGu1PPMPyVX7ZTVrlzvkynB_Uk13wgMGn5X4DNeqweH4E5YH4wrKy9O3w594zSq-
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLZGhwQ3_CMKAyzEvwhzXDtxkBAag2rV2qmCgcaVcWynqrSlpelA3CHxCLwHD8WTcI6bdlSC3e2Cq6jxSdScfMf2ybG_j5C7kDK4nDkbZTC6RCLFIqFpuSgxsUyFL3IZvkO-76Y7O2pvL-uvkJ_zvTC4rHLeJ4aO2o0sfiNf51jxUUid-2L8KULVKKyuziU0ZrDY9l-_QMpWPe-8gvd7j_P2693NrahWFYisTNNplNgUWevy2HDpRG4S75NE2BYg28d5yyUwxPGikMoIUaROFCqLBfRoksUF0jq34L6nyKoAsLMGWe13ev0PixQPq3SY4iWKRagJNaujwixJrBs7juIsilFXAbCJ1D5_jIRBMOBfw0IY69rn_zcvXSDn6lk13ZiFwUWy4stLpNmDhGA0CXUDep9u7g9hdh5-XSbf2zC7puMQNyhg5ulBIBqlD_s9_lQ-otOwVpgOSxoUxp9Q8GXr17cfcFDPaOVnlOnlgIa1_rVoWEVxtw41tfgExObQUhTUq0KjKR09OPpPV8i7E_HJVdIoR6W_RmhROMWcz5NMSJHzOFfcmiRPHdyAGyWbhM2xoW1N1o6aIfsakjaEkwY46TjTAU4a4dQkjxeXjGdMJccZv0TALQyRZDycGE0Guu6ztGKFYMI4IUQiPBMQ7kxlOVfwpMZY1iR3EK4aaURKXKc0MIdVpTtv3-gNiVxqUnHRJA9qo2IET2BNve0D_IDMY0uWa0uW8HbscvMc8rruZyt9hPe_N4tYCJlmkl8__urb5MzWbq-ru52d7RvkLLoICwc8WyON6eTQ3ySn7efpsJrcqiOeko8nHT6_Afmdjmw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLZGhxA3_E8UBliIfxGaOHbiICG0v4pqW1VtMO3OOLZTVdrS0nQg7pB4BN6Gx-FJOMdNOyrB7nbBVdTYiZqT7xz75NjfR8gjSBlsHloTZDC6BDzFIqGObZDoSKTcFbnw3yEPdtJuVx4eZr0l8nO2FwaXVc5iog_UdmjwG3mLYcVHInVuq6iXRfQ2229HnwJUkMJK60xOYwqRbff1C6Rv1ZvOJrzrx4y1t95vvAtqhYHAiDSdBIlJkcEujzQTluc6cS5JuIkB5S7KY5vAcMeKQkjNeZFaXsgs4hDdRBgVSPEcw30vkOU0hqSnQZbXt7q9vXm6hxU7TPcSGQaoDzWtqcKMibe0GQVRFkSosQA4RZqfP0ZFLx7wryHCj3vtq_-zxa6RK_Vsm65N3eM6WXLlDdLchURhOPb1BPqEbhwNYNbuf90k39sw66Yj708obObosScgpc96u-yVeE4nfg0xHZTUK4-_pGDX-Ne3H3CQr2nlplTqZZ_6PQC1mFhFcRcP1bUoBfjswFAU2qt8oy4tPT79T7fIh3OxyQpplMPS3Sa0KKwMrcuTjAuesyiXzOgkTy3cgGkpmiSc4USZmsQdtUSOFCRzCC0F0FJRpjy0FEKrSV7MLxlNGUzO6ryO4Jt3RPJxf2I47qs6likZFjzk2nLOE-5CDmEglFnOJDyp1iZskocIXYX0IiXCrq9Pqkp19vfUmkCONSEZb5KndadiCE9gdL0dBOyAjGQLPVcXesLbMYvNM_irOv5W6hT7f2_mEecizQS7c_bVD8gl8Bm10-lu3yWX0UJYT2DZKmlMxifuHrloPk8G1fh-7fyUfDxv7_kNOLSXBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+particulate+matter+trends+in+China%2C+2013-2018%3A+separating+contributions+from+anthropogenic+emissions+and+meteorology&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Zhai%2C+Shixian&rft.au=Jacob%2C+Daniel+J&rft.au=Wang%2C+Xuan&rft.au=Shen%2C+Lu&rft.date=2019-08-29&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=19&rft.issue=16&rft.spage=11031&rft_id=info:doi/10.5194%2Facp-19-11031-2019&rft.externalDocID=A597815824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon