Fine particulate matter (PM 2.5 ) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology
Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China o...
Gespeichert in:
| Veröffentlicht in: | Atmospheric chemistry and physics Jg. 19; H. 16; S. 11031 - 11041 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Katlenburg-Lindau
Copernicus GmbH
29.08.2019
Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1680-7324, 1680-7316, 1680-7324 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Fine particulate matter (PM2.5) is a severe air pollution
problem in China. Observations of PM2.5 have been available since 2013
from a large network operated by the China National Environmental Monitoring
Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean
PM2.5 across China over the 2013–2018 period, averaging at −5.2 µg m−3 a−1. Trends in the five megacity cluster regions targeted by
the government for air quality control are -9.3±1.8 µg m−3 a−1 (±95 % confidence interval) for Beijing–Tianjin–Hebei,
-6.1±1.1 µg m−3 a−1 for the Yangtze River Delta, -2.7±0.8 µg m−3 a−1 for the Pearl River Delta, -6.7±1.3 µg m−3 a−1 for the Sichuan Basin, and -6.5±2.5 µg m−3 a−1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018
observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that
the declines in PM2.5 are qualitatively consistent with drastic
controls of emissions from coal combustion. However, there is also a large
meteorologically driven interannual variability in PM2.5 that
complicates trend attribution. We used a stepwise multiple linear regression
(MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5
anomalies to wind speed, precipitation, relative humidity, temperature, and
850 hPa meridional wind velocity (V850). The meteorology-corrected
PM2.5 trends after removal of the MLR meteorological contribution can
be viewed as being driven by trends in anthropogenic emissions. The mean
PM2.5 decrease across China is −4.6 µg m−3 a−1 in the
meteorology-corrected data, 12 % weaker than in the original data, meaning
that 12 % of the PM2.5 decrease in the original data is
attributable to meteorology. The trends in the meteorology-corrected data
for the five megacity clusters are -8.0±1.1 µg m−3 a−1 for Beijing–Tianjin–Hebei (14 % weaker than in the original
data), -6.3±0.9 µg m−3 a−1 for the Yangtze River Delta
(3 % stronger), -2.2±0.5 µg m−3 a−1 for the Pearl River
Delta (19 % weaker), -4.9±0.9 µg m−3 a−1 for
the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m−3 a−1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of
flattening PM2.5 in the Pearl River Delta and increases in the Fenwei
Plain can be attributed to meteorology rather than to relaxation of emission
controls. |
|---|---|
| AbstractList | Fine particulate matter (PM 2.5 ) is a severe air pollution problem in China. Observations of PM 2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM 2.5 across China over the 2013–2018 period, averaging at −5.2 µ g m −3 a −1 . Trends in the five megacity cluster regions targeted by the government for air quality control are - 9.3 ± 1.8 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="67e7d5508bfc21be30fd653bf13260f6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00001.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00001.png"/></svg:svg> µ g m −3 a −1 ( ±95 % confidence interval) for Beijing–Tianjin–Hebei, - 6.1 ± 1.1 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="70e03f9522a113a7dc30ece424d49bce"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00002.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00002.png"/></svg:svg> µ g m −3 a −1 for the Yangtze River Delta, - 2.7 ± 0.8 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="71b4e427f759f6d47412380862ca6397"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00003.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00003.png"/></svg:svg> µ g m −3 a −1 for the Pearl River Delta, - 6.7 ± 1.3 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1fff5043d3a6bcef3a21679e46fa9888"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00004.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00004.png"/></svg:svg> µ g m −3 a −1 for the Sichuan Basin, and - 6.5 ± 2.5 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6a19372043f480189dd1e052a5f0d922"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00005.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00005.png"/></svg:svg> µ g m −3 a −1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide ( SO2 ) and carbon monoxide (CO) show that the declines in PM 2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM 2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM 2.5 trends across China. The MLR model correlates the 10 d PM 2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM 2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM 2.5 decrease across China is −4.6 µ g m −3 a −1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM 2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are - 8.0 ± 1.1 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="a49cc43b6a622598226746c04cd91382"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00006.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00006.png"/></svg:svg> µ g m −3 a −1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), - 6.3 ± 0.9 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="21c3b8035c0e46ee1bb9baf457471ef6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00007.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00007.png"/></svg:svg> µ g m −3 a −1 for the Yangtze River Delta (3 % stronger), - 2.2 ± 0.5 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d7c66650fd7b0217febd6a6b5883da2d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00008.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00008.png"/></svg:svg> µ g m −3 a −1 for the Pearl River Delta (19 % weaker), - 4.9 ± 0.9 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d6a4f57abc59de71a45d0091beeca176"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00009.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00009.png"/></svg:svg> µ g m −3 a −1 for the Sichuan Basin (27 % weaker), and - 5.0 ± 1.9 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="fb5169ee41fe1cecbd62eba02ef83cc4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11031-2019-ie00010.svg" width="52pt" height="10pt" src="acp-19-11031-2019-ie00010.png"/></svg:svg> µ g m −3 a −1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM 2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls. Fine particulate matter (PM.sub.2.5) is a severe air pollution problem in China. Observations of PM.sub.2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %-50 % decrease in annual mean PM.sub.2.5 across China over the 2013-2018 period, averaging at -5.2 µg m.sup.-3 a.sup.-1 . Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m.sup.-3 a.sup.-1 (±95 % confidence interval) for Beijing-Tianjin-Hebei, -6.1±1.1 µg m.sup.-3 a.sup.-1 for the Yangtze River Delta, -2.7±0.8 µg m.sup.-3 a.sup.-1 for the Pearl River Delta, -6.7±1.3 µg m.sup.-3 a.sup.-1 for the Sichuan Basin, and -6.5±2.5 µg m.sup.-3 a.sup.-1 for the Fenwei Plain (Xi'an). Concurrent 2013-2018 observations of sulfur dioxide (SO.sub.2) and carbon monoxide (CO) show that the declines in PM.sub.2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM.sub.2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM.sub.2.5 trends across China. The MLR model correlates the 10 d PM.sub.2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM.sub.2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM.sub.2.5 decrease across China is -4.6 µg m.sup.-3 a.sup.-1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM.sub.2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m.sup.-3 a.sup.-1 for Beijing-Tianjin-Hebei (14 % weaker than in the original data), -6.3±0.9 µg m.sup.-3 a.sup.-1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m.sup.-3 a.sup.-1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m.sup.-3 a.sup.-1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m.sup.-3 a.sup.-1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015-2017 observations of flattening PM.sub.2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls. Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at -5.2 µg m-3 a-1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m-3 a-1 (±95 % confidence interval) for Beijing–Tianjin–Hebei,-6.1±1.1 µg m-3 a-1 for the Yangtze River Delta, -2.7±0.8 µg m-3 a-1 for the Pearl River Delta, -6.7±1.3 µg m-3 a-1 for the Sichuan Basin, and -6.5±2.5 µg m-3 a-1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is -4.6 µg m-3 a-1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m-3 a-1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m-3 a-1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m-3 a-1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m-3 a-1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m-3 a-1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls. Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at −5.2 µg m−3 a−1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m−3 a−1 (±95 % confidence interval) for Beijing–Tianjin–Hebei, -6.1±1.1 µg m−3 a−1 for the Yangtze River Delta, -2.7±0.8 µg m−3 a−1 for the Pearl River Delta, -6.7±1.3 µg m−3 a−1 for the Sichuan Basin, and -6.5±2.5 µg m−3 a−1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is −4.6 µg m−3 a−1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m−3 a−1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m−3 a−1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m−3 a−1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m−3 a−1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m−3 a−1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls. Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The data show a general 30 %–50 % decrease in annual mean PM2.5 across China over the 2013–2018 period, averaging at −5.2 µg m−3 a−1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3±1.8 µg m−3 a−1 (±95 % confidence interval) for Beijing–Tianjin–Hebei, -6.1±1.1 µg m−3 a−1 for the Yangtze River Delta, -2.7±0.8 µg m−3 a−1 for the Pearl River Delta, -6.7±1.3 µg m−3 a−1 for the Sichuan Basin, and -6.5±2.5 µg m−3 a−1 for the Fenwei Plain (Xi'an). Concurrent 2013–2018 observations of sulfur dioxide (SO2) and carbon monoxide (CO) show that the declines in PM2.5 are qualitatively consistent with drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual variability in PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10 d PM2.5 anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as being driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is −4.6 µg m−3 a−1 in the meteorology-corrected data, 12 % weaker than in the original data, meaning that 12 % of the PM2.5 decrease in the original data is attributable to meteorology. The trends in the meteorology-corrected data for the five megacity clusters are -8.0±1.1 µg m−3 a−1 for Beijing–Tianjin–Hebei (14 % weaker than in the original data), -6.3±0.9 µg m−3 a−1 for the Yangtze River Delta (3 % stronger), -2.2±0.5 µg m−3 a−1 for the Pearl River Delta (19 % weaker), -4.9±0.9 µg m−3 a−1 for the Sichuan Basin (27 % weaker), and -5.0±1.9 µg m−3 a−1 for the Fenwei Plain (Xi'an; 23 % weaker); 2015–2017 observations of flattening PM2.5 in the Pearl River Delta and increases in the Fenwei Plain can be attributed to meteorology rather than to relaxation of emission controls. |
| Audience | Academic |
| Author | Zhai, Shixian Liao, Hong Zhao, Tianliang Gui, Ke Li, Ke Zhang, Yuzhong Jacob, Daniel J. Wang, Xuan Shen, Lu |
| Author_xml | – sequence: 1 givenname: Shixian orcidid: 0000-0002-0073-7809 surname: Zhai fullname: Zhai, Shixian – sequence: 2 givenname: Daniel J. surname: Jacob fullname: Jacob, Daniel J. – sequence: 3 givenname: Xuan orcidid: 0000-0002-8532-5773 surname: Wang fullname: Wang, Xuan – sequence: 4 givenname: Lu surname: Shen fullname: Shen, Lu – sequence: 5 givenname: Ke orcidid: 0000-0002-9181-3562 surname: Li fullname: Li, Ke – sequence: 6 givenname: Yuzhong orcidid: 0000-0001-5431-5022 surname: Zhang fullname: Zhang, Yuzhong – sequence: 7 givenname: Ke orcidid: 0000-0002-8444-9547 surname: Gui fullname: Gui, Ke – sequence: 8 givenname: Tianliang surname: Zhao fullname: Zhao, Tianliang – sequence: 9 givenname: Hong surname: Liao fullname: Liao, Hong |
| BookMark | eNp9Uk1vEzEQXaEi0RZ-ADdLXKjEBttr73q5VRGFSEUgPs7WrHe8dZTYwXYkeuPCL-Af8ktwEhAEAfJhrPF7b8Zv5qw68cFjVT1kdCZZL56C2dSsrxmjDas5Zf2d6pS1itZdw8XJb_d71VlKS0q5pEycVl-unEeygZid2a4gI1lDzhjJ4zevCJ9JckFyRD8m4jyZ3zgPT0iRb759_lqCekYSFjJk5ydigs_RDdvsgk_ExrAm4PNNDJswoXeG4NqltH8EP5I1ZgwxrMJ0e7-6a2GV8MGPeF59uHr-fv6yvn79YjG_vK6N7Lpct6ZrZK8GBlyOYoAWsW2FaRrOkQ3N2AracmulAiFsNwqreiZwYOWrVrJONOfV4qA7BljqTXRriLc6gNP7RIiT3juxQq2oFVTAKIRoBVIxoKGqH7gqVQAMLVqPDlqbGD5uMWW9DNvoS_uaCyaE7HrJ_4viivVK0U7-Qk1QSjtvQ45giltGX8q-U0wqvut-9hdUOWMxtpiP1pX8EeHiiLAbEH7KE2xT0ot3b4-x3QFrYkgpotXGZdiNshRxK82o3i2aLoumWa_3i6Z3i1aY7A_mT2P_zfkOttfUZA |
| CitedBy_id | crossref_primary_10_1016_j_envres_2023_116854 crossref_primary_10_3390_atmos16040446 crossref_primary_10_1016_j_apm_2021_06_025 crossref_primary_10_1038_s41561_021_00792_3 crossref_primary_10_3390_ijerph192215060 crossref_primary_10_1007_s11783_020_1326_x crossref_primary_10_1029_2020EA001599 crossref_primary_10_1029_2023GL106527 crossref_primary_10_1038_s41612_024_00667_5 crossref_primary_10_1016_j_envres_2025_121648 crossref_primary_10_5194_amt_17_377_2024 crossref_primary_10_1016_j_envres_2021_110754 crossref_primary_10_1016_j_envres_2021_110875 crossref_primary_10_1016_j_envpol_2022_118932 crossref_primary_10_1016_j_scitotenv_2020_143775 crossref_primary_10_1016_j_atmosenv_2021_118750 crossref_primary_10_3389_fenvs_2022_1115746 crossref_primary_10_1016_j_chemosphere_2021_130653 crossref_primary_10_3390_ijerph182312471 crossref_primary_10_3390_su13041994 crossref_primary_10_1007_s11356_022_19293_w crossref_primary_10_1016_j_jes_2022_12_009 crossref_primary_10_1038_s41893_024_01366_y crossref_primary_10_1186_s12302_024_00902_z crossref_primary_10_1016_j_scitotenv_2023_169516 crossref_primary_10_1007_s00376_023_3156_9 crossref_primary_10_1016_j_atmosenv_2024_120796 crossref_primary_10_1007_s10661_024_13162_4 crossref_primary_10_1016_j_envint_2020_105776 crossref_primary_10_1016_j_scitotenv_2020_144724 crossref_primary_10_1029_2020JD034382 crossref_primary_10_1093_gerona_glaf117 crossref_primary_10_1016_j_jobe_2023_106817 crossref_primary_10_1109_ACCESS_2022_3204284 crossref_primary_10_1038_s41612_023_00397_0 crossref_primary_10_3390_atmos11050461 crossref_primary_10_1016_j_atmosenv_2021_118864 crossref_primary_10_1016_j_scitotenv_2023_164065 crossref_primary_10_1029_2020GL088913 crossref_primary_10_3390_atmos15050616 crossref_primary_10_5194_acp_24_4001_2024 crossref_primary_10_1016_j_scitotenv_2021_151451 crossref_primary_10_3390_rs12030523 crossref_primary_10_1007_s11356_020_09280_4 crossref_primary_10_1016_j_apr_2024_102368 crossref_primary_10_1016_j_atmosenv_2024_120347 crossref_primary_10_1016_j_jes_2021_10_014 crossref_primary_10_3390_ijerph20075396 crossref_primary_10_1016_j_partic_2023_09_014 crossref_primary_10_3390_atmos16080916 crossref_primary_10_1016_j_atmosenv_2021_118610 crossref_primary_10_1016_j_atmosenv_2023_120170 crossref_primary_10_1016_j_scitotenv_2021_151204 crossref_primary_10_1016_j_scitotenv_2021_152778 crossref_primary_10_1029_2023GL105761 crossref_primary_10_1016_j_apr_2024_102132 crossref_primary_10_1016_j_jclepro_2023_140514 crossref_primary_10_1016_j_scitotenv_2021_150011 crossref_primary_10_1016_j_scitotenv_2022_155045 crossref_primary_10_3390_children8110987 crossref_primary_10_1073_pnas_1907956116 crossref_primary_10_1016_j_scitotenv_2022_159592 crossref_primary_10_1016_j_envint_2021_106818 crossref_primary_10_1016_j_aeaoa_2025_100374 crossref_primary_10_1016_j_jclepro_2023_138608 crossref_primary_10_1016_j_jhazmat_2025_139627 crossref_primary_10_1007_s00376_022_1346_5 crossref_primary_10_1016_j_envres_2024_119009 crossref_primary_10_5194_acp_24_1607_2024 crossref_primary_10_1073_pnas_2015797118 crossref_primary_10_3390_atmos12060722 crossref_primary_10_1016_j_atmosenv_2024_120363 crossref_primary_10_1016_j_scitotenv_2024_174196 crossref_primary_10_5194_acp_25_1023_2025 crossref_primary_10_5194_acp_21_9475_2021 crossref_primary_10_1016_j_envpol_2023_123122 crossref_primary_10_1016_j_atmosenv_2024_120369 crossref_primary_10_1016_j_atmosenv_2021_118437 crossref_primary_10_1016_j_envpol_2022_120928 crossref_primary_10_1016_j_atmosenv_2021_118556 crossref_primary_10_1016_j_envpol_2021_118218 crossref_primary_10_1016_j_marpolbul_2022_114131 crossref_primary_10_1016_j_jes_2022_04_045 crossref_primary_10_1016_j_scitotenv_2024_171910 crossref_primary_10_1016_j_scitotenv_2024_170822 crossref_primary_10_3390_ijerph19031440 crossref_primary_10_1016_j_scitotenv_2021_148474 crossref_primary_10_5194_acp_21_7723_2021 crossref_primary_10_1007_s11783_023_1737_6 crossref_primary_10_1029_2021GL093197 crossref_primary_10_3389_fenvs_2023_1254390 crossref_primary_10_3390_atmos14121785 crossref_primary_10_1016_j_envpol_2020_115076 crossref_primary_10_3390_atmos13010021 crossref_primary_10_1021_acsestair_4c00314 crossref_primary_10_1016_j_jclepro_2023_136407 crossref_primary_10_1016_j_atmosres_2023_107181 crossref_primary_10_3390_toxics11060481 crossref_primary_10_1016_j_envpol_2020_116167 crossref_primary_10_1016_j_atmosres_2024_107332 crossref_primary_10_1007_s10584_025_03996_3 crossref_primary_10_1007_s11356_020_09052_0 crossref_primary_10_1088_1748_9326_ad60df crossref_primary_10_1016_j_scitotenv_2020_143869 crossref_primary_10_1007_s11430_024_1534_1 crossref_primary_10_1016_j_jes_2025_03_010 crossref_primary_10_1029_2023JD038642 crossref_primary_10_5194_acp_21_14959_2021 crossref_primary_10_5194_acp_20_12527_2020 crossref_primary_10_1016_j_scitotenv_2020_140000 crossref_primary_10_1016_j_scs_2025_106575 crossref_primary_10_1038_s41561_021_00726_z crossref_primary_10_1016_j_earscirev_2021_103562 crossref_primary_10_1016_j_scitotenv_2023_167485 crossref_primary_10_5194_acp_21_16775_2021 crossref_primary_10_3390_rs12101613 crossref_primary_10_5194_acp_25_347_2025 crossref_primary_10_3390_rs15020349 crossref_primary_10_1016_j_atmosres_2024_107586 crossref_primary_10_1016_j_eiar_2025_108147 crossref_primary_10_3390_rs13183664 crossref_primary_10_1016_j_jenvman_2019_110036 crossref_primary_10_1016_j_atmosres_2022_106457 crossref_primary_10_1016_j_atmosres_2024_107225 crossref_primary_10_1038_s41612_023_00560_7 crossref_primary_10_1088_1748_9326_addee1 crossref_primary_10_3390_rs15051295 crossref_primary_10_5194_acp_23_14065_2023 crossref_primary_10_1029_2022JD037865 crossref_primary_10_3389_fenvs_2022_1002610 crossref_primary_10_1016_j_chemosphere_2023_138742 crossref_primary_10_1029_2020GL087721 crossref_primary_10_3390_rs15204973 crossref_primary_10_3390_s22093444 crossref_primary_10_5194_acp_21_10825_2021 crossref_primary_10_1007_s11356_023_29036_0 crossref_primary_10_3390_rs17071151 crossref_primary_10_1016_j_jes_2021_01_022 crossref_primary_10_1016_j_envpol_2023_122079 crossref_primary_10_1016_j_scitotenv_2023_164598 crossref_primary_10_1016_j_scitotenv_2022_158871 crossref_primary_10_1016_j_scitotenv_2022_156575 crossref_primary_10_1016_j_atmosenv_2020_117666 crossref_primary_10_3390_atmos10100563 crossref_primary_10_1093_nsr_nwae369 crossref_primary_10_5194_acp_22_11931_2022 crossref_primary_10_1016_j_scitotenv_2022_155107 crossref_primary_10_1038_s43016_021_00422_6 crossref_primary_10_5194_acp_19_13519_2019 crossref_primary_10_5194_acp_21_16001_2021 crossref_primary_10_1016_j_scitotenv_2022_154375 crossref_primary_10_1186_s13021_023_00229_x crossref_primary_10_1002_joc_7139 crossref_primary_10_3389_fenvs_2022_841285 crossref_primary_10_1016_j_atmosenv_2023_119677 crossref_primary_10_1016_j_jes_2022_10_003 crossref_primary_10_1016_j_atmosenv_2023_119676 crossref_primary_10_1016_j_envint_2020_105801 crossref_primary_10_1002_asl_1217 crossref_primary_10_5194_acp_20_1483_2020 crossref_primary_10_1016_j_atmosenv_2023_119679 crossref_primary_10_3390_rs13214341 crossref_primary_10_1016_j_envpol_2023_123183 crossref_primary_10_1038_s41560_019_0477_0 crossref_primary_10_1016_j_scitotenv_2022_155334 crossref_primary_10_1136_bmjopen_2021_050159 crossref_primary_10_1016_j_scitotenv_2021_147236 crossref_primary_10_3389_fenvs_2022_1015723 crossref_primary_10_1016_j_apr_2023_102002 crossref_primary_10_5194_acp_23_6525_2023 crossref_primary_10_1016_j_atmosres_2023_106963 crossref_primary_10_1016_j_jhazmat_2024_136460 crossref_primary_10_1016_j_apr_2023_102008 crossref_primary_10_1016_j_atmosres_2023_106836 crossref_primary_10_3390_rs14020419 crossref_primary_10_5194_acp_22_11945_2022 crossref_primary_10_5194_acp_22_4167_2022 crossref_primary_10_1007_s00376_022_1393_y crossref_primary_10_1016_j_rse_2025_114772 crossref_primary_10_1016_j_apt_2025_104972 crossref_primary_10_1016_j_eiar_2024_107598 crossref_primary_10_1016_j_scitotenv_2024_172487 crossref_primary_10_1016_j_jes_2020_09_007 crossref_primary_10_1016_j_uclim_2025_102399 crossref_primary_10_1016_j_envint_2025_109378 crossref_primary_10_1016_j_envint_2025_109259 crossref_primary_10_1016_j_atmosenv_2024_120854 crossref_primary_10_1016_j_jclepro_2023_136706 crossref_primary_10_1016_j_scitotenv_2020_138472 crossref_primary_10_1016_j_envint_2025_109251 crossref_primary_10_3390_atmos13050818 crossref_primary_10_1016_j_envint_2021_106392 crossref_primary_10_1038_s41598_022_09388_2 crossref_primary_10_1016_j_jes_2024_07_016 crossref_primary_10_1016_j_atmosres_2025_108323 crossref_primary_10_1016_j_apr_2025_102701 crossref_primary_10_3389_fenvs_2022_1104013 crossref_primary_10_1038_s41591_025_03929_8 crossref_primary_10_1016_j_envint_2022_107369 crossref_primary_10_1016_j_apgeochem_2023_105729 crossref_primary_10_1016_j_scitotenv_2023_163189 crossref_primary_10_1080_13658816_2024_2310737 crossref_primary_10_1016_j_atmosenv_2021_118708 crossref_primary_10_5572_KOSAE_2022_38_6_781 crossref_primary_10_3390_atmos12010078 crossref_primary_10_1088_1755_1315_606_1_012017 crossref_primary_10_5194_acp_23_14919_2023 crossref_primary_10_1016_j_eiar_2022_106840 crossref_primary_10_1016_j_scitotenv_2021_148876 crossref_primary_10_3389_fenvs_2021_693513 crossref_primary_10_1016_j_atmosenv_2023_120228 crossref_primary_10_5194_acp_20_11683_2020 crossref_primary_10_1016_j_atmosres_2025_108314 crossref_primary_10_1016_j_envpol_2019_113659 crossref_primary_10_1016_j_jenvman_2020_111017 crossref_primary_10_1016_j_atmosres_2023_106924 crossref_primary_10_1016_j_atmosenv_2020_117991 crossref_primary_10_1038_s41598_024_76223_1 crossref_primary_10_1038_s41612_025_01118_5 crossref_primary_10_3390_rs15133356 crossref_primary_10_1016_j_scitotenv_2023_165350 crossref_primary_10_5194_acp_20_14787_2020 crossref_primary_10_3390_atmos16070756 crossref_primary_10_1016_j_envres_2022_115025 crossref_primary_10_3390_atmos13111834 crossref_primary_10_1016_j_atmosenv_2022_119072 crossref_primary_10_1016_j_scitotenv_2021_145135 crossref_primary_10_1016_j_scitotenv_2022_153197 crossref_primary_10_1016_j_atmosres_2021_105599 crossref_primary_10_1016_j_atmosenv_2022_119192 crossref_primary_10_3390_atmos12050619 crossref_primary_10_3390_rs13061045 crossref_primary_10_1016_j_envpol_2021_118032 crossref_primary_10_1016_j_scitotenv_2022_156312 crossref_primary_10_1007_s11356_022_19825_4 crossref_primary_10_1002_joc_7112 crossref_primary_10_1016_j_envres_2023_116641 crossref_primary_10_1016_j_envpol_2020_115927 crossref_primary_10_1038_s41467_023_41086_z crossref_primary_10_1029_2022JD036803 crossref_primary_10_1016_j_atmosenv_2024_120772 crossref_primary_10_1016_j_atmosres_2021_105583 crossref_primary_10_1016_j_eti_2025_104238 crossref_primary_10_12677_aep_2025_155077 crossref_primary_10_5194_acp_21_17995_2021 crossref_primary_10_1016_j_chemosphere_2022_134003 crossref_primary_10_1016_j_apgeochem_2023_105614 crossref_primary_10_1016_j_envpol_2021_118266 crossref_primary_10_1016_j_envpol_2022_119777 crossref_primary_10_1016_j_scitotenv_2020_140751 crossref_primary_10_1016_j_atmosenv_2020_117772 crossref_primary_10_5194_acp_21_16051_2021 crossref_primary_10_3390_atmos15070789 crossref_primary_10_1016_j_scitotenv_2024_170235 crossref_primary_10_1155_2020_9724367 crossref_primary_10_1016_j_envint_2022_107725 crossref_primary_10_1007_s11356_021_17889_2 crossref_primary_10_1016_j_jclepro_2022_133468 crossref_primary_10_1007_s11356_023_25530_7 crossref_primary_10_1016_j_atmosenv_2022_119204 crossref_primary_10_1016_j_scitotenv_2023_164871 crossref_primary_10_1016_j_atmosenv_2023_119969 crossref_primary_10_1016_j_scitotenv_2020_137896 crossref_primary_10_1016_j_envpol_2022_119464 crossref_primary_10_1016_j_envpol_2020_114694 crossref_primary_10_1016_j_atmosres_2022_106075 crossref_primary_10_1016_j_atmosres_2022_106197 crossref_primary_10_1016_j_scs_2022_104049 crossref_primary_10_21062_mft_2023_110 crossref_primary_10_3389_fenvs_2022_836191 crossref_primary_10_1016_j_apr_2023_101883 crossref_primary_10_1016_j_apr_2022_101359 crossref_primary_10_3390_su14106210 crossref_primary_10_3390_rs14071716 crossref_primary_10_1016_j_apr_2022_101590 crossref_primary_10_1007_s41810_025_00283_7 crossref_primary_10_1016_j_atmosenv_2023_119954 crossref_primary_10_1016_j_atmosenv_2025_121150 crossref_primary_10_3390_nu16010071 crossref_primary_10_1029_2020JD033600 crossref_primary_10_3390_atmos14081229 crossref_primary_10_1029_2021JD035442 crossref_primary_10_5194_acp_25_3233_2025 crossref_primary_10_1016_j_scitotenv_2020_140837 crossref_primary_10_1016_j_jclepro_2021_126793 crossref_primary_10_1016_j_atmosenv_2022_119421 crossref_primary_10_1016_j_atmosenv_2023_119622 crossref_primary_10_1016_j_envpol_2023_122803 crossref_primary_10_1016_j_scitotenv_2023_166911 crossref_primary_10_1088_1748_9326_aca16a crossref_primary_10_3390_atmos13020222 crossref_primary_10_1038_s41612_025_00976_3 crossref_primary_10_1016_j_scitotenv_2024_174821 crossref_primary_10_1016_j_atmosenv_2020_117858 crossref_primary_10_1016_j_scitotenv_2022_154634 crossref_primary_10_3390_su152416694 crossref_primary_10_5194_acp_21_15135_2021 crossref_primary_10_1038_s41612_024_00847_3 crossref_primary_10_1016_j_envint_2025_109412 crossref_primary_10_1016_j_scitotenv_2023_163505 crossref_primary_10_5194_acp_22_2351_2022 crossref_primary_10_1007_s00704_021_03898_1 crossref_primary_10_1016_j_apr_2021_101199 crossref_primary_10_1029_2021GL095878 crossref_primary_10_1016_j_apr_2021_101196 crossref_primary_10_3390_atmos13020233 crossref_primary_10_1016_j_scitotenv_2024_172638 crossref_primary_10_3390_ijerph17134828 crossref_primary_10_1016_j_envint_2020_106030 crossref_primary_10_1016_j_envint_2020_106154 crossref_primary_10_1038_s41598_023_27936_2 crossref_primary_10_3390_toxics10050216 crossref_primary_10_1016_j_scitotenv_2023_167818 crossref_primary_10_1016_j_scitotenv_2023_166849 crossref_primary_10_1016_j_jastp_2024_106392 crossref_primary_10_5194_acp_22_3579_2022 crossref_primary_10_1029_2021GL093886 crossref_primary_10_5194_acp_22_7933_2022 crossref_primary_10_1016_j_apr_2023_101738 crossref_primary_10_1016_j_jenvman_2025_124730 crossref_primary_10_1007_s13351_023_3023_8 crossref_primary_10_1016_j_scitotenv_2020_144263 crossref_primary_10_1016_j_jes_2022_02_036 crossref_primary_10_5194_acp_20_7667_2020 crossref_primary_10_1016_j_envpol_2022_119027 crossref_primary_10_12677_OJNS_2023_115091 crossref_primary_10_3390_rs16122145 crossref_primary_10_1007_s40726_022_00246_3 crossref_primary_10_5194_acp_21_915_2021 crossref_primary_10_1080_17538947_2024_2310734 crossref_primary_10_3103_S1068373922110061 crossref_primary_10_1016_j_atmosenv_2025_121068 crossref_primary_10_1016_j_atmosres_2021_105963 crossref_primary_10_1029_2022JD038373 crossref_primary_10_1016_j_apr_2021_101055 crossref_primary_10_1016_j_combustflame_2022_112223 crossref_primary_10_1073_pnas_2500843122 crossref_primary_10_1016_j_envres_2024_118948 crossref_primary_10_1016_j_atmosenv_2023_119998 crossref_primary_10_1016_j_atmosenv_2023_119757 crossref_primary_10_20517_jeea_2024_44 crossref_primary_10_3389_fams_2024_1368147 crossref_primary_10_5194_acp_22_14401_2022 crossref_primary_10_3389_fenvs_2024_1393878 crossref_primary_10_1016_j_atmosenv_2023_119666 crossref_primary_10_5194_acp_25_4291_2025 crossref_primary_10_1016_j_apr_2020_09_013 crossref_primary_10_3390_rs12162518 crossref_primary_10_1016_j_envpol_2020_114556 crossref_primary_10_1029_2020JD033999 crossref_primary_10_3390_rs13071351 crossref_primary_10_1016_j_eiar_2024_107437 crossref_primary_10_1007_s11869_022_01178_z crossref_primary_10_1016_j_scitotenv_2021_145545 crossref_primary_10_1016_j_scitotenv_2023_166946 crossref_primary_10_5194_acp_25_8719_2025 crossref_primary_10_1016_j_scitotenv_2020_136892 crossref_primary_10_1016_j_epm_2024_11_005 crossref_primary_10_1016_j_scitotenv_2020_138838 crossref_primary_10_5194_acp_21_1_2021 crossref_primary_10_1016_j_jes_2024_06_023 crossref_primary_10_1016_j_rse_2021_112541 crossref_primary_10_5194_acp_20_139_2020 crossref_primary_10_1016_j_scitotenv_2022_161239 crossref_primary_10_1038_s41612_024_00855_3 crossref_primary_10_1016_j_jclepro_2021_128433 crossref_primary_10_1016_j_apr_2025_102469 crossref_primary_10_5194_acp_22_13087_2022 crossref_primary_10_3390_rs16020391 crossref_primary_10_1016_j_ecolind_2020_107214 crossref_primary_10_1016_j_envpol_2023_121535 crossref_primary_10_3389_fevo_2023_1192847 crossref_primary_10_3390_rs13234855 crossref_primary_10_1038_s41561_019_0464_x crossref_primary_10_5194_acp_22_8385_2022 crossref_primary_10_1016_j_envpol_2020_116233 crossref_primary_10_1016_j_scitotenv_2022_153847 crossref_primary_10_1038_s41612_023_00536_7 crossref_primary_10_3390_ijerph17176274 crossref_primary_10_1016_j_scitotenv_2023_168272 crossref_primary_10_5194_acp_22_8597_2022 crossref_primary_10_1016_j_apr_2025_102451 crossref_primary_10_1016_j_envpol_2022_119072 crossref_primary_10_1016_j_atmosenv_2024_120395 crossref_primary_10_1016_j_apr_2022_101638 crossref_primary_10_1016_j_scitotenv_2023_162718 crossref_primary_10_1007_s11356_020_09646_8 crossref_primary_10_5194_acp_22_10551_2022 crossref_primary_10_1016_j_jclepro_2021_126494 crossref_primary_10_3390_su14073930 crossref_primary_10_1016_j_envpol_2023_121886 crossref_primary_10_1016_j_scitotenv_2020_142275 crossref_primary_10_1021_acs_est_5c03079 crossref_primary_10_1016_j_envpol_2020_115278 crossref_primary_10_1007_s42452_022_05045_5 crossref_primary_10_1016_j_scitotenv_2023_166192 crossref_primary_10_1080_02786826_2023_2294944 crossref_primary_10_1016_j_scitotenv_2023_169466 crossref_primary_10_1007_s11430_022_1070_y crossref_primary_10_1016_j_envres_2022_113322 crossref_primary_10_1016_j_scitotenv_2024_176037 crossref_primary_10_1016_j_jes_2024_02_017 crossref_primary_10_1016_j_envpol_2025_126098 crossref_primary_10_1016_j_atmosres_2024_107537 crossref_primary_10_1016_j_atmosenv_2025_121437 crossref_primary_10_3389_fenvs_2022_1007530 crossref_primary_10_3390_atmos14061027 crossref_primary_10_1016_j_trac_2022_116866 crossref_primary_10_1016_j_apgeog_2023_102949 crossref_primary_10_1088_1748_9326_ac03db crossref_primary_10_1016_j_envpol_2021_116970 crossref_primary_10_1016_j_scitotenv_2023_166182 crossref_primary_10_1038_s41561_024_01540_z crossref_primary_10_1007_s11356_022_18505_7 crossref_primary_10_1016_j_scitotenv_2020_138905 crossref_primary_10_1016_j_scitotenv_2024_171951 crossref_primary_10_1016_j_envint_2023_108361 crossref_primary_10_1016_j_atmosres_2024_107548 crossref_primary_10_1016_j_scitotenv_2021_152272 crossref_primary_10_1016_j_atmosenv_2025_121448 crossref_primary_10_1029_2020GL091105 crossref_primary_10_3390_su13105685 crossref_primary_10_1016_j_apr_2021_101237 crossref_primary_10_1016_j_apr_2025_102556 crossref_primary_10_1016_j_atmosres_2024_107665 crossref_primary_10_1016_j_envpol_2023_122517 crossref_primary_10_1016_j_apr_2021_101111 crossref_primary_10_1016_j_scitotenv_2022_160064 crossref_primary_10_1016_j_atmosenv_2021_118685 crossref_primary_10_1007_s00376_022_1463_1 crossref_primary_10_1016_j_scitotenv_2020_137700 crossref_primary_10_1016_j_jclepro_2024_140938 crossref_primary_10_1016_j_jenvman_2022_116847 crossref_primary_10_5194_amt_15_1075_2022 crossref_primary_10_1038_s41612_025_00984_3 crossref_primary_10_5194_acp_25_10183_2025 crossref_primary_10_1007_s41742_022_00458_x crossref_primary_10_1016_j_ecolind_2022_109044 crossref_primary_10_1016_j_scitotenv_2024_172732 crossref_primary_10_1016_j_chemosphere_2020_128801 crossref_primary_10_5194_acp_25_4211_2025 crossref_primary_10_1016_j_jenvman_2022_115455 crossref_primary_10_1016_j_apr_2024_102147 crossref_primary_10_1016_j_envpol_2023_121344 crossref_primary_10_1016_j_atmosenv_2022_119520 crossref_primary_10_3390_ijerph19031607 crossref_primary_10_1038_s41598_020_63592_6 crossref_primary_10_3390_ijerph19074333 crossref_primary_10_1016_j_jes_2022_09_019 crossref_primary_10_1029_2020GL091275 crossref_primary_10_1016_j_envpol_2020_115346 crossref_primary_10_1016_j_atmosenv_2023_119923 crossref_primary_10_3390_rs17162758 crossref_primary_10_5194_acp_20_3273_2020 crossref_primary_10_1088_1748_9326_ab6f11 crossref_primary_10_1016_j_toxrep_2025_101949 crossref_primary_10_1029_2020EA001424 crossref_primary_10_1038_s41377_019_0210_6 crossref_primary_10_3390_atmos11111189 crossref_primary_10_1016_j_atmosenv_2021_118270 crossref_primary_10_1016_j_scitotenv_2020_144897 crossref_primary_10_1007_s41748_024_00380_6 crossref_primary_10_1016_j_scitotenv_2023_161552 crossref_primary_10_3390_rs13091798 crossref_primary_10_5194_acp_20_11423_2020 crossref_primary_10_1016_j_jenvman_2024_120121 crossref_primary_10_3389_fpubh_2023_1232715 crossref_primary_10_1007_s00376_022_1343_8 crossref_primary_10_3390_f11090946 crossref_primary_10_1088_1748_9326_ad37ce crossref_primary_10_3390_atmos13071096 crossref_primary_10_1016_j_chemosphere_2022_133813 crossref_primary_10_1016_j_atmosenv_2025_121479 crossref_primary_10_1016_j_fuel_2022_126159 crossref_primary_10_5194_acp_25_3603_2025 crossref_primary_10_5194_acp_21_16183_2021 crossref_primary_10_1016_j_atmosres_2020_104859 crossref_primary_10_1016_j_atmosenv_2023_119948 crossref_primary_10_5194_acp_20_9855_2020 crossref_primary_10_1016_j_atmosenv_2023_119702 crossref_primary_10_5194_acp_22_16073_2022 crossref_primary_10_1088_1748_9326_abc915 crossref_primary_10_5194_acp_22_5495_2022 crossref_primary_10_1016_j_envpol_2025_126163 crossref_primary_10_1016_j_jes_2022_01_040 crossref_primary_10_1016_j_apr_2023_101905 crossref_primary_10_1088_2515_7620_ae0012 crossref_primary_10_1016_j_atmosenv_2021_118364 crossref_primary_10_1029_2021JD036310 crossref_primary_10_1016_j_jes_2024_04_035 crossref_primary_10_1093_nsr_nwab103 |
| Cites_doi | 10.1002/2016JD025136 10.5194/acp-16-4205-2016 10.1029/2012GL051428 10.5194/acp-16-2043-2016 10.1016/j.atmosenv.2010.06.060 10.1016/j.scitotenv.2017.01.027 10.1289/ehp.1409481 10.1073/pnas.1812955115 10.5194/acp-7-2691-2007 10.1038/srep35912 10.1016/S0140-6736(17)30505-6 10.5194/acp-10-6311-2010 10.5194/acp-18-5343-2018 10.1088/1748-9326/10/11/114015 10.1088/1748-9326/aa6cb2 10.5194/acp-15-2031-2015 10.5194/acp-19-1357-2019 10.1038/srep23604 10.5194/acp-15-11919-2015 10.1073/pnas.1800605115 10.1016/j.atmosenv.2008.09.051 10.1002/2017GL076570 10.5194/acp-12-3131-2012 10.1371/journal.pone.0117311 10.4209/aaqr.2016.07.0307 10.1021/acs.estlett.8b00366 10.5194/acp-17-9485-2017 10.1016/j.atmosenv.2016.04.013 10.1038/s41598-018-20437-7 10.1038/srep34275 10.5194/acp-17-4355-2017 10.1029/2018GL080102 10.1038/s41598-017-15909-1 10.1016/j.atmosenv.2018.06.038 10.1002/2016JD024877 10.1007/s11430-013-4773-4 10.1016/j.envpol.2018.10.136 10.1371/journal.pone.0135749 10.5194/acp-12-779-2012 10.1007/s10584-007-9351-3 10.5194/acp-19-6125-2019 10.1002/9781118625590 10.5194/acp-18-5515-2018 10.1038/srep14884 10.1073/pnas.1812168116 10.5194/acp-18-14095-2018 10.1016/j.scitotenv.2015.03.138 10.1007/s11430-013-4774-3 10.5194/acp-14-11949-2014 10.1073/pnas.1604537113 10.1016/j.aeolia.2017.06.004 10.1029/2007GL031450 10.1126/sciadv.1602751 10.1016/j.jaridenv.2003.11.009 10.1016/j.atmosenv.2018.02.045 10.1029/2018GL079309 10.5194/acp-19-6861-2019 10.1088/1748-9326/11/11/114002 10.1088/1748-9326/aae718 10.5194/acp-18-17489-2018 10.5194/acp-18-6733-2018 10.1007/s11430-019-9343-3 10.5194/acp-19-13519-2019 10.5194/acp-17-1775-2017 10.1038/nclimate3249 10.1175/BAMS-D-16-0301.1 10.5194/acp-16-1207-2016 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Copernicus GmbH 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2019 Copernicus GmbH – notice: 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
| DOI | 10.5194/acp-19-11031-2019 |
| DatabaseName | CrossRef Science in Context Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1680-7324 |
| EndPage | 11041 |
| ExternalDocumentID | oai_doaj_org_article_80f404ad44464e04bec089b28d64aac0 A597815824 10_5194_acp_19_11031_2019 |
| GeographicLocations | China Sichuan Basin Beijing China Yangtze River Delta Pearl River (China) |
| GeographicLocations_xml | – name: China – name: Yangtze River Delta – name: Pearl River (China) – name: Beijing China – name: Sichuan Basin |
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c577t-6c73598b1a25d4ba6ee664c3322e1b3d64062ff58a44f7d4f8914eb1501f51743 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 567 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483093000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1680-7324 1680-7316 |
| IngestDate | Mon Nov 10 04:28:55 EST 2025 Sat Nov 01 15:22:40 EDT 2025 Sun Nov 30 03:55:04 EST 2025 Sat Nov 29 13:04:18 EST 2025 Sat Nov 29 10:02:11 EST 2025 Wed Nov 26 10:02:30 EST 2025 Tue Nov 18 22:11:24 EST 2025 Sat Nov 29 05:52:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c577t-6c73598b1a25d4ba6ee664c3322e1b3d64062ff58a44f7d4f8914eb1501f51743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0073-7809 0000-0001-5431-5022 0000-0002-9181-3562 0000-0002-8444-9547 0000-0002-8532-5773 |
| OpenAccessLink | https://doaj.org/article/80f404ad44464e04bec089b28d64aac0 |
| PQID | 2281988075 |
| PQPubID | 105744 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_80f404ad44464e04bec089b28d64aac0 proquest_journals_2414457952 proquest_journals_2281988075 gale_infotracmisc_A597815824 gale_infotracacademiconefile_A597815824 gale_incontextgauss_ISR_A597815824 crossref_citationtrail_10_5194_acp_19_11031_2019 crossref_primary_10_5194_acp_19_11031_2019 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-29 |
| PublicationDateYYYYMMDD | 2019-08-29 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric chemistry and physics |
| PublicationYear | 2019 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref61 doi: 10.1002/2016JD025136 – ident: ref53 doi: 10.5194/acp-16-4205-2016 – ident: ref72 doi: 10.1029/2012GL051428 – ident: ref22 doi: 10.5194/acp-16-2043-2016 – ident: ref48 doi: 10.1016/j.atmosenv.2010.06.060 – ident: ref54 doi: 10.1016/j.scitotenv.2017.01.027 – ident: ref36 doi: 10.1289/ehp.1409481 – ident: ref69 doi: 10.1073/pnas.1812955115 – ident: ref16 doi: 10.5194/acp-7-2691-2007 – ident: ref14 doi: 10.1038/srep35912 – ident: ref9 – ident: ref13 doi: 10.1016/S0140-6736(17)30505-6 – ident: ref34 doi: 10.5194/acp-10-6311-2010 – ident: ref5 doi: 10.5194/acp-18-5343-2018 – ident: ref46 doi: 10.1088/1748-9326/10/11/114015 – ident: ref68 doi: 10.1088/1748-9326/aa6cb2 – ident: ref11 – ident: ref70 doi: 10.5194/acp-15-2031-2015 – ident: ref47 doi: 10.5194/acp-19-1357-2019 – ident: ref18 doi: 10.1038/srep23604 – ident: ref21 doi: 10.5194/acp-15-11919-2015 – ident: ref23 doi: 10.1073/pnas.1800605115 – ident: ref20 doi: 10.1016/j.atmosenv.2008.09.051 – ident: ref27 doi: 10.1002/2017GL076570 – ident: ref49 doi: 10.5194/acp-12-3131-2012 – ident: ref59 doi: 10.1371/journal.pone.0117311 – ident: ref25 doi: 10.4209/aaqr.2016.07.0307 – ident: ref33 doi: 10.1021/acs.estlett.8b00366 – ident: ref50 doi: 10.5194/acp-17-9485-2017 – ident: ref58 doi: 10.1016/j.atmosenv.2016.04.013 – ident: ref62 doi: 10.1038/s41598-018-20437-7 – ident: ref3 doi: 10.1038/srep34275 – ident: ref43 doi: 10.5194/acp-17-4355-2017 – ident: ref12 – ident: ref40 doi: 10.1029/2018GL080102 – ident: ref51 doi: 10.1038/s41598-017-15909-1 – ident: ref42 doi: 10.1016/j.atmosenv.2018.06.038 – ident: ref29 doi: 10.1002/2016JD024877 – ident: ref57 doi: 10.1007/s11430-013-4773-4 – ident: ref63 doi: 10.1016/j.envpol.2018.10.136 – ident: ref41 doi: 10.1371/journal.pone.0135749 – ident: ref65 doi: 10.5194/acp-12-779-2012 – ident: ref24 doi: 10.1007/s10584-007-9351-3 – ident: ref7 doi: 10.5194/acp-19-6125-2019 – ident: ref15 doi: 10.1002/9781118625590 – ident: ref19 doi: 10.5194/acp-18-5515-2018 – ident: ref67 doi: 10.1038/srep14884 – ident: ref28 doi: 10.1073/pnas.1812168116 – ident: ref71 doi: 10.5194/acp-18-14095-2018 – ident: ref1 doi: 10.1016/j.scitotenv.2015.03.138 – ident: ref64 doi: 10.1007/s11430-013-4774-3 – ident: ref17 doi: 10.5194/acp-14-11949-2014 – ident: ref32 doi: 10.1073/pnas.1604537113 – ident: ref35 doi: 10.1016/j.aeolia.2017.06.004 – ident: ref4 doi: 10.1029/2007GL031450 – ident: ref73 doi: 10.1126/sciadv.1602751 – ident: ref38 – ident: ref55 doi: 10.1016/j.jaridenv.2003.11.009 – ident: ref30 doi: 10.1016/j.atmosenv.2018.02.045 – ident: ref39 doi: 10.1029/2018GL079309 – ident: ref37 doi: 10.5194/acp-19-6861-2019 – ident: ref31 doi: 10.1088/1748-9326/11/11/114002 – ident: ref45 doi: 10.1088/1748-9326/aae718 – ident: ref44 doi: 10.5194/acp-18-17489-2018 – ident: ref26 doi: 10.5194/acp-18-6733-2018 – ident: ref66 doi: 10.1007/s11430-019-9343-3 – ident: ref6 doi: 10.5194/acp-19-13519-2019 – ident: ref8 – ident: ref52 doi: 10.5194/acp-17-1775-2017 – ident: ref2 doi: 10.1038/nclimate3249 – ident: ref56 doi: 10.1175/BAMS-D-16-0301.1 – ident: ref60 doi: 10.5194/acp-16-1207-2016 – ident: ref10 |
| SSID | ssj0025014 |
| Score | 2.7079246 |
| Snippet | Fine particulate matter (PM2.5) is a severe air pollution
problem in China. Observations of PM2.5 have been available since 2013
from a large network operated... Fine particulate matter (PM.sub.2.5) is a severe air pollution problem in China. Observations of PM.sub.2.5 have been available since 2013 from a large network... Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been available since 2013 from a large network operated... Fine particulate matter (PM 2.5 ) is a severe air pollution problem in China. Observations of PM 2.5 have been available since 2013 from a large network... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 11031 |
| SubjectTerms | 2010s (Decade) AD Air cleanliness Air pollution Air pollution control Air quality Air quality control Annual variations Anomalies Anthropogenic factors Carbon monoxide Coal combustion Confidence intervals Councils Data Emissions Emissions (Pollution) Emissions control Environmental monitoring Forecasts and trends Human-environment interactions Humidity Interannual variability Megacities Meridional wind Meteorological research Meteorology Nitrogen dioxide Particulate emissions Particulate matter Particulate matter emissions Particulate pollutants Particulates Precipitation Quality control Regression analysis Regression models Relative humidity Rivers Satellites Statistical analysis Sulfur Sulfur dioxide Sulphur Sulphur dioxide Suspended particulate matter Time series Trends Wind Wind speed Wind velocities |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQxYINUB4i0CILIV4iNHFsx2FXKkYg0aoqD3Vn-VmN1GZGkylrJD6BP-RLuNdxS0fisYDVKOObh31u7Htt5xxCHkLK4G3lXdnB6FLyFhcJTeNLaWrR8hCtSPOQn961e3vq8LDbvyD1hXvCRnrgseG2VBV5xY3nkLfwUHG4Z6U6y5SX3BiH2Tq4Ib6SB6jhllMtXC3DVEuqqkRtpnE9E6IVvmXcvKy7skZ9A_ARpNi5MCIl4v7fdc9pzJlc-4envU6u5kCTbo-nrJNLob9Bil2IkWeLNJVOH9Gd4ykErOnoJvk6gYCTztM9UNMr0JPEvUmf7O-yF-IpXabts3Ta0yS6_ZxCtZrvX77Bj3pJhzCyiPdHNG1_zzpaA8UPWKjJegzgrlNHUWNuSIWm9_Tk5zPdIh8nrz_svCmzREPpRNsuS-lapAC0tWHCc2tkCFJy10A3EWrbQK0ryWIUynAeW8-j6moOwwPgE5Eju7lN1vpZH-4QGqNXlQ9Wdlxwy2qrmDPSth4uwIwSBanOYNIu85ejjMaxhjwGkdWArK47nZDViGxBnp2fMh_JO_5k_ArhPDdE3u30B-CrM776b_gW5AF6jkZmjR637hyZ02HQb98f6G2B9GJCMV6Qx9kozqAGzuQvIaAdkIxrxXJjxRLQcavFZw6qc9czaIZLowo5pn9dzCGFFm0n2N3_UeF75Ao2Hs6ys26DrC0Xp2GTXHafl9NhcT-9lD8AKUM16w priority: 102 providerName: Copernicus Gesellschaft – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZg44EX7oiwgSyEuAmzxLEThxe0TatAYlU1Ltqb5dhOVWlLuqbjGYmfwD_kl3CO63ZUgr3wVLU-qeKc4-Nzcb6PkKeQMrg6dZZVsLswUWKT0OSOFSaTpfBNLUMd8uvHcjhUx8fVKBbc-niscukTg6N2ncUa-Q7Hjo9C6Nx30zOGrFHYXY0UGlfJJiKVgZ1v7h0MR0erlAu7ZphyFSplyNG06GtC1CJ2jJ2yrGIZ8hyArSDUzh87UwDw_5ebDnvP4Ob_3vUtciNGnXR3YSa3yRXf3iHJIQTM3SzU1ekzun8ygeg1fLtLfgwg-qTTYFdI8OXpaQDipC9Gh_yNfEnn4SwtnbQ0MHC_pjC3_Nf3n_Ch3tLeLyDF2zENZ-EjqVZP8W0WaiI5A9juxFIknOvDoGkdPb24p3vky-Dg8_57FvkamJVlOWeFLREPsM4Ml07UpvC-KITNwWf4rM5dAcEDbxqpjBBN6USjqkzAXgFKahAwO79PNtqu9Q8IbRqnUufrohJS1DyrFbemqEsHf8CNkglJl7rSNoKZI6fGiYakBtWrQb06q3RQr0b1JuTV6pLpAsnjMuE9NICVIIJwhx-62VjHNa1V2ohUGCcgpRY-FbAcUlXVXMFMjbFpQp6g-WiE2WjxHM_YnPe9_vDpSO9KxBqTiouEPI9CTQczsCa-FgHPAZG51iS31yRBO3Z9eGmCOvqhXl_Y39-HBeTTsqwkf3j51VvkOj4WLKbzaptszGfn_hG5Zr_NJ_3scVx1vwFx_jM_ priority: 102 providerName: ProQuest |
| Title | Fine particulate matter (PM 2.5 ) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology |
| URI | https://www.proquest.com/docview/2281988075 https://www.proquest.com/docview/2414457952 https://doaj.org/article/80f404ad44464e04bec089b28d64aac0 |
| Volume | 19 |
| WOSCitedRecordID | wos000483093000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: RKB dateStart: 20010101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: P5Z dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PCBAR dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PATMY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PIMPY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cAF8RSBZWUhxEuETRw7cbi1q61YQauoLGjhYvmVVaXdtGq6nJH4CfxDfgkzTrpsJR4XLrUaT1N7ZmLP2M73EfIYUgZnEmfjEmaXmBe4SagzF-c6FQX3tRFhHfLju2IykUdHZXWB6gvPhHXwwJ3idmVS84RrxyFv4T7h8J-JLA2TLuda25CtJ0W5Tqb6VAt3yzDVymUSIzdTt58J0Qrf1XYRp2WcIr8B-AhC7FyYkQJw_5-G5zDnjG6Q632wSAddI2-SS765RaIxxLnzZVgOp0_o3skMgs7w7Tb5NoKgkS5Cr5CXy9PTgJ9Jn1Vj9ko8p6twBJbOGhqIs19SaFr24-t3KORr2voOCbw5puEIe8-F1VJ8CYXqnlMBXG5mKfLEtaFSN46e_mrTHfJhtH-49ybuaRZiK4piFee2QBg_k2omHDc69z7Puc3gUfepyUDPSc7qWkjNeV04Xssy5TDEg45rxLnO7pKtZt74e4TWtZOJ8yYvueCGpUYyq3NTOLgB01JEJFmrWtkegxypME4U5CJoHQXWUWmpgnUUWiciL85_sugAOP4mPET7nQsidna4AB6leo9S__KoiDxC6ytEx2jw-M2xPmtbdfB-qgYCIcKEZDwiT3uheg49sLp_mwH0gIBaG5LbG5JgHbtZvXYy1Q8frWK4vSkRJ_r31RzSYFGUgt3_Hx1-QK6h8nClnJXbZGu1PPMPyVX7ZTVrlzvkynB_Uk13wgMGn5X4DNeqweH4E5YH4wrKy9O3w594zSq- |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLZGhwQ3_CMKAyzEvwhzXDtxkBAag2rV2qmCgcaVcWynqrSlpelA3CHxCLwHD8WTcI6bdlSC3e2Cq6jxSdScfMf2ybG_j5C7kDK4nDkbZTC6RCLFIqFpuSgxsUyFL3IZvkO-76Y7O2pvL-uvkJ_zvTC4rHLeJ4aO2o0sfiNf51jxUUid-2L8KULVKKyuziU0ZrDY9l-_QMpWPe-8gvd7j_P2693NrahWFYisTNNplNgUWevy2HDpRG4S75NE2BYg28d5yyUwxPGikMoIUaROFCqLBfRoksUF0jq34L6nyKoAsLMGWe13ev0PixQPq3SY4iWKRagJNaujwixJrBs7juIsilFXAbCJ1D5_jIRBMOBfw0IY69rn_zcvXSDn6lk13ZiFwUWy4stLpNmDhGA0CXUDep9u7g9hdh5-XSbf2zC7puMQNyhg5ulBIBqlD_s9_lQ-otOwVpgOSxoUxp9Q8GXr17cfcFDPaOVnlOnlgIa1_rVoWEVxtw41tfgExObQUhTUq0KjKR09OPpPV8i7E_HJVdIoR6W_RmhROMWcz5NMSJHzOFfcmiRPHdyAGyWbhM2xoW1N1o6aIfsakjaEkwY46TjTAU4a4dQkjxeXjGdMJccZv0TALQyRZDycGE0Guu6ztGKFYMI4IUQiPBMQ7kxlOVfwpMZY1iR3EK4aaURKXKc0MIdVpTtv3-gNiVxqUnHRJA9qo2IET2BNve0D_IDMY0uWa0uW8HbscvMc8rruZyt9hPe_N4tYCJlmkl8__urb5MzWbq-ru52d7RvkLLoICwc8WyON6eTQ3ySn7efpsJrcqiOeko8nHT6_Afmdjmw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLZGhxA3_E8UBliIfxGaOHbiICG0v4pqW1VtMO3OOLZTVdrS0nQg7pB4BN6Gx-FJOMdNOyrB7nbBVdTYiZqT7xz75NjfR8gjSBlsHloTZDC6BDzFIqGObZDoSKTcFbnw3yEPdtJuVx4eZr0l8nO2FwaXVc5iog_UdmjwG3mLYcVHInVuq6iXRfQ2229HnwJUkMJK60xOYwqRbff1C6Rv1ZvOJrzrx4y1t95vvAtqhYHAiDSdBIlJkcEujzQTluc6cS5JuIkB5S7KY5vAcMeKQkjNeZFaXsgs4hDdRBgVSPEcw30vkOU0hqSnQZbXt7q9vXm6hxU7TPcSGQaoDzWtqcKMibe0GQVRFkSosQA4RZqfP0ZFLx7wryHCj3vtq_-zxa6RK_Vsm65N3eM6WXLlDdLchURhOPb1BPqEbhwNYNbuf90k39sw66Yj708obObosScgpc96u-yVeE4nfg0xHZTUK4-_pGDX-Ne3H3CQr2nlplTqZZ_6PQC1mFhFcRcP1bUoBfjswFAU2qt8oy4tPT79T7fIh3OxyQpplMPS3Sa0KKwMrcuTjAuesyiXzOgkTy3cgGkpmiSc4USZmsQdtUSOFCRzCC0F0FJRpjy0FEKrSV7MLxlNGUzO6ryO4Jt3RPJxf2I47qs6likZFjzk2nLOE-5CDmEglFnOJDyp1iZskocIXYX0IiXCrq9Pqkp19vfUmkCONSEZb5KndadiCE9gdL0dBOyAjGQLPVcXesLbMYvNM_irOv5W6hT7f2_mEecizQS7c_bVD8gl8Bm10-lu3yWX0UJYT2DZKmlMxifuHrloPk8G1fh-7fyUfDxv7_kNOLSXBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+particulate+matter+trends+in+China%2C+2013-2018%3A+separating+contributions+from+anthropogenic+emissions+and+meteorology&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Zhai%2C+Shixian&rft.au=Jacob%2C+Daniel+J&rft.au=Wang%2C+Xuan&rft.au=Shen%2C+Lu&rft.date=2019-08-29&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=19&rft.issue=16&rft.spage=11031&rft_id=info:doi/10.5194%2Facp-19-11031-2019&rft.externalDocID=A597815824 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |