SignalP 6.0 predicts all five types of signal peptides using protein language models

Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature biotechnology Ročník 40; číslo 7; s. 1023 - 1025
Hlavní autori: Teufel, Felix, Almagro Armenteros, José Juan, Johansen, Alexander Rosenberg, Gíslason, Magnús Halldór, Pihl, Silas Irby, Tsirigos, Konstantinos D., Winther, Ole, Brunak, Søren, von Heijne, Gunnar, Nielsen, Henrik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Nature Publishing Group US 01.07.2022
Nature Publishing Group
Predmet:
ISSN:1087-0156, 1546-1696, 1546-1696
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data. A new version of SignalP predicts all types of signal peptides.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-021-01156-3