Genetic Diversity in Stomatal Density among Soybeans Elucidated Using High-throughput Technique Based on an Algorithm for Object Detection

The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans ( Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evalu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 9; číslo 1; s. 7610
Hlavní autori: Sakoda, Kazuma, Watanabe, Tomoya, Sukemura, Shun, Kobayashi, Shunzo, Nagasaki, Yuichi, Tanaka, Yu, Shiraiwa, Tatsuhiko
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 20.05.2019
Nature Publishing Group
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans ( Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R 2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm −2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs.
AbstractList The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm−2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs.
The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans ( Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R 2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm −2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs.
The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm-2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs.The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm-2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs.
The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs.
ArticleNumber 7610
Author Tanaka, Yu
Shiraiwa, Tatsuhiko
Watanabe, Tomoya
Sakoda, Kazuma
Sukemura, Shun
Kobayashi, Shunzo
Nagasaki, Yuichi
Author_xml – sequence: 1
  givenname: Kazuma
  orcidid: 0000-0002-7373-7105
  surname: Sakoda
  fullname: Sakoda, Kazuma
  organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Research Fellow of Japan Society for the Promotion of Science
– sequence: 2
  givenname: Tomoya
  surname: Watanabe
  fullname: Watanabe, Tomoya
  organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho
– sequence: 3
  givenname: Shun
  surname: Sukemura
  fullname: Sukemura, Shun
  organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho
– sequence: 4
  givenname: Shunzo
  surname: Kobayashi
  fullname: Kobayashi, Shunzo
  organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho
– sequence: 5
  givenname: Yuichi
  surname: Nagasaki
  fullname: Nagasaki, Yuichi
  organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho
– sequence: 6
  givenname: Yu
  surname: Tanaka
  fullname: Tanaka, Yu
  email: tanaka12@kais.kyoto-u.ac.jp
  organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, JST, PRESTO, Kitashirakawa Oiwake-cho
– sequence: 7
  givenname: Tatsuhiko
  surname: Shiraiwa
  fullname: Shiraiwa, Tatsuhiko
  organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31110228$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu3SAURFWqJk3zA11USN104xQw2HhTKe9UipRFkjXC-NjmyoZbwJHuL_SrS3KTNs0ibA7izAxzYD6iHecdIPSZkkNKSvk9cioaWRDaFJxTVhfkHdpjhIuClYztvNjvooMYVyQvwRpOmw9ot6SUEsbkHvp9AQ6SNfjU3kOINm2wdfgm-VknPeFTcI9nevZuwDd-04J2EZ9Ni7GdTtDhu2hz59IOY5HG4JdhXC8J34IZnf21AD7WMaO8w9rho2nwwaZxxr0P-LpdgUn5ipSL9e4Tet_rKcLBU91Hd-dntyeXxdX1xc-To6vCiLpOhTA1K6VsTU9rIlrCBFTM1BXjbdMZA5KXppNG97SviGRGdrTpaCc5M1XTCl3uox9b3fXSztAZcCnoSa2DnXXYKK-t-r_j7KgGf68qwepK0izw7Ukg-DxiTGq20cA0aQd-iYrlV6eESFpn6NdX0JVfgsvjZRSrZUkEFxn15aWjv1aevykD5BZggo8xQK-MTfrh0bJBOylK1EMo1DYUKodCPYZCkUxlr6jP6m-Syi0pZrAbIPyz_QbrDw5xyzo
CitedBy_id crossref_primary_10_3390_plants10122714
crossref_primary_10_1016_j_heliyon_2024_e25507
crossref_primary_10_1093_plphys_kiab174
crossref_primary_10_1111_pbi_13741
crossref_primary_10_3389_fpls_2020_580389
crossref_primary_10_1111_liv_15799
crossref_primary_10_1093_jxb_eraf282
crossref_primary_10_1093_jxb_erae395
crossref_primary_10_3389_fpls_2021_715309
crossref_primary_10_3390_agriculture10100436
crossref_primary_10_1093_plphys_kiab299
crossref_primary_10_1111_pbi_14244
crossref_primary_10_1093_aob_mcae135
crossref_primary_10_3390_agriculture14112028
crossref_primary_10_1016_j_cj_2021_03_015
crossref_primary_10_1186_s13007_025_01416_2
crossref_primary_10_1093_jxb_erac100
crossref_primary_10_1111_nph_18765
crossref_primary_10_1093_jxb_erae207
crossref_primary_10_34133_plantphenomics_0106
crossref_primary_10_1155_2021_9938013
crossref_primary_10_1111_nph_18162
crossref_primary_10_1016_j_ecoinf_2021_101521
crossref_primary_10_1007_s11816_024_00902_8
crossref_primary_10_1093_jxb_eraf083
crossref_primary_10_1111_ppl_13603
crossref_primary_10_1186_s13007_021_00727_4
crossref_primary_10_1093_plphys_kiab346
crossref_primary_10_3389_fpls_2021_716784
Cites_doi 10.2135/cropsci2007.12.0707
10.1093/treephys/19.1.47
10.1093/jexbot/52.355.369
10.1016/j.copbio.2011.12.012
10.1093/aob/mcl253
10.1111/j.1365-3040.2005.01493.x
10.2135/cropsci2016.02.0122
10.1016/j.ab.2014.12.007
10.2135/cropsci2010.02.0058
10.2135/cropsci1975.0011183X001500030008x
10.3390/s17092022
10.3389/fpls.2016.01419
10.1007/978-3-319-46448-0_2
10.1109/TPAMI.2015.2389824
10.1038/nmeth.2089
10.1270/jsbbs.61.566
10.1073/pnas.0904209106
10.1111/j.1469-8137.1995.tb03059.x
10.2135/cropsci1998.0011183X003800060011x
10.1093/dnares/dsx043
10.1109/ICCV.2015.169
10.1109/CVPR.2014.81
10.1109/CVPR.2016.91
10.1109/ICCVW.2017.241
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-019-44127-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC6527681
31110228
10_1038_s41598_019_44127_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Agriculture, Forestry and Fisheries (Ministry of Agriculture, Forestry and Fisheries of Japan)
  grantid: SFC1002
  funderid: https://doi.org/10.13039/501100003993
– fundername: Wellcome Trust
  grantid: FC001002
– fundername: ;
  grantid: SFC1002
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c577t-5c72388bcf1705b025e62c7624b9dcce843cd8caf1f6082c8d19d1d842c69b5a3
IEDL.DBID M2P
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468281500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:59:36 EST 2025
Fri Sep 05 12:22:36 EDT 2025
Tue Oct 07 07:21:27 EDT 2025
Mon Jul 21 06:02:50 EDT 2025
Sat Nov 29 04:37:48 EST 2025
Tue Nov 18 21:47:46 EST 2025
Fri Feb 21 02:40:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-5c72388bcf1705b025e62c7624b9dcce843cd8caf1f6082c8d19d1d842c69b5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7373-7105
OpenAccessLink https://www.proquest.com/docview/2227830545?pq-origsite=%requestingapplication%
PMID 31110228
PQID 2227830545
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6527681
proquest_miscellaneous_2232100817
proquest_journals_2227830545
pubmed_primary_31110228
crossref_citationtrail_10_1038_s41598_019_44127_0
crossref_primary_10_1038_s41598_019_44127_0
springer_journals_10_1038_s41598_019_44127_0
PublicationCentury 2000
PublicationDate 2019-05-20
PublicationDateYYYYMMDD 2019-05-20
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Tanaka, Shiraiwa, Nakajima, Nakazaki (CR5) 2008; 48
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (CR15) 2016
He, Zhang, Ren, Sun (CR10) 2015; 37
Franks, Beerling (CR6) 2009; 106
CR19
Ohsumi (CR4) 2007; 99
Kundu, Tigerstedt (CR22) 1998; 19
Lawson, Kramer, Raines (CR1) 2012; 23
Fuentes, Yoon, Kim, Park (CR14) 2017; 17
CR13
CR12
Long, Zhu, Naidu, Ort (CR2) 2006; 29
CR11
Mohanty, Hughes, Salathe (CR18) 2016; 7
Ciha, Brun (CR20) 1975; 15
Schneider, Rasband, Eliceiri. (CR16) 2012; 9
Ceulemans, Praet, Jiang (CR21) 2017; 131
Sakoda, Tanaka, Long, Shiraiwa (CR24) 2016; 56
Watanabe (CR25) 2018; 25
Grishagin (CR17) 2015; 473
CR9
Hultine, Marshall (CR8) 2001; 52
Fischer (CR3) 1998; 38
Tanaka, Fujii, Shiraiwa (CR7) 2010; 50
Kaga (CR23) 2012; 61
SK Kundu (44127_CR22) 1998; 19
K Sakoda (44127_CR24) 2016; 56
PJ Franks (44127_CR6) 2009; 106
A Ohsumi (44127_CR4) 2007; 99
R Ceulemans (44127_CR21) 2017; 131
A Fuentes (44127_CR14) 2017; 17
T Lawson (44127_CR1) 2012; 23
Wei Liu (44127_CR15) 2016
SP Long (44127_CR2) 2006; 29
Y Tanaka (44127_CR5) 2008; 48
Y Tanaka (44127_CR7) 2010; 50
44127_CR19
44127_CR9
K He (44127_CR10) 2015; 37
S Watanabe (44127_CR25) 2018; 25
KR Hultine (44127_CR8) 2001; 52
CA Schneider (44127_CR16) 2012; 9
AJ Ciha (44127_CR20) 1975; 15
44127_CR13
44127_CR12
44127_CR11
IV Grishagin (44127_CR17) 2015; 473
K Kaga (44127_CR23) 2012; 61
SP Mohanty (44127_CR18) 2016; 7
RA Fischer (44127_CR3) 1998; 38
References_xml – volume: 48
  start-page: 1925
  year: 2008
  end-page: 1932
  ident: CR5
  article-title: Leaf gas exchange activity in soybean as related to leaf traits and stem growth habit
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2007.12.0707
– volume: 19
  start-page: 47
  year: 1998
  end-page: 52
  ident: CR22
  article-title: Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica)
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/19.1.47
– volume: 52
  start-page: 369
  year: 2001
  end-page: 373
  ident: CR8
  article-title: A comparison of three methods for determining the stomatal density of pine needles
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/52.355.369
– ident: CR12
– volume: 23
  start-page: 215
  year: 2012
  end-page: 220
  ident: CR1
  article-title: Improving yield by exploiting mechanisms underlying natural variation of photosynthesis
  publication-title: Curr. Opin. Biotech.
  doi: 10.1016/j.copbio.2011.12.012
– volume: 99
  start-page: 265
  year: 2007
  end-page: 273
  ident: CR4
  article-title: A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance
  publication-title: Ann. Bot-London
  doi: 10.1093/aob/mcl253
– volume: 29
  start-page: 315
  year: 2006
  end-page: 330
  ident: CR2
  article-title: Can improvement in photosynthesis increase crop yields?
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01493.x
– volume: 56
  start-page: 2731
  year: 2016
  end-page: 2741
  ident: CR24
  article-title: Genetic and physiological diversity in the leaf photosynthetic capacity of soybean
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2016.02.0122
– volume: 473
  start-page: 63
  year: 2015
  end-page: 65
  ident: CR17
  article-title: Automatic cell counting with ImageJ
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.12.007
– volume: 50
  start-page: 2525
  year: 2010
  end-page: 2532
  ident: CR7
  article-title: Variability of leaf morphology and stomatal conductance in soybean [Glycine max (L.) Merr.] cultivars
  publication-title: Crop Sci
  doi: 10.2135/cropsci2010.02.0058
– ident: CR19
– volume: 15
  start-page: 309
  year: 1975
  end-page: 313
  ident: CR20
  article-title: Stomatal size and frequency in soybean
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1975.0011183X001500030008x
– volume: 17
  start-page: 2022
  year: 2017
  ident: CR14
  article-title: A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition
  publication-title: Sensors
  doi: 10.3390/s17092022
– volume: 7
  start-page: 1419
  year: 2016
  ident: CR18
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Fron. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– start-page: 21
  year: 2016
  end-page: 37
  ident: CR15
  article-title: SSD: Single Shot MultiBox Detector
  publication-title: Computer Vision – ECCV 2016
  doi: 10.1007/978-3-319-46448-0_2
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: CR10
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE T. Pattern Anal.
  doi: 10.1109/TPAMI.2015.2389824
– ident: CR13
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: CR16
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– ident: CR11
– ident: CR9
– volume: 61
  start-page: 566
  year: 2012
  end-page: 592
  ident: CR23
  article-title: Evaluation of soybean germplasm conserved in NIAS Genebank and development of mini core collections
  publication-title: Breeding Sci.
  doi: 10.1270/jsbbs.61.566
– volume: 106
  start-page: 10343
  year: 2009
  end-page: 10347
  ident: CR6
  article-title: Maximum leaf conductance driven by CO effects on stomatal size and density over geologic time
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904209106
– volume: 131
  start-page: 99
  year: 2017
  end-page: 107
  ident: CR21
  article-title: Effects of CO2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar ( )
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1995.tb03059.x
– volume: 38
  start-page: 1467
  year: 1998
  end-page: 1475
  ident: CR3
  article-title: Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1998.0011183X003800060011x
– volume: 25
  start-page: 123
  year: 2018
  end-page: 136
  ident: CR25
  article-title: Development of a high-density linkage map and chromosome segment substitution lines for Japanese soybean cultivar Enrei
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsx043
– volume: 37
  start-page: 1904
  year: 2015
  ident: 44127_CR10
  publication-title: IEEE T. Pattern Anal.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 38
  start-page: 1467
  year: 1998
  ident: 44127_CR3
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1998.0011183X003800060011x
– volume: 25
  start-page: 123
  year: 2018
  ident: 44127_CR25
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsx043
– start-page: 21
  volume-title: Computer Vision – ECCV 2016
  year: 2016
  ident: 44127_CR15
  doi: 10.1007/978-3-319-46448-0_2
– volume: 15
  start-page: 309
  year: 1975
  ident: 44127_CR20
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1975.0011183X001500030008x
– ident: 44127_CR11
  doi: 10.1109/ICCV.2015.169
– ident: 44127_CR9
  doi: 10.1109/CVPR.2014.81
– volume: 9
  start-page: 671
  year: 2012
  ident: 44127_CR16
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– ident: 44127_CR13
  doi: 10.1109/CVPR.2016.91
– volume: 19
  start-page: 47
  year: 1998
  ident: 44127_CR22
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/19.1.47
– volume: 131
  start-page: 99
  year: 2017
  ident: 44127_CR21
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1995.tb03059.x
– volume: 473
  start-page: 63
  year: 2015
  ident: 44127_CR17
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.12.007
– volume: 17
  start-page: 2022
  year: 2017
  ident: 44127_CR14
  publication-title: Sensors
  doi: 10.3390/s17092022
– volume: 7
  start-page: 1419
  year: 2016
  ident: 44127_CR18
  publication-title: Fron. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– volume: 99
  start-page: 265
  year: 2007
  ident: 44127_CR4
  publication-title: Ann. Bot-London
  doi: 10.1093/aob/mcl253
– volume: 52
  start-page: 369
  year: 2001
  ident: 44127_CR8
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/52.355.369
– volume: 56
  start-page: 2731
  year: 2016
  ident: 44127_CR24
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2016.02.0122
– volume: 29
  start-page: 315
  year: 2006
  ident: 44127_CR2
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01493.x
– volume: 48
  start-page: 1925
  year: 2008
  ident: 44127_CR5
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2007.12.0707
– volume: 50
  start-page: 2525
  year: 2010
  ident: 44127_CR7
  publication-title: Crop Sci
  doi: 10.2135/cropsci2010.02.0058
– ident: 44127_CR19
  doi: 10.1109/ICCVW.2017.241
– volume: 61
  start-page: 566
  year: 2012
  ident: 44127_CR23
  publication-title: Breeding Sci.
  doi: 10.1270/jsbbs.61.566
– volume: 23
  start-page: 215
  year: 2012
  ident: 44127_CR1
  publication-title: Curr. Opin. Biotech.
  doi: 10.1016/j.copbio.2011.12.012
– volume: 106
  start-page: 10343
  year: 2009
  ident: 44127_CR6
  publication-title: P. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904209106
– ident: 44127_CR12
SSID ssj0000529419
Score 2.429084
Snippet The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans ( Glycine max (L.) Merr). In a conventional SD evaluation,...
The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7610
SubjectTerms 631/449/1734
631/449/1870
631/449/2124
Algorithms
Alleles
Breeding - methods
Deep Learning
Genetic diversity
Genetic Variation - genetics
Genotype
Glycine max
Glycine max - genetics
High-Throughput Screening Assays - methods
Humanities and Social Sciences
multidisciplinary
Photosynthesis
Photosynthesis - genetics
Plant Leaves - genetics
Plant Stomata - genetics
Population genetics
Science
Science (multidisciplinary)
Sensors
Soybeans
Stomata
Title Genetic Diversity in Stomatal Density among Soybeans Elucidated Using High-throughput Technique Based on an Algorithm for Object Detection
URI https://link.springer.com/article/10.1038/s41598-019-44127-0
https://www.ncbi.nlm.nih.gov/pubmed/31110228
https://www.proquest.com/docview/2227830545
https://www.proquest.com/docview/2232100817
https://pubmed.ncbi.nlm.nih.gov/PMC6527681
Volume 9
WOSCitedRecordID wos000468281500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLkhcKK9CoKyMxA2sJs7D8Qn1sRUcukS0SMspSuyErrRNlm4WqX-BX82M86iWil64-BA7cqwZe77MjL8BeCdM6BmhDQ9N4fMgcxVXulBclIFA82zQyGlbbEJOp_FsppLO4bbq0ir7M9Ee1KbW5CPft3c2UTmD8OPyJ6eqURRd7UpobMEIkY1HKV2nIhl8LBTFCjzV3ZVx_Xh_hfaK7pR5iiMOEJK7m_boFsi8nSv5V8DU2qGTnf9dwWN41CFQdtCqzBO4V1RP4UFbk_L6GfwmImrsYsd9xgabV-ysqS_J0cOOKeEdn9kiReysvs4LNHZssljrOTkPDLNJCIzyR3hXBGi5bth5zxXLDtFuGlZXLKvYweIHfmFzcckQO7MvOTmFcIrG5odVz-HbyeT86BPvCjZwHUrZ8FBTCbM41yWR9OQIp4pIaDxug1wZrYs48ImKICu9MkLooWPjKeOZOBA6UnmY-buwXdVV8RJYQcDL-FLlyg8CITKdqTzKdaByIUtfO-D1Ykt1x2ZORTUWqY2q-3HaijpFUadW1KnrwPvhnWXL5XHn6L1ejGm3r1fpjQwdeDt0446kMEtWFfWaxtC9KIRa0oEXrfIM0_loWohxyAG5oVbDAGL73uyp5heW9TsKBf4aeg586BXw5rP-vYpXd6_iNTwUtBncEI_LPdhurtbFG7ivfzXz1dUYtuRM2jYew-hwMk2-jq3TYmz3GbUS21Hy-TT5_gcMVy-k
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o9AASPBCaxuHOfhA0KFbdWqZanUReotJLa3XWmbLN0saP8CP4bfyIzzqJaK3nrgGjsPO5_nG4_nAfBamNA3QhseGhtwmfUUV9oqLkZSID0bJDntik3Eg0FydKQOVuB3GwtDbpWtTHSC2pSabOQbLmYTwSnDD9PvnKpG0elqW0KjhsWeXfzELdvs_W4f_-8bIba3hp92eFNVgOswjiseaqqzleR6RJlkcuR8GwmNMkHmymhtExlQvHw28kcR8qNOjK-MbxIpdKTyMAvwudfguqTMYuQqKA46mw6dmklfNbE5vSDZmCE_UgybrzjqHSLmvWX-u6DUXvTN_OuA1vHe9p3_bcbuwu1Gw2ab9ZK4Byu2uA8365qbiwfwixJtYxPrtx4pbFyww6o8JUMW65NDP15zRZjYYbnILZI525rM9ZiMI4Y5JwtG_jG8KXI0nVds2ObCZR9RLzCsLFhWsM3JMc5IdXLKcG_AvuRk9MJXVM7_rXgIX69kIh7BalEW9gkwS4qlCWKVq0BKITKdqTzKtVS5iEeB9sBvYZLqJls7FQ2ZpM5rIEjSGlopQit10Ep7Hrzt7pnWuUou7b3ewiZt5NYsPceMB6-6ZpQ4dIyUFbacUx-K-0JVMvbgcQ3W7nUBUidlVPIgXoJx14GymS-3FOMTl9U8CgVufX0P3rWAP_-sf4_i6eWjeAlrO8PP--n-7mDvGdwStBB7IVLDOqxWZ3P7HG7oH9V4dvbCrWQG3656IfwBqxuF8A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHSBeuDMCA4wET2A1cZwmfkBo0FVUg1JpQxpPIbGdrVKXlDUF9S_wk_h1nJNLpzKxtz3wGjsXO5_Pd3x8LgAvhAk8I7ThgbE-l4mruNJWcZFJgfRskOR0VWwiHI2iw0M13oDfbSwMuVW2MrES1KbQZCPvVjGbCE4ZdLPGLWLcH7ydfedUQYpOWttyGjVE9uzyJ27f5m-GffzXL4UY7B68_8CbCgNcB2FY8kBTza0o1RlllUmR_21PaJQPMlVGaxtJn2Lnk8zLesiVOjKeMp6JpNA9lQaJj8-9ApuokkvRgc3x8NP468rCQ2do0lNNpI7rR905siVFtHmKoxYiQu6us-E5Ffe8p-Zfx7UVCw5u_c_zdxtuNro326kXyx3YsPlduFZX41zeg1-UghubWL_1VWGTnO2XxQmZuFifXP3xWlWeie0Xy9QizbPd6UJPyGxiWOV-wchzhjflj2aLkh20WXLZO9QYDCtyluRsZ3qEM1IenzDcNbDPKZnD8BVl5RmX34cvlzIRD6CTF7l9CMySymn8UKXKl1KIRCcq7aVaqlSEma8d8FrIxLrJ407lRKZx5U_gR3ENsxhhFlcwi10HXq3umdVZTC7svd1CKG4k2jw-w48Dz1fNKIvogCnJbbGgPhQRhkpm6MBWDdzV63wkVcq15EC4BulVB8pzvt6ST46rfOe9QOCm2HPgdQv-s8_69ygeXTyKZ3Ad8R9_HI72HsMNQWvSDZAztqFTni7sE7iqf5ST-enTZlkz-HbZK-EP8uqQOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Diversity+in+Stomatal+Density+among+Soybeans+Elucidated+Using+High-throughput+Technique+Based+on+an+Algorithm+for+Object+Detection&rft.jtitle=Scientific+reports&rft.au=Sakoda%2C+Kazuma&rft.au=Watanabe%2C+Tomoya&rft.au=Sukemura%2C+Shun&rft.au=Kobayashi%2C+Shunzo&rft.date=2019-05-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-44127-0&rft.externalDocID=10_1038_s41598_019_44127_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon