Genetic Diversity in Stomatal Density among Soybeans Elucidated Using High-throughput Technique Based on an Algorithm for Object Detection
The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans ( Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evalu...
Uložené v:
| Vydané v: | Scientific reports Ročník 9; číslo 1; s. 7610 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
20.05.2019
Nature Publishing Group |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (
Glycine max
(L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R
2
reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm
−2
among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs. |
|---|---|
| AbstractList | The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm−2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs. The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans ( Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R 2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm −2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs. The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm-2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs.The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R2 reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm-2 among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs. The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation, the counting process of the stomata during a manual operation can be time-consuming. We aimed to develop a high-throughput technique for evaluating the SD and elucidating the variation in the SD among various soybean accessions. The central leaflet of the first trifoliolate was sampled, and microscopic images of the leaflet replica were obtained among 90 soybean accessions. The Single Shot MultiBox Detector, an algorithm for an object detection based on deep learning, was introduced to develop an automatic detector of the stomata in the image. The developed detector successfully recognized the stomata in the microscopic image with high-throughput. Using this technique, the value of R reached 0.90 when the manually and automatically measured SDs were compared in the 150 images. This technique discovered a variation in SD from 93 ± 3 to 166 ± 4 mm among the 90 accessions. Our detector can be a powerful tool for a SD evaluation with a large-scale population in crop species, accelerating the identification of useful alleles related to the SD in future breeding programs. |
| ArticleNumber | 7610 |
| Author | Tanaka, Yu Shiraiwa, Tatsuhiko Watanabe, Tomoya Sakoda, Kazuma Sukemura, Shun Kobayashi, Shunzo Nagasaki, Yuichi |
| Author_xml | – sequence: 1 givenname: Kazuma orcidid: 0000-0002-7373-7105 surname: Sakoda fullname: Sakoda, Kazuma organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Research Fellow of Japan Society for the Promotion of Science – sequence: 2 givenname: Tomoya surname: Watanabe fullname: Watanabe, Tomoya organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho – sequence: 3 givenname: Shun surname: Sukemura fullname: Sukemura, Shun organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho – sequence: 4 givenname: Shunzo surname: Kobayashi fullname: Kobayashi, Shunzo organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho – sequence: 5 givenname: Yuichi surname: Nagasaki fullname: Nagasaki, Yuichi organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho – sequence: 6 givenname: Yu surname: Tanaka fullname: Tanaka, Yu email: tanaka12@kais.kyoto-u.ac.jp organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, JST, PRESTO, Kitashirakawa Oiwake-cho – sequence: 7 givenname: Tatsuhiko surname: Shiraiwa fullname: Shiraiwa, Tatsuhiko organization: Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31110228$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu3SAURFWqJk3zA11USN104xQw2HhTKe9UipRFkjXC-NjmyoZbwJHuL_SrS3KTNs0ibA7izAxzYD6iHecdIPSZkkNKSvk9cioaWRDaFJxTVhfkHdpjhIuClYztvNjvooMYVyQvwRpOmw9ot6SUEsbkHvp9AQ6SNfjU3kOINm2wdfgm-VknPeFTcI9nevZuwDd-04J2EZ9Ni7GdTtDhu2hz59IOY5HG4JdhXC8J34IZnf21AD7WMaO8w9rho2nwwaZxxr0P-LpdgUn5ipSL9e4Tet_rKcLBU91Hd-dntyeXxdX1xc-To6vCiLpOhTA1K6VsTU9rIlrCBFTM1BXjbdMZA5KXppNG97SviGRGdrTpaCc5M1XTCl3uox9b3fXSztAZcCnoSa2DnXXYKK-t-r_j7KgGf68qwepK0izw7Ukg-DxiTGq20cA0aQd-iYrlV6eESFpn6NdX0JVfgsvjZRSrZUkEFxn15aWjv1aevykD5BZggo8xQK-MTfrh0bJBOylK1EMo1DYUKodCPYZCkUxlr6jP6m-Syi0pZrAbIPyz_QbrDw5xyzo |
| CitedBy_id | crossref_primary_10_3390_plants10122714 crossref_primary_10_1016_j_heliyon_2024_e25507 crossref_primary_10_1093_plphys_kiab174 crossref_primary_10_1111_pbi_13741 crossref_primary_10_3389_fpls_2020_580389 crossref_primary_10_1111_liv_15799 crossref_primary_10_1093_jxb_eraf282 crossref_primary_10_1093_jxb_erae395 crossref_primary_10_3389_fpls_2021_715309 crossref_primary_10_3390_agriculture10100436 crossref_primary_10_1093_plphys_kiab299 crossref_primary_10_1111_pbi_14244 crossref_primary_10_1093_aob_mcae135 crossref_primary_10_3390_agriculture14112028 crossref_primary_10_1016_j_cj_2021_03_015 crossref_primary_10_1186_s13007_025_01416_2 crossref_primary_10_1093_jxb_erac100 crossref_primary_10_1111_nph_18765 crossref_primary_10_1093_jxb_erae207 crossref_primary_10_34133_plantphenomics_0106 crossref_primary_10_1155_2021_9938013 crossref_primary_10_1111_nph_18162 crossref_primary_10_1016_j_ecoinf_2021_101521 crossref_primary_10_1007_s11816_024_00902_8 crossref_primary_10_1093_jxb_eraf083 crossref_primary_10_1111_ppl_13603 crossref_primary_10_1186_s13007_021_00727_4 crossref_primary_10_1093_plphys_kiab346 crossref_primary_10_3389_fpls_2021_716784 |
| Cites_doi | 10.2135/cropsci2007.12.0707 10.1093/treephys/19.1.47 10.1093/jexbot/52.355.369 10.1016/j.copbio.2011.12.012 10.1093/aob/mcl253 10.1111/j.1365-3040.2005.01493.x 10.2135/cropsci2016.02.0122 10.1016/j.ab.2014.12.007 10.2135/cropsci2010.02.0058 10.2135/cropsci1975.0011183X001500030008x 10.3390/s17092022 10.3389/fpls.2016.01419 10.1007/978-3-319-46448-0_2 10.1109/TPAMI.2015.2389824 10.1038/nmeth.2089 10.1270/jsbbs.61.566 10.1073/pnas.0904209106 10.1111/j.1469-8137.1995.tb03059.x 10.2135/cropsci1998.0011183X003800060011x 10.1093/dnares/dsx043 10.1109/ICCV.2015.169 10.1109/CVPR.2014.81 10.1109/CVPR.2016.91 10.1109/ICCVW.2017.241 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
| DOI | 10.1038/s41598-019-44127-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| ExternalDocumentID | PMC6527681 31110228 10_1038_s41598_019_44127_0 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministry of Agriculture, Forestry and Fisheries (Ministry of Agriculture, Forestry and Fisheries of Japan) grantid: SFC1002 funderid: https://doi.org/10.13039/501100003993 – fundername: Wellcome Trust grantid: FC001002 – fundername: ; grantid: SFC1002 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c577t-5c72388bcf1705b025e62c7624b9dcce843cd8caf1f6082c8d19d1d842c69b5a3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468281500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Nov 04 01:59:36 EST 2025 Fri Sep 05 12:22:36 EDT 2025 Tue Oct 07 07:21:27 EDT 2025 Mon Jul 21 06:02:50 EDT 2025 Sat Nov 29 04:37:48 EST 2025 Tue Nov 18 21:47:46 EST 2025 Fri Feb 21 02:40:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c577t-5c72388bcf1705b025e62c7624b9dcce843cd8caf1f6082c8d19d1d842c69b5a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7373-7105 |
| OpenAccessLink | https://www.proquest.com/docview/2227830545?pq-origsite=%requestingapplication% |
| PMID | 31110228 |
| PQID | 2227830545 |
| PQPubID | 2041939 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6527681 proquest_miscellaneous_2232100817 proquest_journals_2227830545 pubmed_primary_31110228 crossref_citationtrail_10_1038_s41598_019_44127_0 crossref_primary_10_1038_s41598_019_44127_0 springer_journals_10_1038_s41598_019_44127_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-20 |
| PublicationDateYYYYMMDD | 2019-05-20 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Tanaka, Shiraiwa, Nakajima, Nakazaki (CR5) 2008; 48 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (CR15) 2016 He, Zhang, Ren, Sun (CR10) 2015; 37 Franks, Beerling (CR6) 2009; 106 CR19 Ohsumi (CR4) 2007; 99 Kundu, Tigerstedt (CR22) 1998; 19 Lawson, Kramer, Raines (CR1) 2012; 23 Fuentes, Yoon, Kim, Park (CR14) 2017; 17 CR13 CR12 Long, Zhu, Naidu, Ort (CR2) 2006; 29 CR11 Mohanty, Hughes, Salathe (CR18) 2016; 7 Ciha, Brun (CR20) 1975; 15 Schneider, Rasband, Eliceiri. (CR16) 2012; 9 Ceulemans, Praet, Jiang (CR21) 2017; 131 Sakoda, Tanaka, Long, Shiraiwa (CR24) 2016; 56 Watanabe (CR25) 2018; 25 Grishagin (CR17) 2015; 473 CR9 Hultine, Marshall (CR8) 2001; 52 Fischer (CR3) 1998; 38 Tanaka, Fujii, Shiraiwa (CR7) 2010; 50 Kaga (CR23) 2012; 61 SK Kundu (44127_CR22) 1998; 19 K Sakoda (44127_CR24) 2016; 56 PJ Franks (44127_CR6) 2009; 106 A Ohsumi (44127_CR4) 2007; 99 R Ceulemans (44127_CR21) 2017; 131 A Fuentes (44127_CR14) 2017; 17 T Lawson (44127_CR1) 2012; 23 Wei Liu (44127_CR15) 2016 SP Long (44127_CR2) 2006; 29 Y Tanaka (44127_CR5) 2008; 48 Y Tanaka (44127_CR7) 2010; 50 44127_CR19 44127_CR9 K He (44127_CR10) 2015; 37 S Watanabe (44127_CR25) 2018; 25 KR Hultine (44127_CR8) 2001; 52 CA Schneider (44127_CR16) 2012; 9 AJ Ciha (44127_CR20) 1975; 15 44127_CR13 44127_CR12 44127_CR11 IV Grishagin (44127_CR17) 2015; 473 K Kaga (44127_CR23) 2012; 61 SP Mohanty (44127_CR18) 2016; 7 RA Fischer (44127_CR3) 1998; 38 |
| References_xml | – volume: 48 start-page: 1925 year: 2008 end-page: 1932 ident: CR5 article-title: Leaf gas exchange activity in soybean as related to leaf traits and stem growth habit publication-title: Crop Sci. doi: 10.2135/cropsci2007.12.0707 – volume: 19 start-page: 47 year: 1998 end-page: 52 ident: CR22 article-title: Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica) publication-title: Tree Physiol. doi: 10.1093/treephys/19.1.47 – volume: 52 start-page: 369 year: 2001 end-page: 373 ident: CR8 article-title: A comparison of three methods for determining the stomatal density of pine needles publication-title: J. Exp. Bot. doi: 10.1093/jexbot/52.355.369 – ident: CR12 – volume: 23 start-page: 215 year: 2012 end-page: 220 ident: CR1 article-title: Improving yield by exploiting mechanisms underlying natural variation of photosynthesis publication-title: Curr. Opin. Biotech. doi: 10.1016/j.copbio.2011.12.012 – volume: 99 start-page: 265 year: 2007 end-page: 273 ident: CR4 article-title: A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance publication-title: Ann. Bot-London doi: 10.1093/aob/mcl253 – volume: 29 start-page: 315 year: 2006 end-page: 330 ident: CR2 article-title: Can improvement in photosynthesis increase crop yields? publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01493.x – volume: 56 start-page: 2731 year: 2016 end-page: 2741 ident: CR24 article-title: Genetic and physiological diversity in the leaf photosynthetic capacity of soybean publication-title: Crop Sci. doi: 10.2135/cropsci2016.02.0122 – volume: 473 start-page: 63 year: 2015 end-page: 65 ident: CR17 article-title: Automatic cell counting with ImageJ publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.12.007 – volume: 50 start-page: 2525 year: 2010 end-page: 2532 ident: CR7 article-title: Variability of leaf morphology and stomatal conductance in soybean [Glycine max (L.) Merr.] cultivars publication-title: Crop Sci doi: 10.2135/cropsci2010.02.0058 – ident: CR19 – volume: 15 start-page: 309 year: 1975 end-page: 313 ident: CR20 article-title: Stomatal size and frequency in soybean publication-title: Crop Sci. doi: 10.2135/cropsci1975.0011183X001500030008x – volume: 17 start-page: 2022 year: 2017 ident: CR14 article-title: A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition publication-title: Sensors doi: 10.3390/s17092022 – volume: 7 start-page: 1419 year: 2016 ident: CR18 article-title: Using deep learning for image-based plant disease detection publication-title: Fron. Plant Sci. doi: 10.3389/fpls.2016.01419 – start-page: 21 year: 2016 end-page: 37 ident: CR15 article-title: SSD: Single Shot MultiBox Detector publication-title: Computer Vision – ECCV 2016 doi: 10.1007/978-3-319-46448-0_2 – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: CR10 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE T. Pattern Anal. doi: 10.1109/TPAMI.2015.2389824 – ident: CR13 – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: CR16 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – ident: CR11 – ident: CR9 – volume: 61 start-page: 566 year: 2012 end-page: 592 ident: CR23 article-title: Evaluation of soybean germplasm conserved in NIAS Genebank and development of mini core collections publication-title: Breeding Sci. doi: 10.1270/jsbbs.61.566 – volume: 106 start-page: 10343 year: 2009 end-page: 10347 ident: CR6 article-title: Maximum leaf conductance driven by CO effects on stomatal size and density over geologic time publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904209106 – volume: 131 start-page: 99 year: 2017 end-page: 107 ident: CR21 article-title: Effects of CO2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar ( ) publication-title: New Phytol. doi: 10.1111/j.1469-8137.1995.tb03059.x – volume: 38 start-page: 1467 year: 1998 end-page: 1475 ident: CR3 article-title: Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies publication-title: Crop Sci. doi: 10.2135/cropsci1998.0011183X003800060011x – volume: 25 start-page: 123 year: 2018 end-page: 136 ident: CR25 article-title: Development of a high-density linkage map and chromosome segment substitution lines for Japanese soybean cultivar Enrei publication-title: DNA Res. doi: 10.1093/dnares/dsx043 – volume: 37 start-page: 1904 year: 2015 ident: 44127_CR10 publication-title: IEEE T. Pattern Anal. doi: 10.1109/TPAMI.2015.2389824 – volume: 38 start-page: 1467 year: 1998 ident: 44127_CR3 publication-title: Crop Sci. doi: 10.2135/cropsci1998.0011183X003800060011x – volume: 25 start-page: 123 year: 2018 ident: 44127_CR25 publication-title: DNA Res. doi: 10.1093/dnares/dsx043 – start-page: 21 volume-title: Computer Vision – ECCV 2016 year: 2016 ident: 44127_CR15 doi: 10.1007/978-3-319-46448-0_2 – volume: 15 start-page: 309 year: 1975 ident: 44127_CR20 publication-title: Crop Sci. doi: 10.2135/cropsci1975.0011183X001500030008x – ident: 44127_CR11 doi: 10.1109/ICCV.2015.169 – ident: 44127_CR9 doi: 10.1109/CVPR.2014.81 – volume: 9 start-page: 671 year: 2012 ident: 44127_CR16 publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – ident: 44127_CR13 doi: 10.1109/CVPR.2016.91 – volume: 19 start-page: 47 year: 1998 ident: 44127_CR22 publication-title: Tree Physiol. doi: 10.1093/treephys/19.1.47 – volume: 131 start-page: 99 year: 2017 ident: 44127_CR21 publication-title: New Phytol. doi: 10.1111/j.1469-8137.1995.tb03059.x – volume: 473 start-page: 63 year: 2015 ident: 44127_CR17 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.12.007 – volume: 17 start-page: 2022 year: 2017 ident: 44127_CR14 publication-title: Sensors doi: 10.3390/s17092022 – volume: 7 start-page: 1419 year: 2016 ident: 44127_CR18 publication-title: Fron. Plant Sci. doi: 10.3389/fpls.2016.01419 – volume: 99 start-page: 265 year: 2007 ident: 44127_CR4 publication-title: Ann. Bot-London doi: 10.1093/aob/mcl253 – volume: 52 start-page: 369 year: 2001 ident: 44127_CR8 publication-title: J. Exp. Bot. doi: 10.1093/jexbot/52.355.369 – volume: 56 start-page: 2731 year: 2016 ident: 44127_CR24 publication-title: Crop Sci. doi: 10.2135/cropsci2016.02.0122 – volume: 29 start-page: 315 year: 2006 ident: 44127_CR2 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01493.x – volume: 48 start-page: 1925 year: 2008 ident: 44127_CR5 publication-title: Crop Sci. doi: 10.2135/cropsci2007.12.0707 – volume: 50 start-page: 2525 year: 2010 ident: 44127_CR7 publication-title: Crop Sci doi: 10.2135/cropsci2010.02.0058 – ident: 44127_CR19 doi: 10.1109/ICCVW.2017.241 – volume: 61 start-page: 566 year: 2012 ident: 44127_CR23 publication-title: Breeding Sci. doi: 10.1270/jsbbs.61.566 – volume: 23 start-page: 215 year: 2012 ident: 44127_CR1 publication-title: Curr. Opin. Biotech. doi: 10.1016/j.copbio.2011.12.012 – volume: 106 start-page: 10343 year: 2009 ident: 44127_CR6 publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904209106 – ident: 44127_CR12 |
| SSID | ssj0000529419 |
| Score | 2.429084 |
| Snippet | The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (
Glycine max
(L.) Merr). In a conventional SD evaluation,... The stomatal density (SD) can be a promising target to improve the leaf photosynthesis in soybeans (Glycine max (L.) Merr). In a conventional SD evaluation,... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7610 |
| SubjectTerms | 631/449/1734 631/449/1870 631/449/2124 Algorithms Alleles Breeding - methods Deep Learning Genetic diversity Genetic Variation - genetics Genotype Glycine max Glycine max - genetics High-Throughput Screening Assays - methods Humanities and Social Sciences multidisciplinary Photosynthesis Photosynthesis - genetics Plant Leaves - genetics Plant Stomata - genetics Population genetics Science Science (multidisciplinary) Sensors Soybeans Stomata |
| Title | Genetic Diversity in Stomatal Density among Soybeans Elucidated Using High-throughput Technique Based on an Algorithm for Object Detection |
| URI | https://link.springer.com/article/10.1038/s41598-019-44127-0 https://www.ncbi.nlm.nih.gov/pubmed/31110228 https://www.proquest.com/docview/2227830545 https://www.proquest.com/docview/2232100817 https://pubmed.ncbi.nlm.nih.gov/PMC6527681 |
| Volume | 9 |
| WOSCitedRecordID | wos000468281500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLkhcKK9CoKyMxA2sJs7D8Qn1sRUcukS0SMspSuyErrRNlm4WqX-BX82M86iWil64-BA7cqwZe77MjL8BeCdM6BmhDQ9N4fMgcxVXulBclIFA82zQyGlbbEJOp_FsppLO4bbq0ir7M9Ee1KbW5CPft3c2UTmD8OPyJ6eqURRd7UpobMEIkY1HKV2nIhl8LBTFCjzV3ZVx_Xh_hfaK7pR5iiMOEJK7m_boFsi8nSv5V8DU2qGTnf9dwWN41CFQdtCqzBO4V1RP4UFbk_L6GfwmImrsYsd9xgabV-ysqS_J0cOOKeEdn9kiReysvs4LNHZssljrOTkPDLNJCIzyR3hXBGi5bth5zxXLDtFuGlZXLKvYweIHfmFzcckQO7MvOTmFcIrG5odVz-HbyeT86BPvCjZwHUrZ8FBTCbM41yWR9OQIp4pIaDxug1wZrYs48ImKICu9MkLooWPjKeOZOBA6UnmY-buwXdVV8RJYQcDL-FLlyg8CITKdqTzKdaByIUtfO-D1Ykt1x2ZORTUWqY2q-3HaijpFUadW1KnrwPvhnWXL5XHn6L1ejGm3r1fpjQwdeDt0446kMEtWFfWaxtC9KIRa0oEXrfIM0_loWohxyAG5oVbDAGL73uyp5heW9TsKBf4aeg586BXw5rP-vYpXd6_iNTwUtBncEI_LPdhurtbFG7ivfzXz1dUYtuRM2jYew-hwMk2-jq3TYmz3GbUS21Hy-TT5_gcMVy-k |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o9AASPBCaxuHOfhA0KFbdWqZanUReotJLa3XWmbLN0saP8CP4bfyIzzqJaK3nrgGjsPO5_nG4_nAfBamNA3QhseGhtwmfUUV9oqLkZSID0bJDntik3Eg0FydKQOVuB3GwtDbpWtTHSC2pSabOQbLmYTwSnDD9PvnKpG0elqW0KjhsWeXfzELdvs_W4f_-8bIba3hp92eFNVgOswjiseaqqzleR6RJlkcuR8GwmNMkHmymhtExlQvHw28kcR8qNOjK-MbxIpdKTyMAvwudfguqTMYuQqKA46mw6dmklfNbE5vSDZmCE_UgybrzjqHSLmvWX-u6DUXvTN_OuA1vHe9p3_bcbuwu1Gw2ab9ZK4Byu2uA8365qbiwfwixJtYxPrtx4pbFyww6o8JUMW65NDP15zRZjYYbnILZI525rM9ZiMI4Y5JwtG_jG8KXI0nVds2ObCZR9RLzCsLFhWsM3JMc5IdXLKcG_AvuRk9MJXVM7_rXgIX69kIh7BalEW9gkwS4qlCWKVq0BKITKdqTzKtVS5iEeB9sBvYZLqJls7FQ2ZpM5rIEjSGlopQit10Ep7Hrzt7pnWuUou7b3ewiZt5NYsPceMB6-6ZpQ4dIyUFbacUx-K-0JVMvbgcQ3W7nUBUidlVPIgXoJx14GymS-3FOMTl9U8CgVufX0P3rWAP_-sf4_i6eWjeAlrO8PP--n-7mDvGdwStBB7IVLDOqxWZ3P7HG7oH9V4dvbCrWQG3656IfwBqxuF8A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHSBeuDMCA4wET2A1cZwmfkBo0FVUg1JpQxpPIbGdrVKXlDUF9S_wk_h1nJNLpzKxtz3wGjsXO5_Pd3x8LgAvhAk8I7ThgbE-l4mruNJWcZFJgfRskOR0VWwiHI2iw0M13oDfbSwMuVW2MrES1KbQZCPvVjGbCE4ZdLPGLWLcH7ydfedUQYpOWttyGjVE9uzyJ27f5m-GffzXL4UY7B68_8CbCgNcB2FY8kBTza0o1RlllUmR_21PaJQPMlVGaxtJn2Lnk8zLesiVOjKeMp6JpNA9lQaJj8-9ApuokkvRgc3x8NP468rCQ2do0lNNpI7rR905siVFtHmKoxYiQu6us-E5Ffe8p-Zfx7UVCw5u_c_zdxtuNro326kXyx3YsPlduFZX41zeg1-UghubWL_1VWGTnO2XxQmZuFifXP3xWlWeie0Xy9QizbPd6UJPyGxiWOV-wchzhjflj2aLkh20WXLZO9QYDCtyluRsZ3qEM1IenzDcNbDPKZnD8BVl5RmX34cvlzIRD6CTF7l9CMySymn8UKXKl1KIRCcq7aVaqlSEma8d8FrIxLrJ407lRKZx5U_gR3ENsxhhFlcwi10HXq3umdVZTC7svd1CKG4k2jw-w48Dz1fNKIvogCnJbbGgPhQRhkpm6MBWDdzV63wkVcq15EC4BulVB8pzvt6ST46rfOe9QOCm2HPgdQv-s8_69ygeXTyKZ3Ad8R9_HI72HsMNQWvSDZAztqFTni7sE7iqf5ST-enTZlkz-HbZK-EP8uqQOQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Diversity+in+Stomatal+Density+among+Soybeans+Elucidated+Using+High-throughput+Technique+Based+on+an+Algorithm+for+Object+Detection&rft.jtitle=Scientific+reports&rft.au=Sakoda%2C+Kazuma&rft.au=Watanabe%2C+Tomoya&rft.au=Sukemura%2C+Shun&rft.au=Kobayashi%2C+Shunzo&rft.date=2019-05-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-44127-0&rft.externalDocID=10_1038_s41598_019_44127_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |