Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition

Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 10; číslo 1; s. 14991
Hlavní autoři: Grant, Oliver C., Montgomery, David, Ito, Keigo, Woods, Robert J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 14.09.2020
Nature Publishing Group
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface.
AbstractList Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface.
Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface.Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface.
ArticleNumber 14991
Author Grant, Oliver C.
Ito, Keigo
Montgomery, David
Woods, Robert J.
Author_xml – sequence: 1
  givenname: Oliver C.
  surname: Grant
  fullname: Grant, Oliver C.
  organization: Complex Carbohydrate Research Center, University of Georgia
– sequence: 2
  givenname: David
  surname: Montgomery
  fullname: Montgomery, David
  organization: Complex Carbohydrate Research Center, University of Georgia
– sequence: 3
  givenname: Keigo
  surname: Ito
  fullname: Ito, Keigo
  organization: Complex Carbohydrate Research Center, University of Georgia
– sequence: 4
  givenname: Robert J.
  surname: Woods
  fullname: Woods, Robert J.
  email: rwoods@ccrc.uga.edu
  organization: Complex Carbohydrate Research Center, University of Georgia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32929138$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URD_oH-CALHHhsuDPtX1BiiIoSJWQKHC1vM5s4rJrB3u3Uv49TlNK6aG-2Jp53pnxvKfoKKYICL2i5B0lXL8vgkqjG8JIo6gSulHP0AkjQjaMM3b04H2Mzku5JvVIZgQ1L9AxZ4YZyvUJ6hbRDbsSCk49njaArxbfrppl-tkwXLbhF-BtThOEiNfDzruIyybAsMIZbsANBYdxOwTvppBiwX3KNTDOEWrep3UM-_hL9LyvKJzf3Wfox6eP35efm8uvF1-Wi8vGS6WmRmptBKPOtx3lxBECysmOesZaTrQgrRJEtX3NOu0YgOo1AJGdX3HZC2P4GfpwqLuduxFWHuKU3WC3OYwu72xywf6fiWFj1-nGKmEIN20t8PauQE6_ZyiTHUPxMAwuQpqLZUIwLbSie_TNI_Q6zbmuslKEcSG5JrJSrx9OdD_K3_VXgB0An1MpGfp7hBK7t9kebLbVZntrs1VVpB-JfJhuHai_CsPTUn6QltonriH_G_sJ1R_qf7u7
CitedBy_id crossref_primary_10_1021_acscentsci_2c01471
crossref_primary_10_1093_glycob_cwac051
crossref_primary_10_1016_j_bpj_2021_01_012
crossref_primary_10_3390_v14020351
crossref_primary_10_1126_scitranslmed_abm0899
crossref_primary_10_1016_j_csbj_2022_01_026
crossref_primary_10_1080_07391102_2023_2234044
crossref_primary_10_1080_0889311X_2024_2363756
crossref_primary_10_31083_j_fbl2804067
crossref_primary_10_3390_pr8121539
crossref_primary_10_1016_j_bios_2021_113647
crossref_primary_10_1111_1348_0421_13121
crossref_primary_10_1007_s00894_022_05395_2
crossref_primary_10_1038_s41423_021_00809_2
crossref_primary_10_1111_febs_16379
crossref_primary_10_1128_spectrum_03562_22
crossref_primary_10_1021_jasms_3c00309
crossref_primary_10_3390_vaccines12101089
crossref_primary_10_1016_j_bcp_2022_115335
crossref_primary_10_4155_bio_2021_0096
crossref_primary_10_3390_biochem1030016
crossref_primary_10_1002_iub_2692
crossref_primary_10_1016_j_jbc_2021_100556
crossref_primary_10_1371_journal_pgen_1010042
crossref_primary_10_1080_07391102_2023_2220045
crossref_primary_10_1007_s10441_021_09425_z
crossref_primary_10_3389_fimmu_2022_837443
crossref_primary_10_1007_s00253_022_12254_w
crossref_primary_10_1093_glycob_cwac046
crossref_primary_10_1002_adts_202000156
crossref_primary_10_1038_s41392_021_00809_8
crossref_primary_10_1073_pnas_2119761119
crossref_primary_10_1002_mas_21813
crossref_primary_10_1371_journal_pone_0242890
crossref_primary_10_1038_s41541_020_00264_6
crossref_primary_10_1038_s41541_021_00365_w
crossref_primary_10_1093_glycob_cwad094
crossref_primary_10_1016_j_cbpa_2022_102175
crossref_primary_10_3389_fbioe_2021_699025
crossref_primary_10_1016_j_bpj_2021_01_029
crossref_primary_10_1021_acsomega_5c05175
crossref_primary_10_1021_jacs_1c02713
crossref_primary_10_1007_s00216_021_03499_x
crossref_primary_10_3390_ijms25084466
crossref_primary_10_1093_ve_veaf027
crossref_primary_10_3389_fcimb_2022_989534
crossref_primary_10_1016_j_medcle_2021_09_028
crossref_primary_10_3389_fimmu_2022_838780
crossref_primary_10_1016_j_phrs_2022_106201
crossref_primary_10_1126_sciadv_ady3554
crossref_primary_10_3390_nano11071684
crossref_primary_10_1016_j_vaccine_2022_04_061
crossref_primary_10_1073_pnas_2119995119
crossref_primary_10_1093_glycob_cwac077
crossref_primary_10_1016_j_tibtech_2025_06_022
crossref_primary_10_3390_v16071066
crossref_primary_10_1073_pnas_2404892121
crossref_primary_10_1016_j_cbpa_2023_102301
crossref_primary_10_1177_11769343211064616
crossref_primary_10_7554_eLife_73641
crossref_primary_10_1021_acs_bioconjchem_4c00559
crossref_primary_10_3389_fimmu_2025_1592142
crossref_primary_10_3389_fimmu_2024_1292588
crossref_primary_10_1016_j_jmb_2022_167928
crossref_primary_10_1016_j_sbi_2025_103118
crossref_primary_10_7554_eLife_89423
crossref_primary_10_1111_febs_16599
crossref_primary_10_7554_eLife_95708_3
crossref_primary_10_1016_j_csbj_2021_07_023
crossref_primary_10_1016_j_tibs_2020_10_004
crossref_primary_10_1080_07391102_2022_2095305
crossref_primary_10_1016_j_jmgm_2024_108914
crossref_primary_10_3389_fimmu_2021_641447
crossref_primary_10_1016_j_jbc_2021_101507
crossref_primary_10_1038_s41592_022_01451_0
crossref_primary_10_1016_j_nbt_2022_08_002
crossref_primary_10_1038_s41467_022_28446_x
crossref_primary_10_3390_v14081672
crossref_primary_10_3390_v15030798
crossref_primary_10_3390_v16020185
crossref_primary_10_1038_s43856_025_00830_w
crossref_primary_10_3389_fimmu_2022_828053
crossref_primary_10_1016_j_chembiol_2023_05_011
crossref_primary_10_1016_j_bpj_2024_03_018
crossref_primary_10_1016_j_heliyon_2021_e06572
crossref_primary_10_1016_j_chom_2022_03_035
crossref_primary_10_1126_sciimmunol_add6608
crossref_primary_10_1002_bit_28051
crossref_primary_10_1128_mmbr_00260_24
crossref_primary_10_1038_s41598_022_06157_z
crossref_primary_10_7554_eLife_95708
crossref_primary_10_1016_j_bbrc_2021_09_053
crossref_primary_10_3389_fchem_2021_735558
crossref_primary_10_3390_v13040628
crossref_primary_10_1016_j_bpj_2023_09_003
crossref_primary_10_3389_fmolb_2021_713003
crossref_primary_10_7554_eLife_75720
crossref_primary_10_3390_pathogens10010061
crossref_primary_10_1002_pro_4612
crossref_primary_10_1007_s00216_022_04000_y
crossref_primary_10_1212_NXI_0000000000001143
crossref_primary_10_1002_mco2_70008
crossref_primary_10_1039_D1SC04832E
crossref_primary_10_1038_s41598_021_92641_x
crossref_primary_10_3390_ijms26157047
crossref_primary_10_7554_eLife_61552
crossref_primary_10_3390_v16121835
crossref_primary_10_3390_microorganisms9051035
crossref_primary_10_7554_eLife_73027
crossref_primary_10_1016_j_intimp_2021_108187
crossref_primary_10_3390_biology13040207
crossref_primary_10_7554_eLife_89423_3
crossref_primary_10_1007_s12088_023_01121_5
crossref_primary_10_1016_j_pbiomolbio_2023_02_004
crossref_primary_10_3389_fimmu_2022_882972
crossref_primary_10_1016_j_ebiom_2021_103712
crossref_primary_10_1371_journal_pone_0328174
crossref_primary_10_3390_ijms232113082
crossref_primary_10_1016_j_medcli_2021_09_013
crossref_primary_10_3390_biom13091421
crossref_primary_10_3390_ijms24032517
crossref_primary_10_3390_v13010082
crossref_primary_10_3390_biom14091061
crossref_primary_10_1016_j_carres_2022_108574
crossref_primary_10_1016_j_csbj_2021_05_002
crossref_primary_10_1126_science_abl6251
crossref_primary_10_3390_genes12060796
crossref_primary_10_1016_j_jmb_2020_166748
crossref_primary_10_1016_j_bpj_2023_05_003
crossref_primary_10_1080_07391102_2021_1894986
crossref_primary_10_1002_bies_202200060
crossref_primary_10_1016_j_bbrc_2021_01_073
crossref_primary_10_3390_life15020162
crossref_primary_10_1002_prot_26317
crossref_primary_10_2217_fvl_2021_0062
crossref_primary_10_3389_fpubh_2021_695139
crossref_primary_10_3390_vaccines10020236
crossref_primary_10_3390_v14020295
crossref_primary_10_1007_s00216_021_03433_1
crossref_primary_10_1016_j_carbpol_2022_120167
crossref_primary_10_1038_s41467_024_48503_x
crossref_primary_10_3389_fimmu_2022_801915
crossref_primary_10_3390_cells11050855
crossref_primary_10_3389_fchem_2021_689521
crossref_primary_10_3389_fchem_2021_661230
crossref_primary_10_1016_j_sbi_2022_102393
crossref_primary_10_1126_science_adn5658
crossref_primary_10_1111_febs_15909
crossref_primary_10_3390_nu14122513
crossref_primary_10_1016_j_ejcb_2022_151275
crossref_primary_10_3389_fimmu_2021_690976
crossref_primary_10_1038_s41467_025_57359_8
crossref_primary_10_3389_fimmu_2024_1370511
crossref_primary_10_3390_biomedicines12051007
crossref_primary_10_1021_acscentsci_4c00506
crossref_primary_10_1016_j_coviro_2021_08_003
crossref_primary_10_1128_spectrum_03120_22
crossref_primary_10_1016_j_comptc_2023_114049
crossref_primary_10_1016_j_hlpt_2022_100619
crossref_primary_10_1093_glycob_cwad007
crossref_primary_10_1107_S2059798321009712
crossref_primary_10_1038_s41467_023_42408_x
crossref_primary_10_1038_s41598_022_19886_y
crossref_primary_10_3390_vaccines9090978
crossref_primary_10_1002_prot_26208
crossref_primary_10_1038_s41598_025_01903_5
crossref_primary_10_1038_s41598_021_04298_1
crossref_primary_10_3389_fmolb_2021_629873
crossref_primary_10_1038_s41598_025_85153_5
crossref_primary_10_3390_v15030633
crossref_primary_10_1007_s10719_022_10056_w
crossref_primary_10_1021_acs_jpclett_4c03654
crossref_primary_10_1002_bit_27725
crossref_primary_10_1099_jgv_0_001642
crossref_primary_10_1111_1348_0421_13082
crossref_primary_10_1002_advs_202201853
crossref_primary_10_1021_acs_jcim_5c01051
crossref_primary_10_3390_vaccines9080928
crossref_primary_10_1021_jacs_1c00556
crossref_primary_10_1016_j_vaccine_2021_12_058
crossref_primary_10_1021_acscentsci_2c01349
crossref_primary_10_1016_j_sbi_2025_103049
crossref_primary_10_1080_22221751_2024_2412643
crossref_primary_10_1080_1040841X_2023_2274840
crossref_primary_10_3390_biom13101467
crossref_primary_10_1016_j_cell_2024_01_034
crossref_primary_10_1021_acscentsci_1c01080
crossref_primary_10_1016_j_ijbiomac_2023_125153
crossref_primary_10_1038_s42003_022_04138_6
crossref_primary_10_3390_v15091930
crossref_primary_10_1016_j_molcel_2021_11_024
Cites_doi 10.1007/978-1-61779-465-0_34
10.1016/j.cell.2018.12.028
10.1016/j.arr.2012.02.002
10.1016/0021-9991(77)90098-5
10.1016/j.coviro.2015.02.002
10.1021/ja00392a016
10.1074/mcp.R119.001491
10.1111/febs.13530
10.1016/s0969-2126(00)00547-5
10.1002/jcc.20820
10.1126/science.abb2507
10.1038/ncomms15092
10.1093/infdis/jix209
10.1139/cjc-2015-0606
10.1371/journal.ppat.1003831
10.1128/JVI.02002-17
10.1101/2020.03.26.010322
10.1074/jbc.M603275200
10.1038/s41467-019-10897-4
10.1063/1.464397
10.1002/jcc.23517
10.3390/v3101909
10.3390/v6031294
10.1172/JCI138003
10.1128/JVI.01023-13
10.1021/ct200909j
10.1016/j.annepidem.2020.05.003
10.1038/nri2417
10.1016/0263-7855(96)00018-5
10.1002/1873-3468.13495
10.1021/pr400329k
10.1074/jbc.M600697200
10.1016/j.celrep.2018.06.041
10.1093/glycob/cwx036
10.3389/fimmu.2018.01998
10.1371/journal.pone.0209515
10.1093/glycob/cww094
10.1093/glycob/cwz101
10.1101/2020.02.19.956235
10.1073/pnas.1712377114
10.4049/jimmunol.1201060
10.1101/2020.06.15.20131391
10.1016/j.tim.2007.03.003
10.1021/bi00368a076
10.1016/j.celrep.2019.08.052
10.1016/s0198-8859(02)00432-9
10.1128/JVI.00593-13
10.1016/j.jmb.2009.03.042
10.1128/JVI.01693-18
10.1007/s00251-004-0709-7
10.1093/glycob/cwv083
10.1021/acs.jctc.5b00255
10.1074/mcp.M116.058016
10.1080/08927020701710890
10.1101/2020.04.07.023903
10.1128/mBio.00204-19
10.1021/acs.chemrev.8b00032
10.1038/s41591-020-0962-9
10.3389/fimmu.2018.02754
10.1021/jp2017105
10.1038/ncomms9223
10.1038/ncomms8712
10.1016/j.chom.2016.11.004
10.1093/glycob/cwv037
10.1021/bi00395a001
10.1371/journal.pone.0023521
10.1021/acs.jproteome.6b00496
10.1126/science.1124513
10.1126/science.1118398
10.1038/nchembio.1685
10.1038/nature05580
10.1001/jama.2020.10218
10.1002/jcc.20084
10.1038/nm.2535
10.1002/anie.201406145
10.1126/science.abb9983
10.1038/cr.2015.113
10.1093/gerona/glt190
10.1038/s41423-020-0400-4
10.1074/jbc.M112.371898
10.1021/ct400314y
10.1001/jama.2020.10044
10.1073/pnas.1707304114
10.1093/glycob/cwv058
10.1186/s12967-018-1695-0
10.1126/science.1213256
10.1128/JVI.01403-18
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-020-71748-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database ProQuest
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7490396
32929138
10_1038_s41598_020_71748_7
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: U01 CA207824
– fundername: NIGMS NIH HHS
  grantid: T32 GM107004
– fundername: NIGMS NIH HHS
  grantid: P41 GM103390
– fundername: NCI NIH HHS
  grantid: U01 CA207824
– fundername: NIH HHS
  grantid: U01 CA207824
– fundername: ;
  grantid: U01 CA207824
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c577t-5889421ac6b130a00e7a5b1c22630840674076f6b1a8a2ee7f8ee05bcd35f4993
IEDL.DBID M7P
ISICitedReferencesCount 194
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573274900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:59:25 EST 2025
Sun Nov 09 12:01:26 EST 2025
Tue Oct 07 07:42:21 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Sat Nov 29 04:02:25 EST 2025
Tue Nov 18 21:44:20 EST 2025
Fri Feb 21 02:37:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-5889421ac6b130a00e7a5b1c22630840674076f6b1a8a2ee7f8ee05bcd35f4993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2023453805?pq-origsite=%requestingapplication%
PMID 32929138
PQID 2023453805
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7490396
proquest_miscellaneous_2442848716
proquest_journals_2023453805
pubmed_primary_32929138
crossref_primary_10_1038_s41598_020_71748_7
crossref_citationtrail_10_1038_s41598_020_71748_7
springer_journals_10_1038_s41598_020_71748_7
PublicationCentury 2000
PublicationDate 2020-09-14
PublicationDateYYYYMMDD 2020-09-14
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BaumLGCobbBAThe direct and indirect effects of glycans on immune functionGlycobiology2017276196241:CAS:528:DC%2BC1cXhvV2nu7jJ10.1093/glycob/cwx03628460052
KristicJGlycans are a novel biomarker of chronological and biological agesJ. Gerontol. A Biol. Sci. Med. Sci.2014697797891:CAS:528:DC%2BC2cXhtVaks7zF10.1093/gerona/glt19024325898
Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific analysis of the SARS-CoV-2 glycan shield. BioRxiv. https://doi.org/10.1101/2020.03.26.010322 (2020).
MaierJAff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SBJ. Chem. Theory Comput.201511369637131:CAS:528:DC%2BC2MXhtFequ7rN10.1021/acs.jctc.5b00255265744534821407
BonomelliCThe glycan shield of HIV is predominantly oligomannose independently of production system or viral cladePLoS ONE20116e235211:CAS:528:DC%2BC3MXhtFOisLbO10.1371/journal.pone.00235212185815231567722011PLoSO...623521B
ZhouTStructural definition of a conserved neutralization epitope on HIV-1 gp120Nature20074457327371:CAS:528:DC%2BD2sXhslSqs7o%3D10.1038/nature055801730178525849682007Natur.445..732Z
CrispinMDooresKJTargeting host-derived glycans on enveloped viruses for antibody-based vaccine designCurr. Opin. Virol.20151163691:CAS:528:DC%2BC2MXjs1Gqurw%3D10.1016/j.coviro.2015.02.002257473134827424
AmaroRELiWWMolecular-level simulation of pandemic influenza glycoproteinsMethods Mol. Biol.20128195755941:CAS:528:DC%2BC38XhsFSjurzL10.1007/978-1-61779-465-0_34221835593352029
SunXN-linked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A virusesJ. Virol.201387875687661:CAS:528:DC%2BC3sXhtFCmtbnF10.1128/JVI.00593-13237409783719814
WangNStructural definition of a neutralization-sensitive epitope on the MERS-CoV S1-NTDCell Rep.20192833953405 e33961:CAS:528:DC%2BC1MXhvVKks7jI10.1016/j.celrep.2019.08.052315539096935267
PakJEStructural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domainJ. Mol. Biol.20093888158231:CAS:528:DC%2BD1MXltlejs78%3D10.1016/j.jmb.2009.03.042193240517094495
YingTJunctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibodyNat. Commun.2015682231:CAS:528:DC%2BC2MXhsFeis7%2FL10.1038/ncomms92232637078245712792015NatCo...6.8223Y
WallsACUnexpected receptor functional mimicry elucidates activation of coronavirus fusionCell201917610261039 e10151:CAS:528:DC%2BC1MXisVWgu74%3D10.1016/j.cell.2018.12.028307128656751136
WangLEvaluation of candidate vaccine approaches for MERS-CoVNat. Commun.2015677121:CAS:528:DC%2BC2MXhtlWhtbbP10.1038/ncomms87122621850745252942015NatCo...6.7712W
CotterCRJinHChenZA single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivityPLoS Pathog.201410e10038311:CAS:528:DC%2BC2cXjslalsb0%3D10.1371/journal.ppat.1003831243914983879363
JoSQiYImWPreferred conformations of N-glycan core pentasaccharide in solution and in glycoproteinsGlycobiology20162619291:CAS:528:DC%2BC28Xht12rsbrE10.1093/glycob/cwv08326405106
ZhangSStructural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoproteinCell Rep.2018244414521:CAS:528:DC%2BC1cXhtlSksLjK10.1016/j.celrep.2018.06.041299961047104183
W.H.O. Coronavirus disease 2019 (Covid-19) Situation Report. Report No. 77, (2020).
HomansSWConformational transitions in N-linked oligosaccharidesBiochemistry198625634263501:CAS:528:DyaL28XlsVynurc%3D10.1021/bi00368a0763790526
PallesenJImmunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigenProc. Natl. Acad. Sci. USA2017114E7348E73571:CAS:528:DC%2BC2sXhtlWmsrfI10.1073/pnas.170730411428807998
YamaguchiTExploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulationAngew. Chem. Int. Ed.20145310941109441:CAS:528:DC%2BC2cXhsV2ntrfF10.1002/anie.201406145
WoodsRJPredicting the structures of glycans, glycoproteins, and their complexesChem. Rev.2018118800580241:CAS:528:DC%2BC1cXhsVKhsbjF10.1021/acs.chemrev.8b00032300915976659753
LiLEffect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trialJAMA202010.1001/jama.2020.10044328702867101507
PengWRecent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidityCell Host Microbe20172123341:CAS:528:DC%2BC28XitFGitbnK10.1016/j.chom.2016.11.00428017661
JorgensenWLQuantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers: application to liquid waterJ. Am. Chem. Soc.19811033353401:CAS:528:DyaL3MXotlCitA%3D%3D10.1021/ja00392a016
PrabakaranPStructure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibodyJ. Biol. Chem.200628115829158361:CAS:528:DC%2BD28Xlt1CktLg%3D10.1074/jbc.M60069720016597622
DaviesNGAge-dependent effects in the transmission and control of COVID-19 epidemicsNat. Med.202010.1038/s41591-020-0962-9328079347104347
HarbisonAFaddaEAn atomistic perspective on ADCC quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamicsGlycobiology201910.1093/glycob/cwz10130325416
MarthJDGrewalPKMammalian glycosylation in immunityNat. Rev. Immunol.200888748871:CAS:528:DC%2BD1cXht12isLbE10.1038/nri2417
AnYN-glycosylation of seasonal influenza vaccine hemagglutinins: implication for potency testing and immune processingJ. Virol.201910.1128/JVI.01693-18315113856854503
AnYComparative glycomics analysis of influenza hemagglutinin (H5N1) produced in vaccine relevant cell platformsJ. Proteome Res.201312370737201:CAS:528:DC%2BC3sXhtV2ktL7N10.1021/pr400329k238486073800089
DooresKJThe HIV glycan shield as a target for broadly neutralizing antibodiesFEBS J.2015282467946911:CAS:528:DC%2BC2MXhslSjtrfL10.1111/febs.13530264115454950053
TaiWCharacterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccineCell Mol. Immunol.2020176136201:CAS:528:DC%2BB3cXlt1Chsrw%3D10.1038/s41423-020-0400-432203189
Salomon-FerrerRGötzAWPooleDLe GrandSWalkerRCRoutine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh EwaldJ. Chem. Theory Comput.20139387838881:CAS:528:DC%2BC3sXht1arsrzP10.1021/ct400314y26592383
PejchalRA potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shieldScience2011334109711031:CAS:528:DC%2BC3MXhsV2mu7jK10.1126/science.12132562199825432802152011Sci...334.1097P
ChangDZaiaJWhy glycosylation matters in building a better flu vaccineMol. Cell Proteomics201918234823581:CAS:528:DC%2BB3cXjtlehtro%3D10.1074/mcp.R119.00149131604803
ZhouHStructural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoproteinNat. Commun20191030681:CAS:528:DC%2BC1MXhtlKksr3M10.1038/s41467-019-10897-43129684366242102019NatCo..10.3068Z
RyckaertJ-PCiccottiGBerendsenHJCNumerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanesJ. Comput. Phys.1977233273411:CAS:528:DyaE2sXktVGhsL4%3D10.1016/0021-9991(77)90098-51977JCoPh..23..327R
NivedhaAKMakeneniSFoleyBLTessierMBWoodsRJImportance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaffJ. Comput. Chem.2014355265391:CAS:528:DC%2BC2cXmvFSi10.1002/jcc.2351724375430
Hubbard, S. J. & Thornton, J. M. NACCESS v. 2.1.1. Computer Program.  Department of Biochemistry and Molecular Biology, University College London (1993).
HuangCCStructure of a V3-containing HIV-1 gp120 coreScience2005310102510281:CAS:528:DC%2BD2MXhtF2is7nK10.1126/science.11183981628418024085312005Sci...310.1025H
WrappDCryo-EM structure of the 2019-nCoV spike in the prefusion conformationScience202010.1126/science.abb2507327039067402631
ChenZHuman neutralizing monoclonal antibody inhibition of middle east respiratory syndrome coronavirus replication in the common marmosetJ. Infect Dis.2017215180718151:CAS:528:DC%2BC1cXitFCrtLbI10.1093/infdis/jix209284724217107363
HelleFDuverlieGDubuissonJThe hepatitis C virus glycan shield and evasion of the humoral immune responseViruses20113190919321:CAS:528:DC%2BC3MXhsVKju7jF10.3390/v3101909220695223205388
HomansSWDwekRARademacherTWSolution conformations of N-linked oligosaccharidesBiochemistry198726657165781:CAS:528:DyaL2sXlslWlsLw%3D10.1021/bi00395a0013322384
KhatriKIntegrated omics and computational glycobiology reveal structural basis for influenza A virus glycan microheterogeneity and host interactionsMol. Cell. Proteomics201615189519121:CAS:528:DC%2BC28XovFWls74%3D10.1074/mcp.M116.058016269848865083086
DardenTYorkDPedersenLParticle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systemsJ. Chem. Phys.199398100891:CAS:528:DyaK3sXks1Ohsr0%3D10.1063/1.4643971993JChPh..9810089D
VigerustDJShepherdVLVirus glycosylation: role in virulence and immune interactionsTrends Microbiol.2007152112181:CAS:528:DC%2BD2sXkvFOju7s%3D10.1016/j.tim.2007.03.003173981017127133
RechePAGluttingJPZhangHReinherzELEnhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profilesImmunogenetics2004564054191:CAS:528:DC%2BD2cXns1eqsbg%3D10.1007/s00251-004-0709-715349703
HutterJToward animal cell culture-based influenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicityJ. Immunol.20131902202301:CAS:528:DC%2BC38XhvV2ksrnF10.4049/jimmunol.120106023225881
TateMDPlaying hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infectionViruses20146129413161:CAS:528:DC%2BC2cXhtlagtrnO10.3390/v6031294246382043970151
Lan, J. et al. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. B
F Helle (71748_CR4) 2011; 3
MB Tessier (71748_CR34) 2008; 34
SW Homans (71748_CR21) 1986; 25
KN Kirschner (71748_CR82) 2008; 29
71748_CR54
NG Davies (71748_CR73) 2020
T Darden (71748_CR84) 1993; 98
71748_CR1
KN Kirschner (71748_CR33) 2008; 29
RA Urbanowicz (71748_CR86) 2019
MS Pereira (71748_CR6) 2018; 9
MO Altman (71748_CR15) 2019
LG Baum (71748_CR7) 2017; 27
S Zhang (71748_CR48) 2018; 24
T Zhou (71748_CR88) 2007; 445
K Khatri (71748_CR28) 2016; 15
A Singh (71748_CR32) 2016; 94
MD Tate (71748_CR3) 2014; 6
C Casals (71748_CR10) 2018; 9
SW Homans (71748_CR20) 1987; 26
N Rudman (71748_CR71) 2019; 593
RJ Woods (71748_CR22) 2018; 118
Y An (71748_CR30) 2019
Y An (71748_CR31) 2013; 12
L Wang (71748_CR44) 2015; 6
J Pallesen (71748_CR47) 2017; 114
J Hutter (71748_CR11) 2013; 190
Y Yuan (71748_CR18) 2017; 8
J Stevens (71748_CR12) 2006; 312
71748_CR81
SJ Zost (71748_CR16) 2017; 114
PA Reche (71748_CR55) 2004; 56
J Kristic (71748_CR69) 2014; 69
AK Nivedha (71748_CR75) 2014; 35
CR Cotter (71748_CR13) 2014; 10
R Pejchal (71748_CR90) 2011; 334
SA Malaker (71748_CR58) 2017; 16
AC Walls (71748_CR51) 2019; 176
C Bonomelli (71748_CR60) 2011; 6
T Ying (71748_CR43) 2015; 6
L Wang (71748_CR49) 2018
EF Pettersen (71748_CR91) 2004; 25
AG Gebrehiwot (71748_CR72) 2018; 13
T Pavic (71748_CR70) 2018; 16
Y Li (71748_CR14) 2013; 87
Y Watanabe (71748_CR19) 2020
P Prabakaran (71748_CR40) 2006; 281
Z Chen (71748_CR46) 2017; 215
N Wang (71748_CR52) 2019; 28
O Haji-Ghassemi (71748_CR59) 2015; 25
S Horiya (71748_CR36) 2014; 10
71748_CR77
Y Li (71748_CR45) 2015; 25
JE Pak (71748_CR42) 2009; 388
AW Gotz (71748_CR80) 2012; 8
I Hang (71748_CR27) 2015; 25
E Sawen (71748_CR24) 2011; 115
WL Jorgensen (71748_CR78) 1981; 103
D Chang (71748_CR61) 2019; 18
71748_CR39
JD Marth (71748_CR5) 2008; 8
71748_CR38
A Casadevall (71748_CR65) 2020; 130
T Yamaguchi (71748_CR23) 2014; 53
D Wrapp (71748_CR17) 2020
71748_CR62
W Peng (71748_CR66) 2017; 21
CC Huang (71748_CR87) 2005; 310
W Humphrey (71748_CR35) 1996; 14
H Zhou (71748_CR50) 2019; 10
PA Reche (71748_CR56) 2002; 63
KJ Doores (71748_CR37) 2015; 282
J-P Ryckaert (71748_CR85) 1977; 23
F Dall'Olio (71748_CR68) 2013; 12
WC Hwang (71748_CR41) 2006; 281
OC Grant (71748_CR76) 2016; 26
JA Maier (71748_CR83) 2015; 11
A Casadevall (71748_CR64) 2020
S Jo (71748_CR25) 2016; 26
W Tai (71748_CR53) 2020; 17
X Sun (71748_CR67) 2013; 87
DJ Vigerust (71748_CR8) 2007; 15
PD Kwong (71748_CR89) 2000; 8
M Crispin (71748_CR9) 2015; 11
FY Avci (71748_CR57) 2011; 17
A Harbison (71748_CR26) 2019
GA Millett (71748_CR74) 2020
R Salomon-Ferrer (71748_CR79) 2013; 9
RE Amaro (71748_CR29) 2012; 819
L Li (71748_CR63) 2020
RS Depetris (71748_CR2) 2012; 287
32511307 - bioRxiv. 2020 May 01:2020.04.07.030445. doi: 10.1101/2020.04.07.030445
References_xml – reference: HwangWCStructural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80RJ. Biol. Chem.200628134610346161:CAS:528:DC%2BD28XhtFKgurzE10.1074/jbc.M60327520016954221
– reference: WangLImportance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the middle east respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escapeJ. Virol.201810.1128/JVI.02002-17303331746288345
– reference: ZhouHStructural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoproteinNat. Commun20191030681:CAS:528:DC%2BC1MXhtlKksr3M10.1038/s41467-019-10897-43129684366242102019NatCo..10.3068Z
– reference: KhatriKIntegrated omics and computational glycobiology reveal structural basis for influenza A virus glycan microheterogeneity and host interactionsMol. Cell. Proteomics201615189519121:CAS:528:DC%2BC28XovFWls74%3D10.1074/mcp.M116.058016269848865083086
– reference: GebrehiwotAGHealthy human serum N-glycan profiling reveals the influence of ethnic variation on the identified cancer-relevant glycan biomarkersPLoS ONE201813e020951510.1371/journal.pone.0209515305927556310272
– reference: LiYSingle hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clusteringJ. Virol.201387990499101:CAS:528:DC%2BC3sXhtlCmu77E10.1128/JVI.01023-13238248163754131
– reference: Farrera, L. et al. Identification of immunodominant linear epitopes from SARS-CoV-2 patient plasma. MedRxiv. https://doi.org/10.1101/2020.06.15.20131391 (2020).
– reference: WatanabeYAllenJDWrappDMcLellanJSCrispinMSite-specific glycan analysis of the SARS-CoV-2 spikeScience202010.1126/science.abb9983328553097199903
– reference: UrbanowiczRAAntigenicity and immunogenicity of differentially glycosylated hepatitis C virus E2 envelope proteins expressed in mammalian and insect cellsJ. Virol.201910.1128/JVI.01403-18306513666430559
– reference: MaierJAff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SBJ. Chem. Theory Comput.201511369637131:CAS:528:DC%2BC2MXhtFequ7rN10.1021/acs.jctc.5b00255265744534821407
– reference: KwongPDStructures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolatesStructure20008132913391:CAS:528:DC%2BD3MXhtFent7s%3D10.1016/s0969-2126(00)00547-511188697
– reference: HomansSWConformational transitions in N-linked oligosaccharidesBiochemistry198625634263501:CAS:528:DyaL28XlsVynurc%3D10.1021/bi00368a0763790526
– reference: AltmanMOHuman influenza A virus hemagglutinin glycan evolution follows a temporal pattern to a glycan limitmBio201910.1128/mBio.00204-19309407046445938
– reference: HarbisonAFaddaEAn atomistic perspective on ADCC quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamicsGlycobiology201910.1093/glycob/cwz10130325416
– reference: VigerustDJShepherdVLVirus glycosylation: role in virulence and immune interactionsTrends Microbiol.2007152112181:CAS:528:DC%2BD2sXkvFOju7s%3D10.1016/j.tim.2007.03.003173981017127133
– reference: ChangDZaiaJWhy glycosylation matters in building a better flu vaccineMol. Cell Proteomics201918234823581:CAS:528:DC%2BB3cXjtlehtro%3D10.1074/mcp.R119.00149131604803
– reference: HomansSWDwekRARademacherTWSolution conformations of N-linked oligosaccharidesBiochemistry198726657165781:CAS:528:DyaL2sXlslWlsLw%3D10.1021/bi00395a0013322384
– reference: PrabakaranPStructure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibodyJ. Biol. Chem.200628115829158361:CAS:528:DC%2BD28Xlt1CktLg%3D10.1074/jbc.M60069720016597622
– reference: HuangCCStructure of a V3-containing HIV-1 gp120 coreScience2005310102510281:CAS:528:DC%2BD2MXhtF2is7nK10.1126/science.11183981628418024085312005Sci...310.1025H
– reference: KirschnerKNGLYCAM06: a generalizable biomolecular force field. CarbohydratesJ. Comput. Chem.2008296226551:CAS:528:DC%2BD1cXivFaksrg%3D10.1002/jcc.20820178493724423547
– reference: HumphreyWDalkeASchultenKVMD - Visual Molecular DynamicsJ. Mol. Graph.19961433381:CAS:528:DyaK28Xis12nsrg%3D10.1016/0263-7855(96)00018-5
– reference: WoodsRJPredicting the structures of glycans, glycoproteins, and their complexesChem. Rev.2018118800580241:CAS:528:DC%2BC1cXhsVKhsbjF10.1021/acs.chemrev.8b00032300915976659753
– reference: MillettGAAssessing differential impacts of COVID-19 on black communitiesAnn. Epidemiol.202010.1016/j.annepidem.2020.05.003327110537375962
– reference: Dall'OlioFN-glycomic biomarkers of biological aging and longevity: a link with inflammagingAgeing Res. Rev.2013126856981:CAS:528:DC%2BC38XltVyis7k%3D10.1016/j.arr.2012.02.00222353383
– reference: KristicJGlycans are a novel biomarker of chronological and biological agesJ. Gerontol. A Biol. Sci. Med. Sci.2014697797891:CAS:528:DC%2BC2cXhtVaks7zF10.1093/gerona/glt19024325898
– reference: CasalsCCampanero-RhodesMAGarcia-FojedaBSolisDThe role of collectins and galectins in lung innate immune defenseFront. Immunol.2018919981:CAS:528:DC%2BC1cXisFSku7rM10.3389/fimmu.2018.01998302335896131309
– reference: CotterCRJinHChenZA single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivityPLoS Pathog.201410e10038311:CAS:528:DC%2BC2cXjslalsb0%3D10.1371/journal.ppat.1003831243914983879363
– reference: JorgensenWLQuantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers: application to liquid waterJ. Am. Chem. Soc.19811033353401:CAS:528:DyaL3MXotlCitA%3D%3D10.1021/ja00392a016
– reference: AnYComparative glycomics analysis of influenza hemagglutinin (H5N1) produced in vaccine relevant cell platformsJ. Proteome Res.201312370737201:CAS:528:DC%2BC3sXhtV2ktL7N10.1021/pr400329k238486073800089
– reference: LiLEffect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trialJAMA202010.1001/jama.2020.10044328702867101507
– reference: NivedhaAKMakeneniSFoleyBLTessierMBWoodsRJImportance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaffJ. Comput. Chem.2014355265391:CAS:528:DC%2BC2cXmvFSi10.1002/jcc.2351724375430
– reference: StevensJStructure and receptor specificity of the hemagglutinin from an H5N1 influenza virusScience20063124044101:CAS:528:DC%2BD28XjslSktbY%3D10.1126/science.1124513165434142006Sci...312..404S
– reference: HoriyaSMacPhersonISKraussIJRecent strategies targeting HIV glycans in vaccine designNat. Chem. Biol.2014109909991:CAS:528:DC%2BC2cXitVyku7jL10.1038/nchembio.1685253934934431543
– reference: HangIAnalysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the GolgiGlycobiology201525133513491:CAS:528:DC%2BC28Xhs1OqurzL10.1093/glycob/cwv058262401674634314
– reference: GotzAWRoutine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized bornJ. Chem. Theory Comput.20128154215551:CAS:528:DC%2BC38XksFWns78%3D10.1021/ct200909j225820313348677
– reference: PavicTN-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary diseaseJ. Transl. Med.2018163231:CAS:528:DC%2BC1MXhtFKmsb7M10.1186/s12967-018-1695-0304635786249776
– reference: Salomon-FerrerRGötzAWPooleDLe GrandSWalkerRCRoutine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh EwaldJ. Chem. Theory Comput.20139387838881:CAS:528:DC%2BC3sXht1arsrzP10.1021/ct400314y26592383
– reference: RyckaertJ-PCiccottiGBerendsenHJCNumerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanesJ. Comput. Phys.1977233273411:CAS:528:DyaE2sXktVGhsL4%3D10.1016/0021-9991(77)90098-51977JCoPh..23..327R
– reference: DardenTYorkDPedersenLParticle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systemsJ. Chem. Phys.199398100891:CAS:528:DyaK3sXks1Ohsr0%3D10.1063/1.4643971993JChPh..9810089D
– reference: JoSQiYImWPreferred conformations of N-glycan core pentasaccharide in solution and in glycoproteinsGlycobiology20162619291:CAS:528:DC%2BC28Xht12rsbrE10.1093/glycob/cwv08326405106
– reference: Lan, J. et al. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. BioRxiv.https://doi.org/10.1101/2020.02.19.956235.
– reference: GrantOCGly-Spec: a webtool for predicting glycan specificity by integrating glycan array screening data and 3D structureGlycobiology201626102710281:CAS:528:DC%2BC2sXht1GntrzO10.1093/glycob/cww094281207845072150
– reference: RechePAGluttingJPReinherzELPrediction of MHC class I binding peptides using profile motifsHum. Immunol.2002637017091:CAS:528:DC%2BD38XmtVWnsLs%3D10.1016/s0198-8859(02)00432-912175724
– reference: YamaguchiTExploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulationAngew. Chem. Int. Ed.20145310941109441:CAS:528:DC%2BC2cXhsV2ntrfF10.1002/anie.201406145
– reference: DaviesNGAge-dependent effects in the transmission and control of COVID-19 epidemicsNat. Med.202010.1038/s41591-020-0962-9328079347104347
– reference: BaumLGCobbBAThe direct and indirect effects of glycans on immune functionGlycobiology2017276196241:CAS:528:DC%2BC1cXhvV2nu7jJ10.1093/glycob/cwx03628460052
– reference: DepetrisRSPartial enzymatic deglycosylation preserves the structure of cleaved recombinant HIV-1 envelope glycoprotein trimersJ. Biol. Chem.201228724239242541:CAS:528:DC%2BC38XhtVWgtLvE10.1074/jbc.M112.371898226451283397850
– reference: AmaroRELiWWMolecular-level simulation of pandemic influenza glycoproteinsMethods Mol. Biol.20128195755941:CAS:528:DC%2BC38XhsFSjurzL10.1007/978-1-61779-465-0_34221835593352029
– reference: WangLEvaluation of candidate vaccine approaches for MERS-CoVNat. Commun.2015677121:CAS:528:DC%2BC2MXhtlWhtbbP10.1038/ncomms87122621850745252942015NatCo...6.7712W
– reference: LiYA humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike proteinCell Res.201525123712491:CAS:528:DC%2BC2MXhsFGhs77F10.1038/cr.2015.113263916984650419
– reference: PallesenJImmunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigenProc. Natl. Acad. Sci. USA2017114E7348E73571:CAS:528:DC%2BC2sXhtlWmsrfI10.1073/pnas.170730411428807998
– reference: PejchalRA potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shieldScience2011334109711031:CAS:528:DC%2BC3MXhsV2mu7jK10.1126/science.12132562199825432802152011Sci...334.1097P
– reference: Haji-GhassemiOBlacklerRJMartin YoungNEvansSVAntibody recognition of carbohydrate epitopesGlycobiology2015259209521:CAS:528:DC%2BC28Xht12itLjI10.1093/glycob/cwv03726033938
– reference: Case, D.A. et al. AMBER 14. Computer Program. University of California, San Francisco (2014).
– reference: PettersenEFUCSF Chimera—a visualization system for exploratory research and analysisJ. Comput. Chem.200425160516121:CAS:528:DC%2BD2cXmvVOhsbs%3D10.1002/jcc.20084
– reference: AnYN-glycosylation of seasonal influenza vaccine hemagglutinins: implication for potency testing and immune processingJ. Virol.201910.1128/JVI.01693-18315113856854503
– reference: W.H.O. Coronavirus disease 2019 (Covid-19) Situation Report. Report No. 77, (2020).
– reference: PakJEStructural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domainJ. Mol. Biol.20093888158231:CAS:528:DC%2BD1MXltlejs78%3D10.1016/j.jmb.2009.03.042193240517094495
– reference: WangNStructural definition of a neutralization-sensitive epitope on the MERS-CoV S1-NTDCell Rep.20192833953405 e33961:CAS:528:DC%2BC1MXhvVKks7jI10.1016/j.celrep.2019.08.052315539096935267
– reference: Pinto, D. et al. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. BioRxiv.https://doi.org/10.1101/2020.04.07.023903.
– reference: TaiWCharacterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccineCell Mol. Immunol.2020176136201:CAS:528:DC%2BB3cXlt1Chsrw%3D10.1038/s41423-020-0400-432203189
– reference: SunXN-linked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A virusesJ. Virol.201387875687661:CAS:528:DC%2BC3sXhtFCmtbnF10.1128/JVI.00593-13237409783719814
– reference: PereiraMSGlycans as key checkpoints of T cell activity and functionFront. Immunol.2018927541:CAS:528:DC%2BC1MXosVamsbo%3D10.3389/fimmu.2018.02754305387066277680
– reference: YingTJunctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibodyNat. Commun.2015682231:CAS:528:DC%2BC2MXhsFeis7%2FL10.1038/ncomms92232637078245712792015NatCo...6.8223Y
– reference: DooresKJThe HIV glycan shield as a target for broadly neutralizing antibodiesFEBS J.2015282467946911:CAS:528:DC%2BC2MXhslSjtrfL10.1111/febs.13530264115454950053
– reference: CasadevallAPirofskiLAThe convalescent sera option for containing COVID-19J. Clin. Invest.2020130154515481:CAS:528:DC%2BB3cXnsFGlu7g%3D10.1172/JCI13800332167489
– reference: SawenEStevenssonBOstervallJMaliniakAWidmalmGMolecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulationsJ. Phys. Chem. B2011115710971211:CAS:528:DC%2BC3MXlslKisLg%3D10.1021/jp201710521545157
– reference: CrispinMDooresKJTargeting host-derived glycans on enveloped viruses for antibody-based vaccine designCurr. Opin. Virol.20151163691:CAS:528:DC%2BC2MXjs1Gqurw%3D10.1016/j.coviro.2015.02.002257473134827424
– reference: BonomelliCThe glycan shield of HIV is predominantly oligomannose independently of production system or viral cladePLoS ONE20116e235211:CAS:528:DC%2BC3MXhtFOisLbO10.1371/journal.pone.00235212185815231567722011PLoSO...623521B
– reference: RechePAGluttingJPZhangHReinherzELEnhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profilesImmunogenetics2004564054191:CAS:528:DC%2BD2cXns1eqsbg%3D10.1007/s00251-004-0709-715349703
– reference: ChenZHuman neutralizing monoclonal antibody inhibition of middle east respiratory syndrome coronavirus replication in the common marmosetJ. Infect Dis.2017215180718151:CAS:528:DC%2BC1cXitFCrtLbI10.1093/infdis/jix209284724217107363
– reference: TateMDPlaying hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infectionViruses20146129413161:CAS:528:DC%2BC2cXhtlagtrnO10.3390/v6031294246382043970151
– reference: HutterJToward animal cell culture-based influenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicityJ. Immunol.20131902202301:CAS:528:DC%2BC38XhvV2ksrnF10.4049/jimmunol.120106023225881
– reference: AvciFYLiXTsujiMKasperDLA mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine designNat. Med.201117160216091:CAS:528:DC%2BC3MXhsV2gt7%2FL10.1038/nm.2535221017693482454
– reference: PengWRecent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidityCell Host Microbe20172123341:CAS:528:DC%2BC28XitFGitbnK10.1016/j.chom.2016.11.00428017661
– reference: MarthJDGrewalPKMammalian glycosylation in immunityNat. Rev. Immunol.200888748871:CAS:528:DC%2BD1cXht12isLbE10.1038/nri2417
– reference: SinghAExtension of the GLYCAM force field parameters for glycosaminoglycans and their validationCan. J. Chem.2016941910.1139/cjc-2015-0606
– reference: HelleFDuverlieGDubuissonJThe hepatitis C virus glycan shield and evasion of the humoral immune responseViruses20113190919321:CAS:528:DC%2BC3MXhsVKju7jF10.3390/v3101909220695223205388
– reference: MalakerSAIdentification and characterization of complex glycosylated peptides presented by the MHC class II processing pathway in melanomaJ. Proteome Res.2017162282371:CAS:528:DC%2BC28XhtlOqurnE10.1021/acs.jproteome.6b0049627550523
– reference: CasadevallAJoynerMJPirofskiLAA randomized trial of convalescent plasma for COVID-19-potentially hopeful signalsJAMA202010.1001/jama.2020.1021832492105
– reference: RudmanNGornikOLaucGAltered N-glycosylation profiles as potential biomarkers and drug targets in diabetesFEBS Lett.2019593159816151:CAS:528:DC%2BC1MXht1OjsL3K10.1002/1873-3468.1349531215021
– reference: Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific analysis of the SARS-CoV-2 glycan shield. BioRxiv. https://doi.org/10.1101/2020.03.26.010322 (2020).
– reference: WrappDCryo-EM structure of the 2019-nCoV spike in the prefusion conformationScience202010.1126/science.abb2507327039067402631
– reference: TessierMBDeMarcoMLYongyeABWoodsRJExtension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipidsMol. Simul.2008343493641:CAS:528:DC%2BD1cXnsFOru78%3D10.1080/08927020701710890222475933256582
– reference: ZhouTStructural definition of a conserved neutralization epitope on HIV-1 gp120Nature20074457327371:CAS:528:DC%2BD2sXhslSqs7o%3D10.1038/nature055801730178525849682007Natur.445..732Z
– reference: ZostSJContemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strainsProc. Natl. Acad. Sci. USA201711412578125831:CAS:528:DC%2BC2sXhslKru7rM10.1073/pnas.171237711429109276
– reference: Hubbard, S. J. & Thornton, J. M. NACCESS v. 2.1.1. Computer Program.  Department of Biochemistry and Molecular Biology, University College London (1993).
– reference: ZhangSStructural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoproteinCell Rep.2018244414521:CAS:528:DC%2BC1cXhtlSksLjK10.1016/j.celrep.2018.06.041299961047104183
– reference: WallsACUnexpected receptor functional mimicry elucidates activation of coronavirus fusionCell201917610261039 e10151:CAS:528:DC%2BC1MXisVWgu74%3D10.1016/j.cell.2018.12.028307128656751136
– reference: YuanYCryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domainsNat. Commun.20178150921:CAS:528:DC%2BC2sXlvFCgt74%3D10.1038/ncomms150922839383753942392017NatCo...815092Y
– volume: 819
  start-page: 575
  year: 2012
  ident: 71748_CR29
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-465-0_34
– volume: 176
  start-page: 1026
  year: 2019
  ident: 71748_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.028
– volume: 12
  start-page: 685
  year: 2013
  ident: 71748_CR68
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2012.02.002
– volume: 23
  start-page: 327
  year: 1977
  ident: 71748_CR85
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 11
  start-page: 63
  year: 2015
  ident: 71748_CR9
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2015.02.002
– volume: 103
  start-page: 335
  year: 1981
  ident: 71748_CR78
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00392a016
– volume: 18
  start-page: 2348
  year: 2019
  ident: 71748_CR61
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.R119.001491
– volume: 282
  start-page: 4679
  year: 2015
  ident: 71748_CR37
  publication-title: FEBS J.
  doi: 10.1111/febs.13530
– volume: 8
  start-page: 1329
  year: 2000
  ident: 71748_CR89
  publication-title: Structure
  doi: 10.1016/s0969-2126(00)00547-5
– volume: 29
  start-page: 622
  year: 2008
  ident: 71748_CR33
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20820
– year: 2020
  ident: 71748_CR17
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 8
  start-page: 15092
  year: 2017
  ident: 71748_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15092
– ident: 71748_CR81
– volume: 215
  start-page: 1807
  year: 2017
  ident: 71748_CR46
  publication-title: J. Infect Dis.
  doi: 10.1093/infdis/jix209
– volume: 94
  start-page: 1
  year: 2016
  ident: 71748_CR32
  publication-title: Can. J. Chem.
  doi: 10.1139/cjc-2015-0606
– volume: 10
  start-page: e1003831
  year: 2014
  ident: 71748_CR13
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003831
– year: 2018
  ident: 71748_CR49
  publication-title: J. Virol.
  doi: 10.1128/JVI.02002-17
– ident: 71748_CR77
  doi: 10.1101/2020.03.26.010322
– volume: 281
  start-page: 34610
  year: 2006
  ident: 71748_CR41
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603275200
– volume: 10
  start-page: 3068
  year: 2019
  ident: 71748_CR50
  publication-title: Nat. Commun
  doi: 10.1038/s41467-019-10897-4
– volume: 29
  start-page: 622
  year: 2008
  ident: 71748_CR82
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20820
– volume: 98
  start-page: 10089
  year: 1993
  ident: 71748_CR84
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 35
  start-page: 526
  year: 2014
  ident: 71748_CR75
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23517
– volume: 3
  start-page: 1909
  year: 2011
  ident: 71748_CR4
  publication-title: Viruses
  doi: 10.3390/v3101909
– volume: 6
  start-page: 1294
  year: 2014
  ident: 71748_CR3
  publication-title: Viruses
  doi: 10.3390/v6031294
– volume: 130
  start-page: 1545
  year: 2020
  ident: 71748_CR65
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI138003
– volume: 87
  start-page: 9904
  year: 2013
  ident: 71748_CR14
  publication-title: J. Virol.
  doi: 10.1128/JVI.01023-13
– volume: 8
  start-page: 1542
  year: 2012
  ident: 71748_CR80
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200909j
– year: 2020
  ident: 71748_CR74
  publication-title: Ann. Epidemiol.
  doi: 10.1016/j.annepidem.2020.05.003
– volume: 8
  start-page: 874
  year: 2008
  ident: 71748_CR5
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2417
– volume: 14
  start-page: 33
  year: 1996
  ident: 71748_CR35
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 593
  start-page: 1598
  year: 2019
  ident: 71748_CR71
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.13495
– volume: 12
  start-page: 3707
  year: 2013
  ident: 71748_CR31
  publication-title: J. Proteome Res.
  doi: 10.1021/pr400329k
– volume: 281
  start-page: 15829
  year: 2006
  ident: 71748_CR40
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600697200
– volume: 24
  start-page: 441
  year: 2018
  ident: 71748_CR48
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.06.041
– volume: 27
  start-page: 619
  year: 2017
  ident: 71748_CR7
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwx036
– volume: 9
  start-page: 1998
  year: 2018
  ident: 71748_CR10
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01998
– volume: 13
  start-page: e0209515
  year: 2018
  ident: 71748_CR72
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0209515
– volume: 26
  start-page: 1027
  year: 2016
  ident: 71748_CR76
  publication-title: Glycobiology
  doi: 10.1093/glycob/cww094
– year: 2019
  ident: 71748_CR26
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwz101
– ident: 71748_CR62
  doi: 10.1101/2020.02.19.956235
– volume: 114
  start-page: 12578
  year: 2017
  ident: 71748_CR16
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1712377114
– volume: 190
  start-page: 220
  year: 2013
  ident: 71748_CR11
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201060
– ident: 71748_CR39
  doi: 10.1101/2020.06.15.20131391
– volume: 15
  start-page: 211
  year: 2007
  ident: 71748_CR8
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2007.03.003
– volume: 25
  start-page: 6342
  year: 1986
  ident: 71748_CR21
  publication-title: Biochemistry
  doi: 10.1021/bi00368a076
– volume: 28
  start-page: 3395
  year: 2019
  ident: 71748_CR52
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.052
– volume: 63
  start-page: 701
  year: 2002
  ident: 71748_CR56
  publication-title: Hum. Immunol.
  doi: 10.1016/s0198-8859(02)00432-9
– volume: 87
  start-page: 8756
  year: 2013
  ident: 71748_CR67
  publication-title: J. Virol.
  doi: 10.1128/JVI.00593-13
– volume: 388
  start-page: 815
  year: 2009
  ident: 71748_CR42
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.03.042
– year: 2019
  ident: 71748_CR30
  publication-title: J. Virol.
  doi: 10.1128/JVI.01693-18
– ident: 71748_CR38
– volume: 56
  start-page: 405
  year: 2004
  ident: 71748_CR55
  publication-title: Immunogenetics
  doi: 10.1007/s00251-004-0709-7
– volume: 26
  start-page: 19
  year: 2016
  ident: 71748_CR25
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwv083
– volume: 11
  start-page: 3696
  year: 2015
  ident: 71748_CR83
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00255
– volume: 15
  start-page: 1895
  year: 2016
  ident: 71748_CR28
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M116.058016
– volume: 34
  start-page: 349
  year: 2008
  ident: 71748_CR34
  publication-title: Mol. Simul.
  doi: 10.1080/08927020701710890
– ident: 71748_CR54
  doi: 10.1101/2020.04.07.023903
– year: 2019
  ident: 71748_CR15
  publication-title: mBio
  doi: 10.1128/mBio.00204-19
– volume: 118
  start-page: 8005
  year: 2018
  ident: 71748_CR22
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00032
– year: 2020
  ident: 71748_CR73
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0962-9
– volume: 9
  start-page: 2754
  year: 2018
  ident: 71748_CR6
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02754
– volume: 115
  start-page: 7109
  year: 2011
  ident: 71748_CR24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp2017105
– volume: 6
  start-page: 8223
  year: 2015
  ident: 71748_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9223
– volume: 6
  start-page: 7712
  year: 2015
  ident: 71748_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8712
– volume: 21
  start-page: 23
  year: 2017
  ident: 71748_CR66
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.11.004
– volume: 25
  start-page: 920
  year: 2015
  ident: 71748_CR59
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwv037
– volume: 26
  start-page: 6571
  year: 1987
  ident: 71748_CR20
  publication-title: Biochemistry
  doi: 10.1021/bi00395a001
– volume: 6
  start-page: e23521
  year: 2011
  ident: 71748_CR60
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0023521
– volume: 16
  start-page: 228
  year: 2017
  ident: 71748_CR58
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.6b00496
– volume: 312
  start-page: 404
  year: 2006
  ident: 71748_CR12
  publication-title: Science
  doi: 10.1126/science.1124513
– volume: 310
  start-page: 1025
  year: 2005
  ident: 71748_CR87
  publication-title: Science
  doi: 10.1126/science.1118398
– volume: 10
  start-page: 990
  year: 2014
  ident: 71748_CR36
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1685
– volume: 445
  start-page: 732
  year: 2007
  ident: 71748_CR88
  publication-title: Nature
  doi: 10.1038/nature05580
– year: 2020
  ident: 71748_CR64
  publication-title: JAMA
  doi: 10.1001/jama.2020.10218
– volume: 25
  start-page: 1605
  year: 2004
  ident: 71748_CR91
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 17
  start-page: 1602
  year: 2011
  ident: 71748_CR57
  publication-title: Nat. Med.
  doi: 10.1038/nm.2535
– volume: 53
  start-page: 10941
  year: 2014
  ident: 71748_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406145
– year: 2020
  ident: 71748_CR19
  publication-title: Science
  doi: 10.1126/science.abb9983
– volume: 25
  start-page: 1237
  year: 2015
  ident: 71748_CR45
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.113
– volume: 69
  start-page: 779
  year: 2014
  ident: 71748_CR69
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glt190
– volume: 17
  start-page: 613
  year: 2020
  ident: 71748_CR53
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/s41423-020-0400-4
– volume: 287
  start-page: 24239
  year: 2012
  ident: 71748_CR2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.371898
– volume: 9
  start-page: 3878
  year: 2013
  ident: 71748_CR79
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400314y
– year: 2020
  ident: 71748_CR63
  publication-title: JAMA
  doi: 10.1001/jama.2020.10044
– volume: 114
  start-page: E7348
  year: 2017
  ident: 71748_CR47
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– ident: 71748_CR1
– volume: 25
  start-page: 1335
  year: 2015
  ident: 71748_CR27
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwv058
– volume: 16
  start-page: 323
  year: 2018
  ident: 71748_CR70
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-018-1695-0
– volume: 334
  start-page: 1097
  year: 2011
  ident: 71748_CR90
  publication-title: Science
  doi: 10.1126/science.1213256
– year: 2019
  ident: 71748_CR86
  publication-title: J. Virol.
  doi: 10.1128/JVI.01403-18
– reference: 32511307 - bioRxiv. 2020 May 01:2020.04.07.030445. doi: 10.1101/2020.04.07.030445
SSID ssj0000529419
Score 2.6724262
Snippet Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14991
SubjectTerms 631/114/2411
631/250
ACE2
Adaptive Immunity
Amino Acid Sequence
Angiotensin-Converting Enzyme 2
Antibodies, Neutralizing - immunology
Antigen-Antibody Complex
Betacoronavirus - immunology
Betacoronavirus - isolation & purification
Betacoronavirus - metabolism
Binding Sites
Cadmium
Coronavirus Infections - immunology
Coronavirus Infections - pathology
Coronavirus Infections - virology
COVID-19
Fourier analysis
Glycoproteins
Glycosylation
HEK293 Cells
HLA Antigens - metabolism
Humanities and Social Sciences
Humans
Immune response
Immunity, Innate
Molecular Dynamics Simulation
multidisciplinary
Nanotechnology
Pandemics
Peptides
Peptidyl-Dipeptidase A - chemistry
Peptidyl-Dipeptidase A - metabolism
Physicochemical properties
Pneumonia, Viral - immunology
Pneumonia, Viral - pathology
Pneumonia, Viral - virology
Polysaccharides - chemistry
Protein Binding
Protein Structure, Tertiary
SARS-CoV-2
Scanning electron microscopy
Science
Science (multidisciplinary)
Sensors
Sequence Alignment
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
Spike Glycoprotein, Coronavirus - metabolism
Transmission electron microscopy
X-ray diffraction
Title Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition
URI https://link.springer.com/article/10.1038/s41598-020-71748-7
https://www.ncbi.nlm.nih.gov/pubmed/32929138
https://www.proquest.com/docview/2023453805
https://www.proquest.com/docview/2442848716
https://pubmed.ncbi.nlm.nih.gov/PMC7490396
Volume 10
WOSCitedRecordID wos000573274900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcERbkHrh_VgoKyNxAwsntmPnhErVCiS6ilqollPkJA6NaJOl2UXq3zN2HmWp6IVLDhnHsTUznqdnAF7rLA8zaWNaSFZQlBCCapMbGisrQxXllvnr0Sef1Wym5_M46R1ubZ9WOZyJ_qAumtz5yJ2RzgVyJ5PvFz-p6xrloqt9C40N2HJVErhP3UtGH4uLYokg7u_KMK7ftbgad6cMbSa0Y4Smal0eXVMyr-dK_hUw9XLo4N7_7uA-3O01ULLbkcwDuGXrh3Cn60l5-QiyoUwJaUqC2iE53j06pnvNCQ1Ju6h-WOJLO1Q1-X52iXgh7alLgiOuFBSSMqn-SFEnqBHji_NVbcmYqdTUj-Hrwf6XvY-0b8RAc6nUkkqtYxEGJo8yFHmGMauMzIIcVTfO0EKMFJqFUYlQo01orSq1tUxmecFliSYVfwKbdVPbZ0CsDIzBGUTJmUBCyGTBlBWhQc2B2yibQDCgI837KuWuWcZZ6qPlXKcdClNEYepRmKoJvBm_WXQ1Om4cvTOgJ-35tU2vcDOBVyMYOc2FT0xtmxWOEWiqCWdgTuBpRxTj73iIambA9QTUGrmMA1wV73VIXZ36at5KxIzHOOfbgbCulvXvXTy_eRcvYDt0RO56XYgd2FxerOxLuJ3_WlbtxRQ21Fz5p57C1of9WXI09c4IfB6GydRzEUKST4fJt9_4kB_z
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceD8CBYwEJ7BwYnvtHBCqClVX3a5WtFTlFJzE20aUZGl2Qfun-I2M8ypLRW89cI0dJ5N8M57xvABe6DgJYmlDmkqWUtwhBNUmMTRUVgaqn1hWpUcfDNVopA8Pw_EK_GpzYVxYZSsTK0GdFok7I3dGOhfInUy-m36nrmuU8662LTRqWOzYxU802cq3g_f4f18GwdaH_c1t2nQVoIlUakal1qEIfJP0Y5TfhjGrjIz9BPUQztDc6Su0cfoTHDXaBNaqibaWyThJuZygfcBx3SuwKhDsuger48Hu-HN3quP8ZsIPm-wcxvWbEul3WWxopaHlJDRVyzvgObX2fHTmXy7aaufbuvm_fbNbcKPRsclGzRS3YcXmd-Ba3XVzcRfithALKSYE9V-yt_Fxj24WBzQg5TT7aklVvCLLydHJApFHymMX5kdcsStkVpL9EYRPUOfHC9_muSVdLFaR34NPl0LgfejlRW4fArHSNwZXEBPOBEI9lilTVgQGdSNu-7EHfvv7o6Spw-7agZxEVTwA11ENmQghE1WQiZQHr7p7pnUVkgtnr7dwiBqJVEZnWPDgeTeMssQ5iExuiznOQVBr4UxoDx7UIOwexwNUpH2uPVBL8OwmuDrlyyN5dlzVK1ciZDzENV-3QD57rX9T8ehiKp7B2vb-7jAaDkY7j-F64BjMdfYQ69Cbnc7tE7ia_Jhl5enThkcJfLlsiP8Gw1J1WA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3pRAASPBCaw6sR07B4SqlhVVq9WKQtVbcBKHRi3J0uyC9q_x6xjnVZaK3nrgGjtOnHwzns8zngF4qZM0SKSNaCZZRnGFEFSb1NBIWRmoMLWsOR59sKfGY314GE1W4Fd_FsaFVfY6sVHUWZW6PXJH0rlA6WRyI-_CIibbo3fT79RVkHKe1r6cRguRXbv4ifStfruzjf_6VRCM3n_a-kC7CgM0lUrNqNQ6EoFv0jBBXW4Ys8rIxE_RJuEMqU-okO-EObYabQJrVa6tZTJJMy5z5Aocx70CV5VLWt6EDU6G_R3nQRN-1J3TYVxv1Pgl3Hk25GvIoYSmanktPGfgno_T_MtZ26yBo9v_89e7A7c6y5tstqJyF1ZseQ-ut7U4F_ch6dOzkConaBWT_c2P-3SrOqABqafFsSVNSouiJF9PFohHUh-54D_iUmChCJPij9B8gkwAL3ybl5YMEVpV-QA-X8oEH8JqWZX2ERArfWNwBJFzJlAAEpkxZUVg0GLiNkw88HsoxGmXnd0VCTmJmygBruMWPjHCJ27gEysPXg_3TNvcJBf2Xu-hEXd6qo7PcOHBi6EZNYxzG5nSVnPsI5CiCkesPVhrATk8jgdoXvtce6CWoDp0cNnLl1vK4qjJYq5ExHiEY77pQX32Wv-exeOLZ_EcbiCu472d8e4TuBk4WXPlPsQ6rM5O5_YpXEt_zIr69FkjrAS-XDa-fwPz-XyX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+SARS-CoV-2+spike+protein+glycan+shield+reveals+implications+for+immune+recognition&rft.jtitle=Scientific+reports&rft.au=Grant%2C+Oliver+C&rft.au=Montgomery%2C+David&rft.au=Ito+Keigo&rft.au=Woods%2C+Robert+J&rft.date=2020-09-14&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-71748-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon