Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition
Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to e...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 10; číslo 1; s. 14991 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
14.09.2020
Nature Publishing Group |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface. |
|---|---|
| AbstractList | Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface. Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface.Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the protein produced in HEK293 cells. We also analyze structures for glycoforms representing those present in the nascent glycoproteins (prior to enzymatic modifications in the Golgi), as well as those that are commonly observed on antigens present in other viruses. These models were subjected to molecular dynamics (MD) simulation to determine the extent to which glycan microheterogeneity impacts the antigenicity of the S glycoprotein. Lastly, we have identified peptides in the S glycoprotein that are likely to be presented in human leukocyte antigen (HLA) complexes, and discuss the role of S protein glycosylation in potentially modulating the innate and adaptive immune response to the SARS-CoV-2 virus or to a related vaccine. The 3D structures show that the protein surface is extensively shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain, and also that the degree of shielding is largely insensitive to the specific glycoform. Despite the relatively modest contribution of the glycans to the total molecular weight of the S trimer (17% for the HEK293 glycoform) they shield approximately 40% of the protein surface. |
| ArticleNumber | 14991 |
| Author | Grant, Oliver C. Ito, Keigo Montgomery, David Woods, Robert J. |
| Author_xml | – sequence: 1 givenname: Oliver C. surname: Grant fullname: Grant, Oliver C. organization: Complex Carbohydrate Research Center, University of Georgia – sequence: 2 givenname: David surname: Montgomery fullname: Montgomery, David organization: Complex Carbohydrate Research Center, University of Georgia – sequence: 3 givenname: Keigo surname: Ito fullname: Ito, Keigo organization: Complex Carbohydrate Research Center, University of Georgia – sequence: 4 givenname: Robert J. surname: Woods fullname: Woods, Robert J. email: rwoods@ccrc.uga.edu organization: Complex Carbohydrate Research Center, University of Georgia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32929138$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1URD_oH-CALHHhsuDPtX1BiiIoSJWQKHC1vM5s4rJrB3u3Uv49TlNK6aG-2Jp53pnxvKfoKKYICL2i5B0lXL8vgkqjG8JIo6gSulHP0AkjQjaMM3b04H2Mzku5JvVIZgQ1L9AxZ4YZyvUJ6hbRDbsSCk49njaArxbfrppl-tkwXLbhF-BtThOEiNfDzruIyybAsMIZbsANBYdxOwTvppBiwX3KNTDOEWrep3UM-_hL9LyvKJzf3Wfox6eP35efm8uvF1-Wi8vGS6WmRmptBKPOtx3lxBECysmOesZaTrQgrRJEtX3NOu0YgOo1AJGdX3HZC2P4GfpwqLuduxFWHuKU3WC3OYwu72xywf6fiWFj1-nGKmEIN20t8PauQE6_ZyiTHUPxMAwuQpqLZUIwLbSie_TNI_Q6zbmuslKEcSG5JrJSrx9OdD_K3_VXgB0An1MpGfp7hBK7t9kebLbVZntrs1VVpB-JfJhuHai_CsPTUn6QltonriH_G_sJ1R_qf7u7 |
| CitedBy_id | crossref_primary_10_1021_acscentsci_2c01471 crossref_primary_10_1093_glycob_cwac051 crossref_primary_10_1016_j_bpj_2021_01_012 crossref_primary_10_3390_v14020351 crossref_primary_10_1126_scitranslmed_abm0899 crossref_primary_10_1016_j_csbj_2022_01_026 crossref_primary_10_1080_07391102_2023_2234044 crossref_primary_10_1080_0889311X_2024_2363756 crossref_primary_10_31083_j_fbl2804067 crossref_primary_10_3390_pr8121539 crossref_primary_10_1016_j_bios_2021_113647 crossref_primary_10_1111_1348_0421_13121 crossref_primary_10_1007_s00894_022_05395_2 crossref_primary_10_1038_s41423_021_00809_2 crossref_primary_10_1111_febs_16379 crossref_primary_10_1128_spectrum_03562_22 crossref_primary_10_1021_jasms_3c00309 crossref_primary_10_3390_vaccines12101089 crossref_primary_10_1016_j_bcp_2022_115335 crossref_primary_10_4155_bio_2021_0096 crossref_primary_10_3390_biochem1030016 crossref_primary_10_1002_iub_2692 crossref_primary_10_1016_j_jbc_2021_100556 crossref_primary_10_1371_journal_pgen_1010042 crossref_primary_10_1080_07391102_2023_2220045 crossref_primary_10_1007_s10441_021_09425_z crossref_primary_10_3389_fimmu_2022_837443 crossref_primary_10_1007_s00253_022_12254_w crossref_primary_10_1093_glycob_cwac046 crossref_primary_10_1002_adts_202000156 crossref_primary_10_1038_s41392_021_00809_8 crossref_primary_10_1073_pnas_2119761119 crossref_primary_10_1002_mas_21813 crossref_primary_10_1371_journal_pone_0242890 crossref_primary_10_1038_s41541_020_00264_6 crossref_primary_10_1038_s41541_021_00365_w crossref_primary_10_1093_glycob_cwad094 crossref_primary_10_1016_j_cbpa_2022_102175 crossref_primary_10_3389_fbioe_2021_699025 crossref_primary_10_1016_j_bpj_2021_01_029 crossref_primary_10_1021_acsomega_5c05175 crossref_primary_10_1021_jacs_1c02713 crossref_primary_10_1007_s00216_021_03499_x crossref_primary_10_3390_ijms25084466 crossref_primary_10_1093_ve_veaf027 crossref_primary_10_3389_fcimb_2022_989534 crossref_primary_10_1016_j_medcle_2021_09_028 crossref_primary_10_3389_fimmu_2022_838780 crossref_primary_10_1016_j_phrs_2022_106201 crossref_primary_10_1126_sciadv_ady3554 crossref_primary_10_3390_nano11071684 crossref_primary_10_1016_j_vaccine_2022_04_061 crossref_primary_10_1073_pnas_2119995119 crossref_primary_10_1093_glycob_cwac077 crossref_primary_10_1016_j_tibtech_2025_06_022 crossref_primary_10_3390_v16071066 crossref_primary_10_1073_pnas_2404892121 crossref_primary_10_1016_j_cbpa_2023_102301 crossref_primary_10_1177_11769343211064616 crossref_primary_10_7554_eLife_73641 crossref_primary_10_1021_acs_bioconjchem_4c00559 crossref_primary_10_3389_fimmu_2025_1592142 crossref_primary_10_3389_fimmu_2024_1292588 crossref_primary_10_1016_j_jmb_2022_167928 crossref_primary_10_1016_j_sbi_2025_103118 crossref_primary_10_7554_eLife_89423 crossref_primary_10_1111_febs_16599 crossref_primary_10_7554_eLife_95708_3 crossref_primary_10_1016_j_csbj_2021_07_023 crossref_primary_10_1016_j_tibs_2020_10_004 crossref_primary_10_1080_07391102_2022_2095305 crossref_primary_10_1016_j_jmgm_2024_108914 crossref_primary_10_3389_fimmu_2021_641447 crossref_primary_10_1016_j_jbc_2021_101507 crossref_primary_10_1038_s41592_022_01451_0 crossref_primary_10_1016_j_nbt_2022_08_002 crossref_primary_10_1038_s41467_022_28446_x crossref_primary_10_3390_v14081672 crossref_primary_10_3390_v15030798 crossref_primary_10_3390_v16020185 crossref_primary_10_1038_s43856_025_00830_w crossref_primary_10_3389_fimmu_2022_828053 crossref_primary_10_1016_j_chembiol_2023_05_011 crossref_primary_10_1016_j_bpj_2024_03_018 crossref_primary_10_1016_j_heliyon_2021_e06572 crossref_primary_10_1016_j_chom_2022_03_035 crossref_primary_10_1126_sciimmunol_add6608 crossref_primary_10_1002_bit_28051 crossref_primary_10_1128_mmbr_00260_24 crossref_primary_10_1038_s41598_022_06157_z crossref_primary_10_7554_eLife_95708 crossref_primary_10_1016_j_bbrc_2021_09_053 crossref_primary_10_3389_fchem_2021_735558 crossref_primary_10_3390_v13040628 crossref_primary_10_1016_j_bpj_2023_09_003 crossref_primary_10_3389_fmolb_2021_713003 crossref_primary_10_7554_eLife_75720 crossref_primary_10_3390_pathogens10010061 crossref_primary_10_1002_pro_4612 crossref_primary_10_1007_s00216_022_04000_y crossref_primary_10_1212_NXI_0000000000001143 crossref_primary_10_1002_mco2_70008 crossref_primary_10_1039_D1SC04832E crossref_primary_10_1038_s41598_021_92641_x crossref_primary_10_3390_ijms26157047 crossref_primary_10_7554_eLife_61552 crossref_primary_10_3390_v16121835 crossref_primary_10_3390_microorganisms9051035 crossref_primary_10_7554_eLife_73027 crossref_primary_10_1016_j_intimp_2021_108187 crossref_primary_10_3390_biology13040207 crossref_primary_10_7554_eLife_89423_3 crossref_primary_10_1007_s12088_023_01121_5 crossref_primary_10_1016_j_pbiomolbio_2023_02_004 crossref_primary_10_3389_fimmu_2022_882972 crossref_primary_10_1016_j_ebiom_2021_103712 crossref_primary_10_1371_journal_pone_0328174 crossref_primary_10_3390_ijms232113082 crossref_primary_10_1016_j_medcli_2021_09_013 crossref_primary_10_3390_biom13091421 crossref_primary_10_3390_ijms24032517 crossref_primary_10_3390_v13010082 crossref_primary_10_3390_biom14091061 crossref_primary_10_1016_j_carres_2022_108574 crossref_primary_10_1016_j_csbj_2021_05_002 crossref_primary_10_1126_science_abl6251 crossref_primary_10_3390_genes12060796 crossref_primary_10_1016_j_jmb_2020_166748 crossref_primary_10_1016_j_bpj_2023_05_003 crossref_primary_10_1080_07391102_2021_1894986 crossref_primary_10_1002_bies_202200060 crossref_primary_10_1016_j_bbrc_2021_01_073 crossref_primary_10_3390_life15020162 crossref_primary_10_1002_prot_26317 crossref_primary_10_2217_fvl_2021_0062 crossref_primary_10_3389_fpubh_2021_695139 crossref_primary_10_3390_vaccines10020236 crossref_primary_10_3390_v14020295 crossref_primary_10_1007_s00216_021_03433_1 crossref_primary_10_1016_j_carbpol_2022_120167 crossref_primary_10_1038_s41467_024_48503_x crossref_primary_10_3389_fimmu_2022_801915 crossref_primary_10_3390_cells11050855 crossref_primary_10_3389_fchem_2021_689521 crossref_primary_10_3389_fchem_2021_661230 crossref_primary_10_1016_j_sbi_2022_102393 crossref_primary_10_1126_science_adn5658 crossref_primary_10_1111_febs_15909 crossref_primary_10_3390_nu14122513 crossref_primary_10_1016_j_ejcb_2022_151275 crossref_primary_10_3389_fimmu_2021_690976 crossref_primary_10_1038_s41467_025_57359_8 crossref_primary_10_3389_fimmu_2024_1370511 crossref_primary_10_3390_biomedicines12051007 crossref_primary_10_1021_acscentsci_4c00506 crossref_primary_10_1016_j_coviro_2021_08_003 crossref_primary_10_1128_spectrum_03120_22 crossref_primary_10_1016_j_comptc_2023_114049 crossref_primary_10_1016_j_hlpt_2022_100619 crossref_primary_10_1093_glycob_cwad007 crossref_primary_10_1107_S2059798321009712 crossref_primary_10_1038_s41467_023_42408_x crossref_primary_10_1038_s41598_022_19886_y crossref_primary_10_3390_vaccines9090978 crossref_primary_10_1002_prot_26208 crossref_primary_10_1038_s41598_025_01903_5 crossref_primary_10_1038_s41598_021_04298_1 crossref_primary_10_3389_fmolb_2021_629873 crossref_primary_10_1038_s41598_025_85153_5 crossref_primary_10_3390_v15030633 crossref_primary_10_1007_s10719_022_10056_w crossref_primary_10_1021_acs_jpclett_4c03654 crossref_primary_10_1002_bit_27725 crossref_primary_10_1099_jgv_0_001642 crossref_primary_10_1111_1348_0421_13082 crossref_primary_10_1002_advs_202201853 crossref_primary_10_1021_acs_jcim_5c01051 crossref_primary_10_3390_vaccines9080928 crossref_primary_10_1021_jacs_1c00556 crossref_primary_10_1016_j_vaccine_2021_12_058 crossref_primary_10_1021_acscentsci_2c01349 crossref_primary_10_1016_j_sbi_2025_103049 crossref_primary_10_1080_22221751_2024_2412643 crossref_primary_10_1080_1040841X_2023_2274840 crossref_primary_10_3390_biom13101467 crossref_primary_10_1016_j_cell_2024_01_034 crossref_primary_10_1021_acscentsci_1c01080 crossref_primary_10_1016_j_ijbiomac_2023_125153 crossref_primary_10_1038_s42003_022_04138_6 crossref_primary_10_3390_v15091930 crossref_primary_10_1016_j_molcel_2021_11_024 |
| Cites_doi | 10.1007/978-1-61779-465-0_34 10.1016/j.cell.2018.12.028 10.1016/j.arr.2012.02.002 10.1016/0021-9991(77)90098-5 10.1016/j.coviro.2015.02.002 10.1021/ja00392a016 10.1074/mcp.R119.001491 10.1111/febs.13530 10.1016/s0969-2126(00)00547-5 10.1002/jcc.20820 10.1126/science.abb2507 10.1038/ncomms15092 10.1093/infdis/jix209 10.1139/cjc-2015-0606 10.1371/journal.ppat.1003831 10.1128/JVI.02002-17 10.1101/2020.03.26.010322 10.1074/jbc.M603275200 10.1038/s41467-019-10897-4 10.1063/1.464397 10.1002/jcc.23517 10.3390/v3101909 10.3390/v6031294 10.1172/JCI138003 10.1128/JVI.01023-13 10.1021/ct200909j 10.1016/j.annepidem.2020.05.003 10.1038/nri2417 10.1016/0263-7855(96)00018-5 10.1002/1873-3468.13495 10.1021/pr400329k 10.1074/jbc.M600697200 10.1016/j.celrep.2018.06.041 10.1093/glycob/cwx036 10.3389/fimmu.2018.01998 10.1371/journal.pone.0209515 10.1093/glycob/cww094 10.1093/glycob/cwz101 10.1101/2020.02.19.956235 10.1073/pnas.1712377114 10.4049/jimmunol.1201060 10.1101/2020.06.15.20131391 10.1016/j.tim.2007.03.003 10.1021/bi00368a076 10.1016/j.celrep.2019.08.052 10.1016/s0198-8859(02)00432-9 10.1128/JVI.00593-13 10.1016/j.jmb.2009.03.042 10.1128/JVI.01693-18 10.1007/s00251-004-0709-7 10.1093/glycob/cwv083 10.1021/acs.jctc.5b00255 10.1074/mcp.M116.058016 10.1080/08927020701710890 10.1101/2020.04.07.023903 10.1128/mBio.00204-19 10.1021/acs.chemrev.8b00032 10.1038/s41591-020-0962-9 10.3389/fimmu.2018.02754 10.1021/jp2017105 10.1038/ncomms9223 10.1038/ncomms8712 10.1016/j.chom.2016.11.004 10.1093/glycob/cwv037 10.1021/bi00395a001 10.1371/journal.pone.0023521 10.1021/acs.jproteome.6b00496 10.1126/science.1124513 10.1126/science.1118398 10.1038/nchembio.1685 10.1038/nature05580 10.1001/jama.2020.10218 10.1002/jcc.20084 10.1038/nm.2535 10.1002/anie.201406145 10.1126/science.abb9983 10.1038/cr.2015.113 10.1093/gerona/glt190 10.1038/s41423-020-0400-4 10.1074/jbc.M112.371898 10.1021/ct400314y 10.1001/jama.2020.10044 10.1073/pnas.1707304114 10.1093/glycob/cwv058 10.1186/s12967-018-1695-0 10.1126/science.1213256 10.1128/JVI.01403-18 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1038/s41598-020-71748-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database ProQuest Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| ExternalDocumentID | PMC7490396 32929138 10_1038_s41598_020_71748_7 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: U01 CA207824 – fundername: NIGMS NIH HHS grantid: T32 GM107004 – fundername: NIGMS NIH HHS grantid: P41 GM103390 – fundername: NCI NIH HHS grantid: U01 CA207824 – fundername: NIH HHS grantid: U01 CA207824 – fundername: ; grantid: U01 CA207824 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c577t-5889421ac6b130a00e7a5b1c22630840674076f6b1a8a2ee7f8ee05bcd35f4993 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 194 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573274900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Nov 04 01:59:25 EST 2025 Sun Nov 09 12:01:26 EST 2025 Tue Oct 07 07:42:21 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Sat Nov 29 04:02:25 EST 2025 Tue Nov 18 21:44:20 EST 2025 Fri Feb 21 02:37:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c577t-5889421ac6b130a00e7a5b1c22630840674076f6b1a8a2ee7f8ee05bcd35f4993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2023453805?pq-origsite=%requestingapplication% |
| PMID | 32929138 |
| PQID | 2023453805 |
| PQPubID | 2041939 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7490396 proquest_miscellaneous_2442848716 proquest_journals_2023453805 pubmed_primary_32929138 crossref_primary_10_1038_s41598_020_71748_7 crossref_citationtrail_10_1038_s41598_020_71748_7 springer_journals_10_1038_s41598_020_71748_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-14 |
| PublicationDateYYYYMMDD | 2020-09-14 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | BaumLGCobbBAThe direct and indirect effects of glycans on immune functionGlycobiology2017276196241:CAS:528:DC%2BC1cXhvV2nu7jJ10.1093/glycob/cwx03628460052 KristicJGlycans are a novel biomarker of chronological and biological agesJ. Gerontol. A Biol. Sci. Med. Sci.2014697797891:CAS:528:DC%2BC2cXhtVaks7zF10.1093/gerona/glt19024325898 Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific analysis of the SARS-CoV-2 glycan shield. BioRxiv. https://doi.org/10.1101/2020.03.26.010322 (2020). MaierJAff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SBJ. Chem. Theory Comput.201511369637131:CAS:528:DC%2BC2MXhtFequ7rN10.1021/acs.jctc.5b00255265744534821407 BonomelliCThe glycan shield of HIV is predominantly oligomannose independently of production system or viral cladePLoS ONE20116e235211:CAS:528:DC%2BC3MXhtFOisLbO10.1371/journal.pone.00235212185815231567722011PLoSO...623521B ZhouTStructural definition of a conserved neutralization epitope on HIV-1 gp120Nature20074457327371:CAS:528:DC%2BD2sXhslSqs7o%3D10.1038/nature055801730178525849682007Natur.445..732Z CrispinMDooresKJTargeting host-derived glycans on enveloped viruses for antibody-based vaccine designCurr. Opin. Virol.20151163691:CAS:528:DC%2BC2MXjs1Gqurw%3D10.1016/j.coviro.2015.02.002257473134827424 AmaroRELiWWMolecular-level simulation of pandemic influenza glycoproteinsMethods Mol. Biol.20128195755941:CAS:528:DC%2BC38XhsFSjurzL10.1007/978-1-61779-465-0_34221835593352029 SunXN-linked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A virusesJ. Virol.201387875687661:CAS:528:DC%2BC3sXhtFCmtbnF10.1128/JVI.00593-13237409783719814 WangNStructural definition of a neutralization-sensitive epitope on the MERS-CoV S1-NTDCell Rep.20192833953405 e33961:CAS:528:DC%2BC1MXhvVKks7jI10.1016/j.celrep.2019.08.052315539096935267 PakJEStructural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domainJ. Mol. Biol.20093888158231:CAS:528:DC%2BD1MXltlejs78%3D10.1016/j.jmb.2009.03.042193240517094495 YingTJunctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibodyNat. Commun.2015682231:CAS:528:DC%2BC2MXhsFeis7%2FL10.1038/ncomms92232637078245712792015NatCo...6.8223Y WallsACUnexpected receptor functional mimicry elucidates activation of coronavirus fusionCell201917610261039 e10151:CAS:528:DC%2BC1MXisVWgu74%3D10.1016/j.cell.2018.12.028307128656751136 WangLEvaluation of candidate vaccine approaches for MERS-CoVNat. Commun.2015677121:CAS:528:DC%2BC2MXhtlWhtbbP10.1038/ncomms87122621850745252942015NatCo...6.7712W CotterCRJinHChenZA single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivityPLoS Pathog.201410e10038311:CAS:528:DC%2BC2cXjslalsb0%3D10.1371/journal.ppat.1003831243914983879363 JoSQiYImWPreferred conformations of N-glycan core pentasaccharide in solution and in glycoproteinsGlycobiology20162619291:CAS:528:DC%2BC28Xht12rsbrE10.1093/glycob/cwv08326405106 ZhangSStructural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoproteinCell Rep.2018244414521:CAS:528:DC%2BC1cXhtlSksLjK10.1016/j.celrep.2018.06.041299961047104183 W.H.O. Coronavirus disease 2019 (Covid-19) Situation Report. Report No. 77, (2020). HomansSWConformational transitions in N-linked oligosaccharidesBiochemistry198625634263501:CAS:528:DyaL28XlsVynurc%3D10.1021/bi00368a0763790526 PallesenJImmunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigenProc. Natl. Acad. Sci. USA2017114E7348E73571:CAS:528:DC%2BC2sXhtlWmsrfI10.1073/pnas.170730411428807998 YamaguchiTExploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulationAngew. Chem. Int. Ed.20145310941109441:CAS:528:DC%2BC2cXhsV2ntrfF10.1002/anie.201406145 WoodsRJPredicting the structures of glycans, glycoproteins, and their complexesChem. Rev.2018118800580241:CAS:528:DC%2BC1cXhsVKhsbjF10.1021/acs.chemrev.8b00032300915976659753 LiLEffect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trialJAMA202010.1001/jama.2020.10044328702867101507 PengWRecent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidityCell Host Microbe20172123341:CAS:528:DC%2BC28XitFGitbnK10.1016/j.chom.2016.11.00428017661 JorgensenWLQuantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers: application to liquid waterJ. Am. Chem. Soc.19811033353401:CAS:528:DyaL3MXotlCitA%3D%3D10.1021/ja00392a016 PrabakaranPStructure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibodyJ. Biol. Chem.200628115829158361:CAS:528:DC%2BD28Xlt1CktLg%3D10.1074/jbc.M60069720016597622 DaviesNGAge-dependent effects in the transmission and control of COVID-19 epidemicsNat. Med.202010.1038/s41591-020-0962-9328079347104347 HarbisonAFaddaEAn atomistic perspective on ADCC quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamicsGlycobiology201910.1093/glycob/cwz10130325416 MarthJDGrewalPKMammalian glycosylation in immunityNat. Rev. Immunol.200888748871:CAS:528:DC%2BD1cXht12isLbE10.1038/nri2417 AnYN-glycosylation of seasonal influenza vaccine hemagglutinins: implication for potency testing and immune processingJ. Virol.201910.1128/JVI.01693-18315113856854503 AnYComparative glycomics analysis of influenza hemagglutinin (H5N1) produced in vaccine relevant cell platformsJ. Proteome Res.201312370737201:CAS:528:DC%2BC3sXhtV2ktL7N10.1021/pr400329k238486073800089 DooresKJThe HIV glycan shield as a target for broadly neutralizing antibodiesFEBS J.2015282467946911:CAS:528:DC%2BC2MXhslSjtrfL10.1111/febs.13530264115454950053 TaiWCharacterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccineCell Mol. Immunol.2020176136201:CAS:528:DC%2BB3cXlt1Chsrw%3D10.1038/s41423-020-0400-432203189 Salomon-FerrerRGötzAWPooleDLe GrandSWalkerRCRoutine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh EwaldJ. Chem. Theory Comput.20139387838881:CAS:528:DC%2BC3sXht1arsrzP10.1021/ct400314y26592383 PejchalRA potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shieldScience2011334109711031:CAS:528:DC%2BC3MXhsV2mu7jK10.1126/science.12132562199825432802152011Sci...334.1097P ChangDZaiaJWhy glycosylation matters in building a better flu vaccineMol. Cell Proteomics201918234823581:CAS:528:DC%2BB3cXjtlehtro%3D10.1074/mcp.R119.00149131604803 ZhouHStructural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoproteinNat. Commun20191030681:CAS:528:DC%2BC1MXhtlKksr3M10.1038/s41467-019-10897-43129684366242102019NatCo..10.3068Z RyckaertJ-PCiccottiGBerendsenHJCNumerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanesJ. Comput. Phys.1977233273411:CAS:528:DyaE2sXktVGhsL4%3D10.1016/0021-9991(77)90098-51977JCoPh..23..327R NivedhaAKMakeneniSFoleyBLTessierMBWoodsRJImportance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaffJ. Comput. Chem.2014355265391:CAS:528:DC%2BC2cXmvFSi10.1002/jcc.2351724375430 Hubbard, S. J. & Thornton, J. M. NACCESS v. 2.1.1. Computer Program. Department of Biochemistry and Molecular Biology, University College London (1993). HuangCCStructure of a V3-containing HIV-1 gp120 coreScience2005310102510281:CAS:528:DC%2BD2MXhtF2is7nK10.1126/science.11183981628418024085312005Sci...310.1025H WrappDCryo-EM structure of the 2019-nCoV spike in the prefusion conformationScience202010.1126/science.abb2507327039067402631 ChenZHuman neutralizing monoclonal antibody inhibition of middle east respiratory syndrome coronavirus replication in the common marmosetJ. Infect Dis.2017215180718151:CAS:528:DC%2BC1cXitFCrtLbI10.1093/infdis/jix209284724217107363 HelleFDuverlieGDubuissonJThe hepatitis C virus glycan shield and evasion of the humoral immune responseViruses20113190919321:CAS:528:DC%2BC3MXhsVKju7jF10.3390/v3101909220695223205388 HomansSWDwekRARademacherTWSolution conformations of N-linked oligosaccharidesBiochemistry198726657165781:CAS:528:DyaL2sXlslWlsLw%3D10.1021/bi00395a0013322384 KhatriKIntegrated omics and computational glycobiology reveal structural basis for influenza A virus glycan microheterogeneity and host interactionsMol. Cell. Proteomics201615189519121:CAS:528:DC%2BC28XovFWls74%3D10.1074/mcp.M116.058016269848865083086 DardenTYorkDPedersenLParticle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systemsJ. Chem. Phys.199398100891:CAS:528:DyaK3sXks1Ohsr0%3D10.1063/1.4643971993JChPh..9810089D VigerustDJShepherdVLVirus glycosylation: role in virulence and immune interactionsTrends Microbiol.2007152112181:CAS:528:DC%2BD2sXkvFOju7s%3D10.1016/j.tim.2007.03.003173981017127133 RechePAGluttingJPZhangHReinherzELEnhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profilesImmunogenetics2004564054191:CAS:528:DC%2BD2cXns1eqsbg%3D10.1007/s00251-004-0709-715349703 HutterJToward animal cell culture-based influenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicityJ. Immunol.20131902202301:CAS:528:DC%2BC38XhvV2ksrnF10.4049/jimmunol.120106023225881 TateMDPlaying hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infectionViruses20146129413161:CAS:528:DC%2BC2cXhtlagtrnO10.3390/v6031294246382043970151 Lan, J. et al. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. B F Helle (71748_CR4) 2011; 3 MB Tessier (71748_CR34) 2008; 34 SW Homans (71748_CR21) 1986; 25 KN Kirschner (71748_CR82) 2008; 29 71748_CR54 NG Davies (71748_CR73) 2020 T Darden (71748_CR84) 1993; 98 71748_CR1 KN Kirschner (71748_CR33) 2008; 29 RA Urbanowicz (71748_CR86) 2019 MS Pereira (71748_CR6) 2018; 9 MO Altman (71748_CR15) 2019 LG Baum (71748_CR7) 2017; 27 S Zhang (71748_CR48) 2018; 24 T Zhou (71748_CR88) 2007; 445 K Khatri (71748_CR28) 2016; 15 A Singh (71748_CR32) 2016; 94 MD Tate (71748_CR3) 2014; 6 C Casals (71748_CR10) 2018; 9 SW Homans (71748_CR20) 1987; 26 N Rudman (71748_CR71) 2019; 593 RJ Woods (71748_CR22) 2018; 118 Y An (71748_CR30) 2019 Y An (71748_CR31) 2013; 12 L Wang (71748_CR44) 2015; 6 J Pallesen (71748_CR47) 2017; 114 J Hutter (71748_CR11) 2013; 190 Y Yuan (71748_CR18) 2017; 8 J Stevens (71748_CR12) 2006; 312 71748_CR81 SJ Zost (71748_CR16) 2017; 114 PA Reche (71748_CR55) 2004; 56 J Kristic (71748_CR69) 2014; 69 AK Nivedha (71748_CR75) 2014; 35 CR Cotter (71748_CR13) 2014; 10 R Pejchal (71748_CR90) 2011; 334 SA Malaker (71748_CR58) 2017; 16 AC Walls (71748_CR51) 2019; 176 C Bonomelli (71748_CR60) 2011; 6 T Ying (71748_CR43) 2015; 6 L Wang (71748_CR49) 2018 EF Pettersen (71748_CR91) 2004; 25 AG Gebrehiwot (71748_CR72) 2018; 13 T Pavic (71748_CR70) 2018; 16 Y Li (71748_CR14) 2013; 87 Y Watanabe (71748_CR19) 2020 P Prabakaran (71748_CR40) 2006; 281 Z Chen (71748_CR46) 2017; 215 N Wang (71748_CR52) 2019; 28 O Haji-Ghassemi (71748_CR59) 2015; 25 S Horiya (71748_CR36) 2014; 10 71748_CR77 Y Li (71748_CR45) 2015; 25 JE Pak (71748_CR42) 2009; 388 AW Gotz (71748_CR80) 2012; 8 I Hang (71748_CR27) 2015; 25 E Sawen (71748_CR24) 2011; 115 WL Jorgensen (71748_CR78) 1981; 103 D Chang (71748_CR61) 2019; 18 71748_CR39 JD Marth (71748_CR5) 2008; 8 71748_CR38 A Casadevall (71748_CR65) 2020; 130 T Yamaguchi (71748_CR23) 2014; 53 D Wrapp (71748_CR17) 2020 71748_CR62 W Peng (71748_CR66) 2017; 21 CC Huang (71748_CR87) 2005; 310 W Humphrey (71748_CR35) 1996; 14 H Zhou (71748_CR50) 2019; 10 PA Reche (71748_CR56) 2002; 63 KJ Doores (71748_CR37) 2015; 282 J-P Ryckaert (71748_CR85) 1977; 23 F Dall'Olio (71748_CR68) 2013; 12 WC Hwang (71748_CR41) 2006; 281 OC Grant (71748_CR76) 2016; 26 JA Maier (71748_CR83) 2015; 11 A Casadevall (71748_CR64) 2020 S Jo (71748_CR25) 2016; 26 W Tai (71748_CR53) 2020; 17 X Sun (71748_CR67) 2013; 87 DJ Vigerust (71748_CR8) 2007; 15 PD Kwong (71748_CR89) 2000; 8 M Crispin (71748_CR9) 2015; 11 FY Avci (71748_CR57) 2011; 17 A Harbison (71748_CR26) 2019 GA Millett (71748_CR74) 2020 R Salomon-Ferrer (71748_CR79) 2013; 9 RE Amaro (71748_CR29) 2012; 819 L Li (71748_CR63) 2020 RS Depetris (71748_CR2) 2012; 287 32511307 - bioRxiv. 2020 May 01:2020.04.07.030445. doi: 10.1101/2020.04.07.030445 |
| References_xml | – reference: HwangWCStructural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80RJ. Biol. Chem.200628134610346161:CAS:528:DC%2BD28XhtFKgurzE10.1074/jbc.M60327520016954221 – reference: WangLImportance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the middle east respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escapeJ. Virol.201810.1128/JVI.02002-17303331746288345 – reference: ZhouHStructural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoproteinNat. Commun20191030681:CAS:528:DC%2BC1MXhtlKksr3M10.1038/s41467-019-10897-43129684366242102019NatCo..10.3068Z – reference: KhatriKIntegrated omics and computational glycobiology reveal structural basis for influenza A virus glycan microheterogeneity and host interactionsMol. Cell. Proteomics201615189519121:CAS:528:DC%2BC28XovFWls74%3D10.1074/mcp.M116.058016269848865083086 – reference: GebrehiwotAGHealthy human serum N-glycan profiling reveals the influence of ethnic variation on the identified cancer-relevant glycan biomarkersPLoS ONE201813e020951510.1371/journal.pone.0209515305927556310272 – reference: LiYSingle hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clusteringJ. Virol.201387990499101:CAS:528:DC%2BC3sXhtlCmu77E10.1128/JVI.01023-13238248163754131 – reference: Farrera, L. et al. Identification of immunodominant linear epitopes from SARS-CoV-2 patient plasma. MedRxiv. https://doi.org/10.1101/2020.06.15.20131391 (2020). – reference: WatanabeYAllenJDWrappDMcLellanJSCrispinMSite-specific glycan analysis of the SARS-CoV-2 spikeScience202010.1126/science.abb9983328553097199903 – reference: UrbanowiczRAAntigenicity and immunogenicity of differentially glycosylated hepatitis C virus E2 envelope proteins expressed in mammalian and insect cellsJ. Virol.201910.1128/JVI.01403-18306513666430559 – reference: MaierJAff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SBJ. Chem. Theory Comput.201511369637131:CAS:528:DC%2BC2MXhtFequ7rN10.1021/acs.jctc.5b00255265744534821407 – reference: KwongPDStructures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolatesStructure20008132913391:CAS:528:DC%2BD3MXhtFent7s%3D10.1016/s0969-2126(00)00547-511188697 – reference: HomansSWConformational transitions in N-linked oligosaccharidesBiochemistry198625634263501:CAS:528:DyaL28XlsVynurc%3D10.1021/bi00368a0763790526 – reference: AltmanMOHuman influenza A virus hemagglutinin glycan evolution follows a temporal pattern to a glycan limitmBio201910.1128/mBio.00204-19309407046445938 – reference: HarbisonAFaddaEAn atomistic perspective on ADCC quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamicsGlycobiology201910.1093/glycob/cwz10130325416 – reference: VigerustDJShepherdVLVirus glycosylation: role in virulence and immune interactionsTrends Microbiol.2007152112181:CAS:528:DC%2BD2sXkvFOju7s%3D10.1016/j.tim.2007.03.003173981017127133 – reference: ChangDZaiaJWhy glycosylation matters in building a better flu vaccineMol. Cell Proteomics201918234823581:CAS:528:DC%2BB3cXjtlehtro%3D10.1074/mcp.R119.00149131604803 – reference: HomansSWDwekRARademacherTWSolution conformations of N-linked oligosaccharidesBiochemistry198726657165781:CAS:528:DyaL2sXlslWlsLw%3D10.1021/bi00395a0013322384 – reference: PrabakaranPStructure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibodyJ. Biol. Chem.200628115829158361:CAS:528:DC%2BD28Xlt1CktLg%3D10.1074/jbc.M60069720016597622 – reference: HuangCCStructure of a V3-containing HIV-1 gp120 coreScience2005310102510281:CAS:528:DC%2BD2MXhtF2is7nK10.1126/science.11183981628418024085312005Sci...310.1025H – reference: KirschnerKNGLYCAM06: a generalizable biomolecular force field. CarbohydratesJ. Comput. Chem.2008296226551:CAS:528:DC%2BD1cXivFaksrg%3D10.1002/jcc.20820178493724423547 – reference: HumphreyWDalkeASchultenKVMD - Visual Molecular DynamicsJ. Mol. Graph.19961433381:CAS:528:DyaK28Xis12nsrg%3D10.1016/0263-7855(96)00018-5 – reference: WoodsRJPredicting the structures of glycans, glycoproteins, and their complexesChem. Rev.2018118800580241:CAS:528:DC%2BC1cXhsVKhsbjF10.1021/acs.chemrev.8b00032300915976659753 – reference: MillettGAAssessing differential impacts of COVID-19 on black communitiesAnn. Epidemiol.202010.1016/j.annepidem.2020.05.003327110537375962 – reference: Dall'OlioFN-glycomic biomarkers of biological aging and longevity: a link with inflammagingAgeing Res. Rev.2013126856981:CAS:528:DC%2BC38XltVyis7k%3D10.1016/j.arr.2012.02.00222353383 – reference: KristicJGlycans are a novel biomarker of chronological and biological agesJ. Gerontol. A Biol. Sci. Med. Sci.2014697797891:CAS:528:DC%2BC2cXhtVaks7zF10.1093/gerona/glt19024325898 – reference: CasalsCCampanero-RhodesMAGarcia-FojedaBSolisDThe role of collectins and galectins in lung innate immune defenseFront. Immunol.2018919981:CAS:528:DC%2BC1cXisFSku7rM10.3389/fimmu.2018.01998302335896131309 – reference: CotterCRJinHChenZA single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivityPLoS Pathog.201410e10038311:CAS:528:DC%2BC2cXjslalsb0%3D10.1371/journal.ppat.1003831243914983879363 – reference: JorgensenWLQuantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers: application to liquid waterJ. Am. Chem. Soc.19811033353401:CAS:528:DyaL3MXotlCitA%3D%3D10.1021/ja00392a016 – reference: AnYComparative glycomics analysis of influenza hemagglutinin (H5N1) produced in vaccine relevant cell platformsJ. Proteome Res.201312370737201:CAS:528:DC%2BC3sXhtV2ktL7N10.1021/pr400329k238486073800089 – reference: LiLEffect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trialJAMA202010.1001/jama.2020.10044328702867101507 – reference: NivedhaAKMakeneniSFoleyBLTessierMBWoodsRJImportance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaffJ. Comput. Chem.2014355265391:CAS:528:DC%2BC2cXmvFSi10.1002/jcc.2351724375430 – reference: StevensJStructure and receptor specificity of the hemagglutinin from an H5N1 influenza virusScience20063124044101:CAS:528:DC%2BD28XjslSktbY%3D10.1126/science.1124513165434142006Sci...312..404S – reference: HoriyaSMacPhersonISKraussIJRecent strategies targeting HIV glycans in vaccine designNat. Chem. Biol.2014109909991:CAS:528:DC%2BC2cXitVyku7jL10.1038/nchembio.1685253934934431543 – reference: HangIAnalysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the GolgiGlycobiology201525133513491:CAS:528:DC%2BC28Xhs1OqurzL10.1093/glycob/cwv058262401674634314 – reference: GotzAWRoutine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized bornJ. Chem. Theory Comput.20128154215551:CAS:528:DC%2BC38XksFWns78%3D10.1021/ct200909j225820313348677 – reference: PavicTN-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary diseaseJ. Transl. Med.2018163231:CAS:528:DC%2BC1MXhtFKmsb7M10.1186/s12967-018-1695-0304635786249776 – reference: Salomon-FerrerRGötzAWPooleDLe GrandSWalkerRCRoutine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh EwaldJ. Chem. Theory Comput.20139387838881:CAS:528:DC%2BC3sXht1arsrzP10.1021/ct400314y26592383 – reference: RyckaertJ-PCiccottiGBerendsenHJCNumerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanesJ. Comput. Phys.1977233273411:CAS:528:DyaE2sXktVGhsL4%3D10.1016/0021-9991(77)90098-51977JCoPh..23..327R – reference: DardenTYorkDPedersenLParticle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systemsJ. Chem. Phys.199398100891:CAS:528:DyaK3sXks1Ohsr0%3D10.1063/1.4643971993JChPh..9810089D – reference: JoSQiYImWPreferred conformations of N-glycan core pentasaccharide in solution and in glycoproteinsGlycobiology20162619291:CAS:528:DC%2BC28Xht12rsbrE10.1093/glycob/cwv08326405106 – reference: Lan, J. et al. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. BioRxiv.https://doi.org/10.1101/2020.02.19.956235. – reference: GrantOCGly-Spec: a webtool for predicting glycan specificity by integrating glycan array screening data and 3D structureGlycobiology201626102710281:CAS:528:DC%2BC2sXht1GntrzO10.1093/glycob/cww094281207845072150 – reference: RechePAGluttingJPReinherzELPrediction of MHC class I binding peptides using profile motifsHum. Immunol.2002637017091:CAS:528:DC%2BD38XmtVWnsLs%3D10.1016/s0198-8859(02)00432-912175724 – reference: YamaguchiTExploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulationAngew. Chem. Int. Ed.20145310941109441:CAS:528:DC%2BC2cXhsV2ntrfF10.1002/anie.201406145 – reference: DaviesNGAge-dependent effects in the transmission and control of COVID-19 epidemicsNat. Med.202010.1038/s41591-020-0962-9328079347104347 – reference: BaumLGCobbBAThe direct and indirect effects of glycans on immune functionGlycobiology2017276196241:CAS:528:DC%2BC1cXhvV2nu7jJ10.1093/glycob/cwx03628460052 – reference: DepetrisRSPartial enzymatic deglycosylation preserves the structure of cleaved recombinant HIV-1 envelope glycoprotein trimersJ. Biol. Chem.201228724239242541:CAS:528:DC%2BC38XhtVWgtLvE10.1074/jbc.M112.371898226451283397850 – reference: AmaroRELiWWMolecular-level simulation of pandemic influenza glycoproteinsMethods Mol. Biol.20128195755941:CAS:528:DC%2BC38XhsFSjurzL10.1007/978-1-61779-465-0_34221835593352029 – reference: WangLEvaluation of candidate vaccine approaches for MERS-CoVNat. Commun.2015677121:CAS:528:DC%2BC2MXhtlWhtbbP10.1038/ncomms87122621850745252942015NatCo...6.7712W – reference: LiYA humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike proteinCell Res.201525123712491:CAS:528:DC%2BC2MXhsFGhs77F10.1038/cr.2015.113263916984650419 – reference: PallesenJImmunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigenProc. Natl. Acad. Sci. USA2017114E7348E73571:CAS:528:DC%2BC2sXhtlWmsrfI10.1073/pnas.170730411428807998 – reference: PejchalRA potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shieldScience2011334109711031:CAS:528:DC%2BC3MXhsV2mu7jK10.1126/science.12132562199825432802152011Sci...334.1097P – reference: Haji-GhassemiOBlacklerRJMartin YoungNEvansSVAntibody recognition of carbohydrate epitopesGlycobiology2015259209521:CAS:528:DC%2BC28Xht12itLjI10.1093/glycob/cwv03726033938 – reference: Case, D.A. et al. AMBER 14. Computer Program. University of California, San Francisco (2014). – reference: PettersenEFUCSF Chimera—a visualization system for exploratory research and analysisJ. Comput. Chem.200425160516121:CAS:528:DC%2BD2cXmvVOhsbs%3D10.1002/jcc.20084 – reference: AnYN-glycosylation of seasonal influenza vaccine hemagglutinins: implication for potency testing and immune processingJ. Virol.201910.1128/JVI.01693-18315113856854503 – reference: W.H.O. Coronavirus disease 2019 (Covid-19) Situation Report. Report No. 77, (2020). – reference: PakJEStructural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domainJ. Mol. Biol.20093888158231:CAS:528:DC%2BD1MXltlejs78%3D10.1016/j.jmb.2009.03.042193240517094495 – reference: WangNStructural definition of a neutralization-sensitive epitope on the MERS-CoV S1-NTDCell Rep.20192833953405 e33961:CAS:528:DC%2BC1MXhvVKks7jI10.1016/j.celrep.2019.08.052315539096935267 – reference: Pinto, D. et al. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. BioRxiv.https://doi.org/10.1101/2020.04.07.023903. – reference: TaiWCharacterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccineCell Mol. Immunol.2020176136201:CAS:528:DC%2BB3cXlt1Chsrw%3D10.1038/s41423-020-0400-432203189 – reference: SunXN-linked glycosylation of the hemagglutinin protein influences virulence and antigenicity of the 1918 pandemic and seasonal H1N1 influenza A virusesJ. Virol.201387875687661:CAS:528:DC%2BC3sXhtFCmtbnF10.1128/JVI.00593-13237409783719814 – reference: PereiraMSGlycans as key checkpoints of T cell activity and functionFront. Immunol.2018927541:CAS:528:DC%2BC1MXosVamsbo%3D10.3389/fimmu.2018.02754305387066277680 – reference: YingTJunctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibodyNat. Commun.2015682231:CAS:528:DC%2BC2MXhsFeis7%2FL10.1038/ncomms92232637078245712792015NatCo...6.8223Y – reference: DooresKJThe HIV glycan shield as a target for broadly neutralizing antibodiesFEBS J.2015282467946911:CAS:528:DC%2BC2MXhslSjtrfL10.1111/febs.13530264115454950053 – reference: CasadevallAPirofskiLAThe convalescent sera option for containing COVID-19J. Clin. Invest.2020130154515481:CAS:528:DC%2BB3cXnsFGlu7g%3D10.1172/JCI13800332167489 – reference: SawenEStevenssonBOstervallJMaliniakAWidmalmGMolecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulationsJ. Phys. Chem. B2011115710971211:CAS:528:DC%2BC3MXlslKisLg%3D10.1021/jp201710521545157 – reference: CrispinMDooresKJTargeting host-derived glycans on enveloped viruses for antibody-based vaccine designCurr. Opin. Virol.20151163691:CAS:528:DC%2BC2MXjs1Gqurw%3D10.1016/j.coviro.2015.02.002257473134827424 – reference: BonomelliCThe glycan shield of HIV is predominantly oligomannose independently of production system or viral cladePLoS ONE20116e235211:CAS:528:DC%2BC3MXhtFOisLbO10.1371/journal.pone.00235212185815231567722011PLoSO...623521B – reference: RechePAGluttingJPZhangHReinherzELEnhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profilesImmunogenetics2004564054191:CAS:528:DC%2BD2cXns1eqsbg%3D10.1007/s00251-004-0709-715349703 – reference: ChenZHuman neutralizing monoclonal antibody inhibition of middle east respiratory syndrome coronavirus replication in the common marmosetJ. Infect Dis.2017215180718151:CAS:528:DC%2BC1cXitFCrtLbI10.1093/infdis/jix209284724217107363 – reference: TateMDPlaying hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infectionViruses20146129413161:CAS:528:DC%2BC2cXhtlagtrnO10.3390/v6031294246382043970151 – reference: HutterJToward animal cell culture-based influenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicityJ. Immunol.20131902202301:CAS:528:DC%2BC38XhvV2ksrnF10.4049/jimmunol.120106023225881 – reference: AvciFYLiXTsujiMKasperDLA mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine designNat. Med.201117160216091:CAS:528:DC%2BC3MXhsV2gt7%2FL10.1038/nm.2535221017693482454 – reference: PengWRecent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidityCell Host Microbe20172123341:CAS:528:DC%2BC28XitFGitbnK10.1016/j.chom.2016.11.00428017661 – reference: MarthJDGrewalPKMammalian glycosylation in immunityNat. Rev. Immunol.200888748871:CAS:528:DC%2BD1cXht12isLbE10.1038/nri2417 – reference: SinghAExtension of the GLYCAM force field parameters for glycosaminoglycans and their validationCan. J. Chem.2016941910.1139/cjc-2015-0606 – reference: HelleFDuverlieGDubuissonJThe hepatitis C virus glycan shield and evasion of the humoral immune responseViruses20113190919321:CAS:528:DC%2BC3MXhsVKju7jF10.3390/v3101909220695223205388 – reference: MalakerSAIdentification and characterization of complex glycosylated peptides presented by the MHC class II processing pathway in melanomaJ. Proteome Res.2017162282371:CAS:528:DC%2BC28XhtlOqurnE10.1021/acs.jproteome.6b0049627550523 – reference: CasadevallAJoynerMJPirofskiLAA randomized trial of convalescent plasma for COVID-19-potentially hopeful signalsJAMA202010.1001/jama.2020.1021832492105 – reference: RudmanNGornikOLaucGAltered N-glycosylation profiles as potential biomarkers and drug targets in diabetesFEBS Lett.2019593159816151:CAS:528:DC%2BC1MXht1OjsL3K10.1002/1873-3468.1349531215021 – reference: Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific analysis of the SARS-CoV-2 glycan shield. BioRxiv. https://doi.org/10.1101/2020.03.26.010322 (2020). – reference: WrappDCryo-EM structure of the 2019-nCoV spike in the prefusion conformationScience202010.1126/science.abb2507327039067402631 – reference: TessierMBDeMarcoMLYongyeABWoodsRJExtension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipidsMol. Simul.2008343493641:CAS:528:DC%2BD1cXnsFOru78%3D10.1080/08927020701710890222475933256582 – reference: ZhouTStructural definition of a conserved neutralization epitope on HIV-1 gp120Nature20074457327371:CAS:528:DC%2BD2sXhslSqs7o%3D10.1038/nature055801730178525849682007Natur.445..732Z – reference: ZostSJContemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strainsProc. Natl. Acad. Sci. USA201711412578125831:CAS:528:DC%2BC2sXhslKru7rM10.1073/pnas.171237711429109276 – reference: Hubbard, S. J. & Thornton, J. M. NACCESS v. 2.1.1. Computer Program. Department of Biochemistry and Molecular Biology, University College London (1993). – reference: ZhangSStructural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoproteinCell Rep.2018244414521:CAS:528:DC%2BC1cXhtlSksLjK10.1016/j.celrep.2018.06.041299961047104183 – reference: WallsACUnexpected receptor functional mimicry elucidates activation of coronavirus fusionCell201917610261039 e10151:CAS:528:DC%2BC1MXisVWgu74%3D10.1016/j.cell.2018.12.028307128656751136 – reference: YuanYCryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domainsNat. Commun.20178150921:CAS:528:DC%2BC2sXlvFCgt74%3D10.1038/ncomms150922839383753942392017NatCo...815092Y – volume: 819 start-page: 575 year: 2012 ident: 71748_CR29 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-465-0_34 – volume: 176 start-page: 1026 year: 2019 ident: 71748_CR51 publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – volume: 12 start-page: 685 year: 2013 ident: 71748_CR68 publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2012.02.002 – volume: 23 start-page: 327 year: 1977 ident: 71748_CR85 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 11 start-page: 63 year: 2015 ident: 71748_CR9 publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2015.02.002 – volume: 103 start-page: 335 year: 1981 ident: 71748_CR78 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00392a016 – volume: 18 start-page: 2348 year: 2019 ident: 71748_CR61 publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.R119.001491 – volume: 282 start-page: 4679 year: 2015 ident: 71748_CR37 publication-title: FEBS J. doi: 10.1111/febs.13530 – volume: 8 start-page: 1329 year: 2000 ident: 71748_CR89 publication-title: Structure doi: 10.1016/s0969-2126(00)00547-5 – volume: 29 start-page: 622 year: 2008 ident: 71748_CR33 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20820 – year: 2020 ident: 71748_CR17 publication-title: Science doi: 10.1126/science.abb2507 – volume: 8 start-page: 15092 year: 2017 ident: 71748_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – ident: 71748_CR81 – volume: 215 start-page: 1807 year: 2017 ident: 71748_CR46 publication-title: J. Infect Dis. doi: 10.1093/infdis/jix209 – volume: 94 start-page: 1 year: 2016 ident: 71748_CR32 publication-title: Can. J. Chem. doi: 10.1139/cjc-2015-0606 – volume: 10 start-page: e1003831 year: 2014 ident: 71748_CR13 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003831 – year: 2018 ident: 71748_CR49 publication-title: J. Virol. doi: 10.1128/JVI.02002-17 – ident: 71748_CR77 doi: 10.1101/2020.03.26.010322 – volume: 281 start-page: 34610 year: 2006 ident: 71748_CR41 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603275200 – volume: 10 start-page: 3068 year: 2019 ident: 71748_CR50 publication-title: Nat. Commun doi: 10.1038/s41467-019-10897-4 – volume: 29 start-page: 622 year: 2008 ident: 71748_CR82 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20820 – volume: 98 start-page: 10089 year: 1993 ident: 71748_CR84 publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 35 start-page: 526 year: 2014 ident: 71748_CR75 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23517 – volume: 3 start-page: 1909 year: 2011 ident: 71748_CR4 publication-title: Viruses doi: 10.3390/v3101909 – volume: 6 start-page: 1294 year: 2014 ident: 71748_CR3 publication-title: Viruses doi: 10.3390/v6031294 – volume: 130 start-page: 1545 year: 2020 ident: 71748_CR65 publication-title: J. Clin. Invest. doi: 10.1172/JCI138003 – volume: 87 start-page: 9904 year: 2013 ident: 71748_CR14 publication-title: J. Virol. doi: 10.1128/JVI.01023-13 – volume: 8 start-page: 1542 year: 2012 ident: 71748_CR80 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200909j – year: 2020 ident: 71748_CR74 publication-title: Ann. Epidemiol. doi: 10.1016/j.annepidem.2020.05.003 – volume: 8 start-page: 874 year: 2008 ident: 71748_CR5 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2417 – volume: 14 start-page: 33 year: 1996 ident: 71748_CR35 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 593 start-page: 1598 year: 2019 ident: 71748_CR71 publication-title: FEBS Lett. doi: 10.1002/1873-3468.13495 – volume: 12 start-page: 3707 year: 2013 ident: 71748_CR31 publication-title: J. Proteome Res. doi: 10.1021/pr400329k – volume: 281 start-page: 15829 year: 2006 ident: 71748_CR40 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600697200 – volume: 24 start-page: 441 year: 2018 ident: 71748_CR48 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.06.041 – volume: 27 start-page: 619 year: 2017 ident: 71748_CR7 publication-title: Glycobiology doi: 10.1093/glycob/cwx036 – volume: 9 start-page: 1998 year: 2018 ident: 71748_CR10 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01998 – volume: 13 start-page: e0209515 year: 2018 ident: 71748_CR72 publication-title: PLoS ONE doi: 10.1371/journal.pone.0209515 – volume: 26 start-page: 1027 year: 2016 ident: 71748_CR76 publication-title: Glycobiology doi: 10.1093/glycob/cww094 – year: 2019 ident: 71748_CR26 publication-title: Glycobiology doi: 10.1093/glycob/cwz101 – ident: 71748_CR62 doi: 10.1101/2020.02.19.956235 – volume: 114 start-page: 12578 year: 2017 ident: 71748_CR16 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1712377114 – volume: 190 start-page: 220 year: 2013 ident: 71748_CR11 publication-title: J. Immunol. doi: 10.4049/jimmunol.1201060 – ident: 71748_CR39 doi: 10.1101/2020.06.15.20131391 – volume: 15 start-page: 211 year: 2007 ident: 71748_CR8 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2007.03.003 – volume: 25 start-page: 6342 year: 1986 ident: 71748_CR21 publication-title: Biochemistry doi: 10.1021/bi00368a076 – volume: 28 start-page: 3395 year: 2019 ident: 71748_CR52 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.052 – volume: 63 start-page: 701 year: 2002 ident: 71748_CR56 publication-title: Hum. Immunol. doi: 10.1016/s0198-8859(02)00432-9 – volume: 87 start-page: 8756 year: 2013 ident: 71748_CR67 publication-title: J. Virol. doi: 10.1128/JVI.00593-13 – volume: 388 start-page: 815 year: 2009 ident: 71748_CR42 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.03.042 – year: 2019 ident: 71748_CR30 publication-title: J. Virol. doi: 10.1128/JVI.01693-18 – ident: 71748_CR38 – volume: 56 start-page: 405 year: 2004 ident: 71748_CR55 publication-title: Immunogenetics doi: 10.1007/s00251-004-0709-7 – volume: 26 start-page: 19 year: 2016 ident: 71748_CR25 publication-title: Glycobiology doi: 10.1093/glycob/cwv083 – volume: 11 start-page: 3696 year: 2015 ident: 71748_CR83 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00255 – volume: 15 start-page: 1895 year: 2016 ident: 71748_CR28 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M116.058016 – volume: 34 start-page: 349 year: 2008 ident: 71748_CR34 publication-title: Mol. Simul. doi: 10.1080/08927020701710890 – ident: 71748_CR54 doi: 10.1101/2020.04.07.023903 – year: 2019 ident: 71748_CR15 publication-title: mBio doi: 10.1128/mBio.00204-19 – volume: 118 start-page: 8005 year: 2018 ident: 71748_CR22 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00032 – year: 2020 ident: 71748_CR73 publication-title: Nat. Med. doi: 10.1038/s41591-020-0962-9 – volume: 9 start-page: 2754 year: 2018 ident: 71748_CR6 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02754 – volume: 115 start-page: 7109 year: 2011 ident: 71748_CR24 publication-title: J. Phys. Chem. B doi: 10.1021/jp2017105 – volume: 6 start-page: 8223 year: 2015 ident: 71748_CR43 publication-title: Nat. Commun. doi: 10.1038/ncomms9223 – volume: 6 start-page: 7712 year: 2015 ident: 71748_CR44 publication-title: Nat. Commun. doi: 10.1038/ncomms8712 – volume: 21 start-page: 23 year: 2017 ident: 71748_CR66 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.11.004 – volume: 25 start-page: 920 year: 2015 ident: 71748_CR59 publication-title: Glycobiology doi: 10.1093/glycob/cwv037 – volume: 26 start-page: 6571 year: 1987 ident: 71748_CR20 publication-title: Biochemistry doi: 10.1021/bi00395a001 – volume: 6 start-page: e23521 year: 2011 ident: 71748_CR60 publication-title: PLoS ONE doi: 10.1371/journal.pone.0023521 – volume: 16 start-page: 228 year: 2017 ident: 71748_CR58 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00496 – volume: 312 start-page: 404 year: 2006 ident: 71748_CR12 publication-title: Science doi: 10.1126/science.1124513 – volume: 310 start-page: 1025 year: 2005 ident: 71748_CR87 publication-title: Science doi: 10.1126/science.1118398 – volume: 10 start-page: 990 year: 2014 ident: 71748_CR36 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1685 – volume: 445 start-page: 732 year: 2007 ident: 71748_CR88 publication-title: Nature doi: 10.1038/nature05580 – year: 2020 ident: 71748_CR64 publication-title: JAMA doi: 10.1001/jama.2020.10218 – volume: 25 start-page: 1605 year: 2004 ident: 71748_CR91 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 17 start-page: 1602 year: 2011 ident: 71748_CR57 publication-title: Nat. Med. doi: 10.1038/nm.2535 – volume: 53 start-page: 10941 year: 2014 ident: 71748_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406145 – year: 2020 ident: 71748_CR19 publication-title: Science doi: 10.1126/science.abb9983 – volume: 25 start-page: 1237 year: 2015 ident: 71748_CR45 publication-title: Cell Res. doi: 10.1038/cr.2015.113 – volume: 69 start-page: 779 year: 2014 ident: 71748_CR69 publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glt190 – volume: 17 start-page: 613 year: 2020 ident: 71748_CR53 publication-title: Cell Mol. Immunol. doi: 10.1038/s41423-020-0400-4 – volume: 287 start-page: 24239 year: 2012 ident: 71748_CR2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.371898 – volume: 9 start-page: 3878 year: 2013 ident: 71748_CR79 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400314y – year: 2020 ident: 71748_CR63 publication-title: JAMA doi: 10.1001/jama.2020.10044 – volume: 114 start-page: E7348 year: 2017 ident: 71748_CR47 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – ident: 71748_CR1 – volume: 25 start-page: 1335 year: 2015 ident: 71748_CR27 publication-title: Glycobiology doi: 10.1093/glycob/cwv058 – volume: 16 start-page: 323 year: 2018 ident: 71748_CR70 publication-title: J. Transl. Med. doi: 10.1186/s12967-018-1695-0 – volume: 334 start-page: 1097 year: 2011 ident: 71748_CR90 publication-title: Science doi: 10.1126/science.1213256 – year: 2019 ident: 71748_CR86 publication-title: J. Virol. doi: 10.1128/JVI.01403-18 – reference: 32511307 - bioRxiv. 2020 May 01:2020.04.07.030445. doi: 10.1101/2020.04.07.030445 |
| SSID | ssj0000529419 |
| Score | 2.6724262 |
| Snippet | Here we have generated 3D structures of glycoforms of the spike (S) glycoprotein from SARS-CoV-2, based on reported 3D structures and glycomics data for the... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 14991 |
| SubjectTerms | 631/114/2411 631/250 ACE2 Adaptive Immunity Amino Acid Sequence Angiotensin-Converting Enzyme 2 Antibodies, Neutralizing - immunology Antigen-Antibody Complex Betacoronavirus - immunology Betacoronavirus - isolation & purification Betacoronavirus - metabolism Binding Sites Cadmium Coronavirus Infections - immunology Coronavirus Infections - pathology Coronavirus Infections - virology COVID-19 Fourier analysis Glycoproteins Glycosylation HEK293 Cells HLA Antigens - metabolism Humanities and Social Sciences Humans Immune response Immunity, Innate Molecular Dynamics Simulation multidisciplinary Nanotechnology Pandemics Peptides Peptidyl-Dipeptidase A - chemistry Peptidyl-Dipeptidase A - metabolism Physicochemical properties Pneumonia, Viral - immunology Pneumonia, Viral - pathology Pneumonia, Viral - virology Polysaccharides - chemistry Protein Binding Protein Structure, Tertiary SARS-CoV-2 Scanning electron microscopy Science Science (multidisciplinary) Sensors Sequence Alignment Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - immunology Spike Glycoprotein, Coronavirus - metabolism Transmission electron microscopy X-ray diffraction |
| Title | Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition |
| URI | https://link.springer.com/article/10.1038/s41598-020-71748-7 https://www.ncbi.nlm.nih.gov/pubmed/32929138 https://www.proquest.com/docview/2023453805 https://www.proquest.com/docview/2442848716 https://pubmed.ncbi.nlm.nih.gov/PMC7490396 |
| Volume | 10 |
| WOSCitedRecordID | wos000573274900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcERbkHrh_VgoKyNxAwsntmPnhErVCiS6ilqollPkJA6NaJOl2UXq3zN2HmWp6IVLDhnHsTUznqdnAF7rLA8zaWNaSFZQlBCCapMbGisrQxXllvnr0Sef1Wym5_M46R1ubZ9WOZyJ_qAumtz5yJ2RzgVyJ5PvFz-p6xrloqt9C40N2HJVErhP3UtGH4uLYokg7u_KMK7ftbgad6cMbSa0Y4Smal0eXVMyr-dK_hUw9XLo4N7_7uA-3O01ULLbkcwDuGXrh3Cn60l5-QiyoUwJaUqC2iE53j06pnvNCQ1Ju6h-WOJLO1Q1-X52iXgh7alLgiOuFBSSMqn-SFEnqBHji_NVbcmYqdTUj-Hrwf6XvY-0b8RAc6nUkkqtYxEGJo8yFHmGMauMzIIcVTfO0EKMFJqFUYlQo01orSq1tUxmecFliSYVfwKbdVPbZ0CsDIzBGUTJmUBCyGTBlBWhQc2B2yibQDCgI837KuWuWcZZ6qPlXKcdClNEYepRmKoJvBm_WXQ1Om4cvTOgJ-35tU2vcDOBVyMYOc2FT0xtmxWOEWiqCWdgTuBpRxTj73iIambA9QTUGrmMA1wV73VIXZ36at5KxIzHOOfbgbCulvXvXTy_eRcvYDt0RO56XYgd2FxerOxLuJ3_WlbtxRQ21Fz5p57C1of9WXI09c4IfB6GydRzEUKST4fJt9_4kB_z |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceD8CBYwEJ7BwYnvtHBCqClVX3a5WtFTlFJzE20aUZGl2Qfun-I2M8ypLRW89cI0dJ5N8M57xvABe6DgJYmlDmkqWUtwhBNUmMTRUVgaqn1hWpUcfDNVopA8Pw_EK_GpzYVxYZSsTK0GdFok7I3dGOhfInUy-m36nrmuU8662LTRqWOzYxU802cq3g_f4f18GwdaH_c1t2nQVoIlUakal1qEIfJP0Y5TfhjGrjIz9BPUQztDc6Su0cfoTHDXaBNaqibaWyThJuZygfcBx3SuwKhDsuger48Hu-HN3quP8ZsIPm-wcxvWbEul3WWxopaHlJDRVyzvgObX2fHTmXy7aaufbuvm_fbNbcKPRsclGzRS3YcXmd-Ba3XVzcRfithALKSYE9V-yt_Fxj24WBzQg5TT7aklVvCLLydHJApFHymMX5kdcsStkVpL9EYRPUOfHC9_muSVdLFaR34NPl0LgfejlRW4fArHSNwZXEBPOBEI9lilTVgQGdSNu-7EHfvv7o6Spw-7agZxEVTwA11ENmQghE1WQiZQHr7p7pnUVkgtnr7dwiBqJVEZnWPDgeTeMssQ5iExuiznOQVBr4UxoDx7UIOwexwNUpH2uPVBL8OwmuDrlyyN5dlzVK1ciZDzENV-3QD57rX9T8ehiKp7B2vb-7jAaDkY7j-F64BjMdfYQ69Cbnc7tE7ia_Jhl5enThkcJfLlsiP8Gw1J1WA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3pRAASPBCaw6sR07B4SqlhVVq9WKQtVbcBKHRi3J0uyC9q_x6xjnVZaK3nrgGjtOnHwzns8zngF4qZM0SKSNaCZZRnGFEFSb1NBIWRmoMLWsOR59sKfGY314GE1W4Fd_FsaFVfY6sVHUWZW6PXJH0rlA6WRyI-_CIibbo3fT79RVkHKe1r6cRguRXbv4ifStfruzjf_6VRCM3n_a-kC7CgM0lUrNqNQ6EoFv0jBBXW4Ys8rIxE_RJuEMqU-okO-EObYabQJrVa6tZTJJMy5z5Aocx70CV5VLWt6EDU6G_R3nQRN-1J3TYVxv1Pgl3Hk25GvIoYSmanktPGfgno_T_MtZ26yBo9v_89e7A7c6y5tstqJyF1ZseQ-ut7U4F_ch6dOzkConaBWT_c2P-3SrOqABqafFsSVNSouiJF9PFohHUh-54D_iUmChCJPij9B8gkwAL3ybl5YMEVpV-QA-X8oEH8JqWZX2ERArfWNwBJFzJlAAEpkxZUVg0GLiNkw88HsoxGmXnd0VCTmJmygBruMWPjHCJ27gEysPXg_3TNvcJBf2Xu-hEXd6qo7PcOHBi6EZNYxzG5nSVnPsI5CiCkesPVhrATk8jgdoXvtce6CWoDp0cNnLl1vK4qjJYq5ExHiEY77pQX32Wv-exeOLZ_EcbiCu472d8e4TuBk4WXPlPsQ6rM5O5_YpXEt_zIr69FkjrAS-XDa-fwPz-XyX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+SARS-CoV-2+spike+protein+glycan+shield+reveals+implications+for+immune+recognition&rft.jtitle=Scientific+reports&rft.au=Grant%2C+Oliver+C&rft.au=Montgomery%2C+David&rft.au=Ito+Keigo&rft.au=Woods%2C+Robert+J&rft.date=2020-09-14&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-71748-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |