Tubule-U-Net: a novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer

The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WS...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 13; číslo 1; s. 128 - 11
Hlavní autoři: Tekin, Eren, Yazıcı, Çisem, Kusetogullari, Huseyin, Tokat, Fatma, Yavariabdi, Amir, Iheme, Leonardo Obinna, Çayır, Sercan, Bozaba, Engin, Solmaz, Gizem, Darbaz, Berkan, Özsoy, Gülşah, Ayaltı, Samet, Kayhan, Cavit Kerem, İnce, Ümit, Uzel, Burak
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 04.01.2023
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively.
AbstractList The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively.
The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively.The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively.
Abstract The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively.
The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively. © 2023, The Author(s).
ArticleNumber 128
Author Darbaz, Berkan
Tokat, Fatma
Kayhan, Cavit Kerem
Tekin, Eren
Özsoy, Gülşah
Bozaba, Engin
Ayaltı, Samet
Solmaz, Gizem
Yazıcı, Çisem
Iheme, Leonardo Obinna
İnce, Ümit
Kusetogullari, Huseyin
Çayır, Sercan
Yavariabdi, Amir
Uzel, Burak
Author_xml – sequence: 1
  givenname: Eren
  surname: Tekin
  fullname: Tekin, Eren
  organization: Artificial Intelligence Research Team, Virasoft Corporation
– sequence: 2
  givenname: Çisem
  surname: Yazıcı
  fullname: Yazıcı, Çisem
  organization: Research and Development Team, Virasoft Corporation
– sequence: 3
  givenname: Huseyin
  surname: Kusetogullari
  fullname: Kusetogullari, Huseyin
  email: huseyinkusetogullari@gmail.com
  organization: Department of Computer Science, Blekinge Institute of Technology, Department of Computer Science, Heriot-Watt University
– sequence: 4
  givenname: Fatma
  surname: Tokat
  fullname: Tokat, Fatma
  organization: Pathology Department, Acibadem University Teaching Hospital
– sequence: 5
  givenname: Amir
  surname: Yavariabdi
  fullname: Yavariabdi, Amir
  organization: Department of Mechatronics Engineering, KTO Karatay University
– sequence: 6
  givenname: Leonardo Obinna
  surname: Iheme
  fullname: Iheme, Leonardo Obinna
  organization: Artificial Intelligence Research Team, Virasoft Corporation
– sequence: 7
  givenname: Sercan
  surname: Çayır
  fullname: Çayır, Sercan
  organization: Artificial Intelligence Research Team, Virasoft Corporation
– sequence: 8
  givenname: Engin
  surname: Bozaba
  fullname: Bozaba, Engin
  organization: Artificial Intelligence Research Team, Virasoft Corporation
– sequence: 9
  givenname: Gizem
  surname: Solmaz
  fullname: Solmaz, Gizem
  organization: Research and Development Team, Virasoft Corporation
– sequence: 10
  givenname: Berkan
  surname: Darbaz
  fullname: Darbaz, Berkan
  organization: Artificial Intelligence Research Team, Virasoft Corporation
– sequence: 11
  givenname: Gülşah
  surname: Özsoy
  fullname: Özsoy, Gülşah
  organization: Research and Development Team, Virasoft Corporation
– sequence: 12
  givenname: Samet
  surname: Ayaltı
  fullname: Ayaltı, Samet
  organization: Artificial Intelligence Research Team, Virasoft Corporation, Research and Development Team, Virasoft Corporation
– sequence: 13
  givenname: Cavit Kerem
  surname: Kayhan
  fullname: Kayhan, Cavit Kerem
  organization: Department of Biotechnology, Nisantasi University
– sequence: 14
  givenname: Ümit
  surname: İnce
  fullname: İnce, Ümit
  organization: Pathology Department, Acibadem University Teaching Hospital
– sequence: 15
  givenname: Burak
  surname: Uzel
  fullname: Uzel, Burak
  organization: Internal Medicine Department, Çamlık Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36599960$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-24235$$DView record from Swedish Publication Index (Blekinge Tekniska Högskola)
BookMark eNp9kktv1DAUhSNUREvpH2CBLLFhQcCP2IlZIFXlVamCTcvWcpzrjIeM3dpJR_Dr8Uym0Omi2Tiyz_l8dH2eFwc-eCiKlwS_I5g171NFuGxKTGlJa8ZIyZ4URxRXvKSM0oN7_4fFSUpLnD9OZUXks-KQCS6lFPio-HM5tdMA5VX5HcYPSCMfbmFAnR51ghFp36EO4BoNoKN3vi_bvN-hcetCCfoV-FGPLnhko17BOsRfyHm0XoTN-eA6QG6le0goWNRG0GlERnsD8UXx1OohwcluPS6uvny-PPtWXvz4en52elEaXtdjWWFTtQ1ggzWTULek1cxyIVoidGdMVQHnUBMBNRXYWl3xzuiu62wNlcUWs-PifOZ2QS_Vdcxx4m8VtFPbjRB7pePozADKcm3afJ9ual4RixuWQUCZoIwJWcvMejuz0hqup3aP9sn9PN3S2nGhaEUZz_KPszxrV9CZPKuohz3X_ol3C9WHWyUbQmUjMuDNDhDDzQRpVCuXDAyD9hCmpGgtCKklpptorx9Il2GKPk92o8I1w0LSrHp1P9G_KHeNyIJmFpgYUopglXHzA-eAblAEq03_1Nw_lfuntv1TLFvpA-sd_VET2000i30P8X_sR1x_AXy47r0
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e38410
crossref_primary_10_2147_IJGM_S453107
crossref_primary_10_1038_s41598_024_55864_2
crossref_primary_10_3390_diagnostics13213329
crossref_primary_10_1007_s10462_024_10887_z
crossref_primary_10_1007_s13534_024_00435_7
crossref_primary_10_1007_s11760_025_04172_x
crossref_primary_10_32604_cmes_2025_060917
crossref_primary_10_3389_fonc_2024_1281922
crossref_primary_10_1007_s11042_024_18507_2
crossref_primary_10_1016_j_jpi_2024_100395
crossref_primary_10_3390_electronics12081900
crossref_primary_10_1016_j_rineng_2025_105047
crossref_primary_10_3389_fmed_2024_1373244
crossref_primary_10_3390_electronics12244923
crossref_primary_10_1016_j_bosn_2025_07_001
crossref_primary_10_1016_j_oceaneng_2024_120083
crossref_primary_10_3390_jimaging10110292
Cites_doi 10.1016/j.compmedimag.2017.12.001
10.1109/BMEI.2008.166
10.3390/cancers13174287
10.1109/TMI.2017.2677499
10.3390/brainsci11081055
10.1007/s00521-022-07441-9
10.1200/JCO.2007.15.5986
10.1016/j.polymertesting.2022.107540
10.1109/ACCESS.2021.3086020
10.1109/ISBI.2008.4540988
10.1007/978-81-322-1041-2_27
10.1007/978-3-319-24574-4_28
10.2352/ISSN.2470-1173.2018.15.COIMG-199
10.1109/CVPR.2019.00766
10.1109/CVPR.2016.90
10.1038/bjc.1957.43
10.1109/TMI.2014.2314959
10.1117/12.878092
10.1109/IEMBS.2008.4649847
10.1002/1097-0142(19940601)73:11<2765::AID-CNCR2820731119>3.0.CO;2-K
10.1117/12.2211368
10.1016/j.jestch.2021.08.008
10.1038/s41597-020-00622-y
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTPV
AOWAS
D8T
DF3
ZZAVC
DOA
DOI 10.1038/s41598-022-27331-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Blekinge Tekniska Högskola
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE



CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_f5acb0c4a87541f083ddde2362336979
oai_DiVA_org_bth_24235
PMC9812986
36599960
10_1038_s41598_022_27331_3
Genre Journal Article
GrantInformation_xml – fundername: Blekinge Institute of Technology
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADTPV
AOWAS
D8T
DF3
EJD
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c577t-40c4b8e0c0a39e7b1ba3f566b16adcc44e55e716e7260ffa45dcadddf7e4f0f03
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003343100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:06 EDT 2025
Tue Nov 04 16:15:12 EST 2025
Tue Nov 04 02:06:42 EST 2025
Thu Oct 02 11:33:27 EDT 2025
Tue Oct 07 07:37:44 EDT 2025
Mon Jul 21 06:03:42 EDT 2025
Tue Nov 18 22:07:09 EST 2025
Sat Nov 29 02:07:47 EST 2025
Fri Feb 21 02:39:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-40c4b8e0c0a39e7b1ba3f566b16adcc44e55e716e7260ffa45dcadddf7e4f0f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f5acb0c4a87541f083ddde2362336979
PMID 36599960
PQID 2760730692
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_f5acb0c4a87541f083ddde2362336979
swepub_primary_oai_DiVA_org_bth_24235
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812986
proquest_miscellaneous_2761179029
proquest_journals_2760730692
pubmed_primary_36599960
crossref_citationtrail_10_1038_s41598_022_27331_3
crossref_primary_10_1038_s41598_022_27331_3
springer_journals_10_1038_s41598_022_27331_3
PublicationCentury 2000
PublicationDate 2023-01-04
PublicationDateYYYYMMDD 2023-01-04
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016).
Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprintarXiv:2102.04306 1–13 (2021).
CayırSMitnet: A novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer tissueNeural Comput. Appl.202234178371785110.1007/s00521-022-07441-9
SiddiqueNPahedingSElkinCPDevabhaktuniVU-net and its variants for medical image segmentation: A review of theory and applicationsIEEE Access20219820318205710.1109/ACCESS.2021.3086020
SahaMChakrabortyCRacoceanuDEfficient deep learning model for mitosis detection using breast histopathology imagesComput. Med. Imaging Graph.201864294010.1016/j.compmedimag.2017.12.001
Bloom, H. J. & Richardson, W. W. Histological grading and prognosis in breast cancer; A study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer11 (1957).
Kien, N., Barnes, M., Srinivas, C. & Chefd’hotel, C. Automatic glandular and tubule region segmentation in histological grading of breast cancer. In SPIE Medical Imaging: Digital Pathology, 92–98 (2015).
Łukasiewicz, S. et al. Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers13 (2021).
Tan, X. J., Mustafa, N., Mashor, M. Y. & Ab Rahman, K. S. A novel quantitative measurement method for irregular tubules in breast carcinoma. Eng. Sci. Technol. Int. J. (2021).
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, 234–241 (2015).
Basavanhally, A. et al. Incorporating domain knowledge for tubule detection in breast histopathology using o’callaghan neighborhoods. Proc. SPIE Med. Imag. Comput.-Aid. Diagn.7963 (2011).
Lee, S., Fu, C., Salama, P., Dunn, K. & Delp, E. Tubule segmentation of fluorescence microscopy images based on convolutional neural networks with inhomogeneity correction. In Int. Symp. on Electr. Imaging, 1–8 (2018).
Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2261–2269 (2017).
RakhaEPrognostic significance of nottingham histologic grade in invasive breast carcinomaJ. Clin. Oncol.2008263153810.1200/JCO.2007.15.5986
MamonovAVFigueiredoINFigueiredoPNTsaiYHAutomated polyp detection in colon capsule endoscopyIEEE Trans. Med. Imaging2014331488150210.1109/TMI.2014.2314959
Dalle, J.-R., Leow, W. K., Racoceanu, D., Tutac, A. E. & Putti, T. C. Automatic breast cancer grading of histopathological images. In 2008 30th Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Society, 3052–3055 (2008).
KumarNA dataset and a technique for generalized nuclear segmentation for computational pathologyIEEE Trans. Med. Imaging2017361550156010.1109/TMI.2017.2677499
Paramanandam, M., Thamburaj, R., Mammen, J. & Nagar, A. Automatic detection of tubules in breast histopathological images. In Advances in Intelligent Systems and Computing, 311–321 (2013).
Naik, S. et al. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, 284–287 (2008).
BellensSProbstGMJanssensMVandewallePDewulfWEvaluating conventional and deep learning segmentation for fast X-ray CT porosity measurements of polymer laser sintered am partsPolym. Test.202211010754010.1016/j.polymertesting.2022.1075401:CAS:528:DC%2BB38XptVeit7k%3D
FawziABrain image segmentation in recent years: A narrative reviewBrain Sci.20211113110.3390/brainsci11081055
ZhouZSiddiqueeMMTajbakhshRLiangJUNet++: A nested U-Net architecture for medical image segmentationDeep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support2018110453763
Tutac, A. E. et al. Knowledge-guided semantic indexing of breast cancer histopathology images. In International Conference on BioMedical Engineering and Informatics, 107–112 (2008).
BorgliHThambawitaVSmedsrudPA comprehensive multi-class image and video dataset for gastrointestinal endoscopySci. Data2020711410.1038/s41597-020-00622-y
Romo-Bucheli, D., Janowczyk, A., Romero, E., Gilmore, H. & Madabhushi, A. Automated tubule nuclei quantification and correlation with oncotype dx risk categories in er+ breast cancer whole slide images. In SPIE Medical Imaging (2016).
Tan, M. & Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of International Conference on Machine Learning, 6105–6114 (2019).
Qin, X. et al. Basnet: Boundary-aware salient object detection. In IEEE Conference on Computer Vision and Pattern Recognition, 7471–7481 (2019).
DaltonLWPageDLDupontWDHistologic grading of breast carcinomaCancer1994732765277010.1002/1097-0142(19940601)73:11<2765::AID-CNCR2820731119>3.0.CO;2-K1:STN:280:DyaK2c3ltFOitA%3D%3D
AV Mamonov (27331_CR11) 2014; 33
A Fawzi (27331_CR14) 2021; 11
Z Zhou (27331_CR27) 2018; 11045
27331_CR1
27331_CR5
27331_CR6
27331_CR28
27331_CR9
27331_CR25
N Siddique (27331_CR26) 2021; 9
27331_CR24
27331_CR21
H Borgli (27331_CR12) 2020; 7
27331_CR20
27331_CR23
27331_CR22
M Saha (27331_CR8) 2018; 64
S Cayır (27331_CR2) 2022; 34
LW Dalton (27331_CR4) 1994; 73
E Rakha (27331_CR3) 2008; 26
27331_CR18
27331_CR17
N Kumar (27331_CR7) 2017; 36
27331_CR19
27331_CR16
27331_CR15
27331_CR10
S Bellens (27331_CR13) 2022; 110
References_xml – reference: Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, 234–241 (2015).
– reference: BellensSProbstGMJanssensMVandewallePDewulfWEvaluating conventional and deep learning segmentation for fast X-ray CT porosity measurements of polymer laser sintered am partsPolym. Test.202211010754010.1016/j.polymertesting.2022.1075401:CAS:528:DC%2BB38XptVeit7k%3D
– reference: Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprintarXiv:2102.04306 1–13 (2021).
– reference: RakhaEPrognostic significance of nottingham histologic grade in invasive breast carcinomaJ. Clin. Oncol.2008263153810.1200/JCO.2007.15.5986
– reference: SahaMChakrabortyCRacoceanuDEfficient deep learning model for mitosis detection using breast histopathology imagesComput. Med. Imaging Graph.201864294010.1016/j.compmedimag.2017.12.001
– reference: SiddiqueNPahedingSElkinCPDevabhaktuniVU-net and its variants for medical image segmentation: A review of theory and applicationsIEEE Access20219820318205710.1109/ACCESS.2021.3086020
– reference: Paramanandam, M., Thamburaj, R., Mammen, J. & Nagar, A. Automatic detection of tubules in breast histopathological images. In Advances in Intelligent Systems and Computing, 311–321 (2013).
– reference: MamonovAVFigueiredoINFigueiredoPNTsaiYHAutomated polyp detection in colon capsule endoscopyIEEE Trans. Med. Imaging2014331488150210.1109/TMI.2014.2314959
– reference: Romo-Bucheli, D., Janowczyk, A., Romero, E., Gilmore, H. & Madabhushi, A. Automated tubule nuclei quantification and correlation with oncotype dx risk categories in er+ breast cancer whole slide images. In SPIE Medical Imaging (2016).
– reference: Bloom, H. J. & Richardson, W. W. Histological grading and prognosis in breast cancer; A study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer11 (1957).
– reference: KumarNA dataset and a technique for generalized nuclear segmentation for computational pathologyIEEE Trans. Med. Imaging2017361550156010.1109/TMI.2017.2677499
– reference: Tutac, A. E. et al. Knowledge-guided semantic indexing of breast cancer histopathology images. In International Conference on BioMedical Engineering and Informatics, 107–112 (2008).
– reference: ZhouZSiddiqueeMMTajbakhshRLiangJUNet++: A nested U-Net architecture for medical image segmentationDeep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support2018110453763
– reference: Basavanhally, A. et al. Incorporating domain knowledge for tubule detection in breast histopathology using o’callaghan neighborhoods. Proc. SPIE Med. Imag. Comput.-Aid. Diagn.7963 (2011).
– reference: Tan, X. J., Mustafa, N., Mashor, M. Y. & Ab Rahman, K. S. A novel quantitative measurement method for irregular tubules in breast carcinoma. Eng. Sci. Technol. Int. J. (2021).
– reference: DaltonLWPageDLDupontWDHistologic grading of breast carcinomaCancer1994732765277010.1002/1097-0142(19940601)73:11<2765::AID-CNCR2820731119>3.0.CO;2-K1:STN:280:DyaK2c3ltFOitA%3D%3D
– reference: Qin, X. et al. Basnet: Boundary-aware salient object detection. In IEEE Conference on Computer Vision and Pattern Recognition, 7471–7481 (2019).
– reference: CayırSMitnet: A novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer tissueNeural Comput. Appl.202234178371785110.1007/s00521-022-07441-9
– reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016).
– reference: Naik, S. et al. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, 284–287 (2008).
– reference: Dalle, J.-R., Leow, W. K., Racoceanu, D., Tutac, A. E. & Putti, T. C. Automatic breast cancer grading of histopathological images. In 2008 30th Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Society, 3052–3055 (2008).
– reference: Lee, S., Fu, C., Salama, P., Dunn, K. & Delp, E. Tubule segmentation of fluorescence microscopy images based on convolutional neural networks with inhomogeneity correction. In Int. Symp. on Electr. Imaging, 1–8 (2018).
– reference: Kien, N., Barnes, M., Srinivas, C. & Chefd’hotel, C. Automatic glandular and tubule region segmentation in histological grading of breast cancer. In SPIE Medical Imaging: Digital Pathology, 92–98 (2015).
– reference: BorgliHThambawitaVSmedsrudPA comprehensive multi-class image and video dataset for gastrointestinal endoscopySci. Data2020711410.1038/s41597-020-00622-y
– reference: Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2261–2269 (2017).
– reference: Łukasiewicz, S. et al. Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers13 (2021).
– reference: Tan, M. & Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of International Conference on Machine Learning, 6105–6114 (2019).
– reference: FawziABrain image segmentation in recent years: A narrative reviewBrain Sci.20211113110.3390/brainsci11081055
– volume: 64
  start-page: 29
  year: 2018
  ident: 27331_CR8
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2017.12.001
– ident: 27331_CR16
  doi: 10.1109/BMEI.2008.166
– ident: 27331_CR28
– ident: 27331_CR1
  doi: 10.3390/cancers13174287
– volume: 36
  start-page: 1550
  year: 2017
  ident: 27331_CR7
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2677499
– volume: 11
  start-page: 1
  year: 2021
  ident: 27331_CR14
  publication-title: Brain Sci.
  doi: 10.3390/brainsci11081055
– volume: 34
  start-page: 17837
  year: 2022
  ident: 27331_CR2
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07441-9
– volume: 26
  start-page: 3153
  year: 2008
  ident: 27331_CR3
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.15.5986
– volume: 110
  start-page: 107540
  year: 2022
  ident: 27331_CR13
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2022.107540
– volume: 9
  start-page: 82031
  year: 2021
  ident: 27331_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3086020
– ident: 27331_CR15
  doi: 10.1109/ISBI.2008.4540988
– ident: 27331_CR18
  doi: 10.1007/978-81-322-1041-2_27
– ident: 27331_CR19
– ident: 27331_CR10
  doi: 10.1007/978-3-319-24574-4_28
– ident: 27331_CR6
  doi: 10.2352/ISSN.2470-1173.2018.15.COIMG-199
– volume: 11045
  start-page: 37
  year: 2018
  ident: 27331_CR27
  publication-title: Deep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support
– ident: 27331_CR9
  doi: 10.1109/CVPR.2019.00766
– ident: 27331_CR22
  doi: 10.1109/CVPR.2016.90
– ident: 27331_CR25
  doi: 10.1038/bjc.1957.43
– ident: 27331_CR23
– volume: 33
  start-page: 1488
  year: 2014
  ident: 27331_CR11
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2314959
– ident: 27331_CR17
  doi: 10.1117/12.878092
– ident: 27331_CR5
  doi: 10.1109/IEMBS.2008.4649847
– volume: 73
  start-page: 2765
  year: 1994
  ident: 27331_CR4
  publication-title: Cancer
  doi: 10.1002/1097-0142(19940601)73:11<2765::AID-CNCR2820731119>3.0.CO;2-K
– ident: 27331_CR21
  doi: 10.1117/12.2211368
– ident: 27331_CR20
  doi: 10.1016/j.jestch.2021.08.008
– volume: 7
  start-page: 1
  year: 2020
  ident: 27331_CR12
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00622-y
– ident: 27331_CR24
  doi: 10.1109/CVPR.2017.243
SSID ssj0000529419
Score 2.5024529
Snippet The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided...
Abstract The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms 631/67/1347
639/705
Breast cancer
Breast Neoplasms
Breast Neoplasms - diagnostic imaging
breast tumor
Computer-Assisted
Datasets
Deep Learning
diagnostic imaging
Female
human
Humanities and Social Sciences
Humans
Image Processing
Image Processing, Computer-Assisted - methods
multidisciplinary
procedures
Science
Science (multidisciplinary)
Segmentation
Semantics
Tubules
Tumors
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSlvOlCQUaCE1hN4jwcLqg8Kg6w6qFFvVm2M95G2ibLJlsEv56x4021gPbCNbET2zOe-cYzniHkpeB5ViEsZoIrYCkqZKYjZRlUXCdCCauVp_SXYjoVZ2flcThw60JY5VomekFdtcadkR8kRe64MS-Td4vvzFWNct7VUELjOrmByCZ2IV1fk-PxjMV5sdK4DHdlIi4OOtRX7k5Z4u-k8JjxDX3k0_b_C2v-HTI5-k3_yDHq9dLRnf-d0V2yGxApPRxY6B65Bs19cmuoUfnzAfl1stKrObBTNoX-LVW0aS9hTl1kaQc9VU1FK4AFDeUnZszpxYr2vhftYHYRbjc11K4DwWjd0B-uMC9FlFsBrS9QqnW0tVS7GPmeGseLy4fk9OjTyYfPLBRsYCYrih5tUZNqAZGJFC-h0LFW3CJe1HGuKmPSFLIM0ECDAq0oa1WaVQbla2ULSG1kI_6I7DRtA3uEcm1QCptcGxBpmQihdQSRtlmiDVps0YTEa7JJE7KZu6Iac-m96lzIgdQSSS09qSWfkNdjn8WQy2Nr6_eOG8aWLg-3f9AuZzJsa2kzZTTOWqHZl8YW8SxOBxJEBZznZVFOyP6a9jIIh05eEX5CXoyvcVs7X41qoF35Ni5ZX5TgJx4PrDeOBLeXM1NxDYoNptwY6uabpj73qcNLxHOlyCfkzZp9r4a1bSleDSy-8YeP9bdDvxi6P5cOlmdPts_2KbmdIET0B1jpPtnplyt4Rm6ay77uls_91v0NQp5NNA
  priority: 102
  providerName: ProQuest
Title Tubule-U-Net: a novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer
URI https://link.springer.com/article/10.1038/s41598-022-27331-3
https://www.ncbi.nlm.nih.gov/pubmed/36599960
https://www.proquest.com/docview/2760730692
https://www.proquest.com/docview/2761179029
https://pubmed.ncbi.nlm.nih.gov/PMC9812986
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-24235
https://doaj.org/article/f5acb0c4a87541f083ddde2362336979
Volume 13
WOSCitedRecordID wos001003343100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgA4kL4nMURmUkOEE0J3Zih9sGm0BiVYU2VE6R7Txvkbp0atJN46_n2UnLCmhcuPiQOIn7Pn-v9nuPkNeKZ2mJsDhSXEMk0CFHhmkXQclNorRyRgdOf5GjkZpM8vG1Vl_-TFhXHrgj3I5LtTXMCo3AWsQOEUOJGpmg3eU8y2VI3WMyvxZMdVW9k1zEeZ8lw7jaadBT-WyyJGSj8Djia54oFOz_G8r887Dkasf0t-qiwSMdPCD3eyhJd7uf8JDcgvoRuds1l7x6TH4cLcxiCtFxNIL2PdW0nl3AlPojoQ20VNclLQHOad834iTyDq2kbXiKNnBy1qcl1dQtT3DRqqaXvqMuRXhaAq3O0Bw1dOao8YfbW2q9EM2fkOOD_aMPn6K-00JkUylbDCKtMAqYZZrnIE1sNHcI9Eyc6dJaISBNASMrkBj-OKdFWlo0jKWTIBxzjD8lG_WshmeEcmPRfNrMWFAiT5QyhgEzLk2MxVCLDUi8pHph-zLkvhvGtAjb4VwVHacK5FQROFXwAXm7eua8K8Jx4-w9z8zVTF9AO1xAsSp6sSr-JVYDsr0UhaLX6gY_kHmLmOXJgLxa3UZ99JssuobZIszxVfZYgq_Y6iRntRLUCx9fIg3kmkytLXX9Tl2dhprfOQKxXGUD8m4pfb-WdRMp3nQSuvaFj9W33UAM054WHk-nz_8HyV6QewkiwPD_lNgmG-18AS_JHXvRVs18SG7LiQyjGpLNvf3R-Osw6CyOh8nYjxLHzfHnw_H3nyaXRek
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90thgJHYE0RL4lwcJIQGY9q0Uu2hQ3sztnPcVeqS0qSbxo_iN3LsJJ0KqG974LVx0tj5zjnfsc-FkDecJXGOtNjjTIIXoUH2lC-NBzlTIZfcKOm-dD8dDPjxcXa4Rn51uTA2rLLTiU5R56W2e-RbYZpYNCZZ-HH6w7Ndo-zpatdCo4HFAVyco8tWfdjfwe-7GYa7X4af97y2q4Cn4zSt0WHSkeLga1-yDFIVKMkMkhoVJDLXOoogjgG9CEiR6hsjozjXqARyk0JkfOMzfO41cj2ylcVsqGB4uNjTsadmUZC1uTk-41sV2kebwxa6HBgWeGzJ_rk2Af_itn-HaC7Oaf-oaers4O7d_20F75E7LeOm242I3CdrUDwgN5senBcPyc_hXM0n4B15A6jfU0mL8gwm1EbOVlBTWeQ0B5jStr3GyLN2P6e1u4tWMDpts7cKarpANzou6LltPEyRxedAx6eotStaGqpsDkBNtZW12SNydCUTf0zWi7KAp4QypdHK6ERp4FEWcq6UD74ycag0eqR-jwQdTIRuq7XbpiET4aIGGBcNtARCSzhoCdYjbxf3TJtaJStHf7LoW4y0dcbdD-VsJFq1JUwstcJZS3Rro8AgX8fpQIish7EkS7Me2eiwJlrlV4lLoPXI68VlVFv2LEoWUM7dGFuM0A_xEU8aqC_eBNWHdcNxDdIlIVh61eUrxfjElUbPkK9mPOmRd524XL7WqqXYbERq6R92xt-23WKo-kRYtyN-tnq2r8itveHXvujvDw6ek9sh0mG3WRdtkPV6NocX5IY-q8fV7KVTG5R8v2op-w3SBK2g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gX7pfCACOxJ4ia2Lk4SAgNykS1UfVhQ9uTsR27q9QlpUk3jZ_Gr-PYSToVUN_2wGviJLbznePv2OeC0GtG4ygDWuwxKrQXwoLsSV8YT2dUEiaYkcL96f1kOGRHR-loA_1qY2GsW2WrE52izgpl98h7JIktGuOU9EzjFjHq736Y_fBsBSl70tqW06ghsqcvzsF8K98P-vCvtwnZ_Xzw6YvXVBjwVJQkFRhPKpRM-8oXNNWJDKSgBgiODGKRKRWGOoo0WBQ6AdpvjAijTIFCyEyiQ-Mbn8J7r6FNoOQh6aDN0eDr6Hi5w2PP0MIgbSJ1fMp6JayWNqKNuIgYGnh0ZTV0RQP-xXT_dthcntr-keHUrYq7d_7n-byLbjdcHO_UwnMPbej8PrpRV-e8eIB-HizkYqq9Q2-oq3dY4Lw401NsfWpLXWGRZzjTeoabwhtjzzKCDFfuKVzq8WkT15Vj07rA4UmOz21JYgz8PtN4cgr6vMSFwdJGB1RYWSmcP0SHVzLwR6iTF7l-gjCVCtYfFUulWZgSxqT0tS9NRKQCW9XvoqCFDFdNHndbTmTKnT8BZbyGGQeYcQczTrvozfKZWZ3FZG3rjxaJy5Y2A7m7UMzHvFFo3ERCSRi1AIM3DAwweRiOJsCHKI3TJO2irRZ3vFGLJb8EXRe9Wt4GhWZPqUSui4VrY9MU-gRe8biG_bInoFisgQ5zkKwIxEpXV-_kkxOXND0FJpuyuIvetqJz2a11U7Fdi9fKF_qTbztuMmR1wq1BEj1dP9qX6CYIF98fDPeeoVsEeLLbxQu3UKeaL_RzdF2dVZNy_qLRIRh9v2ox-w12D7fp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tubule-U-Net%3A+a+novel+dataset+and+deep+learning-based+tubule+segmentation+framework+in+whole+slide+images+of+breast+cancer&rft.jtitle=Scientific+reports&rft.au=Tekin%2C+Eren&rft.au=Yaz%C4%B1c%C4%B1%2C+%C3%87isem&rft.au=Kusetogullari%2C+Huseyin&rft.au=Tokat%2C+Fatma&rft.date=2023-01-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-27331-3&rft.externalDocID=10_1038_s41598_022_27331_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon