Tubule-U-Net: a novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer
The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WS...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 13; číslo 1; s. 128 - 11 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
04.01.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively. |
|---|---|
| AbstractList | The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively. The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively.The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively. The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively. © 2023, The Author(s). Abstract The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided patch-based deep learning tubule segmentation framework, named Tubule-U-Net, is developed and proposed to segment tubules in Whole Slide Images (WSI) of breast cancer. Moreover, this paper presents a new tubule segmentation dataset consisting of 30820 polygonal annotated tubules in 8225 patches. The Tubule-U-Net framework first uses a patch enhancement technique such as reflection or mirror padding and then employs an asymmetric encoder-decoder semantic segmentation model. The encoder is developed in the model by various deep learning architectures such as EfficientNetB3, ResNet34, and DenseNet161, whereas the decoder is similar to U-Net. Thus, three different models are obtained, which are EfficientNetB3-U-Net, ResNet34-U-Net, and DenseNet161-U-Net. The proposed framework with three different models, U-Net, U-Net++, and Trans-U-Net segmentation methods are trained on the created dataset and tested on five different WSIs. The experimental results demonstrate that the proposed framework with the EfficientNetB3 model trained on patches obtained using the reflection padding and tested on patches with overlapping provides the best segmentation results on the test data and achieves 95.33%, 93.74%, and 90.02%, dice, recall, and specificity scores, respectively. |
| ArticleNumber | 128 |
| Author | Darbaz, Berkan Tokat, Fatma Kayhan, Cavit Kerem Tekin, Eren Özsoy, Gülşah Bozaba, Engin Ayaltı, Samet Solmaz, Gizem Yazıcı, Çisem Iheme, Leonardo Obinna İnce, Ümit Kusetogullari, Huseyin Çayır, Sercan Yavariabdi, Amir Uzel, Burak |
| Author_xml | – sequence: 1 givenname: Eren surname: Tekin fullname: Tekin, Eren organization: Artificial Intelligence Research Team, Virasoft Corporation – sequence: 2 givenname: Çisem surname: Yazıcı fullname: Yazıcı, Çisem organization: Research and Development Team, Virasoft Corporation – sequence: 3 givenname: Huseyin surname: Kusetogullari fullname: Kusetogullari, Huseyin email: huseyinkusetogullari@gmail.com organization: Department of Computer Science, Blekinge Institute of Technology, Department of Computer Science, Heriot-Watt University – sequence: 4 givenname: Fatma surname: Tokat fullname: Tokat, Fatma organization: Pathology Department, Acibadem University Teaching Hospital – sequence: 5 givenname: Amir surname: Yavariabdi fullname: Yavariabdi, Amir organization: Department of Mechatronics Engineering, KTO Karatay University – sequence: 6 givenname: Leonardo Obinna surname: Iheme fullname: Iheme, Leonardo Obinna organization: Artificial Intelligence Research Team, Virasoft Corporation – sequence: 7 givenname: Sercan surname: Çayır fullname: Çayır, Sercan organization: Artificial Intelligence Research Team, Virasoft Corporation – sequence: 8 givenname: Engin surname: Bozaba fullname: Bozaba, Engin organization: Artificial Intelligence Research Team, Virasoft Corporation – sequence: 9 givenname: Gizem surname: Solmaz fullname: Solmaz, Gizem organization: Research and Development Team, Virasoft Corporation – sequence: 10 givenname: Berkan surname: Darbaz fullname: Darbaz, Berkan organization: Artificial Intelligence Research Team, Virasoft Corporation – sequence: 11 givenname: Gülşah surname: Özsoy fullname: Özsoy, Gülşah organization: Research and Development Team, Virasoft Corporation – sequence: 12 givenname: Samet surname: Ayaltı fullname: Ayaltı, Samet organization: Artificial Intelligence Research Team, Virasoft Corporation, Research and Development Team, Virasoft Corporation – sequence: 13 givenname: Cavit Kerem surname: Kayhan fullname: Kayhan, Cavit Kerem organization: Department of Biotechnology, Nisantasi University – sequence: 14 givenname: Ümit surname: İnce fullname: İnce, Ümit organization: Pathology Department, Acibadem University Teaching Hospital – sequence: 15 givenname: Burak surname: Uzel fullname: Uzel, Burak organization: Internal Medicine Department, Çamlık Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36599960$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:bth-24235$$DView record from Swedish Publication Index (Blekinge Tekniska Högskola) |
| BookMark | eNp9kktv1DAUhSNUREvpH2CBLLFhQcCP2IlZIFXlVamCTcvWcpzrjIeM3dpJR_Dr8Uym0Omi2Tiyz_l8dH2eFwc-eCiKlwS_I5g171NFuGxKTGlJa8ZIyZ4URxRXvKSM0oN7_4fFSUpLnD9OZUXks-KQCS6lFPio-HM5tdMA5VX5HcYPSCMfbmFAnR51ghFp36EO4BoNoKN3vi_bvN-hcetCCfoV-FGPLnhko17BOsRfyHm0XoTN-eA6QG6le0goWNRG0GlERnsD8UXx1OohwcluPS6uvny-PPtWXvz4en52elEaXtdjWWFTtQ1ggzWTULek1cxyIVoidGdMVQHnUBMBNRXYWl3xzuiu62wNlcUWs-PifOZ2QS_Vdcxx4m8VtFPbjRB7pePozADKcm3afJ9ual4RixuWQUCZoIwJWcvMejuz0hqup3aP9sn9PN3S2nGhaEUZz_KPszxrV9CZPKuohz3X_ol3C9WHWyUbQmUjMuDNDhDDzQRpVCuXDAyD9hCmpGgtCKklpptorx9Il2GKPk92o8I1w0LSrHp1P9G_KHeNyIJmFpgYUopglXHzA-eAblAEq03_1Nw_lfuntv1TLFvpA-sd_VET2000i30P8X_sR1x_AXy47r0 |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e38410 crossref_primary_10_2147_IJGM_S453107 crossref_primary_10_1038_s41598_024_55864_2 crossref_primary_10_3390_diagnostics13213329 crossref_primary_10_1007_s10462_024_10887_z crossref_primary_10_1007_s13534_024_00435_7 crossref_primary_10_1007_s11760_025_04172_x crossref_primary_10_32604_cmes_2025_060917 crossref_primary_10_3389_fonc_2024_1281922 crossref_primary_10_1007_s11042_024_18507_2 crossref_primary_10_1016_j_jpi_2024_100395 crossref_primary_10_3390_electronics12081900 crossref_primary_10_1016_j_rineng_2025_105047 crossref_primary_10_3389_fmed_2024_1373244 crossref_primary_10_3390_electronics12244923 crossref_primary_10_1016_j_bosn_2025_07_001 crossref_primary_10_1016_j_oceaneng_2024_120083 crossref_primary_10_3390_jimaging10110292 |
| Cites_doi | 10.1016/j.compmedimag.2017.12.001 10.1109/BMEI.2008.166 10.3390/cancers13174287 10.1109/TMI.2017.2677499 10.3390/brainsci11081055 10.1007/s00521-022-07441-9 10.1200/JCO.2007.15.5986 10.1016/j.polymertesting.2022.107540 10.1109/ACCESS.2021.3086020 10.1109/ISBI.2008.4540988 10.1007/978-81-322-1041-2_27 10.1007/978-3-319-24574-4_28 10.2352/ISSN.2470-1173.2018.15.COIMG-199 10.1109/CVPR.2019.00766 10.1109/CVPR.2016.90 10.1038/bjc.1957.43 10.1109/TMI.2014.2314959 10.1117/12.878092 10.1109/IEMBS.2008.4649847 10.1002/1097-0142(19940601)73:11<2765::AID-CNCR2820731119>3.0.CO;2-K 10.1117/12.2211368 10.1016/j.jestch.2021.08.008 10.1038/s41597-020-00622-y 10.1109/CVPR.2017.243 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTPV AOWAS D8T DF3 ZZAVC DOA |
| DOI | 10.1038/s41598-022-27331-3 |
| DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SWEPUB Blekinge Tekniska Högskola SwePub Articles full text DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_f5acb0c4a87541f083ddde2362336979 oai_DiVA_org_bth_24235 PMC9812986 36599960 10_1038_s41598_022_27331_3 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Blekinge Institute of Technology – fundername: ; |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM ADTPV AOWAS D8T DF3 EJD IPNFZ RIG ZZAVC |
| ID | FETCH-LOGICAL-c577t-40c4b8e0c0a39e7b1ba3f566b16adcc44e55e716e7260ffa45dcadddf7e4f0f03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003343100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:08:06 EDT 2025 Tue Nov 04 16:15:12 EST 2025 Tue Nov 04 02:06:42 EST 2025 Thu Oct 02 11:33:27 EDT 2025 Tue Oct 07 07:37:44 EDT 2025 Mon Jul 21 06:03:42 EDT 2025 Tue Nov 18 22:07:09 EST 2025 Sat Nov 29 02:07:47 EST 2025 Fri Feb 21 02:39:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c577t-40c4b8e0c0a39e7b1ba3f566b16adcc44e55e716e7260ffa45dcadddf7e4f0f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/f5acb0c4a87541f083ddde2362336979 |
| PMID | 36599960 |
| PQID | 2760730692 |
| PQPubID | 2041939 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f5acb0c4a87541f083ddde2362336979 swepub_primary_oai_DiVA_org_bth_24235 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812986 proquest_miscellaneous_2761179029 proquest_journals_2760730692 pubmed_primary_36599960 crossref_citationtrail_10_1038_s41598_022_27331_3 crossref_primary_10_1038_s41598_022_27331_3 springer_journals_10_1038_s41598_022_27331_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-04 |
| PublicationDateYYYYMMDD | 2023-01-04 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016). Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprintarXiv:2102.04306 1–13 (2021). CayırSMitnet: A novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer tissueNeural Comput. Appl.202234178371785110.1007/s00521-022-07441-9 SiddiqueNPahedingSElkinCPDevabhaktuniVU-net and its variants for medical image segmentation: A review of theory and applicationsIEEE Access20219820318205710.1109/ACCESS.2021.3086020 SahaMChakrabortyCRacoceanuDEfficient deep learning model for mitosis detection using breast histopathology imagesComput. Med. Imaging Graph.201864294010.1016/j.compmedimag.2017.12.001 Bloom, H. J. & Richardson, W. W. Histological grading and prognosis in breast cancer; A study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer11 (1957). Kien, N., Barnes, M., Srinivas, C. & Chefd’hotel, C. Automatic glandular and tubule region segmentation in histological grading of breast cancer. In SPIE Medical Imaging: Digital Pathology, 92–98 (2015). Łukasiewicz, S. et al. Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers13 (2021). Tan, X. J., Mustafa, N., Mashor, M. Y. & Ab Rahman, K. S. A novel quantitative measurement method for irregular tubules in breast carcinoma. Eng. Sci. Technol. Int. J. (2021). Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, 234–241 (2015). Basavanhally, A. et al. Incorporating domain knowledge for tubule detection in breast histopathology using o’callaghan neighborhoods. Proc. SPIE Med. Imag. Comput.-Aid. Diagn.7963 (2011). Lee, S., Fu, C., Salama, P., Dunn, K. & Delp, E. Tubule segmentation of fluorescence microscopy images based on convolutional neural networks with inhomogeneity correction. In Int. Symp. on Electr. Imaging, 1–8 (2018). Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2261–2269 (2017). RakhaEPrognostic significance of nottingham histologic grade in invasive breast carcinomaJ. Clin. Oncol.2008263153810.1200/JCO.2007.15.5986 MamonovAVFigueiredoINFigueiredoPNTsaiYHAutomated polyp detection in colon capsule endoscopyIEEE Trans. Med. Imaging2014331488150210.1109/TMI.2014.2314959 Dalle, J.-R., Leow, W. K., Racoceanu, D., Tutac, A. E. & Putti, T. C. Automatic breast cancer grading of histopathological images. In 2008 30th Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Society, 3052–3055 (2008). KumarNA dataset and a technique for generalized nuclear segmentation for computational pathologyIEEE Trans. Med. Imaging2017361550156010.1109/TMI.2017.2677499 Paramanandam, M., Thamburaj, R., Mammen, J. & Nagar, A. Automatic detection of tubules in breast histopathological images. In Advances in Intelligent Systems and Computing, 311–321 (2013). Naik, S. et al. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, 284–287 (2008). BellensSProbstGMJanssensMVandewallePDewulfWEvaluating conventional and deep learning segmentation for fast X-ray CT porosity measurements of polymer laser sintered am partsPolym. Test.202211010754010.1016/j.polymertesting.2022.1075401:CAS:528:DC%2BB38XptVeit7k%3D FawziABrain image segmentation in recent years: A narrative reviewBrain Sci.20211113110.3390/brainsci11081055 ZhouZSiddiqueeMMTajbakhshRLiangJUNet++: A nested U-Net architecture for medical image segmentationDeep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support2018110453763 Tutac, A. E. et al. Knowledge-guided semantic indexing of breast cancer histopathology images. In International Conference on BioMedical Engineering and Informatics, 107–112 (2008). BorgliHThambawitaVSmedsrudPA comprehensive multi-class image and video dataset for gastrointestinal endoscopySci. Data2020711410.1038/s41597-020-00622-y Romo-Bucheli, D., Janowczyk, A., Romero, E., Gilmore, H. & Madabhushi, A. Automated tubule nuclei quantification and correlation with oncotype dx risk categories in er+ breast cancer whole slide images. In SPIE Medical Imaging (2016). Tan, M. & Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of International Conference on Machine Learning, 6105–6114 (2019). Qin, X. et al. Basnet: Boundary-aware salient object detection. In IEEE Conference on Computer Vision and Pattern Recognition, 7471–7481 (2019). DaltonLWPageDLDupontWDHistologic grading of breast carcinomaCancer1994732765277010.1002/1097-0142(19940601)73:11<2765::AID-CNCR2820731119>3.0.CO;2-K1:STN:280:DyaK2c3ltFOitA%3D%3D AV Mamonov (27331_CR11) 2014; 33 A Fawzi (27331_CR14) 2021; 11 Z Zhou (27331_CR27) 2018; 11045 27331_CR1 27331_CR5 27331_CR6 27331_CR28 27331_CR9 27331_CR25 N Siddique (27331_CR26) 2021; 9 27331_CR24 27331_CR21 H Borgli (27331_CR12) 2020; 7 27331_CR20 27331_CR23 27331_CR22 M Saha (27331_CR8) 2018; 64 S Cayır (27331_CR2) 2022; 34 LW Dalton (27331_CR4) 1994; 73 E Rakha (27331_CR3) 2008; 26 27331_CR18 27331_CR17 N Kumar (27331_CR7) 2017; 36 27331_CR19 27331_CR16 27331_CR15 27331_CR10 S Bellens (27331_CR13) 2022; 110 |
| References_xml | – reference: Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, 234–241 (2015). – reference: BellensSProbstGMJanssensMVandewallePDewulfWEvaluating conventional and deep learning segmentation for fast X-ray CT porosity measurements of polymer laser sintered am partsPolym. Test.202211010754010.1016/j.polymertesting.2022.1075401:CAS:528:DC%2BB38XptVeit7k%3D – reference: Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprintarXiv:2102.04306 1–13 (2021). – reference: RakhaEPrognostic significance of nottingham histologic grade in invasive breast carcinomaJ. Clin. Oncol.2008263153810.1200/JCO.2007.15.5986 – reference: SahaMChakrabortyCRacoceanuDEfficient deep learning model for mitosis detection using breast histopathology imagesComput. Med. Imaging Graph.201864294010.1016/j.compmedimag.2017.12.001 – reference: SiddiqueNPahedingSElkinCPDevabhaktuniVU-net and its variants for medical image segmentation: A review of theory and applicationsIEEE Access20219820318205710.1109/ACCESS.2021.3086020 – reference: Paramanandam, M., Thamburaj, R., Mammen, J. & Nagar, A. Automatic detection of tubules in breast histopathological images. In Advances in Intelligent Systems and Computing, 311–321 (2013). – reference: MamonovAVFigueiredoINFigueiredoPNTsaiYHAutomated polyp detection in colon capsule endoscopyIEEE Trans. Med. Imaging2014331488150210.1109/TMI.2014.2314959 – reference: Romo-Bucheli, D., Janowczyk, A., Romero, E., Gilmore, H. & Madabhushi, A. Automated tubule nuclei quantification and correlation with oncotype dx risk categories in er+ breast cancer whole slide images. In SPIE Medical Imaging (2016). – reference: Bloom, H. J. & Richardson, W. W. Histological grading and prognosis in breast cancer; A study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer11 (1957). – reference: KumarNA dataset and a technique for generalized nuclear segmentation for computational pathologyIEEE Trans. Med. Imaging2017361550156010.1109/TMI.2017.2677499 – reference: Tutac, A. E. et al. Knowledge-guided semantic indexing of breast cancer histopathology images. In International Conference on BioMedical Engineering and Informatics, 107–112 (2008). – reference: ZhouZSiddiqueeMMTajbakhshRLiangJUNet++: A nested U-Net architecture for medical image segmentationDeep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support2018110453763 – reference: Basavanhally, A. et al. Incorporating domain knowledge for tubule detection in breast histopathology using o’callaghan neighborhoods. Proc. SPIE Med. Imag. Comput.-Aid. Diagn.7963 (2011). – reference: Tan, X. J., Mustafa, N., Mashor, M. Y. & Ab Rahman, K. S. A novel quantitative measurement method for irregular tubules in breast carcinoma. Eng. Sci. Technol. Int. J. (2021). – reference: DaltonLWPageDLDupontWDHistologic grading of breast carcinomaCancer1994732765277010.1002/1097-0142(19940601)73:11<2765::AID-CNCR2820731119>3.0.CO;2-K1:STN:280:DyaK2c3ltFOitA%3D%3D – reference: Qin, X. et al. Basnet: Boundary-aware salient object detection. In IEEE Conference on Computer Vision and Pattern Recognition, 7471–7481 (2019). – reference: CayırSMitnet: A novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer tissueNeural Comput. Appl.202234178371785110.1007/s00521-022-07441-9 – reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016). – reference: Naik, S. et al. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, 284–287 (2008). – reference: Dalle, J.-R., Leow, W. K., Racoceanu, D., Tutac, A. E. & Putti, T. C. Automatic breast cancer grading of histopathological images. In 2008 30th Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Society, 3052–3055 (2008). – reference: Lee, S., Fu, C., Salama, P., Dunn, K. & Delp, E. Tubule segmentation of fluorescence microscopy images based on convolutional neural networks with inhomogeneity correction. In Int. Symp. on Electr. Imaging, 1–8 (2018). – reference: Kien, N., Barnes, M., Srinivas, C. & Chefd’hotel, C. Automatic glandular and tubule region segmentation in histological grading of breast cancer. In SPIE Medical Imaging: Digital Pathology, 92–98 (2015). – reference: BorgliHThambawitaVSmedsrudPA comprehensive multi-class image and video dataset for gastrointestinal endoscopySci. Data2020711410.1038/s41597-020-00622-y – reference: Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2261–2269 (2017). – reference: Łukasiewicz, S. et al. Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers13 (2021). – reference: Tan, M. & Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of International Conference on Machine Learning, 6105–6114 (2019). – reference: FawziABrain image segmentation in recent years: A narrative reviewBrain Sci.20211113110.3390/brainsci11081055 – volume: 64 start-page: 29 year: 2018 ident: 27331_CR8 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2017.12.001 – ident: 27331_CR16 doi: 10.1109/BMEI.2008.166 – ident: 27331_CR28 – ident: 27331_CR1 doi: 10.3390/cancers13174287 – volume: 36 start-page: 1550 year: 2017 ident: 27331_CR7 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2677499 – volume: 11 start-page: 1 year: 2021 ident: 27331_CR14 publication-title: Brain Sci. doi: 10.3390/brainsci11081055 – volume: 34 start-page: 17837 year: 2022 ident: 27331_CR2 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07441-9 – volume: 26 start-page: 3153 year: 2008 ident: 27331_CR3 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2007.15.5986 – volume: 110 start-page: 107540 year: 2022 ident: 27331_CR13 publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2022.107540 – volume: 9 start-page: 82031 year: 2021 ident: 27331_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3086020 – ident: 27331_CR15 doi: 10.1109/ISBI.2008.4540988 – ident: 27331_CR18 doi: 10.1007/978-81-322-1041-2_27 – ident: 27331_CR19 – ident: 27331_CR10 doi: 10.1007/978-3-319-24574-4_28 – ident: 27331_CR6 doi: 10.2352/ISSN.2470-1173.2018.15.COIMG-199 – volume: 11045 start-page: 37 year: 2018 ident: 27331_CR27 publication-title: Deep Learn. Med. Image Anal. Multimodal Learn. Clin. Decis. Support – ident: 27331_CR9 doi: 10.1109/CVPR.2019.00766 – ident: 27331_CR22 doi: 10.1109/CVPR.2016.90 – ident: 27331_CR25 doi: 10.1038/bjc.1957.43 – ident: 27331_CR23 – volume: 33 start-page: 1488 year: 2014 ident: 27331_CR11 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2314959 – ident: 27331_CR17 doi: 10.1117/12.878092 – ident: 27331_CR5 doi: 10.1109/IEMBS.2008.4649847 – volume: 73 start-page: 2765 year: 1994 ident: 27331_CR4 publication-title: Cancer doi: 10.1002/1097-0142(19940601)73:11<2765::AID-CNCR2820731119>3.0.CO;2-K – ident: 27331_CR21 doi: 10.1117/12.2211368 – ident: 27331_CR20 doi: 10.1016/j.jestch.2021.08.008 – volume: 7 start-page: 1 year: 2020 ident: 27331_CR12 publication-title: Sci. Data doi: 10.1038/s41597-020-00622-y – ident: 27331_CR24 doi: 10.1109/CVPR.2017.243 |
| SSID | ssj0000529419 |
| Score | 2.5023377 |
| Snippet | The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a computer-aided... Abstract The tubule index is a vital prognostic measure in breast cancer tumor grading and is visually evaluated by pathologists. In this paper, a... |
| SourceID | doaj swepub pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 128 |
| SubjectTerms | 631/67/1347 639/705 Breast cancer Breast Neoplasms Breast Neoplasms - diagnostic imaging breast tumor Computer-Assisted Datasets Deep Learning diagnostic imaging Female human Humanities and Social Sciences Humans Image Processing Image Processing, Computer-Assisted - methods multidisciplinary procedures Science Science (multidisciplinary) Segmentation Semantics Tubules Tumors |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFdyFQkJHgBFET24nXXFB5VFxY9dCi3iw_tyttk2WTLYJfz9jxplpAvXCNH7E94_E3nvEMQq9IYZViROeAlkFB0Y7mgvAyF9QTXSgAtGxINsGn08npqThKF25dcqvcyMQoqG1rwh35PuF14MZakPfL73nIGhWsqymFxnV0A5BNGVy6vpKj8Y4lWLFYKdJbmYJO9js4r8KbMhLfpNAyp1vnUQzb_y-s-bfL5Gg3_SPGaDyXDu_-74zuoTsJkeKDgYXuo2uueYBuDTkqfz5Ev47Xer1w-Uk-df07rHDTXrgFDp6lneuxaiy2zi1xSj8xy8O5aHEfW-HOzc7T66YG-40jGJ43-EdIzIsB5VqH5-cg1TrceqyDj3yPTeDF1SN0cvj5-OOXPCVsyE3FeQ-6qGF64gpTKCoc16VW1ANe1GWtrDGMuapyoKA5DlqU94pV1oB8tZ475gtf0F2007SNe4Iw4ZUS3ltfCc0AkwgLPTFmBHXWVcJmqNyQTZoUzTwk1VjIaFWnEzmQWgKpZSS1pBl6M7ZZDrE8rqz9IXDDWDPE4Y4f2tVMpm0tfaWMhlkrUPtY6QHPwnQcAVRAaS24yNDehvYyCYdOXhI-Qy_HYtjWwVajGteuY50QrK8g0MXjgfXGkdC6CmpqkSG-xZRbQ90uaeZnMXS4ADwnJnWG3m7Y93JYVy3F64HFt_7waf7tIC6G7s9kgOXV06tn-wzdJgAR4wUW20M7_WrtnqOb5qKfd6sXcev-BiMyTIo priority: 102 providerName: ProQuest |
| Title | Tubule-U-Net: a novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer |
| URI | https://link.springer.com/article/10.1038/s41598-022-27331-3 https://www.ncbi.nlm.nih.gov/pubmed/36599960 https://www.proquest.com/docview/2760730692 https://www.proquest.com/docview/2761179029 https://pubmed.ncbi.nlm.nih.gov/PMC9812986 https://urn.kb.se/resolve?urn=urn:nbn:se:bth-24235 https://doaj.org/article/f5acb0c4a87541f083ddde2362336979 |
| Volume | 13 |
| WOSCitedRecordID | wos001003343100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4k2grIwEJ4jq2E4cc2uhFRy6WqEWLafIzzbSNlttskXw6xk72aULqFy4-JDYiTMe29_EM98g9IoSqxSnOgW0DAaKdiyVVGSpZJ5qogDQ8j7ZhBiPy-lUTq6k-go-YT09cC-4XZ8ro4nhCoA1zzwgBgszksK6y1ghRQzdI0JeMaZ6Vm8qeSaHKBnCyt0WdqoQTUZjNArLUraxE0XC_r-hzD-dJdcnpr-xi8Yd6fAeujtASbzXf8J9dMM1D9DtPrnk94fox_FSL2cuPUnHrnuHFW7ml26Gg0to6zqsGoutcxd4yBtxmoYNzeIutsKtOz0fwpIa7FceXLhu8LeQURcDPLUO1-ewHLV47rEOzu0dNkGJFo_QyeHB8fuP6ZBpITW5EB0YkYbr0hFDFJNO6Ewr5gHo6axQ1hjOXZ47sKycAPPHe8Vza2BhtF447okn7DHaauaNe4owFbmS3lufS80BTEgLT-LcSOasy6VNULaSemUGGvKQDWNWxeNwVlb9SFUwUlUcqYol6M26zUVPwnFt7f0wmOuagUA7XgC1qga1qv6lVgnaWalCNczqFl5QhBWxkDRBL9e3YT6GQxbVuPky1gkse4TCI570mrPuCSvyYF-SBIkNndro6uadpj6LnN8SgJgsiwS9XWnfr25dJ4rXvYZuvOFD_WUvCkN3Z1XA0_mz_yGy5-gOBQQY_0_xHbTVLZbuBbplLru6XYzQTTEVsSxHaHv_YDz5PIpzFsojOgmlgHJ78ulo8vUnD0dFPw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfQkUMBI9QdTEdpIxEkKFUrVqGfXQot6M42U60jQZJplW5UfxG3l2lmoAza0HrhPHYzvfe_6e_RaE3pBIS8lIHgJbBgMlNzTkJItDTi3JIwmEljXFJrLhcHB8zA9W0K8uFsa5VXY60StqXSp3Rr5BstShMeXk4_RH6KpGudvVroRGA4s9c3EOJlv1YXcLvu86IdtfDj_vhG1VgVAlWVaDwaRYPjCRiiTlJsvjXFILpCaPU6mVYswkiQErwmRA9a2VLNEKlIC2mWE2shGFfq-h68xlFnOuguSgP9Nxt2Ys5m1sTkQHGxXsjy6GjfgYGBqHdGH_82UC_sVt_3bR7O9p_8hp6vfB7bv_2wreQ3daxo03GxG5j1ZM8QDdbGpwXjxEPw_n-XxiwqNwaOr3WOKiPDMT7DxnK1NjWWisjZnitrzGKHT7vsa1fwtXZnTaRm8V2HaObnhc4HNXeBgDi9cGj09Ba1e4tDh3MQA1Vk7WZo_Q0ZVM_DFaLcrCPEWYZInk1mqb8JwB5-IaemJMcWq0SbgOUNzBRKg2W7srGjIR3muADkQDLQHQEh5aggbobf_OtMlVsrT1J4e-vqXLM-5_KGcj0aotYROpcpi1BLOWxRb4OkzHEGA9lKY84wFa67AmWuVXiUugBeh1_xjUlruLkoUp576NS0YYEejiSQP1fiQ0TZwZHgUoWxCChaEuPinGJz41Oge-ygdpgN514nI5rGVLsd6I1MI_bI2_bfrFyOsT4cyO5Nny2b5Ct3YOv-6L_d3h3nN0mwAd9od1bA2t1rO5eYFuqLN6XM1eerWB0ferlrLfq9Os9g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gX7pfCACOxJ4ia2E5SIyE0KBXVoOrDhsaTcWK7q9QlpUk3jZ_Gr-PYuUwF1Lc98No4ru185_g79rkg9JL4SkpGEg_YMhgoiaYeJ3HgcWpI4ksgtKwqNhGPx_2jIz7ZQr-aWBjrVtnoRKeoVZ7aM_IeiSOLxoiTnqndIiaD4bvFD89WkLI3rU05jQoi-_r8DMy34u1oAN96l5Dhx4MPn7y6woCXhnFcgvGUsqSv_dSXlOs4CRJJDRCcJIikSlPGdBhqsCh0DLTfGMlClYJCUCbWzPjGp9DvFbQNlJyRDtqejL5MvrUnPPYOjQW8jtTxab9XwG5pI9qIi4ihgUfXdkNXNOBfTPdvh8321vaPDKduVxze-p_X8za6WXNxvFcJzx20pbO76FpVnfP8Hvp5sEpWc-0demNdvsESZ_mpnmPrU1voEstMYaX1AteFN6aeZQQKl-4tXOjpSR3XlWHTuMDhWYbPbEliDPxeaTw7AX1e4NzgxEYHlDi1Uri8jw4vZeIPUCfLM_0IYRKHkhujTMgTBmyMK-iJsZRTrXTIVRcFDWREWudxt-VE5sL5E9C-qGAmAGbCwUzQLnrVvrOosphsbP3eIrFtaTOQux_y5VTUCk2YUKYJzFqCwcsCA0wepqMJ8CFKIx7zLtppcCdqtViIC9B10Yv2MSg0e0slM52vXBubptAn0MXDCvbtSGgUWgPd76J4TSDWhrr-JJsdu6TpHJgs70dd9LoRnYthbVqK3Uq81v5hMPu65xYjKY-FNUjCx5tn-xxdB-ESn0fj_SfoBgGe7E7x2A7qlMuVfoqupqflrFg-q3UIRt8vW8x-AzlEtz8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tubule-U-Net&rft.jtitle=Scientific+reports&rft.au=Tekin%2C+Eren&rft.au=Yaz%C4%B1c%C4%B1%2C+%C3%87isem&rft.au=Kusetogullari%2C+H%C3%BCseyin&rft.au=Tokat%2C+Fatma&rft.date=2023-01-04&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-27331-3&rft.externalDocID=oai_DiVA_org_bth_24235 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |