Neural network control of focal position during time-lapse microscopy of cells

Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously sc...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 8; no. 1; pp. 7313 - 10
Main Authors: Wei, Ling, Roberts, Elijah
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 09.05.2018
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1  μ m accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40  μ m of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.
AbstractList Abstract Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.
Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.
Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.
Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1  μ m accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40  μ m of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.
ArticleNumber 7313
Author Wei, Ling
Roberts, Elijah
Author_xml – sequence: 1
  givenname: Ling
  surname: Wei
  fullname: Wei, Ling
  organization: Department of Biophysics, Johns Hopkins University
– sequence: 2
  givenname: Elijah
  surname: Roberts
  fullname: Roberts, Elijah
  email: eroberts@jhu.edu
  organization: Department of Biophysics, Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29743647$$D View this record in MEDLINE/PubMed
BookMark eNp9UslO3TAUtSpQoZQf6KKK1E03Ac-JN5Uq1AEJwYauLce5fvVrEqd2whN_X4dQpgXe2Lr3nOM7nHdobwgDIPSB4BOCWX2aOBGqLjGpSyq4qMvdG3RIMRclZZTuPXkfoOOUtjgfQRUn6i06oKriTPLqEF1ewhxNVwww7UL8U9gwTDF0RXCFCzYnxpD85MNQtHP0w6aYfA9lZ8YERe9tDMmG8XaBW-i69B7tO9MlOL6_j9Cv79-uz36WF1c_zs--XpRWVNVUUmmIxbwloiWgKmyJcowBBicwq4h1qmFGYEeEo1wRx4G6BmqgVnImCLAjdL7qtsFs9Rh9b-KtDsbru0CIG23i5G0H2mYF2WDcWGm5bF3T4lxDU7umyTGOs9aXVWucmx5aC3kCpnsm-jwz-N96E260UJwxSbPA53uBGP7OkCbd-7SMwwwQ5qRp7gkLqejy16cX0G2Y45BHtaBkVbEa84z6-LSih1L-ry0D6ApYFpAiuAcIwXqxh17tobM99J099C6T6hck6yez7DZ35bvXqWylpnExAcTHsl9h_QNksc__
CitedBy_id crossref_primary_10_1002_mbo3_1158
crossref_primary_10_3390_s23177579
crossref_primary_10_1111_nph_16137
crossref_primary_10_1109_TIP_2019_2947349
crossref_primary_10_1111_jmi_13037
crossref_primary_10_1109_TCI_2021_3059497
crossref_primary_10_1016_j_measurement_2023_112964
crossref_primary_10_1111_jfpp_16471
crossref_primary_10_1111_nph_19195
crossref_primary_10_1038_s41598_022_21822_z
crossref_primary_10_1038_s41598_024_57123_w
crossref_primary_10_1109_JLT_2025_3571337
crossref_primary_10_1111_1365_2664_14320
crossref_primary_10_1111_ppl_13524
crossref_primary_10_1002_ajb2_16382
crossref_primary_10_1002_jbio_202000227
crossref_primary_10_1038_s41598_021_81098_7
crossref_primary_10_1111_cote_12548
crossref_primary_10_1002_syst_202200011
crossref_primary_10_1111_acel_13213
crossref_primary_10_1111_jvp_12961
crossref_primary_10_1109_LRA_2021_3061333
Cites_doi 10.1093/bioinformatics/btw614
10.1186/s13059-017-1218-y
10.1038/nature14539
10.1038/nbt.2967
10.1098/rspb.1980.0020
10.1177/24.1.1254907
10.1016/j.cell.2010.04.033
10.1103/PhysRevLett.106.248102
10.1038/nature04588
10.1364/AO.50.004967
10.1016/j.bpj.2014.08.028
10.1146/annurev-micro-091213-112852
10.1364/BOE.8.001731
10.1016/j.proeng.2013.09.086
10.1038/srep34038
10.1017/S1431927615015652
10.1016/j.gde.2010.08.005
10.1016/j.tig.2017.06.005
10.1038/s41598-017-07599-6
10.1038/nrm1979
10.1016/j.molcel.2016.05.023
10.1103/PhysRevE.92.062717
10.1117/1.JBO.22.6.060503
10.1103/PhysRevLett.114.078101
10.1371/journal.pcbi.1005177
10.1080/00018732.2015.1037068
10.1101/170555
10.1109/ICCV.2015.178
10.1038/protex.2017.095
10.1038/onc.2017.341
10.1364/DH.2017.W2A.5
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-018-25458-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_c2496b00bc6c46dfbd0577b8fbb0bc40
PMC5943362
29743647
10_1038_s41598_018_25458_w
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c577t-26a1c04d15d1e970c19f33e0ef50371cf9b3a50f15f2491f4e2fbe8e2c64351e3
IEDL.DBID M2P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431736000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:44:32 EDT 2025
Tue Nov 04 02:00:31 EST 2025
Sun Nov 09 12:58:42 EST 2025
Tue Oct 07 07:35:42 EDT 2025
Wed Feb 19 02:44:35 EST 2025
Sat Nov 29 04:07:53 EST 2025
Tue Nov 18 21:55:45 EST 2025
Fri Feb 21 02:38:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-26a1c04d15d1e970c19f33e0ef50371cf9b3a50f15f2491f4e2fbe8e2c64351e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2036773804?pq-origsite=%requestingapplication%
PMID 29743647
PQID 2036773804
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c2496b00bc6c46dfbd0577b8fbb0bc40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5943362
proquest_miscellaneous_2037056920
proquest_journals_2036773804
pubmed_primary_29743647
crossref_primary_10_1038_s41598_018_25458_w
crossref_citationtrail_10_1038_s41598_018_25458_w
springer_journals_10_1038_s41598_018_25458_w
PublicationCentury 2000
PublicationDate 2018-05-09
PublicationDateYYYYMMDD 2018-05-09
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-09
  day: 09
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Schenk (CR18) 2016; 6
Lee, Covert (CR1) 2010; 20
Norman, Lord, Paulsson, Losick (CR11) 2015; 69
Altschuler, Wu (CR4) 2010; 141
Pollen (CR8) 2014; 32
Podlech (CR24) 2016; 22
Suel, Garcia-Ojalvo, Liberman, Elowitz (CR7) 2006; 440
CR19
Brenner (CR36) 1976; 24
CR39
Symmons, Raj (CR5) 2016; 62
CR35
CR12
Castillo-Secilla (CR20) 2017; 8
CR34
Yuan (CR6) 2017; 18
CR33
CR31
CR30
Abadi (CR41) 2016; 16
Van Valen (CR27) 2016; 12
Fuller, Kellner, Price (CR21) 2011; 50
Klein, Sharma, Bohrer, Avelis, Roberts (CR17) 2017; 33
Krizhevsky, Sutskever, Hinton (CR32) 2012; 25
De, Masilamani (CR37) 2013; 64
Marr, Hildreth (CR38) 1980; 207
Assaf, Roberts, Luthey-Schulten (CR10) 2011; 106
Sadanandan, Ranefall, Le Guyader, Wahlby (CR40) 2017; 7
Godin, Lounis, Cognet (CR2) 2014; 107
Liu, Lavis, Betzig (CR3) 2015; 58
Halicek (CR29) 2017; 22
Pepperkok, Ellenberg (CR15) 2006; 7
Roberts, Beer, Bohrer, Sharma, Assaf (CR14) 2015; 92
Geusebroek, Cornelissen, Smeulders, Geerts (CR25) 2000; 39
CR28
CR9
CR23
CR22
Pegoraro, Misteli (CR16) 2017; 33
LeCun, Bengio, Hinton (CR26) 2015; 521
Ge, Qian, Xie (CR13) 2015; 114
FW Schenk (25458_CR18) 2016; 6
SJ Altschuler (25458_CR4) 2010; 141
GC Yuan (25458_CR6) 2017; 18
Y LeCun (25458_CR26) 2015; 521
SK Sadanandan (25458_CR40) 2017; 7
K De (25458_CR37) 2013; 64
H Ge (25458_CR13) 2015; 114
DN Fuller (25458_CR21) 2011; 50
25458_CR22
M Assaf (25458_CR10) 2011; 106
25458_CR23
JM Castillo-Secilla (25458_CR20) 2017; 8
AG Godin (25458_CR2) 2014; 107
E Roberts (25458_CR14) 2015; 92
25458_CR39
M Halicek (25458_CR29) 2017; 22
25458_CR19
S Podlech (25458_CR24) 2016; 22
Z Liu (25458_CR3) 2015; 58
G Pegoraro (25458_CR16) 2017; 33
AA Pollen (25458_CR8) 2014; 32
25458_CR30
A Krizhevsky (25458_CR32) 2012; 25
M Klein (25458_CR17) 2017; 33
25458_CR35
DA Van Valen (25458_CR27) 2016; 12
TK Lee (25458_CR1) 2010; 20
JM Geusebroek (25458_CR25) 2000; 39
25458_CR31
O Symmons (25458_CR5) 2016; 62
25458_CR9
25458_CR33
D Marr (25458_CR38) 1980; 207
GM Suel (25458_CR7) 2006; 440
25458_CR12
25458_CR34
M Abadi (25458_CR41) 2016; 16
R Pepperkok (25458_CR15) 2006; 7
25458_CR28
TM Norman (25458_CR11) 2015; 69
JF Brenner (25458_CR36) 1976; 24
References_xml – volume: 33
  start-page: 3035
  year: 2017
  ident: CR17
  article-title: Biospark: scalable analysis of large numerical datasets from biological simulations and experiments using Hadoop and Spark
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw614
– ident: CR22
– volume: 18
  year: 2017
  ident: CR6
  article-title: Challenges and emerging directions in single-cell analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1218-y
– volume: 58
  start-page: 64459
  year: 2015
  ident: CR3
  article-title: Imaging live-cell dynamics and structure at the single-molecule level
  publication-title: Mol. Cell
– volume: 521
  start-page: 436444
  year: 2015
  ident: CR26
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 32
  start-page: 10538
  year: 2014
  ident: CR8
  article-title: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2967
– ident: CR39
– volume: 207
  start-page: 187
  year: 1980
  end-page: 217
  ident: CR38
  article-title: Theory of edge detection
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.1980.0020
– ident: CR12
– ident: CR30
– ident: CR33
– volume: 24
  start-page: 100
  year: 1976
  end-page: 111
  ident: CR36
  article-title: An automated microscope for cytologic research a preliminary evaluation
  publication-title: Journal of Histochemistry & Cytochemistry
  doi: 10.1177/24.1.1254907
– ident: CR35
– volume: 141
  start-page: 55963
  year: 2010
  ident: CR4
  article-title: Cellular heterogeneity: do differences make a difference?
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.033
– volume: 106
  start-page: 248102
  year: 2011
  ident: CR10
  article-title: Determining the stability of genetic switches: explicitly accounting for mRNA noise
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.248102
– volume: 440
  start-page: 54550
  year: 2006
  ident: CR7
  article-title: An excitable gene regulatory circuit induces transient cellular differentiation
  publication-title: Nature
  doi: 10.1038/nature04588
– volume: 50
  start-page: 49674976
  year: 2011
  ident: CR21
  article-title: Exploiting chromatic aberration for image-based microscope autofocus
  publication-title: Applied Optics
  doi: 10.1364/AO.50.004967
– ident: CR23
– volume: 107
  start-page: 177784
  year: 2014
  ident: CR2
  article-title: Super-resolution microscopy approaches for live cell imaging
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.08.028
– volume: 69
  start-page: 381403
  year: 2015
  ident: CR11
  article-title: Stochastic switching of cell fate in microbes
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-091213-112852
– ident: CR19
– volume: 8
  start-page: 17311740
  year: 2017
  ident: CR20
  article-title: Autofocus method for automated microscopy using embedded gpus
  publication-title: Biomedical Optics Express
  doi: 10.1364/BOE.8.001731
– volume: 64
  start-page: 149
  year: 2013
  end-page: 158
  ident: CR37
  article-title: Image sharpness measure for blurred images in frequency domain
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2013.09.086
– volume: 6
  year: 2016
  ident: CR18
  article-title: High-speed microscopy of continuously moving cell culture vessels
  publication-title: Scientific reports
  doi: 10.1038/srep34038
– volume: 22
  start-page: 199207
  year: 2016
  ident: CR24
  article-title: Autofocus by bayes spectral entropy applied to optical microscopy
  publication-title: Microscopy and Microanalysis
  doi: 10.1017/S1431927615015652
– volume: 20
  start-page: 67783
  year: 2010
  ident: CR1
  article-title: High-throughput, single-cell NF- B dynamics
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2010.08.005
– volume: 33
  start-page: 60415
  year: 2017
  ident: CR16
  article-title: High-throughput imaging for the discovery of cellular mechanisms of disease
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2017.06.005
– volume: 7
  year: 2017
  ident: CR40
  article-title: Automated training of deep convolutional neural networks for cell segmentation
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07599-6
– volume: 7
  start-page: 690696
  year: 2006
  ident: CR15
  article-title: High-throughput fluorescence microscopy for systems biology
  publication-title: Nature reviews Molecular cell biology
  doi: 10.1038/nrm1979
– volume: 39
  start-page: 19
  year: 2000
  ident: CR25
  article-title: Robust autofocusing in microscopy
  publication-title: Cytometry Part A
– ident: CR31
– volume: 62
  start-page: 788802
  year: 2016
  ident: CR5
  article-title: Whats luck got to do with it: Single cells, multiple fates, and biological nondeterminism
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.023
– ident: CR9
– volume: 92
  start-page: 062717
  year: 2015
  ident: CR14
  article-title: Dynamics of simple genenetwork motifs subject to extrinsic fluctuations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.062717
– volume: 22
  start-page: 060503
  year: 2017
  ident: CR29
  article-title: Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging
  publication-title: Journal of Biomedical Optics
  doi: 10.1117/1.JBO.22.6.060503
– ident: CR34
– volume: 16
  start-page: 265283
  year: 2016
  ident: CR41
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: OSDI
– volume: 114
  start-page: 078101
  year: 2015
  ident: CR13
  article-title: Stochastic phenotype transition of a single cell in an Intermediate region of gene state switching
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.078101
– volume: 25
  start-page: 1097105
  year: 2012
  ident: CR32
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: e1005177
  year: 2016
  ident: CR27
  article-title: Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005177
– ident: CR28
– volume: 8
  start-page: 17311740
  year: 2017
  ident: 25458_CR20
  publication-title: Biomedical Optics Express
  doi: 10.1364/BOE.8.001731
– volume: 50
  start-page: 49674976
  year: 2011
  ident: 25458_CR21
  publication-title: Applied Optics
  doi: 10.1364/AO.50.004967
– volume: 58
  start-page: 64459
  year: 2015
  ident: 25458_CR3
  publication-title: Mol. Cell
– ident: 25458_CR23
– volume: 12
  start-page: e1005177
  year: 2016
  ident: 25458_CR27
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005177
– volume: 107
  start-page: 177784
  year: 2014
  ident: 25458_CR2
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.08.028
– volume: 114
  start-page: 078101
  year: 2015
  ident: 25458_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.078101
– volume: 92
  start-page: 062717
  year: 2015
  ident: 25458_CR14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.062717
– ident: 25458_CR12
  doi: 10.1080/00018732.2015.1037068
– ident: 25458_CR34
– volume: 24
  start-page: 100
  year: 1976
  ident: 25458_CR36
  publication-title: Journal of Histochemistry & Cytochemistry
  doi: 10.1177/24.1.1254907
– ident: 25458_CR19
  doi: 10.1101/170555
– volume: 16
  start-page: 265283
  year: 2016
  ident: 25458_CR41
  publication-title: OSDI
– volume: 521
  start-page: 436444
  year: 2015
  ident: 25458_CR26
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 25458_CR30
– volume: 69
  start-page: 381403
  year: 2015
  ident: 25458_CR11
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-091213-112852
– volume: 18
  year: 2017
  ident: 25458_CR6
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1218-y
– volume: 207
  start-page: 187
  year: 1980
  ident: 25458_CR38
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.1980.0020
– volume: 7
  start-page: 690696
  year: 2006
  ident: 25458_CR15
  publication-title: Nature reviews Molecular cell biology
  doi: 10.1038/nrm1979
– ident: 25458_CR22
– volume: 20
  start-page: 67783
  year: 2010
  ident: 25458_CR1
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2010.08.005
– volume: 440
  start-page: 54550
  year: 2006
  ident: 25458_CR7
  publication-title: Nature
  doi: 10.1038/nature04588
– volume: 62
  start-page: 788802
  year: 2016
  ident: 25458_CR5
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.023
– ident: 25458_CR39
  doi: 10.1109/ICCV.2015.178
– ident: 25458_CR28
  doi: 10.1038/protex.2017.095
– volume: 6
  year: 2016
  ident: 25458_CR18
  publication-title: Scientific reports
  doi: 10.1038/srep34038
– volume: 22
  start-page: 060503
  year: 2017
  ident: 25458_CR29
  publication-title: Journal of Biomedical Optics
  doi: 10.1117/1.JBO.22.6.060503
– volume: 33
  start-page: 3035
  year: 2017
  ident: 25458_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw614
– volume: 141
  start-page: 55963
  year: 2010
  ident: 25458_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.033
– volume: 39
  start-page: 19
  year: 2000
  ident: 25458_CR25
  publication-title: Cytometry Part A
– volume: 32
  start-page: 10538
  year: 2014
  ident: 25458_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2967
– volume: 64
  start-page: 149
  year: 2013
  ident: 25458_CR37
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2013.09.086
– volume: 7
  year: 2017
  ident: 25458_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07599-6
– ident: 25458_CR9
  doi: 10.1038/onc.2017.341
– ident: 25458_CR33
– ident: 25458_CR31
  doi: 10.1364/DH.2017.W2A.5
– ident: 25458_CR35
– volume: 106
  start-page: 248102
  year: 2011
  ident: 25458_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.248102
– volume: 33
  start-page: 60415
  year: 2017
  ident: 25458_CR16
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2017.06.005
– volume: 25
  start-page: 1097105
  year: 2012
  ident: 25458_CR32
  publication-title: Advances in Neural Information Processing Systems
– volume: 22
  start-page: 199207
  year: 2016
  ident: 25458_CR24
  publication-title: Microscopy and Microanalysis
  doi: 10.1017/S1431927615015652
SSID ssj0000529419
Score 2.3977144
Snippet Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during...
Abstract Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7313
SubjectTerms 14/63
631/1647/245/2186
631/1647/794
Humanities and Social Sciences
Microfluidics
Microscopy
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqikpcENACoQW5EjeIasdOHB8BUXFAKw4F9WbFzlhUKtmq2bbqv--Mnd12y9eFq-1dOc_jzExm5g1jb1AJge2FKT2--0sNQPHdaMsojG9CU4UukVV__2Jms_b42H690-qLcsIyPXAG7iCgf9CgbPjQBN300fdoYRjfRu9xTCdvXRh7x5nKrN6V1dJOVTJCtQcjaiqqJpMoGBQsKq_WNFEi7P-dlflrsuS9iGlSRIeP2aPJguTv886fsA0YnrKt3FPyepvNiG4D54ec382nXHQ-jzyS3uLLNC2eKxQ5dZcvT7uzEfhPys6jOpVrWk7f9Mcd9u3w09HHz-XUNKEMiMuirJpOBqF7WfcSrBFB2qgUCIg1sfOFaL3qahFlHRFZGTVU0UMLVUDbpJagnrHNYT7AC8ZxUEf0PyLqUd2Lxre9tnh6fQcKAHTB5BJAFyZGcWpscepSZFu1LoPuEHSXQHdXBXu7-s1Z5tP46-oPdC6rlcSFnQZQQtwkIe5fElKwveWpuumCjo7ir8aoVuBT7K-m8WoRtt0A84u0xqB9aCv8i-dZCFY7qdAPI-r9gpk18Vjb6vrMcPIj0XfXVis0Gwr2bilIt9v6MxQv_wcUu-xhRTeAEjbtHttcnF_AK_YgXC5OxvPX6QrdAOGxISs
  priority: 102
  providerName: Directory of Open Access Journals
Title Neural network control of focal position during time-lapse microscopy of cells
URI https://link.springer.com/article/10.1038/s41598-018-25458-w
https://www.ncbi.nlm.nih.gov/pubmed/29743647
https://www.proquest.com/docview/2036773804
https://www.proquest.com/docview/2037056920
https://pubmed.ncbi.nlm.nih.gov/PMC5943362
https://doaj.org/article/c2496b00bc6c46dfbd0577b8fbb0bc40
Volume 8
WOSCitedRecordID wos000431736000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLki98H4EyipI3CBqnDhxfEIUtQKJriIEaDlFsWOXSiXZbrZU_ffMON5Uy6MXLj7YTmR7Zjxjz_gbgJeohIxsYhEp3Psjbgz5d62MbCxUrvNE1w6s-utHMZsV87ks_YVb78Mq13ui26ibTtMd-R45zIRIi5i_WZxFlDWKvKs-hcYWTNCyYRTSdZSU4x0LebE4k_6tTJwWez3qK3pTxpA9yGUUXWzoIwfb_zdb88-Qyd_8pk4dHd7534nchdveEA3fDpxzD26Y9j7cGlJTXj6AGaF2YHs7hImHPqQ97GxoSf2F62ivcHjoGFKS-ui0XvQm_EFBfvTc5ZK6k2ugfwhfDg8-v3sf-dwLkc6EWEVJXjMd84ZlDTNSxJpJm6YmNjYjkD9tpUrrLLYss3iAY5abxCpTmESjiZMxkz6C7bZrzRMIsZJbPMZYVMe8iXNVNFwiEzS1SY0xPAC2pkClPTA55cc4rZyDPC2qgWoVUq1yVKsuAng1frMYYDmu7b1PhB17EqS2q-iWx5WX0ErjPHLchJTONc8bqxo0ZYUqrFJYx-MAdtf0rLyc99UVMQN4MTajhNLa1q3pzl0fgWamTPAXjwcuGkeS4HGOEPwDEBv8tTHUzZb25LtDAc8kT9H6COD1mhOvhvXvpXh6_SyewU5CwkERnXIXtlfLc_Mcbuqfq5N-OYUtMReuLKYw2T-YlZ-m7hJj6uSOSoHlpPxwVH77BYgPNR0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qgQJDgBFHzcOL4gBCvqlWXVQ8F9WYSZ0xXapNls2W1f4rfyExe1fLorQeuthPZzueZceabGYDnpIRQFb70cpL9nkBk_65VnvVlnpgkNFmTrPrLSI7H6eGh2l-Dn30sDNMqe5nYCOqiMvyPfIsdZlJGqS_eTL97XDWKvat9CY0WFnu4XNCVrX69-4G-74sw3P548H7H66oKeCaWcu6FSRYYXxRBXASopG8CZaMIfbQxp68zVuVRFvs2iC1dTQIrMLQ5phgaUt5xgBG99xJcFpxZjKmC4f7wT4e9ZiJQXWyOH6VbNelHjmELCI7sovIWK_qvKRPwN9v2T4rmb37aRv1t3_zfNu4W3OgMbfdtezJuwxqWd-BqW3pzeRfGnJWE-suWBu92lH23sq5l9e72bDa3DeR055MT9I6zaY3uCZMYOZxnycPZ9VHfg88Xspj7sF5WJT4AlxqFpWuaJXNDFH6Sp4VQBPIiwwgRhQNB_8W16RKvc_2PY90QAKJUtyjRhBLdoEQvHHg5PDNt046cO_odA2kYySnDm4Zq9k13EkgbWkdCQjY3iRFJYfOCTHWZpzbPqU34Dmz2-NGdHKv1GXgceDZ0kwTivc1KrE6bMZLMaBXSKzZa1A4zCem6yhUKHJAreF6Z6mpPOTlqspzHSkRkXTnwqkf-2bT-vRUPz1_FU7i2c_BppEe7471HcD3kg8nsVbUJ6_PZKT6GK-bHfFLPnjQn24WvF30ifgF4X4qX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKSAu7IuhgJHgBFa8jD2eA0JAiYhaohwAtafBHr-BSK0T4pQof41fx3teUoWltx64zoytWb63zLwN4CkJIVSFL72ceL8nENm-a5VnfZknJglNVier_rwvR6P04ECNt-BnFwvDbpUdT6wZdTE1_EbeZ4OZlFHqi75t3SLGu4NXs-8eV5BiS2tXTqOByB6ulnR9q14Od-msn4Xh4N3Ht--9tsKAZ2IpF16YZIHxRRHERYBK-iZQNorQRxtzKjtjVR5lsW-D2NI1JbACQ5tjiqEhQR4HGNF_L8A2qeQi7MH2ePhhfLh-4WEbmghUG6njR2m_ImnJEW0BgZMNVt5yQxrWRQP-pun-6bD5m9W2FoaDa__zNl6Hq60K7r5uaOYGbGF5Ey41RTlXt2DE-Uqov2wc5N3Wmd-dWtey4Hc7Pze3CfF0F5Nj9I6yWYXuMbs3cqDPioezUaS6DZ_OZTF3oFdOS7wHLjUKSxc4S4qIKPwkTwuhCP5FhhEiCgeC7vS1aVOyc2WQI127BkSpbhCjCTG6RoxeOvB8_c2sSUhy5ug3DKr1SE4mXjdM5191y5u0oXUkxH5zkxiRFDYvSImXeWrznNqE78BOhyXdcrhKnwLJgSfrbuJNvLdZidOTeowkBVuF9Iu7DYLXMwnpIsu1CxyQG9jemOpmTzn5Vuc_j5WISO9y4EVHBafT-vdW3D97FY_hMhGC3h-O9h7AlZBplN1a1Q70FvMTfAgXzY_FpJo_asnchS_nTRK_AFQblOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+control+of+focal+position+during+time-lapse+microscopy+of+cells&rft.jtitle=Scientific+reports&rft.au=Wei%2C+Ling&rft.au=Roberts%2C+Elijah&rft.date=2018-05-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft.spage=7313&rft_id=info:doi/10.1038%2Fs41598-018-25458-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon