Artificial intelligence and digital biomarker in precision pathology guiding immune therapy selection and precision oncology

Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of...

Full description

Saved in:
Bibliographic Details
Published in:Cancer reports Vol. 6; no. 7; pp. e1796 - n/a
Main Authors: Huss, Ralf, Raffler, Johannes, Märkl, Bruno
Format: Journal Article
Language:English
Published: United States John Wiley & Sons, Inc 01.07.2023
John Wiley and Sons Inc
Wiley
Subjects:
ISSN:2573-8348, 2573-8348
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re‐)activate the patient's immune system and direct it against the individual cancer in the most effective way. Recent Findings Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune‐oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune‐cancer‐network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer‐assisted development and clinical validation of such digital biomarker. Conclusions The successful implementation of AI‐supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into “precision pathology” delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a “precision oncology”.
AbstractList The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re-)activate the patient's immune system and direct it against the individual cancer in the most effective way.BACKGROUNDThe currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re-)activate the patient's immune system and direct it against the individual cancer in the most effective way.Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune-oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune-cancer-network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer-assisted development and clinical validation of such digital biomarker.RECENT FINDINGSPrimary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune-oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune-cancer-network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer-assisted development and clinical validation of such digital biomarker.The successful implementation of AI-supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into "precision pathology" delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a "precision oncology".CONCLUSIONSThe successful implementation of AI-supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into "precision pathology" delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a "precision oncology".
Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re‐)activate the patient's immune system and direct it against the individual cancer in the most effective way. Recent Findings Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune‐oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune‐cancer‐network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer‐assisted development and clinical validation of such digital biomarker. Conclusions The successful implementation of AI‐supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into “precision pathology” delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a “precision oncology”.
Abstract Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re‐)activate the patient's immune system and direct it against the individual cancer in the most effective way. Recent Findings Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune‐oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune‐cancer‐network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer‐assisted development and clinical validation of such digital biomarker. Conclusions The successful implementation of AI‐supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into “precision pathology” delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a “precision oncology”.
Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re‐)activate the patient's immune system and direct it against the individual cancer in the most effective way. Recent Findings Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune‐oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune‐cancer‐network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer‐assisted development and clinical validation of such digital biomarker. Conclusions The successful implementation of AI‐supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into “precision pathology” delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a “precision oncology”.
The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re-)activate the patient's immune system and direct it against the individual cancer in the most effective way. Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune-oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune-cancer-network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer-assisted development and clinical validation of such digital biomarker. The successful implementation of AI-supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into "precision pathology" delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a "precision oncology".
Author Raffler, Johannes
Märkl, Bruno
Huss, Ralf
AuthorAffiliation 2 Institute for Digital Medicine University Hospital Augsburg Augsburg Germany
1 Medical Faculty University Augsburg Augsburg Germany
AuthorAffiliation_xml – name: 2 Institute for Digital Medicine University Hospital Augsburg Augsburg Germany
– name: 1 Medical Faculty University Augsburg Augsburg Germany
Author_xml – sequence: 1
  givenname: Ralf
  orcidid: 0000-0002-6447-9300
  surname: Huss
  fullname: Huss, Ralf
  email: ralf.huss@uk-augsburg.de
  organization: University Hospital Augsburg
– sequence: 2
  givenname: Johannes
  surname: Raffler
  fullname: Raffler, Johannes
  organization: University Hospital Augsburg
– sequence: 3
  givenname: Bruno
  surname: Märkl
  fullname: Märkl, Bruno
  organization: Medical Faculty University Augsburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36813293$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpgT-AInGBw7b-SpycULXio1IFEoKz5Y9J1ovXXuwEtBI_Hme3lLYSnDzyPO_r8cw8RUchBkDoOcHnBGN6YUKi50R0zSN0QmvBFi3j7dGd-Bid5bzGGJO2YbRjT9Axa1oyhyfo12UaXe-MU75yYQTv3QDBQKWCrawb3FgS2sWNSt8gFaTaJjAuu1giNa6ij8OuGiZnXRgqt9lMAapxBUltd1UGD2ac0dntrzAGs9c9Q4975TOc3Zyn6Ou7t1-WHxbXn95fLS-vF6YWollwbIXWAFhrgjXXTdPijjChrGE9FVg32goh6l4oZjVlpuE9U7YDTrkijLFTdHXwtVGt5Ta58pudjMrJ_UVMg1SlDcaDrGnNSlsts6bmpLUdL49hahroamxaXrzeHLy2k96ANRDGpPw90_uZ4FZyiD8kwaxhLRPF4dWNQ4rfJ8ij3LhsSudVgDhlSYXoGC_jqQv68gG6jlMKpVeS4Q5T2hLeFerF3ZJua_kz5QK8PgAmxZwT9LcIwXJeIjkvkZyXqLAXD1hTdmAeYvmN8_9T_HQedv-2lsuPn-le8RtGFNmy
CitedBy_id crossref_primary_10_1002_cnr2_1862
crossref_primary_10_1111_ahe_13095
crossref_primary_10_1515_cclm_2023_1124
crossref_primary_10_31893_multirev_2025218
crossref_primary_10_1080_14789450_2024_2413107
crossref_primary_10_3389_fonc_2025_1580195
crossref_primary_10_1007_s00521_024_10287_y
Cites_doi 10.1038/s41746-020-0238-2
10.1186/s40425-016-0178-1
10.1136/gutjnl-2020-322880
10.1016/j.ccell.2015.03.008
10.1186/1479-5876-10-1
10.1158/2159-8290.CD-20-0672
10.1016/j.cllc.2018.02.008
10.1016/S1470-2045(20)30445-9
10.1073/pnas.1607836113
10.1007/s00428-020-02894-6
10.1073/pnas.1717139115
10.1016/S1470-2045(16)30406-5
10.1038/s41467-018-07582-3
10.1371/journal.pmed.1002730
10.1038/nature16478
10.1016/j.patcog.2018.07.022
10.1016/j.celrep.2019.11.017
10.1016/j.lungcan.2015.01.016
10.1002/path.5310
10.1186/s40425-017-0243-4
10.1016/j.ejca.2017.01.004
10.1038/s41591-019-0462-y
10.1002/path.5831
10.1158/1078-0432.CCR-15-2246
10.1038/s43018-020-0087-6
10.1016/j.media.2014.01.010
10.1109/TPAMI.2011.235
10.1016/j.bbcan.2021.188548
10.1016/j.celrep.2018.03.086
10.1016/j.ejca.2017.08.026
10.1093/annonc/mdv489
10.1038/s41598-018-22564-7
10.1002/path.5223
10.1002/path.5026
10.1002/path.5388
10.4103/2153-3539.107953
10.3390/cancers13092074
10.1002/acg2.113
10.1016/j.bbcan.2021.188520
10.1038/s41591-020-0900-x
10.5858/arpa.2018-0147-OA
10.1007/978-1-4939-9773-2_21
10.2217/fon-2017-0531
10.1002/path.5832
10.1038/s41571-019-0252-y
10.1073/pnas.2022410118
10.3389/fonc.2019.00658
10.1016/j.cllc.2017.04.008
10.1126/scitranslmed.aaa1408
10.2174/1389450120666191017113051
10.1016/bs.mie.2019.07.039
10.1007/978-3-319-46723-8_53
10.3389/fimmu.2019.00467
10.1172/jci.insight.126908
10.1016/j.cell.2014.12.033
10.1158/1078-0432.CCR-19-2078
10.1016/j.ccell.2018.01.011
10.1056/NEJMc2031965
10.1111/joim.13030
10.1158/0008-5472.CAN-17-0629
10.1016/j.cell.2018.09.018
10.1016/j.canlet.2015.11.018
10.3389/fonc.2019.01161
10.1002/path.5406
10.1007/s00428-018-2485-z
10.1002/cjp2.170
10.1200/JCO.2010.30.5425
10.1093/annonc/mdx755
10.1007/s00428-019-02695-6
10.1038/ng0508-494
10.1186/s40425-018-0368-0
10.1109/RBME.2009.2034865
10.1038/s41573-018-0007-y
10.1038/s41568-019-0238-1
10.1038/nature12477
10.1016/j.immuni.2016.02.025
10.1038/s41598-019-43525-8
10.1038/s41596-019-0206-y
10.1016/j.cell.2017.08.031
10.1038/modpathol.2017.156
10.1007/978-1-4939-8979-9_2
10.1016/j.jim.2019.112714
10.7717/peerj.3874
10.1038/s41586-021-04086-x
10.3389/fmed.2019.00172
10.1038/s41467-019-13647-8
10.1073/pnas.1519556112
10.1158/1078-0432.CCR-19-3888
10.1016/S2589-7500(21)00133-3
10.1038/s41573-019-0029-0
10.1186/s13045-020-00922-1
10.1016/j.csbj.2014.11.005
10.1109/CVPR.2016.308
10.1186/s40364-019-0178-7
10.1021/acsnano.9b07326
10.1016/bs.mie.2019.10.002
10.1109/TPAMI.2016.2644615
10.1093/annonc/mdy495
10.1038/bjc.2015.309
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC.
2023 The Authors. Cancer Reports published by Wiley Periodicals LLC.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC.
– notice: 2023 The Authors. Cancer Reports published by Wiley Periodicals LLC.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1002/cnr2.1796
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Huss et al
EISSN 2573-8348
EndPage n/a
ExternalDocumentID oai_doaj_org_article_5253100d3dc5418d9468002c6e950c84
PMC10363837
36813293
10_1002_cnr2_1796
CNR21796
Genre reviewArticle
Journal Article
Review
GroupedDBID 0R~
1OC
24P
34L
53G
AAHHS
AAZKR
ABCUV
ACCFJ
ACCMX
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMYDB
AVUZU
BENPR
BFHJK
CCPQU
DCZOG
EBS
EJD
GROUPED_DOAJ
HGLYW
IAO
IHR
INH
ITC
LATKE
LEEKS
LUTES
LYRES
M~E
O9-
OK1
OVD
OVEED
P2W
PIMPY
ROL
RPM
SUPJJ
TEORI
ZZTAW
7X7
88E
8FI
8FJ
AAMMB
AAYXX
ABUWG
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PSQYO
UKHRP
WIN
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5776-40d7bbee0bb10b4b66809137adc3f270b6bd7775f7a3db23c64f3ad9e424a1333
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936374200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2573-8348
IngestDate Tue Oct 14 18:24:00 EDT 2025
Tue Nov 04 02:06:26 EST 2025
Thu Oct 02 11:35:40 EDT 2025
Tue Oct 07 07:17:55 EDT 2025
Mon Jul 21 05:32:22 EDT 2025
Sat Nov 29 06:40:34 EST 2025
Tue Nov 18 21:16:21 EST 2025
Wed Jan 22 16:21:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords decision support
artificial intelligence
digital biomarker
immune oncology
precision pathology
Language English
License Attribution
2023 The Authors. Cancer Reports published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5776-40d7bbee0bb10b4b66809137adc3f270b6bd7775f7a3db23c64f3ad9e424a1333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6447-9300
OpenAccessLink https://doaj.org/article/5253100d3dc5418d9468002c6e950c84
PMID 36813293
PQID 3090228149
PQPubID 6860424
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_5253100d3dc5418d9468002c6e950c84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10363837
proquest_miscellaneous_2779343295
proquest_journals_3090228149
pubmed_primary_36813293
crossref_primary_10_1002_cnr2_1796
crossref_citationtrail_10_1002_cnr2_1796
wiley_primary_10_1002_cnr2_1796_CNR21796
PublicationCentury 2000
PublicationDate July 2023
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Cancer reports
PublicationTitleAlternate Cancer Rep (Hoboken)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 5
2017; 86
2013; 4
2021; 1875
2021; 1876
2020; 20
2019; 10
2021; 600
2018; 244
2019; 14
2019; 17
2019; 247
2019; 16
2020; 14
2019; 18
2020; 288
2020; 13
2018; 84
2019; 249
2016; 380
2012; 10
2022; 256
2021; 70
2018; 175
2018; 6
2018; 9
2020; 6
2017; 75
2018; 8
2020; 3
2020; 1
2020; 250
2017; 39
2021; 478
2017; 77
2015; 88
2019; 25
2016; 113
2014; 15
2019; 29
2014; 18
2018; 33
2011; 29
2018; 31
2019; 474
2016; 44
2019; 8
2019; 7
2018; 29
2015; 160
2019; 9
2019; 4
2020; 2055
2021; 4
2021; 3
2019; 6
2019; 30
2010
2013; 500
2016; 529
2017; 170
2021; 384
2018; 23
2016; 17
2012; 34
2015; 7
2019; 143
2016; 4
2021; 13
2018; 19
2019; 1913
2018; 2018
2015; 27
2021; 11
2015; 113
2021; 18
2015; 112
2018; 115
2020; 478
2020; 26
2018
2020; 635
2017
2016
2017; 18
2022; 1
2020; 476
2020; 21
2008; 40
2009; 2
2016; 27
2018; 14
2016; 22
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
Akram SU (e_1_2_11_75_1) 2020; 6
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
Sun Y (e_1_2_11_107_1) 2018; 2018
e_1_2_11_13_1
e_1_2_11_29_1
e_1_2_11_4_1
Binnig G (e_1_2_11_30_1) 2018
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_59_1
Dundar M (e_1_2_11_33_1) 2010
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
Coravos A (e_1_2_11_63_1) 2019; 14
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_16_1
e_1_2_11_39_1
Bernstock JD (e_1_2_11_65_1) 2019; 8
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
Yadagiri P (e_1_2_11_42_1) 2022; 1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_26_1
e_1_2_11_3_1
Campion FX (e_1_2_11_17_1) 2017
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_86_1
e_1_2_11_18_1
e_1_2_11_37_1
References_xml – volume: 88
  start-page: 24
  year: 2015
  end-page: 33
  article-title: Clinicopathological analysis of PD‐L1 and PD‐L2 expression in pulmonary squamous cell carcinoma: comparison with tumor‐infiltrating T cells and the status of oncogenic drivers
  publication-title: Lung Cancer
– volume: 26
  start-page: 1054
  year: 2020
  end-page: 1062
  article-title: Geospatial immune variability illuminates differential evolution of lung adenocarcinoma
  publication-title: Nat Med
– start-page: 2732
  year: 2010
  end-page: 2735
  article-title: A multiple instance learning approach toward optimal classification of pathology slides
  publication-title: Proceedings of the 20th Int Conf Pattern Recognit
– volume: 384
  start-page: 1168
  year: 2021
  end-page: 1170
  article-title: The Spectrum of benefit from checkpoint blockade in hypermutated tumors
  publication-title: N Engl J Med
– volume: 77
  start-page: e75
  year: 2017
  end-page: e78
  article-title: The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research
  publication-title: Cancer Res
– volume: 18
  year: 2021
  article-title: Targeting loss of heterozygosity for cancer‐specific immunotherapy
  publication-title: Proc Natl Acad Sci U S A
– volume: 113
  start-page: 1075
  year: 2015
  end-page: 1080
  article-title: Comparing computer‐generated and pathologist‐generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays
  publication-title: Br J Cancer
– volume: 14
  start-page: 651
  year: 2020
  end-page: 663
  article-title: Multimodal multiplexed immunoimaging with Nanostars to detect multiple immunomarkers and monitor response to immunotherapies
  publication-title: ACS Nano
– volume: 18
  start-page: 689
  issue: 9
  year: 2019
  end-page: 706
  article-title: Optimizing oncolytic virotherapy in cancer treatment
  publication-title: Nat Rev Drug Discov
– volume: 474
  start-page: 511
  issue: 4
  year: 2019
  end-page: 522
  article-title: Precision immunoprofiling by image analysis and artificial intelligence
  publication-title: Virchows Arch
– volume: 250
  start-page: 685
  year: 2020
  end-page: 692
  article-title: Software‐assisted decision support in digital histopathology
  publication-title: J Pathol
– volume: 635
  start-page: 33
  year: 2020
  end-page: 50
  article-title: Characterization of the immune microenvironment of NSCLC by multispectral analysis of multiplex immunofluorescence images
  publication-title: Methods Enzymol
– volume: 5
  year: 2017
  article-title: Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
  publication-title: PeerJ
– volume: 1
  start-page: 5
  issue: 1
  year: 2022
  end-page: 11
  article-title: Precision medicine: recent progress in cancer therapy
  publication-title: Mediterr J Pharm Pharm Sci
– volume: 288
  start-page: 62
  issue: 1
  year: 2020
  end-page: 81
  article-title: Artificial intelligence as the next step towards precision pathology
  publication-title: J Intern Med
– volume: 26
  start-page: 3505
  year: 2020
  end-page: 3513
  article-title: Dissecting the tumor‐immune landscape in chimeric antigen receptor T‐cell therapy: key challenges and opportunities for a systems immunology approach
  publication-title: Clin Cancer Res
– volume: 2055
  start-page: 455
  year: 2020
  end-page: 465
  article-title: Overview of tissue imaging methods
  publication-title: Methods Mol Biol
– volume: 256
  start-page: 282
  year: 2022
  end-page: 296
  article-title: Tumor‐immune landscape patterns before and after chemoradiation in rectable esophageal adenocarcinomas
  publication-title: J Pathol
– volume: 7
  start-page: 283ra54
  year: 2015
  article-title: Clonal status of actionable driver events and the timing of mutational processes in cancer evolution
  publication-title: Sci Transl Med
– volume: 9
  start-page: 1161
  year: 2019
  article-title: The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic review and meta‐analysis
  publication-title: Front Oncol
– volume: 22
  start-page: 2177
  year: 2016
  end-page: 2182
  article-title: Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer
  publication-title: Clin Cancer Res
– volume: 112
  start-page: E6496
  year: 2015
  end-page: E6505
  article-title: Extremely high genetic diversity in a single tumor points to prevalence of non‐Darwinian cell evolution
  publication-title: Proc Natl Acad Sci U S A
– volume: 115
  start-page: E2970
  issue: 13
  year: 2018
  end-page: E2979
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  year: 2019
  article-title: PD‐L1 expression and tumor mutational burden are independent biomarkers in most cancers
  publication-title: JCI Insight
– volume: 29
  start-page: 3367
  issue: 11
  year: 2019
  end-page: 3373
  article-title: A deep learning framework for predicting response to therapy in cancer
  publication-title: Cell Rep
– volume: 4
  start-page: 3
  year: 2021
  end-page: 10
  article-title: Immunological tumor heterogeneity and diagnostic profiling for advanced and immune therapies
  publication-title: Adv Cell Gene Therapy
– volume: 478
  year: 2020
  article-title: Multiplex immunofluorescence staining and image analysis assay for diffuse large B cell lymphoma
  publication-title: J Immunol Methods
– volume: 44
  start-page: 698
  year: 2016
  end-page: 711
  article-title: Integrative analyses of colorectal cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability
  publication-title: Immunity
– volume: 6
  start-page: 1
  year: 2020
  end-page: 13
  article-title: Report on computational assessment of tumor infiltrating lymphocytes from the international immuno‐oncology biomarker working group
  publication-title: NPJ Breast Cancer
– volume: 21
  start-page: 1353
  year: 2020
  end-page: 1365
  article-title: Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open‐label, phase 2 KEYNOTE‐158 study
  publication-title: Lancet Oncol
– volume: 2
  start-page: 147
  year: 2009
  end-page: 171
  article-title: Histopathological image analysis: a review
  publication-title: IEEE Rev Biomed Eng
– volume: 20
  start-page: 174
  year: 2020
  end-page: 186
  article-title: A framework for advancing our understanding of cancer‐associated fibroblasts
  publication-title: Nat Rev Cancer
– volume: 478
  start-page: 335
  issue: 2
  year: 2021
  end-page: 341
  article-title: Number of pathologists in Germany: comparison with European countries, USA, and Canada
  publication-title: Virchows Arch
– volume: 10
  start-page: 5642
  issue: 1
  year: 2019
  article-title: Automated acquisition of explainable knowledge from unannotated histopathology images
  publication-title: Nat Commun
– volume: 34
  start-page: 1704
  year: 2012
  end-page: 1716
  article-title: Aggregating local image descriptors into a compact codes
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 143
  start-page: 859
  year: 2019
  end-page: 868
  article-title: Artificial intelligence–based breast cancer nodal metastasis detection: insights into the black box for pathologists
  publication-title: Arch Pathol Lab Med
– volume: 25
  start-page: 50
  year: 2019
  end-page: 60
  article-title: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer
  publication-title: Nat Med
– volume: 14
  start-page: 2900
  year: 2019
  end-page: 2930
  article-title: Qualifying antibodies for image‐based immune profiling and multiplexed tissue imaging
  publication-title: Nat Protoc
– volume: 1876
  issue: 1
  year: 2021
  article-title: A primer on applying AI synergistically with domain expertise to oncology
  publication-title: Biochim Biophys Acta Rev Cancer
– volume: 75
  start-page: 141
  year: 2017
  end-page: 149
  article-title: Comparative analysis of PD‐L1 expression between primary and metastatic pulmonary adenocarcinomas
  publication-title: Eur J Cancer
– volume: 1875
  issue: 2
  year: 2021
  article-title: Artificial intelligence and digital pathology: opportunities and implications for immuno‐oncology
  publication-title: Biochim Biophys Acta Rev Cancer
– volume: 14
  start-page: 907
  year: 2018
  end-page: 917
  article-title: Sipuleucel‐T for the treatment of prostate cancer: novel insights and future directions
  publication-title: Future Oncol
– volume: 11
  start-page: 282
  year: 2021
  end-page: 292
  article-title: Somatic HLA class I loss is a widespread mechanism of immune evasion which refines the use of tumor mutational burden as a biomarker of checkpoint inhibitor response
  publication-title: Cancer Discov
– volume: 29
  start-page: 610
  issue: 6
  year: 2011
  end-page: 618
  article-title: Histopathologic‐based prognostic factors of colorectal cancers are associated with the state of the local immune reaction
  publication-title: J Clin Oncol
– volume: 6
  start-page: 273
  year: 2020
  end-page: 282
  article-title: Hypothesis‐free deep survival learning applied to the tumour microenvironment in gastric cancer
  publication-title: J Pathol Clin Res
– volume: 30
  start-page: 44
  issue: 1
  year: 2019
  end-page: 56
  article-title: Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic
  publication-title: Ann Oncol
– volume: 380
  start-page: 296
  issue: 1
  year: 2016
  end-page: 303
  article-title: Computational pathology: exploring the spatial dimension of tumor ecology
  publication-title: Cancer Lett
– volume: 14
  start-page: 2
  year: 2019
  article-title: Developing and adopting safe and effective digital biomarkers to improve patient outcomes
  publication-title: Digit Med
– volume: 635
  start-page: 51
  year: 2020
  end-page: 66
  article-title: Multiplexed immunohistochemistry for immune cell phenotyping, quantification and spatial distribution in situ
  publication-title: Methods Enzymol
– volume: 26
  start-page: 71
  year: 2020
  end-page: 81
  article-title: Pembrolizumab in combination with the oncolytic virus Pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: a phase Ib study
  publication-title: Clin Cancer Res
– volume: 170
  start-page: 1055
  year: 2017
  end-page: 1056
  article-title: Converting cold into hot tumors by combining immunotherapies
  publication-title: Cell
– volume: 4
  start-page: 2
  year: 2013
  article-title: Application of whole slide image markup and annotation for pathologist knowledge capture
  publication-title: J Pathol Inform
– volume: 7
  start-page: 25
  year: 2019
  article-title: Cancer biomarkers for targeted therapy
  publication-title: Biomark Res
– volume: 113
  start-page: E7769
  year: 2016
  end-page: E7777
  article-title: Association of PD‐1/PD‐L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors
  publication-title: Proc Natl Acad Sci U S A
– volume: 18
  start-page: 197
  year: 2019
  end-page: 218
  article-title: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies
  publication-title: Nat Rev Drug Discov
– volume: 19
  start-page: e421
  year: 2018
  end-page: e430
  article-title: Heterogeneity of PD‐L1 expression among the different histological components and metastatic lymph nodes in patients with resected lung Adenosquamous carcinoma
  publication-title: Clin Lung Cancer
– volume: 70
  start-page: 1183
  year: 2021
  end-page: 1193
  article-title: Artificial intelligence‐based pathology for gastrointestinal and hepatobiliary cancers
  publication-title: Gut
– volume: 5
  start-page: 44
  year: 2017
  article-title: Identifying baseline immune‐related biomarkers to predict clinical outcome of immunotherapy
  publication-title: J Immunother Cancer
– volume: 247
  start-page: 650
  year: 2019
  end-page: 661
  article-title: New tools for pathology: a user's review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue
  publication-title: J Pathol
– volume: 3
  start-page: 31
  year: 2020
  article-title: Pan‐cancer diagnostic consensus through searching archival histopathology images using artificial intelligence
  publication-title: NPJ Digit Med
– volume: 40
  start-page: 494
  year: 2008
  end-page: 495
  article-title: Coevolution in the tumor microenvironment
  publication-title: Nat Genet
– volume: 9
  start-page: 7449
  issue: 1
  year: 2019
  article-title: Automatic discovery of image‐based signatures for ipilimumab response prediction in malignant melanoma
  publication-title: Sci Rep
– volume: 17
  start-page: e542
  issue: 12
  year: 2016
  end-page: e551
  article-title: Predictive biomarkers for checkpoint inhibitor‐based immunotherapy
  publication-title: Lancet Oncol
– volume: 18
  start-page: 591
  year: 2014
  end-page: 604
  article-title: Weakly supervised histopathology cancer image segmentation and classification
  publication-title: Med Image Anal
– volume: 10
  start-page: 467
  year: 2019
  article-title: Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade
  publication-title: Front Immunol
– year: 2018
– volume: 175
  start-page: 751
  year: 2018
  end-page: 765
  article-title: Evolution of metastases in space and time under immune selection
  publication-title: Cell
– volume: 2018
  start-page: 8459193
  year: 2018
  end-page: 8459197
  article-title: Tumor‐associated CD204‐positive macrophage is a prognostic marker in clinical stage I lung adenocarcinoma
  publication-title: Biomed Res Int
– volume: 8
  start-page: 4470
  year: 2018
  article-title: Tissue Phenomics for prognostic biomarker discovery in low‐ and intermediate‐risk prostate cancer
  publication-title: Sci Rep
– volume: 8
  year: 2019
  article-title: A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition
  publication-title: Onco Targets Ther
– volume: 476
  start-page: 891
  year: 2020
  end-page: 902
  article-title: Characterisation of tumour microenvironment and immune checkpoints in primary central nervous system diffuse large B cell lymphomas
  publication-title: Virchows Arch
– volume: 6
  start-page: 172
  year: 2019
  article-title: The promise of digital biopsy for the prediction of tumor molecular features and clinical outcomes associated with immunotherapy
  publication-title: Front Med
– volume: 17
  start-page: 658
  issue: 9
  year: 2019
  article-title: New paradigm of machine learning (ML) in personalized oncology: data trimming for squeezing more biomarkers from clinical datasets
  publication-title: Front Oncol
– volume: 500
  start-page: 415
  year: 2013
  end-page: 421
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
– volume: 16
  start-page: 703
  issue: 11
  year: 2019
  end-page: 715
  article-title: Artificial intelligence in digital pathology ‐ new tools for diagnosis and precision oncology
  publication-title: Nat Rev Clin Oncol
– volume: 250
  start-page: 667
  issue: 5
  year: 2020
  end-page: 684
  article-title: The path to a better biomarker: application of a risk management framework for the implementation of PD‐L1 and TILs as immuno‐oncology biomarkers in breast cancer clinical trials and daily practice
  publication-title: J Pathol
– volume: 84
  start-page: 345
  year: 2018
  end-page: 356
  article-title: Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks
  publication-title: Pattern Recognit
– volume: 27
  start-page: 147
  year: 2016
  end-page: 153
  article-title: Comparative study of the PD‐L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti‐PD‐L1 therapeutic strategies
  publication-title: Ann Oncol
– volume: 600
  start-page: 70
  year: 2021
  end-page: 74
  article-title: Advancing mathematics by guiding human intuition with AI
  publication-title: Nature
– volume: 16
  year: 2019
  article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study
  publication-title: PLoS Med
– volume: 15
  start-page: 8
  issue: 13
  year: 2014
  end-page: 17
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput Struct Biotechnol J
– volume: 1913
  start-page: 13
  year: 2019
  end-page: 31
  article-title: Multispectral fluorescence imaging allows for distinctive topographic assessment and subclassification of tumor‐infiltrating and surrounding immune cells
  publication-title: Methods Mol Biol
– volume: 33
  start-page: 463
  issue: 3
  year: 2018
  end-page: 479
  article-title: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer
  publication-title: Cancer Cell
– volume: 244
  start-page: 421
  year: 2018
  end-page: 431
  article-title: Multispectral imaging for quantitative and compartment‐specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients
  publication-title: J Pathol
– volume: 10
  start-page: 1
  year: 2012
  article-title: The immune score as a new possible approach for the classification of cancer
  publication-title: J Transl Med
– volume: 13
  start-page: 84
  year: 2020
  article-title: Oncolytic viruses for cancer immunotherapy
  publication-title: J Hematol Oncol
– volume: 21
  start-page: 416
  year: 2020
  end-page: 423
  article-title: Combining radiotherapy with Immunocheckpoint inhibitors or CAR‐T in renal cell carcinoma
  publication-title: Curr Drug Targets
– volume: 249
  start-page: 143
  year: 2019
  end-page: 150
  article-title: Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice
  publication-title: J Pathol
– volume: 4
  start-page: 76
  year: 2016
  article-title: Validation of biomarkers to predict response to immunotherapy in cancer: volume I ‐ pre‐analytical and analytical validation
  publication-title: J Immunother Cancer
– volume: 1
  start-page: 789
  issue: 8
  year: 2020
  end-page: 799
  article-title: Pan‐cancer image‐based detection of clinically actionable genetic alterations
  publication-title: Nat Cancer
– volume: 6
  start-page: 48
  issue: 1
  year: 2018
  article-title: Effect of neoadjuvant chemotherapy on the immune microenvironment in non‐small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches
  publication-title: J Immunother Cancer
– start-page: 460
  year: 2016
  end-page: 468
– volume: 29
  start-page: 84
  issue: 1
  year: 2018
  end-page: 91
  article-title: Comprehensive analysis of the clinical immuno‐oncology landscape
  publication-title: Ann Oncol
– volume: 86
  start-page: 15
  year: 2017
  end-page: 27
  article-title: Determination of poor prognostic immune features of tumour microenvironment in non‐smoking patients with lung adenocarcinoma
  publication-title: Eur J Cancer
– volume: 31
  start-page: 214
  year: 2018
  end-page: 234
  article-title: Implications of the tumor immune microenvironment for staging and therapeutics
  publication-title: Mod Pathol
– volume: 529
  start-page: 351
  year: 2016
  end-page: 357
  article-title: Divergent clonal selection dominates medulloblastoma at recurrence
  publication-title: Nature
– volume: 23
  start-page: 181
  issue: 1
  year: 2018
  end-page: 193
  article-title: Spatial organization and molecular correlation of tumor‐infiltrating lymphocytes using deep learning on pathology images
  publication-title: Cell Rep
– volume: 13
  start-page: 2074
  year: 2021
  article-title: Deep learning prediction of metastasis in locally advanced colon cancer using binary histologic tumor images
  publication-title: Cancers (Basel)
– volume: 9
  start-page: 5150
  issue: 1
  year: 2018
  article-title: Spatially and functionally distinct subclasses of breast cancer‐associated fibroblasts revealed by single cell RNA sequencing
  publication-title: Nat Commun
– volume: 27
  start-page: 574
  year: 2015
  end-page: 588
  article-title: Intravital imaging reveals how BRAF inhibition generates drug‐tolerant microenvironments with high integrin β1/FAK signaling
  publication-title: Cancer Cell
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  article-title: SegNet: a deep convolutional encoder‐decoder architecture for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 256
  start-page: 269
  year: 2022
  end-page: 281
  article-title: Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer
  publication-title: J Pathol
– volume: 18
  start-page: e473
  year: 2017
  end-page: e479
  article-title: Programmed death ligand 1 expression in paired non‐small cell lung cancer tumor samples
  publication-title: Clin Lung Cancer
– year: 2017
– volume: 3
  start-page: e654
  year: 2021
  end-page: e664
  article-title: Development and validation of deep learning classifiers to detect Epstein‐Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study
  publication-title: Lancet Digit Health
– volume: 160
  start-page: 48
  year: 2015
  end-page: 61
  article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity
  publication-title: Cell
– ident: e_1_2_11_38_1
  doi: 10.1038/s41746-020-0238-2
– ident: e_1_2_11_84_1
  doi: 10.1186/s40425-016-0178-1
– ident: e_1_2_11_3_1
  doi: 10.1136/gutjnl-2020-322880
– ident: e_1_2_11_94_1
  doi: 10.1016/j.ccell.2015.03.008
– ident: e_1_2_11_57_1
  doi: 10.1186/1479-5876-10-1
– ident: e_1_2_11_92_1
  doi: 10.1158/2159-8290.CD-20-0672
– ident: e_1_2_11_97_1
  doi: 10.1016/j.cllc.2018.02.008
– ident: e_1_2_11_101_1
  doi: 10.1016/S1470-2045(20)30445-9
– ident: e_1_2_11_103_1
  doi: 10.1073/pnas.1607836113
– ident: e_1_2_11_78_1
  doi: 10.1007/s00428-020-02894-6
– ident: e_1_2_11_16_1
  doi: 10.1073/pnas.1717139115
– ident: e_1_2_11_80_1
  doi: 10.1016/S1470-2045(16)30406-5
– ident: e_1_2_11_21_1
  doi: 10.1038/s41467-018-07582-3
– ident: e_1_2_11_4_1
  doi: 10.1371/journal.pmed.1002730
– ident: e_1_2_11_62_1
  doi: 10.1038/nature16478
– ident: e_1_2_11_29_1
  doi: 10.1016/j.patcog.2018.07.022
– ident: e_1_2_11_34_1
  doi: 10.1016/j.celrep.2019.11.017
– ident: e_1_2_11_99_1
  doi: 10.1016/j.lungcan.2015.01.016
– ident: e_1_2_11_51_1
  doi: 10.1002/path.5310
– ident: e_1_2_11_56_1
  doi: 10.1186/s40425-017-0243-4
– ident: e_1_2_11_100_1
  doi: 10.1016/j.ejca.2017.01.004
– ident: e_1_2_11_108_1
  doi: 10.1038/s41591-019-0462-y
– ident: e_1_2_11_2_1
  doi: 10.1002/path.5831
– ident: e_1_2_11_95_1
  doi: 10.1158/1078-0432.CCR-15-2246
– ident: e_1_2_11_9_1
  doi: 10.1038/s43018-020-0087-6
– ident: e_1_2_11_26_1
  doi: 10.1016/j.media.2014.01.010
– ident: e_1_2_11_44_1
  doi: 10.1109/TPAMI.2011.235
– ident: e_1_2_11_18_1
  doi: 10.1016/j.bbcan.2021.188548
– ident: e_1_2_11_22_1
  doi: 10.1016/j.celrep.2018.03.086
– volume: 14
  start-page: 2
  year: 2019
  ident: e_1_2_11_63_1
  article-title: Developing and adopting safe and effective digital biomarkers to improve patient outcomes
  publication-title: Digit Med
– ident: e_1_2_11_73_1
  doi: 10.1016/j.ejca.2017.08.026
– volume: 8
  year: 2019
  ident: e_1_2_11_65_1
  article-title: A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition
  publication-title: Onco Targets Ther
– volume-title: Machine Intelligence for Healthcare
  year: 2017
  ident: e_1_2_11_17_1
– ident: e_1_2_11_98_1
  doi: 10.1093/annonc/mdv489
– ident: e_1_2_11_106_1
  doi: 10.1038/s41598-018-22564-7
– ident: e_1_2_11_49_1
  doi: 10.1002/path.5223
– ident: e_1_2_11_45_1
  doi: 10.1002/path.5026
– volume: 6
  start-page: 1
  year: 2020
  ident: e_1_2_11_75_1
  article-title: Report on computational assessment of tumor infiltrating lymphocytes from the international immuno‐oncology biomarker working group
  publication-title: NPJ Breast Cancer
– ident: e_1_2_11_31_1
  doi: 10.1002/path.5388
– start-page: 2732
  year: 2010
  ident: e_1_2_11_33_1
  article-title: A multiple instance learning approach toward optimal classification of pathology slides
  publication-title: Proceedings of the 20th Int Conf Pattern Recognit
– ident: e_1_2_11_28_1
  doi: 10.4103/2153-3539.107953
– ident: e_1_2_11_40_1
  doi: 10.3390/cancers13092074
– ident: e_1_2_11_55_1
  doi: 10.1002/acg2.113
– ident: e_1_2_11_13_1
  doi: 10.1016/j.bbcan.2021.188520
– ident: e_1_2_11_20_1
  doi: 10.1038/s41591-020-0900-x
– ident: e_1_2_11_36_1
  doi: 10.5858/arpa.2018-0147-OA
– ident: e_1_2_11_83_1
  doi: 10.1007/978-1-4939-9773-2_21
– ident: e_1_2_11_54_1
  doi: 10.2217/fon-2017-0531
– volume: 1
  start-page: 5
  issue: 1
  year: 2022
  ident: e_1_2_11_42_1
  article-title: Precision medicine: recent progress in cancer therapy
  publication-title: Mediterr J Pharm Pharm Sci
– ident: e_1_2_11_8_1
  doi: 10.1002/path.5832
– ident: e_1_2_11_5_1
  doi: 10.1038/s41571-019-0252-y
– ident: e_1_2_11_91_1
  doi: 10.1073/pnas.2022410118
– volume: 2018
  start-page: 8459193
  year: 2018
  ident: e_1_2_11_107_1
  article-title: Tumor‐associated CD204‐positive macrophage is a prognostic marker in clinical stage I lung adenocarcinoma
  publication-title: Biomed Res Int
– ident: e_1_2_11_23_1
  doi: 10.3389/fonc.2019.00658
– ident: e_1_2_11_96_1
  doi: 10.1016/j.cllc.2017.04.008
– ident: e_1_2_11_61_1
  doi: 10.1126/scitranslmed.aaa1408
– ident: e_1_2_11_72_1
  doi: 10.2174/1389450120666191017113051
– ident: e_1_2_11_105_1
  doi: 10.1016/bs.mie.2019.07.039
– ident: e_1_2_11_19_1
  doi: 10.1007/978-3-319-46723-8_53
– ident: e_1_2_11_66_1
  doi: 10.3389/fimmu.2019.00467
– ident: e_1_2_11_74_1
  doi: 10.1172/jci.insight.126908
– ident: e_1_2_11_89_1
  doi: 10.1016/j.cell.2014.12.033
– ident: e_1_2_11_69_1
  doi: 10.1158/1078-0432.CCR-19-2078
– ident: e_1_2_11_86_1
  doi: 10.1016/j.ccell.2018.01.011
– ident: e_1_2_11_102_1
  doi: 10.1056/NEJMc2031965
– ident: e_1_2_11_7_1
  doi: 10.1111/joim.13030
– ident: e_1_2_11_37_1
  doi: 10.1158/0008-5472.CAN-17-0629
– ident: e_1_2_11_76_1
  doi: 10.1016/j.cell.2018.09.018
– ident: e_1_2_11_32_1
  doi: 10.1016/j.canlet.2015.11.018
– ident: e_1_2_11_60_1
  doi: 10.3389/fonc.2019.01161
– ident: e_1_2_11_81_1
  doi: 10.1002/path.5406
– ident: e_1_2_11_6_1
  doi: 10.1007/s00428-018-2485-z
– ident: e_1_2_11_27_1
  doi: 10.1002/cjp2.170
– ident: e_1_2_11_10_1
  doi: 10.1200/JCO.2010.30.5425
– ident: e_1_2_11_12_1
  doi: 10.1093/annonc/mdx755
– volume-title: Tissue Phenomics – Profiling Cancer Patients for Treatment Decisions
  year: 2018
  ident: e_1_2_11_30_1
– ident: e_1_2_11_71_1
  doi: 10.1007/s00428-019-02695-6
– ident: e_1_2_11_11_1
  doi: 10.1038/ng0508-494
– ident: e_1_2_11_68_1
  doi: 10.1186/s40425-018-0368-0
– ident: e_1_2_11_41_1
  doi: 10.1109/RBME.2009.2034865
– ident: e_1_2_11_59_1
  doi: 10.1038/s41573-018-0007-y
– ident: e_1_2_11_93_1
  doi: 10.1038/s41568-019-0238-1
– ident: e_1_2_11_90_1
  doi: 10.1038/nature12477
– ident: e_1_2_11_58_1
  doi: 10.1016/j.immuni.2016.02.025
– ident: e_1_2_11_24_1
  doi: 10.1038/s41598-019-43525-8
– ident: e_1_2_11_50_1
  doi: 10.1038/s41596-019-0206-y
– ident: e_1_2_11_64_1
  doi: 10.1016/j.cell.2017.08.031
– ident: e_1_2_11_85_1
  doi: 10.1038/modpathol.2017.156
– ident: e_1_2_11_52_1
  doi: 10.1007/978-1-4939-8979-9_2
– ident: e_1_2_11_46_1
  doi: 10.1016/j.jim.2019.112714
– ident: e_1_2_11_15_1
  doi: 10.7717/peerj.3874
– ident: e_1_2_11_14_1
  doi: 10.1038/s41586-021-04086-x
– ident: e_1_2_11_79_1
  doi: 10.3389/fmed.2019.00172
– ident: e_1_2_11_25_1
  doi: 10.1038/s41467-019-13647-8
– ident: e_1_2_11_88_1
  doi: 10.1073/pnas.1519556112
– ident: e_1_2_11_53_1
  doi: 10.1158/1078-0432.CCR-19-3888
– ident: e_1_2_11_39_1
  doi: 10.1016/S2589-7500(21)00133-3
– ident: e_1_2_11_67_1
  doi: 10.1038/s41573-019-0029-0
– ident: e_1_2_11_70_1
  doi: 10.1186/s13045-020-00922-1
– ident: e_1_2_11_77_1
  doi: 10.1016/j.csbj.2014.11.005
– ident: e_1_2_11_43_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_11_82_1
  doi: 10.1186/s40364-019-0178-7
– ident: e_1_2_11_47_1
  doi: 10.1021/acsnano.9b07326
– ident: e_1_2_11_104_1
  doi: 10.1016/bs.mie.2019.10.002
– ident: e_1_2_11_35_1
  doi: 10.1109/TPAMI.2016.2644615
– ident: e_1_2_11_87_1
  doi: 10.1093/annonc/mdy495
– ident: e_1_2_11_48_1
  doi: 10.1038/bjc.2015.309
SSID ssj0001863293
Score 2.2838862
SecondaryResourceType review_article
Snippet Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the...
The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex...
Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the...
Abstract Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1796
SubjectTerms Algorithms
Artificial Intelligence
Automation
Big Data
Biomarkers
Cancer
Cartography
Clinical trials
Datasets
Decision making
decision support
Deep learning
digital biomarker
Digitization
Histopathology
Humans
Hypotheses
immune oncology
Machine learning
Medical Oncology
Neoplasms - therapy
Neural networks
Oncology
Pathology
Precision Medicine - methods
precision pathology
Quality control
Quality management
Quality standards
Review
Subject specialists
Tumor Microenvironment
Visualization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4FLAfFKKcggDlxCHduxvaeqrVpxQKuqAqk3K35kiYSSbdKtVIkfj8fx7nZF4cItiSeRnflsjz3jbxD6yGrDhLAkr0hhc26MCuMgr3OreEmYsYXy8aDwVzmbqcvL6XnacBtSWOVqTIwDtess7JEfMAggpCoY9IeLqxyyRoF3NaXQeIh2gKmMT9DO8ens_GKzy6IECxPailKI0APb9vRzQKHYmogiX_99RuafsZJ3bdg4CZ09-d_qP0W7yfzERyNenqEHvn2OfsHtyCSBmzsUnbhqHXbNHPKKYDinD6E8fRDBiz6l5sGQ0TjuzOP5soF5EDdw4sTj8WDXLR5ioh0Qha9tXuzayJd9-wJ9Pzv9dvIlT1kZcltKKcKC00ljvCfGFMRwI4QCblFZOctqKokRxkkpy1pWzBnKrOA1q9zUc8qrsCJmL9Gk7Vr_GmEirAorKB9gUfHS1cYaSmpHnBHSFNJn6NNKRdomynLInPFTj2TLVIM2NWgzQx_WoouRp-M-oWPQ81oAqLXjg66f69RTdUlLcHo45mzJC-WmXIBRbYWfliRAOEP7Kw3r1N8HvVFvht6vi0NPBfdL1fpuOWgqw1jIAxzLDL0aQbWuCROqAKBmSG3Bbauq2yVt8yOygRfgildMhp8Vkfn35uuT2QWFi71_N-ENekyDKTcGJe-jyXW_9G_RI3tz3Qz9u9TFfgPX1DRl
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7StIde-qAvJ2lRSw-9uJElWdLSUxIaeihLKC3kJqyHt4biDXa2EMiPj0b2erM0hUJvtjUyenwjjR7zDcB7XlsupaN5RQuXC2t1HAdFnTstSsqtK3RIjsJf1Xyuz89nZzvwae0LM_BDTBtuqBlpvEYFr2x_uCENdW3HPkY4yXtwvyi4xrgNTJxtNli05CyR7kZU8lxzodfMQpQdTrm35qNE23-Xrfnnlcnbpmyai04f_1ctnsCj0QQlRwNmnsJOaJ_BNb4ObBKkuUXTSarWE98sMLYIQV99vM7TRRFy0Y3heQhGNU6782SxanAuJA16nQQyOHddkT4F20FR_Nsm47JNnNlXz-HH6efvJ1_yMTJD7kqlZFx0emVtCNTaglphpdTIL6oq73jNFLXSeqVUWauKe8u4k6LmlZ8FwUQVV8X8Bey2yza8AkKl03EVFSI0KlH62jrLaO2pt1LZQoUMPqz7x7iRthyjZ_wyA-EyM9iEBpswg3eT6MXA1XGX0DF28iSA9Nrpw7JbmFFbTclKPPjw3LtSFNrPhETD2skwK2mEcQYHa4iYUed7w_GKK9NxyZnB2yk5aisewVRtWK56w1QcD0XEZZnBywFRU0m41AUiNgO9hbWtom6ntM3PxAhe4HG85io2VgLb36tvTubfGD7s_bvoPjxk0bQbLikfwO5ltwqv4YH7fdn03ZukdTeePjJU
  priority: 102
  providerName: Wiley-Blackwell
Title Artificial intelligence and digital biomarker in precision pathology guiding immune therapy selection and precision oncology
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnr2.1796
https://www.ncbi.nlm.nih.gov/pubmed/36813293
https://www.proquest.com/docview/3090228149
https://www.proquest.com/docview/2779343295
https://pubmed.ncbi.nlm.nih.gov/PMC10363837
https://doaj.org/article/5253100d3dc5418d9468002c6e950c84
Volume 6
WOSCitedRecordID wos000936374200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: 7X7
  dateStart: 20200801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: BENPR
  dateStart: 20200801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: PIMPY
  dateStart: 20200801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: WIN
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2573-8348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001863293
  issn: 2573-8348
  databaseCode: 24P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCQLwCZWUQBy6hju3YzpFWragEUVSBWE5R_EgbCWWrbBepEj-eGSe77IoiLlyi9WY28s58tmec8TeEvBGtFUo5ljYsc6m01sA8KNvUGZkzYV1mQjwo_FGXpZnPi2qr1BfmhI30wKPiDnKe4x60F97lMjO-kAp9HKdCkTN4Is6-4PVsBVNxd8UoAQvZmkqI8QPXD_wdoE_tLECRp_8m5_LPHMlt3zUuPicPyP3Ja6Tvx94-JLdC_4j8xOZIAEG7LWZN2vSe-u4cy4FQPF6PGTgDiNDLYaqoQ7EQcdxQp-erDpcv2uFBkUDH81jXdBnr46AoPu33Dxd9pLm-fky-nBx_PvqQTsUUUpdrrSBO9NraEJi1GbPSKlBjkQndeCdarplV1mut81Y3wlsunJKtaHwRJJcNBLLiCdnrF314RihTzkDgE8Cajcx9a53lrPXMW6VtpkNC3q41XLuJaRwLXnyvR45kXqMxajRGQl5vRC9Heo2bhA7RTBsBZMSOXwBO6gkn9b9wkpD9tZHraZgua4FZqdxAlJiQV5vbMMDwrUnTh8VqWXMNU5gENOUJeTpiYtMToUyGOEuI2UHLTld37_TdRSTxzvANuhEalBWB9fe_Xx-VZxw_PP8fenhB7nHw08aM432ydzWswkty1_246pbDjNzmsoKrnut4NTNy5_C4rM5mcXxBqzr9VH2D1tfT8he1yyo2
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQvXMQtMMAgkHgJc2zHdh8QgsG0al1VoSGNJxNfUiKhtKQrqBK_id-ITy7tKgZve-CtbU6jOPnO8Tnx8fch9IzlhglhSZyRxMbcGBXiIM9jq3hKmLGJ8vVG4aEcjdTJSX-8hX51e2GgrbKLiXWgdlML78h3GTQQUhUS-tezbzGoRsHqaieh0cDi0C9_hJJt_mrwLjzf55Tuvz_eO4hbVYHYplKKUDA5aYz3xJiEGG6EUMCNKTNnWU4lMcI4KWWay4w5Q5kVPGeZ63tOeRYqOhbOewlt8wB21UPb48HR-NP6rY4SLEygHYURobu2rOjLgHqxMfHV-gDnJbV_9maezZnrSW__-v92u26ga216jd80_nATbfnyFvoJXxumDFycoSDFWemwKyagm4KBhwBalapggmdVKz2EQbG5XnnAk0UB8zwuYEeNx83GtSWe10JCYApnW_9xWtZ84Mvb6OOFDPgO6pXT0t9DmAirQoXoA-wznrrcWENJ7ogzQppE-gi96CChbUvJDsogX3VDJk01oEcDeiL0dGU6a3hIzjN6C7haGQB1eP3DtJroNhLplKawqOOYsylPlOtzAUWDFb6fkuCiEdrpEKXbeDbXazhF6MnqcIhEsLyUlX66mGsqQ6znAf5phO42IF5dCRMqAceIkNqA98albh4piy8123kCrQaKyXCzak_4-_D13ugDhQ_3_z2Ex-jKwfHRUA8Ho8MH6CoNaWvTgL2DeqfVwj9El-3302JePWrdG6PPF-0ivwHKqpFh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6sq4gvXvBWXTWKD77UTZM0yYAvujooLsMiCvsWmkvHgnSGzo6w4I83J-10dnAFwbe2OSm5fCc5uZzvALzkteVSOppXtHC5sFbHcVDUudOipNy6QofkKHysZjN9ejo52YM3G1-Ynh9i3HBDzUjjNSp4WPr6cMsa6tqOvY54klfgqihVgZhm4mS7w6IlZ4l1N8KS55oLvaEWouxwzL0zISXe_suMzT_vTF60ZdNkNL31f9W4DTcHI5S87VFzB_ZCexd-4WvPJ0GaC0SdpGo98c0co4sQ9NbHCz1dFCHLbgjQQzCucdqfJ_N1g7MhadDvJJDeveucrFK4HRTFv20zLtrEmn1-D75NP3w9-pgPsRlyVyol47LTK2tDoNYW1AorpUaGUVV5x2umqJXWK6XKWlXcW8adFDWv_CQIJqq4Lub3Yb9dtOEhECqdjuuoEMFRidLX1llGa0-9lcoWKmTwatNBxg3E5Rg_44fpKZeZwSY02IQZvBhFlz1bx2VC77CXRwEk2E4fFt3cDPpqSlbi0Yfn3pWi0H4iJJrWToZJSSOQMzjYYMQMWr8yHC-5Mh0XnRk8H5OjvuIhTNWGxXplmIojoojALDN40ENqLAmXukDIZqB3wLZT1N2UtvmeOMELPJDXXMXGSmj7e_XN0ewLw4dH_y76DK6fvJ-a40-zz4_hBot2Xn9j-QD2z7p1eALX3M-zZtU9TRr4GyZsNcM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+digital+biomarker+in+precision+pathology+guiding+immune+therapy+selection+and+precision+oncology&rft.jtitle=Cancer+reports&rft.au=Huss%2C+Ralf&rft.au=Raffler%2C+Johannes&rft.au=M%C3%A4rkl%2C+Bruno&rft.date=2023-07-01&rft.issn=2573-8348&rft.eissn=2573-8348&rft.volume=6&rft.issue=7&rft.spage=e1796&rft_id=info:doi/10.1002%2Fcnr2.1796&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2573-8348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2573-8348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2573-8348&client=summon