Artificial intelligence and digital biomarker in precision pathology guiding immune therapy selection and precision oncology
Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of...
Saved in:
| Published in: | Cancer reports Vol. 6; no. 7; pp. e1796 - n/a |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
John Wiley & Sons, Inc
01.07.2023
John Wiley and Sons Inc Wiley |
| Subjects: | |
| ISSN: | 2573-8348, 2573-8348 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re‐)activate the patient's immune system and direct it against the individual cancer in the most effective way.
Recent Findings
Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune‐oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune‐cancer‐network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer‐assisted development and clinical validation of such digital biomarker.
Conclusions
The successful implementation of AI‐supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into “precision pathology” delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a “precision oncology”. |
|---|---|
| AbstractList | The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re-)activate the patient's immune system and direct it against the individual cancer in the most effective way.BACKGROUNDThe currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re-)activate the patient's immune system and direct it against the individual cancer in the most effective way.Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune-oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune-cancer-network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer-assisted development and clinical validation of such digital biomarker.RECENT FINDINGSPrimary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune-oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune-cancer-network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer-assisted development and clinical validation of such digital biomarker.The successful implementation of AI-supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into "precision pathology" delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a "precision oncology".CONCLUSIONSThe successful implementation of AI-supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into "precision pathology" delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a "precision oncology". Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re‐)activate the patient's immune system and direct it against the individual cancer in the most effective way. Recent Findings Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune‐oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune‐cancer‐network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer‐assisted development and clinical validation of such digital biomarker. Conclusions The successful implementation of AI‐supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into “precision pathology” delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a “precision oncology”. Abstract Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re‐)activate the patient's immune system and direct it against the individual cancer in the most effective way. Recent Findings Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune‐oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune‐cancer‐network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer‐assisted development and clinical validation of such digital biomarker. Conclusions The successful implementation of AI‐supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into “precision pathology” delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a “precision oncology”. Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re‐)activate the patient's immune system and direct it against the individual cancer in the most effective way. Recent Findings Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune‐oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune‐cancer‐network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer‐assisted development and clinical validation of such digital biomarker. Conclusions The successful implementation of AI‐supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into “precision pathology” delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a “precision oncology”. The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re-)activate the patient's immune system and direct it against the individual cancer in the most effective way. Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune-oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune-cancer-network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer-assisted development and clinical validation of such digital biomarker. The successful implementation of AI-supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into "precision pathology" delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a "precision oncology". |
| Author | Raffler, Johannes Märkl, Bruno Huss, Ralf |
| AuthorAffiliation | 2 Institute for Digital Medicine University Hospital Augsburg Augsburg Germany 1 Medical Faculty University Augsburg Augsburg Germany |
| AuthorAffiliation_xml | – name: 2 Institute for Digital Medicine University Hospital Augsburg Augsburg Germany – name: 1 Medical Faculty University Augsburg Augsburg Germany |
| Author_xml | – sequence: 1 givenname: Ralf orcidid: 0000-0002-6447-9300 surname: Huss fullname: Huss, Ralf email: ralf.huss@uk-augsburg.de organization: University Hospital Augsburg – sequence: 2 givenname: Johannes surname: Raffler fullname: Raffler, Johannes organization: University Hospital Augsburg – sequence: 3 givenname: Bruno surname: Märkl fullname: Märkl, Bruno organization: Medical Faculty University Augsburg |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36813293$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1UREvpgT-AInGBw7b-SpycULXio1IFEoKz5Y9J1ovXXuwEtBI_Hme3lLYSnDzyPO_r8cw8RUchBkDoOcHnBGN6YUKi50R0zSN0QmvBFi3j7dGd-Bid5bzGGJO2YbRjT9Axa1oyhyfo12UaXe-MU75yYQTv3QDBQKWCrawb3FgS2sWNSt8gFaTaJjAuu1giNa6ij8OuGiZnXRgqt9lMAapxBUltd1UGD2ac0dntrzAGs9c9Q4975TOc3Zyn6Ou7t1-WHxbXn95fLS-vF6YWollwbIXWAFhrgjXXTdPijjChrGE9FVg32goh6l4oZjVlpuE9U7YDTrkijLFTdHXwtVGt5Ta58pudjMrJ_UVMg1SlDcaDrGnNSlsts6bmpLUdL49hahroamxaXrzeHLy2k96ANRDGpPw90_uZ4FZyiD8kwaxhLRPF4dWNQ4rfJ8ij3LhsSudVgDhlSYXoGC_jqQv68gG6jlMKpVeS4Q5T2hLeFerF3ZJua_kz5QK8PgAmxZwT9LcIwXJeIjkvkZyXqLAXD1hTdmAeYvmN8_9T_HQedv-2lsuPn-le8RtGFNmy |
| CitedBy_id | crossref_primary_10_1002_cnr2_1862 crossref_primary_10_1111_ahe_13095 crossref_primary_10_1515_cclm_2023_1124 crossref_primary_10_31893_multirev_2025218 crossref_primary_10_1080_14789450_2024_2413107 crossref_primary_10_3389_fonc_2025_1580195 crossref_primary_10_1007_s00521_024_10287_y |
| Cites_doi | 10.1038/s41746-020-0238-2 10.1186/s40425-016-0178-1 10.1136/gutjnl-2020-322880 10.1016/j.ccell.2015.03.008 10.1186/1479-5876-10-1 10.1158/2159-8290.CD-20-0672 10.1016/j.cllc.2018.02.008 10.1016/S1470-2045(20)30445-9 10.1073/pnas.1607836113 10.1007/s00428-020-02894-6 10.1073/pnas.1717139115 10.1016/S1470-2045(16)30406-5 10.1038/s41467-018-07582-3 10.1371/journal.pmed.1002730 10.1038/nature16478 10.1016/j.patcog.2018.07.022 10.1016/j.celrep.2019.11.017 10.1016/j.lungcan.2015.01.016 10.1002/path.5310 10.1186/s40425-017-0243-4 10.1016/j.ejca.2017.01.004 10.1038/s41591-019-0462-y 10.1002/path.5831 10.1158/1078-0432.CCR-15-2246 10.1038/s43018-020-0087-6 10.1016/j.media.2014.01.010 10.1109/TPAMI.2011.235 10.1016/j.bbcan.2021.188548 10.1016/j.celrep.2018.03.086 10.1016/j.ejca.2017.08.026 10.1093/annonc/mdv489 10.1038/s41598-018-22564-7 10.1002/path.5223 10.1002/path.5026 10.1002/path.5388 10.4103/2153-3539.107953 10.3390/cancers13092074 10.1002/acg2.113 10.1016/j.bbcan.2021.188520 10.1038/s41591-020-0900-x 10.5858/arpa.2018-0147-OA 10.1007/978-1-4939-9773-2_21 10.2217/fon-2017-0531 10.1002/path.5832 10.1038/s41571-019-0252-y 10.1073/pnas.2022410118 10.3389/fonc.2019.00658 10.1016/j.cllc.2017.04.008 10.1126/scitranslmed.aaa1408 10.2174/1389450120666191017113051 10.1016/bs.mie.2019.07.039 10.1007/978-3-319-46723-8_53 10.3389/fimmu.2019.00467 10.1172/jci.insight.126908 10.1016/j.cell.2014.12.033 10.1158/1078-0432.CCR-19-2078 10.1016/j.ccell.2018.01.011 10.1056/NEJMc2031965 10.1111/joim.13030 10.1158/0008-5472.CAN-17-0629 10.1016/j.cell.2018.09.018 10.1016/j.canlet.2015.11.018 10.3389/fonc.2019.01161 10.1002/path.5406 10.1007/s00428-018-2485-z 10.1002/cjp2.170 10.1200/JCO.2010.30.5425 10.1093/annonc/mdx755 10.1007/s00428-019-02695-6 10.1038/ng0508-494 10.1186/s40425-018-0368-0 10.1109/RBME.2009.2034865 10.1038/s41573-018-0007-y 10.1038/s41568-019-0238-1 10.1038/nature12477 10.1016/j.immuni.2016.02.025 10.1038/s41598-019-43525-8 10.1038/s41596-019-0206-y 10.1016/j.cell.2017.08.031 10.1038/modpathol.2017.156 10.1007/978-1-4939-8979-9_2 10.1016/j.jim.2019.112714 10.7717/peerj.3874 10.1038/s41586-021-04086-x 10.3389/fmed.2019.00172 10.1038/s41467-019-13647-8 10.1073/pnas.1519556112 10.1158/1078-0432.CCR-19-3888 10.1016/S2589-7500(21)00133-3 10.1038/s41573-019-0029-0 10.1186/s13045-020-00922-1 10.1016/j.csbj.2014.11.005 10.1109/CVPR.2016.308 10.1186/s40364-019-0178-7 10.1021/acsnano.9b07326 10.1016/bs.mie.2019.10.002 10.1109/TPAMI.2016.2644615 10.1093/annonc/mdy495 10.1038/bjc.2015.309 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by Wiley Periodicals LLC. 2023 The Authors. Cancer Reports published by Wiley Periodicals LLC. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC. – notice: 2023 The Authors. Cancer Reports published by Wiley Periodicals LLC. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1002/cnr2.1796 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Huss et al |
| EISSN | 2573-8348 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_5253100d3dc5418d9468002c6e950c84 PMC10363837 36813293 10_1002_cnr2_1796 CNR21796 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | 0R~ 1OC 24P 34L 53G AAHHS AAZKR ABCUV ACCFJ ACCMX ACGFS ACPOU ACXQS ADBBV ADKYN ADPDF ADXAS ADZMN ADZOD AEEZP AEQDE AFKRA AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS AMYDB AVUZU BENPR BFHJK CCPQU DCZOG EBS EJD GROUPED_DOAJ HGLYW IAO IHR INH ITC LATKE LEEKS LUTES LYRES M~E O9- OK1 OVD OVEED P2W PIMPY ROL RPM SUPJJ TEORI ZZTAW 7X7 88E 8FI 8FJ AAMMB AAYXX ABUWG AEFGJ AFFHD AGXDD AIDQK AIDYY ALUQN CITATION FYUFA HMCUK M1P PHGZM PHGZT PJZUB PPXIY PSQYO UKHRP WIN CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5776-40d7bbee0bb10b4b66809137adc3f270b6bd7775f7a3db23c64f3ad9e424a1333 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936374200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2573-8348 |
| IngestDate | Tue Oct 14 18:24:00 EDT 2025 Tue Nov 04 02:06:26 EST 2025 Thu Oct 02 11:35:40 EDT 2025 Tue Oct 07 07:17:55 EDT 2025 Mon Jul 21 05:32:22 EDT 2025 Sat Nov 29 06:40:34 EST 2025 Tue Nov 18 21:16:21 EST 2025 Wed Jan 22 16:21:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | decision support artificial intelligence digital biomarker immune oncology precision pathology |
| Language | English |
| License | Attribution 2023 The Authors. Cancer Reports published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5776-40d7bbee0bb10b4b66809137adc3f270b6bd7775f7a3db23c64f3ad9e424a1333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6447-9300 |
| OpenAccessLink | https://doaj.org/article/5253100d3dc5418d9468002c6e950c84 |
| PMID | 36813293 |
| PQID | 3090228149 |
| PQPubID | 6860424 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5253100d3dc5418d9468002c6e950c84 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10363837 proquest_miscellaneous_2779343295 proquest_journals_3090228149 pubmed_primary_36813293 crossref_primary_10_1002_cnr2_1796 crossref_citationtrail_10_1002_cnr2_1796 wiley_primary_10_1002_cnr2_1796_CNR21796 |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Cancer reports |
| PublicationTitleAlternate | Cancer Rep (Hoboken) |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2017; 5 2017; 86 2013; 4 2021; 1875 2021; 1876 2020; 20 2019; 10 2021; 600 2018; 244 2019; 14 2019; 17 2019; 247 2019; 16 2020; 14 2019; 18 2020; 288 2020; 13 2018; 84 2019; 249 2016; 380 2012; 10 2022; 256 2021; 70 2018; 175 2018; 6 2018; 9 2020; 6 2017; 75 2018; 8 2020; 3 2020; 1 2020; 250 2017; 39 2021; 478 2017; 77 2015; 88 2019; 25 2016; 113 2014; 15 2019; 29 2014; 18 2018; 33 2011; 29 2018; 31 2019; 474 2016; 44 2019; 8 2019; 7 2018; 29 2015; 160 2019; 9 2019; 4 2020; 2055 2021; 4 2021; 3 2019; 6 2019; 30 2010 2013; 500 2016; 529 2017; 170 2021; 384 2018; 23 2016; 17 2012; 34 2015; 7 2019; 143 2016; 4 2021; 13 2018; 19 2019; 1913 2018; 2018 2015; 27 2021; 11 2015; 113 2021; 18 2015; 112 2018; 115 2020; 478 2020; 26 2018 2020; 635 2017 2016 2017; 18 2022; 1 2020; 476 2020; 21 2008; 40 2009; 2 2016; 27 2018; 14 2016; 22 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 Akram SU (e_1_2_11_75_1) 2020; 6 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 Sun Y (e_1_2_11_107_1) 2018; 2018 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 Binnig G (e_1_2_11_30_1) 2018 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_59_1 Dundar M (e_1_2_11_33_1) 2010 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 Coravos A (e_1_2_11_63_1) 2019; 14 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_84_1 e_1_2_11_16_1 e_1_2_11_39_1 Bernstock JD (e_1_2_11_65_1) 2019; 8 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Yadagiri P (e_1_2_11_42_1) 2022; 1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_26_1 e_1_2_11_3_1 Campion FX (e_1_2_11_17_1) 2017 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_86_1 e_1_2_11_18_1 e_1_2_11_37_1 |
| References_xml | – volume: 88 start-page: 24 year: 2015 end-page: 33 article-title: Clinicopathological analysis of PD‐L1 and PD‐L2 expression in pulmonary squamous cell carcinoma: comparison with tumor‐infiltrating T cells and the status of oncogenic drivers publication-title: Lung Cancer – volume: 26 start-page: 1054 year: 2020 end-page: 1062 article-title: Geospatial immune variability illuminates differential evolution of lung adenocarcinoma publication-title: Nat Med – start-page: 2732 year: 2010 end-page: 2735 article-title: A multiple instance learning approach toward optimal classification of pathology slides publication-title: Proceedings of the 20th Int Conf Pattern Recognit – volume: 384 start-page: 1168 year: 2021 end-page: 1170 article-title: The Spectrum of benefit from checkpoint blockade in hypermutated tumors publication-title: N Engl J Med – volume: 77 start-page: e75 year: 2017 end-page: e78 article-title: The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research publication-title: Cancer Res – volume: 18 year: 2021 article-title: Targeting loss of heterozygosity for cancer‐specific immunotherapy publication-title: Proc Natl Acad Sci U S A – volume: 113 start-page: 1075 year: 2015 end-page: 1080 article-title: Comparing computer‐generated and pathologist‐generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays publication-title: Br J Cancer – volume: 14 start-page: 651 year: 2020 end-page: 663 article-title: Multimodal multiplexed immunoimaging with Nanostars to detect multiple immunomarkers and monitor response to immunotherapies publication-title: ACS Nano – volume: 18 start-page: 689 issue: 9 year: 2019 end-page: 706 article-title: Optimizing oncolytic virotherapy in cancer treatment publication-title: Nat Rev Drug Discov – volume: 474 start-page: 511 issue: 4 year: 2019 end-page: 522 article-title: Precision immunoprofiling by image analysis and artificial intelligence publication-title: Virchows Arch – volume: 250 start-page: 685 year: 2020 end-page: 692 article-title: Software‐assisted decision support in digital histopathology publication-title: J Pathol – volume: 635 start-page: 33 year: 2020 end-page: 50 article-title: Characterization of the immune microenvironment of NSCLC by multispectral analysis of multiplex immunofluorescence images publication-title: Methods Enzymol – volume: 5 year: 2017 article-title: Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization publication-title: PeerJ – volume: 1 start-page: 5 issue: 1 year: 2022 end-page: 11 article-title: Precision medicine: recent progress in cancer therapy publication-title: Mediterr J Pharm Pharm Sci – volume: 288 start-page: 62 issue: 1 year: 2020 end-page: 81 article-title: Artificial intelligence as the next step towards precision pathology publication-title: J Intern Med – volume: 26 start-page: 3505 year: 2020 end-page: 3513 article-title: Dissecting the tumor‐immune landscape in chimeric antigen receptor T‐cell therapy: key challenges and opportunities for a systems immunology approach publication-title: Clin Cancer Res – volume: 2055 start-page: 455 year: 2020 end-page: 465 article-title: Overview of tissue imaging methods publication-title: Methods Mol Biol – volume: 256 start-page: 282 year: 2022 end-page: 296 article-title: Tumor‐immune landscape patterns before and after chemoradiation in rectable esophageal adenocarcinomas publication-title: J Pathol – volume: 7 start-page: 283ra54 year: 2015 article-title: Clonal status of actionable driver events and the timing of mutational processes in cancer evolution publication-title: Sci Transl Med – volume: 9 start-page: 1161 year: 2019 article-title: The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic review and meta‐analysis publication-title: Front Oncol – volume: 22 start-page: 2177 year: 2016 end-page: 2182 article-title: Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer publication-title: Clin Cancer Res – volume: 112 start-page: E6496 year: 2015 end-page: E6505 article-title: Extremely high genetic diversity in a single tumor points to prevalence of non‐Darwinian cell evolution publication-title: Proc Natl Acad Sci U S A – volume: 115 start-page: E2970 issue: 13 year: 2018 end-page: E2979 article-title: Predicting cancer outcomes from histology and genomics using convolutional networks publication-title: Proc Natl Acad Sci U S A – volume: 4 year: 2019 article-title: PD‐L1 expression and tumor mutational burden are independent biomarkers in most cancers publication-title: JCI Insight – volume: 29 start-page: 3367 issue: 11 year: 2019 end-page: 3373 article-title: A deep learning framework for predicting response to therapy in cancer publication-title: Cell Rep – volume: 4 start-page: 3 year: 2021 end-page: 10 article-title: Immunological tumor heterogeneity and diagnostic profiling for advanced and immune therapies publication-title: Adv Cell Gene Therapy – volume: 478 year: 2020 article-title: Multiplex immunofluorescence staining and image analysis assay for diffuse large B cell lymphoma publication-title: J Immunol Methods – volume: 44 start-page: 698 year: 2016 end-page: 711 article-title: Integrative analyses of colorectal cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability publication-title: Immunity – volume: 6 start-page: 1 year: 2020 end-page: 13 article-title: Report on computational assessment of tumor infiltrating lymphocytes from the international immuno‐oncology biomarker working group publication-title: NPJ Breast Cancer – volume: 21 start-page: 1353 year: 2020 end-page: 1365 article-title: Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open‐label, phase 2 KEYNOTE‐158 study publication-title: Lancet Oncol – volume: 2 start-page: 147 year: 2009 end-page: 171 article-title: Histopathological image analysis: a review publication-title: IEEE Rev Biomed Eng – volume: 20 start-page: 174 year: 2020 end-page: 186 article-title: A framework for advancing our understanding of cancer‐associated fibroblasts publication-title: Nat Rev Cancer – volume: 478 start-page: 335 issue: 2 year: 2021 end-page: 341 article-title: Number of pathologists in Germany: comparison with European countries, USA, and Canada publication-title: Virchows Arch – volume: 10 start-page: 5642 issue: 1 year: 2019 article-title: Automated acquisition of explainable knowledge from unannotated histopathology images publication-title: Nat Commun – volume: 34 start-page: 1704 year: 2012 end-page: 1716 article-title: Aggregating local image descriptors into a compact codes publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 143 start-page: 859 year: 2019 end-page: 868 article-title: Artificial intelligence–based breast cancer nodal metastasis detection: insights into the black box for pathologists publication-title: Arch Pathol Lab Med – volume: 25 start-page: 50 year: 2019 end-page: 60 article-title: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer publication-title: Nat Med – volume: 14 start-page: 2900 year: 2019 end-page: 2930 article-title: Qualifying antibodies for image‐based immune profiling and multiplexed tissue imaging publication-title: Nat Protoc – volume: 1876 issue: 1 year: 2021 article-title: A primer on applying AI synergistically with domain expertise to oncology publication-title: Biochim Biophys Acta Rev Cancer – volume: 75 start-page: 141 year: 2017 end-page: 149 article-title: Comparative analysis of PD‐L1 expression between primary and metastatic pulmonary adenocarcinomas publication-title: Eur J Cancer – volume: 1875 issue: 2 year: 2021 article-title: Artificial intelligence and digital pathology: opportunities and implications for immuno‐oncology publication-title: Biochim Biophys Acta Rev Cancer – volume: 14 start-page: 907 year: 2018 end-page: 917 article-title: Sipuleucel‐T for the treatment of prostate cancer: novel insights and future directions publication-title: Future Oncol – volume: 11 start-page: 282 year: 2021 end-page: 292 article-title: Somatic HLA class I loss is a widespread mechanism of immune evasion which refines the use of tumor mutational burden as a biomarker of checkpoint inhibitor response publication-title: Cancer Discov – volume: 29 start-page: 610 issue: 6 year: 2011 end-page: 618 article-title: Histopathologic‐based prognostic factors of colorectal cancers are associated with the state of the local immune reaction publication-title: J Clin Oncol – volume: 6 start-page: 273 year: 2020 end-page: 282 article-title: Hypothesis‐free deep survival learning applied to the tumour microenvironment in gastric cancer publication-title: J Pathol Clin Res – volume: 30 start-page: 44 issue: 1 year: 2019 end-page: 56 article-title: Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic publication-title: Ann Oncol – volume: 380 start-page: 296 issue: 1 year: 2016 end-page: 303 article-title: Computational pathology: exploring the spatial dimension of tumor ecology publication-title: Cancer Lett – volume: 14 start-page: 2 year: 2019 article-title: Developing and adopting safe and effective digital biomarkers to improve patient outcomes publication-title: Digit Med – volume: 635 start-page: 51 year: 2020 end-page: 66 article-title: Multiplexed immunohistochemistry for immune cell phenotyping, quantification and spatial distribution in situ publication-title: Methods Enzymol – volume: 26 start-page: 71 year: 2020 end-page: 81 article-title: Pembrolizumab in combination with the oncolytic virus Pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: a phase Ib study publication-title: Clin Cancer Res – volume: 170 start-page: 1055 year: 2017 end-page: 1056 article-title: Converting cold into hot tumors by combining immunotherapies publication-title: Cell – volume: 4 start-page: 2 year: 2013 article-title: Application of whole slide image markup and annotation for pathologist knowledge capture publication-title: J Pathol Inform – volume: 7 start-page: 25 year: 2019 article-title: Cancer biomarkers for targeted therapy publication-title: Biomark Res – volume: 113 start-page: E7769 year: 2016 end-page: E7777 article-title: Association of PD‐1/PD‐L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors publication-title: Proc Natl Acad Sci U S A – volume: 18 start-page: 197 year: 2019 end-page: 218 article-title: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies publication-title: Nat Rev Drug Discov – volume: 19 start-page: e421 year: 2018 end-page: e430 article-title: Heterogeneity of PD‐L1 expression among the different histological components and metastatic lymph nodes in patients with resected lung Adenosquamous carcinoma publication-title: Clin Lung Cancer – volume: 70 start-page: 1183 year: 2021 end-page: 1193 article-title: Artificial intelligence‐based pathology for gastrointestinal and hepatobiliary cancers publication-title: Gut – volume: 5 start-page: 44 year: 2017 article-title: Identifying baseline immune‐related biomarkers to predict clinical outcome of immunotherapy publication-title: J Immunother Cancer – volume: 247 start-page: 650 year: 2019 end-page: 661 article-title: New tools for pathology: a user's review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue publication-title: J Pathol – volume: 3 start-page: 31 year: 2020 article-title: Pan‐cancer diagnostic consensus through searching archival histopathology images using artificial intelligence publication-title: NPJ Digit Med – volume: 40 start-page: 494 year: 2008 end-page: 495 article-title: Coevolution in the tumor microenvironment publication-title: Nat Genet – volume: 9 start-page: 7449 issue: 1 year: 2019 article-title: Automatic discovery of image‐based signatures for ipilimumab response prediction in malignant melanoma publication-title: Sci Rep – volume: 17 start-page: e542 issue: 12 year: 2016 end-page: e551 article-title: Predictive biomarkers for checkpoint inhibitor‐based immunotherapy publication-title: Lancet Oncol – volume: 18 start-page: 591 year: 2014 end-page: 604 article-title: Weakly supervised histopathology cancer image segmentation and classification publication-title: Med Image Anal – volume: 10 start-page: 467 year: 2019 article-title: Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade publication-title: Front Immunol – year: 2018 – volume: 175 start-page: 751 year: 2018 end-page: 765 article-title: Evolution of metastases in space and time under immune selection publication-title: Cell – volume: 2018 start-page: 8459193 year: 2018 end-page: 8459197 article-title: Tumor‐associated CD204‐positive macrophage is a prognostic marker in clinical stage I lung adenocarcinoma publication-title: Biomed Res Int – volume: 8 start-page: 4470 year: 2018 article-title: Tissue Phenomics for prognostic biomarker discovery in low‐ and intermediate‐risk prostate cancer publication-title: Sci Rep – volume: 8 year: 2019 article-title: A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition publication-title: Onco Targets Ther – volume: 476 start-page: 891 year: 2020 end-page: 902 article-title: Characterisation of tumour microenvironment and immune checkpoints in primary central nervous system diffuse large B cell lymphomas publication-title: Virchows Arch – volume: 6 start-page: 172 year: 2019 article-title: The promise of digital biopsy for the prediction of tumor molecular features and clinical outcomes associated with immunotherapy publication-title: Front Med – volume: 17 start-page: 658 issue: 9 year: 2019 article-title: New paradigm of machine learning (ML) in personalized oncology: data trimming for squeezing more biomarkers from clinical datasets publication-title: Front Oncol – volume: 500 start-page: 415 year: 2013 end-page: 421 article-title: Signatures of mutational processes in human cancer publication-title: Nature – volume: 16 start-page: 703 issue: 11 year: 2019 end-page: 715 article-title: Artificial intelligence in digital pathology ‐ new tools for diagnosis and precision oncology publication-title: Nat Rev Clin Oncol – volume: 250 start-page: 667 issue: 5 year: 2020 end-page: 684 article-title: The path to a better biomarker: application of a risk management framework for the implementation of PD‐L1 and TILs as immuno‐oncology biomarkers in breast cancer clinical trials and daily practice publication-title: J Pathol – volume: 84 start-page: 345 year: 2018 end-page: 356 article-title: Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks publication-title: Pattern Recognit – volume: 27 start-page: 147 year: 2016 end-page: 153 article-title: Comparative study of the PD‐L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti‐PD‐L1 therapeutic strategies publication-title: Ann Oncol – volume: 600 start-page: 70 year: 2021 end-page: 74 article-title: Advancing mathematics by guiding human intuition with AI publication-title: Nature – volume: 16 year: 2019 article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study publication-title: PLoS Med – volume: 15 start-page: 8 issue: 13 year: 2014 end-page: 17 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput Struct Biotechnol J – volume: 1913 start-page: 13 year: 2019 end-page: 31 article-title: Multispectral fluorescence imaging allows for distinctive topographic assessment and subclassification of tumor‐infiltrating and surrounding immune cells publication-title: Methods Mol Biol – volume: 33 start-page: 463 issue: 3 year: 2018 end-page: 479 article-title: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer publication-title: Cancer Cell – volume: 244 start-page: 421 year: 2018 end-page: 431 article-title: Multispectral imaging for quantitative and compartment‐specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients publication-title: J Pathol – volume: 10 start-page: 1 year: 2012 article-title: The immune score as a new possible approach for the classification of cancer publication-title: J Transl Med – volume: 13 start-page: 84 year: 2020 article-title: Oncolytic viruses for cancer immunotherapy publication-title: J Hematol Oncol – volume: 21 start-page: 416 year: 2020 end-page: 423 article-title: Combining radiotherapy with Immunocheckpoint inhibitors or CAR‐T in renal cell carcinoma publication-title: Curr Drug Targets – volume: 249 start-page: 143 year: 2019 end-page: 150 article-title: Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice publication-title: J Pathol – volume: 4 start-page: 76 year: 2016 article-title: Validation of biomarkers to predict response to immunotherapy in cancer: volume I ‐ pre‐analytical and analytical validation publication-title: J Immunother Cancer – volume: 1 start-page: 789 issue: 8 year: 2020 end-page: 799 article-title: Pan‐cancer image‐based detection of clinically actionable genetic alterations publication-title: Nat Cancer – volume: 6 start-page: 48 issue: 1 year: 2018 article-title: Effect of neoadjuvant chemotherapy on the immune microenvironment in non‐small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches publication-title: J Immunother Cancer – start-page: 460 year: 2016 end-page: 468 – volume: 29 start-page: 84 issue: 1 year: 2018 end-page: 91 article-title: Comprehensive analysis of the clinical immuno‐oncology landscape publication-title: Ann Oncol – volume: 86 start-page: 15 year: 2017 end-page: 27 article-title: Determination of poor prognostic immune features of tumour microenvironment in non‐smoking patients with lung adenocarcinoma publication-title: Eur J Cancer – volume: 31 start-page: 214 year: 2018 end-page: 234 article-title: Implications of the tumor immune microenvironment for staging and therapeutics publication-title: Mod Pathol – volume: 529 start-page: 351 year: 2016 end-page: 357 article-title: Divergent clonal selection dominates medulloblastoma at recurrence publication-title: Nature – volume: 23 start-page: 181 issue: 1 year: 2018 end-page: 193 article-title: Spatial organization and molecular correlation of tumor‐infiltrating lymphocytes using deep learning on pathology images publication-title: Cell Rep – volume: 13 start-page: 2074 year: 2021 article-title: Deep learning prediction of metastasis in locally advanced colon cancer using binary histologic tumor images publication-title: Cancers (Basel) – volume: 9 start-page: 5150 issue: 1 year: 2018 article-title: Spatially and functionally distinct subclasses of breast cancer‐associated fibroblasts revealed by single cell RNA sequencing publication-title: Nat Commun – volume: 27 start-page: 574 year: 2015 end-page: 588 article-title: Intravital imaging reveals how BRAF inhibition generates drug‐tolerant microenvironments with high integrin β1/FAK signaling publication-title: Cancer Cell – volume: 39 start-page: 2481 year: 2017 end-page: 2495 article-title: SegNet: a deep convolutional encoder‐decoder architecture for image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 256 start-page: 269 year: 2022 end-page: 281 article-title: Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer publication-title: J Pathol – volume: 18 start-page: e473 year: 2017 end-page: e479 article-title: Programmed death ligand 1 expression in paired non‐small cell lung cancer tumor samples publication-title: Clin Lung Cancer – year: 2017 – volume: 3 start-page: e654 year: 2021 end-page: e664 article-title: Development and validation of deep learning classifiers to detect Epstein‐Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study publication-title: Lancet Digit Health – volume: 160 start-page: 48 year: 2015 end-page: 61 article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity publication-title: Cell – ident: e_1_2_11_38_1 doi: 10.1038/s41746-020-0238-2 – ident: e_1_2_11_84_1 doi: 10.1186/s40425-016-0178-1 – ident: e_1_2_11_3_1 doi: 10.1136/gutjnl-2020-322880 – ident: e_1_2_11_94_1 doi: 10.1016/j.ccell.2015.03.008 – ident: e_1_2_11_57_1 doi: 10.1186/1479-5876-10-1 – ident: e_1_2_11_92_1 doi: 10.1158/2159-8290.CD-20-0672 – ident: e_1_2_11_97_1 doi: 10.1016/j.cllc.2018.02.008 – ident: e_1_2_11_101_1 doi: 10.1016/S1470-2045(20)30445-9 – ident: e_1_2_11_103_1 doi: 10.1073/pnas.1607836113 – ident: e_1_2_11_78_1 doi: 10.1007/s00428-020-02894-6 – ident: e_1_2_11_16_1 doi: 10.1073/pnas.1717139115 – ident: e_1_2_11_80_1 doi: 10.1016/S1470-2045(16)30406-5 – ident: e_1_2_11_21_1 doi: 10.1038/s41467-018-07582-3 – ident: e_1_2_11_4_1 doi: 10.1371/journal.pmed.1002730 – ident: e_1_2_11_62_1 doi: 10.1038/nature16478 – ident: e_1_2_11_29_1 doi: 10.1016/j.patcog.2018.07.022 – ident: e_1_2_11_34_1 doi: 10.1016/j.celrep.2019.11.017 – ident: e_1_2_11_99_1 doi: 10.1016/j.lungcan.2015.01.016 – ident: e_1_2_11_51_1 doi: 10.1002/path.5310 – ident: e_1_2_11_56_1 doi: 10.1186/s40425-017-0243-4 – ident: e_1_2_11_100_1 doi: 10.1016/j.ejca.2017.01.004 – ident: e_1_2_11_108_1 doi: 10.1038/s41591-019-0462-y – ident: e_1_2_11_2_1 doi: 10.1002/path.5831 – ident: e_1_2_11_95_1 doi: 10.1158/1078-0432.CCR-15-2246 – ident: e_1_2_11_9_1 doi: 10.1038/s43018-020-0087-6 – ident: e_1_2_11_26_1 doi: 10.1016/j.media.2014.01.010 – ident: e_1_2_11_44_1 doi: 10.1109/TPAMI.2011.235 – ident: e_1_2_11_18_1 doi: 10.1016/j.bbcan.2021.188548 – ident: e_1_2_11_22_1 doi: 10.1016/j.celrep.2018.03.086 – volume: 14 start-page: 2 year: 2019 ident: e_1_2_11_63_1 article-title: Developing and adopting safe and effective digital biomarkers to improve patient outcomes publication-title: Digit Med – ident: e_1_2_11_73_1 doi: 10.1016/j.ejca.2017.08.026 – volume: 8 year: 2019 ident: e_1_2_11_65_1 article-title: A novel in situ multiplex immunofluorescence panel for the assessment of tumor immunopathology and response to virotherapy in pediatric glioblastoma reveals a role for checkpoint protein inhibition publication-title: Onco Targets Ther – volume-title: Machine Intelligence for Healthcare year: 2017 ident: e_1_2_11_17_1 – ident: e_1_2_11_98_1 doi: 10.1093/annonc/mdv489 – ident: e_1_2_11_106_1 doi: 10.1038/s41598-018-22564-7 – ident: e_1_2_11_49_1 doi: 10.1002/path.5223 – ident: e_1_2_11_45_1 doi: 10.1002/path.5026 – volume: 6 start-page: 1 year: 2020 ident: e_1_2_11_75_1 article-title: Report on computational assessment of tumor infiltrating lymphocytes from the international immuno‐oncology biomarker working group publication-title: NPJ Breast Cancer – ident: e_1_2_11_31_1 doi: 10.1002/path.5388 – start-page: 2732 year: 2010 ident: e_1_2_11_33_1 article-title: A multiple instance learning approach toward optimal classification of pathology slides publication-title: Proceedings of the 20th Int Conf Pattern Recognit – ident: e_1_2_11_28_1 doi: 10.4103/2153-3539.107953 – ident: e_1_2_11_40_1 doi: 10.3390/cancers13092074 – ident: e_1_2_11_55_1 doi: 10.1002/acg2.113 – ident: e_1_2_11_13_1 doi: 10.1016/j.bbcan.2021.188520 – ident: e_1_2_11_20_1 doi: 10.1038/s41591-020-0900-x – ident: e_1_2_11_36_1 doi: 10.5858/arpa.2018-0147-OA – ident: e_1_2_11_83_1 doi: 10.1007/978-1-4939-9773-2_21 – ident: e_1_2_11_54_1 doi: 10.2217/fon-2017-0531 – volume: 1 start-page: 5 issue: 1 year: 2022 ident: e_1_2_11_42_1 article-title: Precision medicine: recent progress in cancer therapy publication-title: Mediterr J Pharm Pharm Sci – ident: e_1_2_11_8_1 doi: 10.1002/path.5832 – ident: e_1_2_11_5_1 doi: 10.1038/s41571-019-0252-y – ident: e_1_2_11_91_1 doi: 10.1073/pnas.2022410118 – volume: 2018 start-page: 8459193 year: 2018 ident: e_1_2_11_107_1 article-title: Tumor‐associated CD204‐positive macrophage is a prognostic marker in clinical stage I lung adenocarcinoma publication-title: Biomed Res Int – ident: e_1_2_11_23_1 doi: 10.3389/fonc.2019.00658 – ident: e_1_2_11_96_1 doi: 10.1016/j.cllc.2017.04.008 – ident: e_1_2_11_61_1 doi: 10.1126/scitranslmed.aaa1408 – ident: e_1_2_11_72_1 doi: 10.2174/1389450120666191017113051 – ident: e_1_2_11_105_1 doi: 10.1016/bs.mie.2019.07.039 – ident: e_1_2_11_19_1 doi: 10.1007/978-3-319-46723-8_53 – ident: e_1_2_11_66_1 doi: 10.3389/fimmu.2019.00467 – ident: e_1_2_11_74_1 doi: 10.1172/jci.insight.126908 – ident: e_1_2_11_89_1 doi: 10.1016/j.cell.2014.12.033 – ident: e_1_2_11_69_1 doi: 10.1158/1078-0432.CCR-19-2078 – ident: e_1_2_11_86_1 doi: 10.1016/j.ccell.2018.01.011 – ident: e_1_2_11_102_1 doi: 10.1056/NEJMc2031965 – ident: e_1_2_11_7_1 doi: 10.1111/joim.13030 – ident: e_1_2_11_37_1 doi: 10.1158/0008-5472.CAN-17-0629 – ident: e_1_2_11_76_1 doi: 10.1016/j.cell.2018.09.018 – ident: e_1_2_11_32_1 doi: 10.1016/j.canlet.2015.11.018 – ident: e_1_2_11_60_1 doi: 10.3389/fonc.2019.01161 – ident: e_1_2_11_81_1 doi: 10.1002/path.5406 – ident: e_1_2_11_6_1 doi: 10.1007/s00428-018-2485-z – ident: e_1_2_11_27_1 doi: 10.1002/cjp2.170 – ident: e_1_2_11_10_1 doi: 10.1200/JCO.2010.30.5425 – ident: e_1_2_11_12_1 doi: 10.1093/annonc/mdx755 – volume-title: Tissue Phenomics – Profiling Cancer Patients for Treatment Decisions year: 2018 ident: e_1_2_11_30_1 – ident: e_1_2_11_71_1 doi: 10.1007/s00428-019-02695-6 – ident: e_1_2_11_11_1 doi: 10.1038/ng0508-494 – ident: e_1_2_11_68_1 doi: 10.1186/s40425-018-0368-0 – ident: e_1_2_11_41_1 doi: 10.1109/RBME.2009.2034865 – ident: e_1_2_11_59_1 doi: 10.1038/s41573-018-0007-y – ident: e_1_2_11_93_1 doi: 10.1038/s41568-019-0238-1 – ident: e_1_2_11_90_1 doi: 10.1038/nature12477 – ident: e_1_2_11_58_1 doi: 10.1016/j.immuni.2016.02.025 – ident: e_1_2_11_24_1 doi: 10.1038/s41598-019-43525-8 – ident: e_1_2_11_50_1 doi: 10.1038/s41596-019-0206-y – ident: e_1_2_11_64_1 doi: 10.1016/j.cell.2017.08.031 – ident: e_1_2_11_85_1 doi: 10.1038/modpathol.2017.156 – ident: e_1_2_11_52_1 doi: 10.1007/978-1-4939-8979-9_2 – ident: e_1_2_11_46_1 doi: 10.1016/j.jim.2019.112714 – ident: e_1_2_11_15_1 doi: 10.7717/peerj.3874 – ident: e_1_2_11_14_1 doi: 10.1038/s41586-021-04086-x – ident: e_1_2_11_79_1 doi: 10.3389/fmed.2019.00172 – ident: e_1_2_11_25_1 doi: 10.1038/s41467-019-13647-8 – ident: e_1_2_11_88_1 doi: 10.1073/pnas.1519556112 – ident: e_1_2_11_53_1 doi: 10.1158/1078-0432.CCR-19-3888 – ident: e_1_2_11_39_1 doi: 10.1016/S2589-7500(21)00133-3 – ident: e_1_2_11_67_1 doi: 10.1038/s41573-019-0029-0 – ident: e_1_2_11_70_1 doi: 10.1186/s13045-020-00922-1 – ident: e_1_2_11_77_1 doi: 10.1016/j.csbj.2014.11.005 – ident: e_1_2_11_43_1 doi: 10.1109/CVPR.2016.308 – ident: e_1_2_11_82_1 doi: 10.1186/s40364-019-0178-7 – ident: e_1_2_11_47_1 doi: 10.1021/acsnano.9b07326 – ident: e_1_2_11_104_1 doi: 10.1016/bs.mie.2019.10.002 – ident: e_1_2_11_35_1 doi: 10.1109/TPAMI.2016.2644615 – ident: e_1_2_11_87_1 doi: 10.1093/annonc/mdy495 – ident: e_1_2_11_48_1 doi: 10.1038/bjc.2015.309 |
| SSID | ssj0001863293 |
| Score | 2.2838862 |
| SecondaryResourceType | review_article |
| Snippet | Background
The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the... The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex... Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the... Abstract Background The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1796 |
| SubjectTerms | Algorithms Artificial Intelligence Automation Big Data Biomarkers Cancer Cartography Clinical trials Datasets Decision making decision support Deep learning digital biomarker Digitization Histopathology Humans Hypotheses immune oncology Machine learning Medical Oncology Neoplasms - therapy Neural networks Oncology Pathology Precision Medicine - methods precision pathology Quality control Quality management Quality standards Review Subject specialists Tumor Microenvironment Visualization |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4FLAfFKKcggDlxCHduxvaeqrVpxQKuqAqk3K35kiYSSbdKtVIkfj8fx7nZF4cItiSeRnflsjz3jbxD6yGrDhLAkr0hhc26MCuMgr3OreEmYsYXy8aDwVzmbqcvL6XnacBtSWOVqTIwDtess7JEfMAggpCoY9IeLqxyyRoF3NaXQeIh2gKmMT9DO8ens_GKzy6IECxPailKI0APb9vRzQKHYmogiX_99RuafsZJ3bdg4CZ09-d_qP0W7yfzERyNenqEHvn2OfsHtyCSBmzsUnbhqHXbNHPKKYDinD6E8fRDBiz6l5sGQ0TjuzOP5soF5EDdw4sTj8WDXLR5ioh0Qha9tXuzayJd9-wJ9Pzv9dvIlT1kZcltKKcKC00ljvCfGFMRwI4QCblFZOctqKokRxkkpy1pWzBnKrOA1q9zUc8qrsCJmL9Gk7Vr_GmEirAorKB9gUfHS1cYaSmpHnBHSFNJn6NNKRdomynLInPFTj2TLVIM2NWgzQx_WoouRp-M-oWPQ81oAqLXjg66f69RTdUlLcHo45mzJC-WmXIBRbYWfliRAOEP7Kw3r1N8HvVFvht6vi0NPBfdL1fpuOWgqw1jIAxzLDL0aQbWuCROqAKBmSG3Bbauq2yVt8yOygRfgildMhp8Vkfn35uuT2QWFi71_N-ENekyDKTcGJe-jyXW_9G_RI3tz3Qz9u9TFfgPX1DRl priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7StIde-qAvJ2lRSw-9uJElWdLSUxIaeihLKC3kJqyHt4biDXa2EMiPj0b2erM0hUJvtjUyenwjjR7zDcB7XlsupaN5RQuXC2t1HAdFnTstSsqtK3RIjsJf1Xyuz89nZzvwae0LM_BDTBtuqBlpvEYFr2x_uCENdW3HPkY4yXtwvyi4xrgNTJxtNli05CyR7kZU8lxzodfMQpQdTrm35qNE23-Xrfnnlcnbpmyai04f_1ctnsCj0QQlRwNmnsJOaJ_BNb4ObBKkuUXTSarWE98sMLYIQV99vM7TRRFy0Y3heQhGNU6782SxanAuJA16nQQyOHddkT4F20FR_Nsm47JNnNlXz-HH6efvJ1_yMTJD7kqlZFx0emVtCNTaglphpdTIL6oq73jNFLXSeqVUWauKe8u4k6LmlZ8FwUQVV8X8Bey2yza8AkKl03EVFSI0KlH62jrLaO2pt1LZQoUMPqz7x7iRthyjZ_wyA-EyM9iEBpswg3eT6MXA1XGX0DF28iSA9Nrpw7JbmFFbTclKPPjw3LtSFNrPhETD2skwK2mEcQYHa4iYUed7w_GKK9NxyZnB2yk5aisewVRtWK56w1QcD0XEZZnBywFRU0m41AUiNgO9hbWtom6ntM3PxAhe4HG85io2VgLb36tvTubfGD7s_bvoPjxk0bQbLikfwO5ltwqv4YH7fdn03ZukdTeePjJU priority: 102 providerName: Wiley-Blackwell |
| Title | Artificial intelligence and digital biomarker in precision pathology guiding immune therapy selection and precision oncology |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnr2.1796 https://www.ncbi.nlm.nih.gov/pubmed/36813293 https://www.proquest.com/docview/3090228149 https://www.proquest.com/docview/2779343295 https://pubmed.ncbi.nlm.nih.gov/PMC10363837 https://doaj.org/article/5253100d3dc5418d9468002c6e950c84 |
| Volume | 6 |
| WOSCitedRecordID | wos000936374200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2573-8348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001863293 issn: 2573-8348 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2573-8348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001863293 issn: 2573-8348 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2573-8348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001863293 issn: 2573-8348 databaseCode: 7X7 dateStart: 20200801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2573-8348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001863293 issn: 2573-8348 databaseCode: BENPR dateStart: 20200801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2573-8348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001863293 issn: 2573-8348 databaseCode: PIMPY dateStart: 20200801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2573-8348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001863293 issn: 2573-8348 databaseCode: WIN dateStart: 20180101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2573-8348 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001863293 issn: 2573-8348 databaseCode: 24P dateStart: 20210101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOCCQLwCZWUQBy6hju3YzpFWragEUVSBWE5R_EgbCWWrbBepEj-eGSe77IoiLlyi9WY28s58tmec8TeEvBGtFUo5ljYsc6m01sA8KNvUGZkzYV1mQjwo_FGXpZnPi2qr1BfmhI30wKPiDnKe4x60F97lMjO-kAp9HKdCkTN4Is6-4PVsBVNxd8UoAQvZmkqI8QPXD_wdoE_tLECRp_8m5_LPHMlt3zUuPicPyP3Ja6Tvx94-JLdC_4j8xOZIAEG7LWZN2vSe-u4cy4FQPF6PGTgDiNDLYaqoQ7EQcdxQp-erDpcv2uFBkUDH81jXdBnr46AoPu33Dxd9pLm-fky-nBx_PvqQTsUUUpdrrSBO9NraEJi1GbPSKlBjkQndeCdarplV1mut81Y3wlsunJKtaHwRJJcNBLLiCdnrF314RihTzkDgE8Cajcx9a53lrPXMW6VtpkNC3q41XLuJaRwLXnyvR45kXqMxajRGQl5vRC9Heo2bhA7RTBsBZMSOXwBO6gkn9b9wkpD9tZHraZgua4FZqdxAlJiQV5vbMMDwrUnTh8VqWXMNU5gENOUJeTpiYtMToUyGOEuI2UHLTld37_TdRSTxzvANuhEalBWB9fe_Xx-VZxw_PP8fenhB7nHw08aM432ydzWswkty1_246pbDjNzmsoKrnut4NTNy5_C4rM5mcXxBqzr9VH2D1tfT8he1yyo2 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQvXMQtMMAgkHgJc2zHdh8QgsG0al1VoSGNJxNfUiKhtKQrqBK_id-ITy7tKgZve-CtbU6jOPnO8Tnx8fch9IzlhglhSZyRxMbcGBXiIM9jq3hKmLGJ8vVG4aEcjdTJSX-8hX51e2GgrbKLiXWgdlML78h3GTQQUhUS-tezbzGoRsHqaieh0cDi0C9_hJJt_mrwLjzf55Tuvz_eO4hbVYHYplKKUDA5aYz3xJiEGG6EUMCNKTNnWU4lMcI4KWWay4w5Q5kVPGeZ63tOeRYqOhbOewlt8wB21UPb48HR-NP6rY4SLEygHYURobu2rOjLgHqxMfHV-gDnJbV_9maezZnrSW__-v92u26ga216jd80_nATbfnyFvoJXxumDFycoSDFWemwKyagm4KBhwBalapggmdVKz2EQbG5XnnAk0UB8zwuYEeNx83GtSWe10JCYApnW_9xWtZ84Mvb6OOFDPgO6pXT0t9DmAirQoXoA-wznrrcWENJ7ogzQppE-gi96CChbUvJDsogX3VDJk01oEcDeiL0dGU6a3hIzjN6C7haGQB1eP3DtJroNhLplKawqOOYsylPlOtzAUWDFb6fkuCiEdrpEKXbeDbXazhF6MnqcIhEsLyUlX66mGsqQ6znAf5phO42IF5dCRMqAceIkNqA98albh4piy8123kCrQaKyXCzak_4-_D13ugDhQ_3_z2Ex-jKwfHRUA8Ho8MH6CoNaWvTgL2DeqfVwj9El-3302JePWrdG6PPF-0ivwHKqpFh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6sq4gvXvBWXTWKD77UTZM0yYAvujooLsMiCvsWmkvHgnSGzo6w4I83J-10dnAFwbe2OSm5fCc5uZzvALzkteVSOppXtHC5sFbHcVDUudOipNy6QofkKHysZjN9ejo52YM3G1-Ynh9i3HBDzUjjNSp4WPr6cMsa6tqOvY54klfgqihVgZhm4mS7w6IlZ4l1N8KS55oLvaEWouxwzL0zISXe_suMzT_vTF60ZdNkNL31f9W4DTcHI5S87VFzB_ZCexd-4WvPJ0GaC0SdpGo98c0co4sQ9NbHCz1dFCHLbgjQQzCucdqfJ_N1g7MhadDvJJDeveucrFK4HRTFv20zLtrEmn1-D75NP3w9-pgPsRlyVyol47LTK2tDoNYW1AorpUaGUVV5x2umqJXWK6XKWlXcW8adFDWv_CQIJqq4Lub3Yb9dtOEhECqdjuuoEMFRidLX1llGa0-9lcoWKmTwatNBxg3E5Rg_44fpKZeZwSY02IQZvBhFlz1bx2VC77CXRwEk2E4fFt3cDPpqSlbi0Yfn3pWi0H4iJJrWToZJSSOQMzjYYMQMWr8yHC-5Mh0XnRk8H5OjvuIhTNWGxXplmIojoojALDN40ENqLAmXukDIZqB3wLZT1N2UtvmeOMELPJDXXMXGSmj7e_XN0ewLw4dH_y76DK6fvJ-a40-zz4_hBot2Xn9j-QD2z7p1eALX3M-zZtU9TRr4GyZsNcM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+digital+biomarker+in+precision+pathology+guiding+immune+therapy+selection+and+precision+oncology&rft.jtitle=Cancer+reports&rft.au=Huss%2C+Ralf&rft.au=Raffler%2C+Johannes&rft.au=M%C3%A4rkl%2C+Bruno&rft.date=2023-07-01&rft.issn=2573-8348&rft.eissn=2573-8348&rft.volume=6&rft.issue=7&rft.spage=e1796&rft_id=info:doi/10.1002%2Fcnr2.1796&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2573-8348&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2573-8348&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2573-8348&client=summon |