SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain

Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch eq...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on medical imaging Ročník 33; číslo 12; s. 2311 - 2322
Hlavní autoři: McGivney, Debra F., Pierre, Eric, Dan Ma, Yun Jiang, Saybasili, Haris, Gulani, Vikas, Griswold, Mark A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
AbstractList Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition (SVD), which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
Author Saybasili, Haris
Dan Ma
Griswold, Mark A.
McGivney, Debra F.
Pierre, Eric
Gulani, Vikas
Yun Jiang
Author_xml – sequence: 1
  givenname: Debra F.
  surname: McGivney
  fullname: McGivney, Debra F.
  email: debra.mcgivney@case.edu
  organization: Dept. of Radiol., Case Western Reserve Univ., Cleveland, OH, USA
– sequence: 2
  givenname: Eric
  surname: Pierre
  fullname: Pierre, Eric
  organization: Dept. of Biomed. Eng., Case Western Reserve Univ., Cleveland, OH, USA
– sequence: 3
  surname: Dan Ma
  fullname: Dan Ma
  organization: Dept. of Biomed. Eng., Case Western Reserve Univ., Cleveland, OH, USA
– sequence: 4
  surname: Yun Jiang
  fullname: Yun Jiang
  organization: Dept. of Biomed. Eng., Case Western Reserve Univ., Cleveland, OH, USA
– sequence: 5
  givenname: Haris
  surname: Saybasili
  fullname: Saybasili, Haris
  organization: Siemens Healthcare USA, Inc., Chicago, IL, USA
– sequence: 6
  givenname: Vikas
  surname: Gulani
  fullname: Gulani, Vikas
  organization: Dept. of Radiol., Case Western Reserve Univ., Cleveland, OH, USA
– sequence: 7
  givenname: Mark A.
  surname: Griswold
  fullname: Griswold, Mark A.
  organization: Dept. of Radiol., Case Western Reserve Univ., Cleveland, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25029380$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFDEYxoNU7LZ6FwQZ8NLLrG-SSTK5CLK1ttAi6CreQib7zjZlJ1mTWcH_vll3XbQH6SmB_J4n78dzQo5CDEjISwpTSkG_nd9cTRnQZso4V5zRJ2RChWhrJprvR2QCTLU1gGTH5CTnOyikAP2MHDMBTPMWJuTyy7fzahaHdcKcfQxVH1N1Y5cBR--qz5hjsMFhdeHDEtM6-TCWW-VDNd5iNfcDVudxsD48J097u8r4Yn-ekq8XH-azy_r608er2fvr2gklxxpbwVgnNeeusQJE3-hu0XdWLlrNpe06phq0jeo7x_tGWSsEglOq66GjVDh-St7tfNebbsCFwzAmuzKlssGmXyZab_59Cf7WLONP0yjBQYhicLY3SPHHBvNoBp8drlY2YNxkQ6WgDbQa9CNQrnULkj7GlWmtpGi3rm8eoHdxk0IZ2m-KCq2YLNTrv_s8NPhndQWAHeBSzDlhf0AomG06TEmH2abD7NNRJPKBxPnRjmXtZVJ-9T_hq53QI-LhH9kKqoHye_-2xXA
CODEN ITMID4
CitedBy_id crossref_primary_10_1002_mrm_30381
crossref_primary_10_3390_info16030218
crossref_primary_10_1088_1361_6501_ac5fff
crossref_primary_10_1002_nbm_5302
crossref_primary_10_1088_1361_6560_aba5e8
crossref_primary_10_1002_jmri_29812
crossref_primary_10_1016_j_jmr_2021_107042
crossref_primary_10_1002_mrm_28984
crossref_primary_10_1002_mrm_29951
crossref_primary_10_1177_00202940221091547
crossref_primary_10_1002_mrm_70040
crossref_primary_10_1007_s42835_022_01081_8
crossref_primary_10_1002_nbm_5097
crossref_primary_10_1016_j_ejmp_2021_07_013
crossref_primary_10_1109_TBME_2018_2874992
crossref_primary_10_1002_mrm_30135
crossref_primary_10_1002_nbm_4202
crossref_primary_10_1002_nbm_4323
crossref_primary_10_1002_mrm_29264
crossref_primary_10_1109_TMI_2025_3534206
crossref_primary_10_1002_mrm_27403
crossref_primary_10_1073_pnas_2020516118
crossref_primary_10_1002_mrm_29945
crossref_primary_10_1002_mrm_29027
crossref_primary_10_1109_TMI_2016_2531640
crossref_primary_10_3389_fcvm_2023_1160183
crossref_primary_10_1002_mrm_29171
crossref_primary_10_1002_ima_22196
crossref_primary_10_1016_j_mri_2023_02_001
crossref_primary_10_1016_j_mri_2022_05_015
crossref_primary_10_1002_mrm_70019
crossref_primary_10_3367_UFNe_2018_12_038505
crossref_primary_10_1002_nbm_4670
crossref_primary_10_1002_mrm_27558
crossref_primary_10_1002_mrm_29979
crossref_primary_10_1002_mrm_28404
crossref_primary_10_1002_mrm_29735
crossref_primary_10_3390_bioengineering11030236
crossref_primary_10_1002_mrm_29976
crossref_primary_10_1002_mrm_27556
crossref_primary_10_1007_s10334_025_01224_8
crossref_primary_10_1002_mrm_28070
crossref_primary_10_1016_j_measurement_2019_107444
crossref_primary_10_3390_cancers13194742
crossref_primary_10_1002_mrm_28073
crossref_primary_10_1002_mp_17932
crossref_primary_10_1002_mrm_29969
crossref_primary_10_1007_s00521_025_11055_2
crossref_primary_10_1002_mrm_27543
crossref_primary_10_1016_j_media_2025_103699
crossref_primary_10_1016_j_mri_2018_11_001
crossref_primary_10_1109_TMI_2019_2939130
crossref_primary_10_1002_mrm_27665
crossref_primary_10_1109_TMI_2019_2954751
crossref_primary_10_1109_TBME_2021_3116877
crossref_primary_10_1148_radiol_2018180836
crossref_primary_10_1002_mrm_29194
crossref_primary_10_1002_nbm_4251
crossref_primary_10_1002_nbm_4370
crossref_primary_10_1016_j_mri_2017_12_015
crossref_primary_10_1016_j_mri_2017_02_007
crossref_primary_10_1098_rsta_2020_0197
crossref_primary_10_1002_mrm_30622
crossref_primary_10_1002_mrm_29074
crossref_primary_10_1109_TRPMS_2019_2897425
crossref_primary_10_1002_mrm_28308
crossref_primary_10_1002_mrm_26009
crossref_primary_10_1016_j_neuroimage_2021_118237
crossref_primary_10_1002_mrm_28301
crossref_primary_10_1038_srep37071
crossref_primary_10_1002_jmri_27673
crossref_primary_10_1049_ipr2_12526
crossref_primary_10_1088_1361_6560_abeae7
crossref_primary_10_1097_RLI_0000000000000836
crossref_primary_10_1016_j_mri_2017_06_014
crossref_primary_10_1002_mrm_28092
crossref_primary_10_1002_mp_15254
crossref_primary_10_1002_mrm_29983
crossref_primary_10_1097_MNM_0000000000001603
crossref_primary_10_3389_fcvm_2022_928546
crossref_primary_10_1002_mp_13078
crossref_primary_10_1002_mrm_29065
crossref_primary_10_1002_nbm_4001
crossref_primary_10_1371_journal_pone_0201808
crossref_primary_10_1002_mp_14833
crossref_primary_10_1002_mrm_27448
crossref_primary_10_1109_TRPMS_2019_2903593
crossref_primary_10_1002_mrm_29626
crossref_primary_10_1088_1361_6420_ab356d
crossref_primary_10_1002_nbm_4800
crossref_primary_10_1162_imag_a_00177
crossref_primary_10_1002_mrm_29629
crossref_primary_10_1007_s10334_023_01140_9
crossref_primary_10_1002_mrm_30291
crossref_primary_10_1109_TBME_2024_3446763
crossref_primary_10_1007_s00259_021_05384_2
crossref_primary_10_1016_j_media_2020_101741
crossref_primary_10_1016_j_mri_2020_02_005
crossref_primary_10_1016_j_ijrobp_2023_04_015
crossref_primary_10_1109_TCI_2024_3440008
crossref_primary_10_3389_fcvm_2022_1009131
crossref_primary_10_1016_j_mri_2017_07_007
crossref_primary_10_1016_j_mri_2017_07_004
crossref_primary_10_1002_mrm_26701
crossref_primary_10_1007_s10334_021_00963_8
crossref_primary_10_1038_s41596_025_01152_w
crossref_primary_10_3390_jimaging11050169
crossref_primary_10_1016_j_neuroimage_2025_121471
crossref_primary_10_1002_mrm_28311
crossref_primary_10_1002_mrm_29089
crossref_primary_10_1002_mrm_27221
crossref_primary_10_1002_mrm_29761
crossref_primary_10_1016_j_mri_2019_01_011
crossref_primary_10_1016_j_media_2024_103198
crossref_primary_10_1002_jmri_29068
crossref_primary_10_1016_j_mri_2023_03_019
crossref_primary_10_1016_j_mri_2022_12_019
crossref_primary_10_1016_j_mri_2019_03_017
crossref_primary_10_1002_nbm_5028
crossref_primary_10_1121_10_0001689
crossref_primary_10_1002_mp_15465
crossref_primary_10_1002_mrm_30546
crossref_primary_10_1038_s41598_018_24920_z
crossref_primary_10_1002_mrm_28581
crossref_primary_10_1002_gamm_202470014
crossref_primary_10_1007_s10334_022_01057_9
crossref_primary_10_1002_nbm_70045
crossref_primary_10_1016_j_mri_2019_11_015
crossref_primary_10_1016_j_cobme_2017_11_001
crossref_primary_10_1002_mrm_27137
crossref_primary_10_1109_TMI_2019_2899328
crossref_primary_10_1002_mrm_27819
crossref_primary_10_1016_j_mri_2019_11_010
crossref_primary_10_1162_imag_a_00367
crossref_primary_10_1002_nbm_4041
crossref_primary_10_1007_s00330_021_07950_6
crossref_primary_10_1016_j_mri_2023_01_011
crossref_primary_10_1002_nbm_5136
crossref_primary_10_1088_1361_6420_ab4c9a
crossref_primary_10_3390_cancers14225606
crossref_primary_10_1002_mrm_29786
crossref_primary_10_1016_j_pnmrs_2025_101561
crossref_primary_10_1038_s41598_020_70789_2
crossref_primary_10_1016_j_media_2020_101945
crossref_primary_10_1109_TNS_2021_3083894
crossref_primary_10_1002_jmri_29679
crossref_primary_10_1109_TRPMS_2019_2905366
crossref_primary_10_1038_s42005_019_0174_0
crossref_primary_10_1137_18M1222211
crossref_primary_10_1002_mrm_26867
crossref_primary_10_1016_j_neuroimage_2019_01_034
crossref_primary_10_1002_mrm_26509
crossref_primary_10_1007_s10334_024_01209_z
crossref_primary_10_1038_s41598_020_74462_6
crossref_primary_10_1109_TIM_2022_3170973
crossref_primary_10_1109_TMI_2021_3066781
crossref_primary_10_1002_mrm_30434
crossref_primary_10_1109_TMI_2021_3133329
crossref_primary_10_1002_mrm_29442
crossref_primary_10_1016_j_mric_2021_06_010
crossref_primary_10_1002_mrm_26173
crossref_primary_10_1016_j_ymssp_2020_107174
crossref_primary_10_1162_imag_a_00470
crossref_primary_10_1002_mrm_29449
crossref_primary_10_1002_mrm_29206
crossref_primary_10_1002_mrm_29688
crossref_primary_10_1002_mrm_27947
crossref_primary_10_1038_s41598_022_23573_3
crossref_primary_10_3389_fcvm_2022_977603
crossref_primary_10_1002_hbm_25232
crossref_primary_10_1002_jmri_28925
crossref_primary_10_1002_mrm_30580
crossref_primary_10_1109_TMI_2020_3003893
crossref_primary_10_1093_cercor_bhac096
crossref_primary_10_1016_j_jcmg_2018_08_028
crossref_primary_10_1002_mrm_30588
crossref_primary_10_1002_nbm_4531
crossref_primary_10_1002_nbm_4651
crossref_primary_10_1002_mrm_28704
crossref_primary_10_1002_nbm_4416
crossref_primary_10_1002_mrm_26521
crossref_primary_10_1002_jmri_27155
crossref_primary_10_1016_j_jksuci_2019_08_002
crossref_primary_10_1002_nbm_4082
crossref_primary_10_1109_TMI_2018_2817547
crossref_primary_10_1002_jmri_29206
crossref_primary_10_1109_JSEN_2022_3177144
crossref_primary_10_1007_s40998_021_00421_0
crossref_primary_10_1002_mrm_27960
crossref_primary_10_1002_mrm_28136
crossref_primary_10_3390_s22031260
crossref_primary_10_1016_j_mri_2019_04_014
crossref_primary_10_1002_jmri_27381
crossref_primary_10_1002_mrm_26639
crossref_primary_10_1002_mrm_29905
crossref_primary_10_1002_mrm_27198
crossref_primary_10_1002_mrm_28166
crossref_primary_10_1109_TMI_2019_2900585
crossref_primary_10_1016_j_mri_2025_110357
crossref_primary_10_1109_TMI_2022_3168436
crossref_primary_10_1016_j_mri_2017_04_002
crossref_primary_10_1038_ncomms12445
crossref_primary_10_1016_j_mri_2021_12_006
crossref_primary_10_1002_jmri_26877
crossref_primary_10_1002_nbm_5039
crossref_primary_10_1016_j_camwa_2024_08_005
crossref_primary_10_1002_mrm_27505
crossref_primary_10_1016_j_mri_2021_06_009
crossref_primary_10_1148_radiol_2019182360
crossref_primary_10_1016_j_mri_2021_06_002
crossref_primary_10_1002_mrm_27628
crossref_primary_10_1137_16M1095032
Cites_doi 10.1073/pnas.97.18.10101
10.1109/6046.985560
10.1038/nature11971
10.1109/TIM.2010.2066770
10.1002/mrm.20738
10.1162/jocn.1991.3.1.71
10.1137/090771806
10.1016/S0020-0255(97)00044-3
10.1002/mrm.1910350415
10.1073/pnas.0709640104
10.1137/1.9780898719697
10.1155/2012/409357
10.1002/mrm.1910320219
10.1137/1034115
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
10.1007/BF02288367
10.1002/mrm.24912
10.1109/TCOM.1976.1093309
10.1002/mrm.1910330122
10.1109/4233.966104
10.1002/mrm.1316
10.1002/mrm.24751
10.1002/mrm.1910380122
10.1007/BF02163027
10.1073/pnas.0604756103
10.1109/TSP.2002.807005
10.1137/100804139
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2014.2337321
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

Engineering Research Database

MEDLINE
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2322
ExternalDocumentID PMC4753055
3512703701
25029380
10_1109_TMI_2014_2337321
6851901
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL094557
– fundername: NIBIB NIH HHS
  grantid: R01 EB017219
– fundername: NIBIB NIH HHS
  grantid: 1R01EB017219
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c576t-e8522b6933c4a505f49bdfba6d8936abb274ea47fbc3f47aa55e0c77bf0b115c3
IEDL.DBID RIE
ISICitedReferencesCount 234
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345907400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Sep 30 16:54:29 EDT 2025
Sat Sep 27 17:58:54 EDT 2025
Tue Oct 07 09:49:47 EDT 2025
Sun Sep 28 02:23:08 EDT 2025
Sun Nov 09 06:32:48 EST 2025
Wed Feb 19 02:42:57 EST 2025
Sat Nov 29 05:13:43 EST 2025
Tue Nov 18 22:37:42 EST 2025
Tue Aug 26 16:49:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-e8522b6933c4a505f49bdfba6d8936abb274ea47fbc3f47aa55e0c77bf0b115c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4753055
PMID 25029380
PQID 1629159726
PQPubID 85460
PageCount 12
ParticipantIDs proquest_miscellaneous_1629976589
proquest_journals_1629159726
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4753055
crossref_primary_10_1109_TMI_2014_2337321
ieee_primary_6851901
proquest_miscellaneous_1651408909
proquest_miscellaneous_1639980615
pubmed_primary_25029380
crossref_citationtrail_10_1109_TMI_2014_2337321
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref1
ref17
ref16
ref19
ref18
jolliffe (ref4) 2002
cadima (ref5) 2009; 25
ref24
ref23
jiang (ref25) 2014
ref26
ref20
golub (ref2) 1996
ref22
tian (ref8) 2005; 8
ref28
ref27
ref29
ref7
ref9
lustig (ref21) 2011
ref3
ref6
10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6
18056803 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20167-72
8992206 - Magn Reson Med. 1996 Apr;35(4):554-62
7891529 - Magn Reson Med. 1995 Jan;33(1):140-2
16877539 - Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11828-33
24022840 - Magn Reson Med. 2014 Jul;72(1):248-59
16323155 - Magn Reson Med. 2006 Jan;55(1):177-86
9211392 - Magn Reson Med. 1997 Jul;38(1):161-7
11759835 - IEEE Trans Inf Technol Biomed. 2001 Dec;5(4):290-9
23964806 - J Cogn Neurosci. 1991 Winter;3(1):71-86
7968453 - Magn Reson Med. 1994 Aug;32(2):268-74
11746586 - Magn Reson Med. 2001 Dec;46(6):1189-201
23649942 - Magn Reson Med. 2014 Mar;71(3):990-1001
23486058 - Nature. 2013 Mar 14;495(7440):187-92
References_xml – volume: 25
  start-page: 473
  year: 2009
  ident: ref5
  article-title: On relationships between uncentred and column-centred principal component analysis
  publication-title: Pakistan Journal Statistics
– ident: ref13
  doi: 10.1073/pnas.97.18.10101
– volume: 8
  start-page: 5200
  year: 2005
  ident: ref8
  article-title: An investigation into using singular value decomposition as a method of image compression
  publication-title: Proc 4th Int Conf Mach Learn Cybern
– ident: ref9
  doi: 10.1109/6046.985560
– ident: ref1
  doi: 10.1038/nature11971
– ident: ref10
  doi: 10.1109/TIM.2010.2066770
– ident: ref24
  doi: 10.1002/mrm.20738
– ident: ref15
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref30
  doi: 10.1137/090771806
– ident: ref12
  doi: 10.1016/S0020-0255(97)00044-3
– ident: ref17
  doi: 10.1002/mrm.1910350415
– ident: ref29
  doi: 10.1073/pnas.0709640104
– year: 2002
  ident: ref4
  publication-title: Principal Component Analysis
– ident: ref28
  doi: 10.1137/1.9780898719697
– ident: ref32
  doi: 10.1155/2012/409357
– ident: ref16
  doi: 10.1002/mrm.1910320219
– ident: ref33
  doi: 10.1137/1034115
– ident: ref11
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
– ident: ref26
  doi: 10.1007/BF02288367
– ident: ref23
  doi: 10.1002/mrm.24912
– ident: ref7
  doi: 10.1109/TCOM.1976.1093309
– ident: ref19
  doi: 10.1002/mrm.1910330122
– ident: ref6
  doi: 10.1109/4233.966104
– ident: ref20
  doi: 10.1002/mrm.1316
– start-page: 4290
  year: 2014
  ident: ref25
  article-title: MR fingerprinting using FISP
  publication-title: Proceedings of the 20th ISMRM Annual Meeting
– ident: ref22
  doi: 10.1002/mrm.24751
– ident: ref18
  doi: 10.1002/mrm.1910380122
– ident: ref3
  doi: 10.1007/BF02163027
– year: 1996
  ident: ref2
  publication-title: Matrix Computations
– ident: ref14
  doi: 10.1073/pnas.0604756103
– ident: ref27
  doi: 10.1109/TSP.2002.807005
– ident: ref31
  doi: 10.1137/100804139
– start-page: 479
  year: 2011
  ident: ref21
  article-title: An eigen-vector approach to autocalibrating parallel MRI, where SENSE meets GRAPPA
  publication-title: Proc 19th Annu Meet ISMRM
– reference: 8992206 - Magn Reson Med. 1996 Apr;35(4):554-62
– reference: 10963673 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10101-6
– reference: 23486058 - Nature. 2013 Mar 14;495(7440):187-92
– reference: 7968453 - Magn Reson Med. 1994 Aug;32(2):268-74
– reference: 9211392 - Magn Reson Med. 1997 Jul;38(1):161-7
– reference: 16877539 - Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11828-33
– reference: 16323155 - Magn Reson Med. 2006 Jan;55(1):177-86
– reference: 24022840 - Magn Reson Med. 2014 Jul;72(1):248-59
– reference: 23649942 - Magn Reson Med. 2014 Mar;71(3):990-1001
– reference: 23964806 - J Cogn Neurosci. 1991 Winter;3(1):71-86
– reference: 7891529 - Magn Reson Med. 1995 Jan;33(1):140-2
– reference: 11759835 - IEEE Trans Inf Technol Biomed. 2001 Dec;5(4):290-9
– reference: 18056803 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20167-72
– reference: 11746586 - Magn Reson Med. 2001 Dec;46(6):1189-201
SSID ssj0014509
Score 2.5932312
Snippet Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue...
Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2311
SubjectTerms Algorithms
Approximation methods
Brain - anatomy & histology
Compressing
Data Compression - methods
Dictionaries
Dimensionality reduction
Fingerprinting
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Magnetic resonance
magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Mathematical model
Mathematical models
Pattern recognition
pattern recognition and classification
Phantoms, Imaging
Signal to noise ratio
singular value decomposition
Vectors
Title SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain
URI https://ieeexplore.ieee.org/document/6851901
https://www.ncbi.nlm.nih.gov/pubmed/25029380
https://www.proquest.com/docview/1629159726
https://www.proquest.com/docview/1629976589
https://www.proquest.com/docview/1639980615
https://www.proquest.com/docview/1651408909
https://pubmed.ncbi.nlm.nih.gov/PMC4753055
Volume 33
WOSCitedRecordID wos000345907400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NCSF4GLDxkW1MRuIFiayuY8f248SoxkMnJAbqW2Q7zqgELtpa_n7ukjTq0FSJt0i-RInPF_98H78DeOedcd40Oh8Xtc-JYyp3IvKcWxHKWsWgYtM2m9CXl2Y2s1924MNQCxNjbJPP4ildtrH8ehFW5CoblQgPLBVrPdBad7VaQ8RAqi6dQxBjLC_FOiTJ7ehq-plyuOSpKApdCGoOgxs_7nPEBbmxG7XtVe5Dmv8mTG7sQJOn__fuz2CvR5rsrFsaz2Enpn14ssE_uA-Ppn1k_QAuvn4_Z_Rz6PJiE0Mwy6buOlGRIyMnPzFzRDZp3YDkDaR8aTZPDBEko0ISdr745ebpBXybfLr6eJH3XRbygGeNZR4NQjBf2qII0iEeaqT1deNdWSOUKZ33eG6NTurGh6KR2jmlIg9a-4Z7hJOheAm7aZHia2ChROsWjTBRKlloZeXYxgYV7hHVuCgyGK1nuwo9BTl1wvhZtUcRbitUVUWqqnpVZfB-uON3R7-xRfaApn2Q62c8g-O1QqvePm-rcSksAjktygzeDsNoWRQucSkuVp0MgjVl7DYZBHiGYOE2GQSl3FiOz3nVraPhHdfrMAN9Z4UNAsT-fXckzX-0LOASD5pcqcP7v_oIHtPcdIk3x7C7vFnFN_Aw_FnOb29O0IBm5qQ1oL-TcBXC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NA_HxwMfGIDDASLwgkdX1Rxw_IkbVibVCoqC9RbbjsEqQoq3d37-7JI06NFXiLZIvUeK7i3_23f0O4L13ufN5ZdKhLH1KHFOpE5Gn3IqQlToGHaum2YSZTvOzM_ttBz72tTAxxib5LB7RZRPLLxdhRUdlgwzhgaVirTtaKTFsq7X6mIHSbUKHIM5Ynol1UJLbwWxyQllc6khIaaSg9jC49ONKR2yQG-tR02DlNqz5b8rkxho0evx_b_8EHnVYk31qjeMp7MR6Dx5uMBDuwb1JF1vfh_H3n8eMfg9tZmzNEM6yiftVU5kjo2N-4uaIbNQcBNJ5IGVMs3nNEEMyKiVhx4s_bl4_gx-jL7PP47Trs5AG3G0s05gjCPOZlTIoh4ioUtaXlXdZiWAmc97jzjU6ZSofZKWMc1pHHozxFfcIKIM8gN16UccXwEKG_i0qkUellTTaqqGNFarcI65xUSQwWM92EToScuqF8btoNiPcFqiqglRVdKpK4EN_x9-WgGOL7D5Ney_XzXgCh2uFFp2HXhbDTFiEckZkCbzrh9G3KGDi6rhYtTII13Rut8kgxMsJGG6TQVjKc8vxOc9bO-rfcW2HCZgbFtYLEP_3zZF6ft7wgCvcanKtX97-1W_h_ng2OS1OT6ZfX8EDmqc2DecQdpcXq_ga7oar5fzy4k3jRteWyBgh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVD+Compression+for+Magnetic+Resonance+Fingerprinting+in+the+Time+Domain&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=McGivney%2C+Debra+F.&rft.au=Pierre%2C+Eric&rft.au=Ma%2C+Dan&rft.au=Jiang%2C+Yun&rft.date=2014-12-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=33&rft.issue=12&rft.spage=2311&rft.epage=2322&rft_id=info:doi/10.1109%2FTMI.2014.2337321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2014_2337321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon