Response of Ti microstructure in mechanical and laser forming processes

Microstructural deformation mechanisms present during three different forming processes in commercially pure Ti were analysed. Room temperature mechanical forming, laser beam forming and a combination of these two processes were applied to thick metal plates in order to achieve the same final shape....

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science Vol. 53; no. 20; pp. 14713 - 14728
Main Authors: Fidder, H., Ocelík, V., Botes, A., De Hosson, J. T. M.
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2018
Springer
Springer Nature B.V
Subjects:
ISSN:0022-2461, 1573-4803
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microstructural deformation mechanisms present during three different forming processes in commercially pure Ti were analysed. Room temperature mechanical forming, laser beam forming and a combination of these two processes were applied to thick metal plates in order to achieve the same final shape. An electron backscatter diffraction technique was used to study the plate microstructure before and after applying the forming processes. Substantial differences among the main deformation mechanisms were clearly detected. In pure mechanical forming at room temperature, mechanical twinning predominates in both compression and tensile areas. A dislocation slip mechanism inside the compression and tensile area is characteristic of the pure laser forming process. Forming processes which subsequently combine the laser and mechanical approaches result in a combination of twinning and dislocation mechanisms. The Schmid factor at an individual grain level, the local temperature and the strain rate are factors that determine which deformation mechanism will prevail at the microscopic level. The final microstructures obtained after the different forming processes were applied are discussed from the point of view of their influence on the performance of the resulting formed product. The observations suggest that phase transformation in Ti is an additional microstructural factor that has to be considered during laser forming.
AbstractList Microstructural deformation mechanisms present during three different forming processes in commercially pure Ti were analysed. Room temperature mechanical forming, laser beam forming and a combination of these two processes were applied to thick metal plates in order to achieve the same final shape. An electron backscatter diffraction technique was used to study the plate microstructure before and after applying the forming processes. Substantial differences among the main deformation mechanisms were clearly detected. In pure mechanical forming at room temperature, mechanical twinning predominates in both compression and tensile areas. A dislocation slip mechanism inside the compression and tensile area is characteristic of the pure laser forming process. Forming processes which subsequently combine the laser and mechanical approaches result in a combination of twinning and dislocation mechanisms. The Schmid factor at an individual grain level, the local temperature and the strain rate are factors that determine which deformation mechanism will prevail at the microscopic level. The final microstructures obtained after the different forming processes were applied are discussed from the point of view of their influence on the performance of the resulting formed product. The observations suggest that phase transformation in Ti is an additional microstructural factor that has to be considered during laser forming.
Microstructural deformation mechanisms present during three different forming processes in commercially pure Ti were analysed. Room temperature mechanical forming, laser beam forming and a combination of these two processes were applied to thick metal plates in order to achieve the same final shape. An electron backscatter diffraction technique was used to study the plate microstructure before and after applying the forming processes. Substantial differences among the main deformation mechanisms were clearly detected. In pure mechanical forming at room temperature, mechanical twinning predominates in both compression and tensile areas. A dislocation slip mechanism inside the compression and tensile area is characteristic of the pure laser forming process. Forming processes which subsequently combine the laser and mechanical approaches result in a combination of twinning and dislocation mechanisms. The Schmid factor at an individual grain level, the local temperature and the strain rate are factors that determine which deformation mechanism will prevail at the microscopic level. The final microstructures obtained after the different forming processes were applied are discussed from the point of view of their influence on the performance of the resulting formed product. The observations suggest that phase transformation in Ti is an additional microstructural factor that has to be considered during laser forming.Microstructural deformation mechanisms present during three different forming processes in commercially pure Ti were analysed. Room temperature mechanical forming, laser beam forming and a combination of these two processes were applied to thick metal plates in order to achieve the same final shape. An electron backscatter diffraction technique was used to study the plate microstructure before and after applying the forming processes. Substantial differences among the main deformation mechanisms were clearly detected. In pure mechanical forming at room temperature, mechanical twinning predominates in both compression and tensile areas. A dislocation slip mechanism inside the compression and tensile area is characteristic of the pure laser forming process. Forming processes which subsequently combine the laser and mechanical approaches result in a combination of twinning and dislocation mechanisms. The Schmid factor at an individual grain level, the local temperature and the strain rate are factors that determine which deformation mechanism will prevail at the microscopic level. The final microstructures obtained after the different forming processes were applied are discussed from the point of view of their influence on the performance of the resulting formed product. The observations suggest that phase transformation in Ti is an additional microstructural factor that has to be considered during laser forming.
Audience Academic
Author Ocelík, V.
Botes, A.
Fidder, H.
De Hosson, J. T. M.
Author_xml – sequence: 1
  givenname: H.
  orcidid: 0000-0002-1889-3041
  surname: Fidder
  fullname: Fidder, H.
  organization: Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Department of Mechanical Engineering, Cape Peninsula University of Technology
– sequence: 2
  givenname: V.
  orcidid: 0000-0003-1981-4517
  surname: Ocelík
  fullname: Ocelík, V.
  email: v.ocelik@rug.nl
  organization: Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen
– sequence: 3
  givenname: A.
  orcidid: 0000-0003-0539-0426
  surname: Botes
  fullname: Botes, A.
  organization: Materials Science and Manufacturing, CSIR
– sequence: 4
  givenname: J. T. M.
  orcidid: 0000-0002-2587-3233
  surname: De Hosson
  fullname: De Hosson, J. T. M.
  organization: Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30956349$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9r1jAUxoNM3LvpB_BGCt7oRefJv7a5EcbQORgIc16HND3tMtrkNWmHfntT3jl9ByrnIpD8nieH55wjcuCDR0JeUjihAPW7RKGRvATalKySUIonZENlzUvRAD8gGwDGSiYqekiOUroFAFkz-owcclCy4kJtyPkVpm3wCYvQF9eumJyNIc1xsfMSsXC-mNDeGO-sGQvju2I0CWPRhzg5PxTbGCymhOk5edqbMeGL-_OYfP344frsU3n5-fzi7PSytLKu5rKFLrfWKuSir5qqbxS1qgWGBltqsasYEzWYjiquqGlBKMWNgNr0prEMGD8m73e-26WdsLPo52hGvY1uMvGHDsbp_RfvbvQQ7nQlWMNqmQ3e3BvE8G3BNOvJJYvjaDyGJWnGQAqaS_wfpbRSFGhFM_r6EXobluhzEtlQKsmyHc_UyY4azIja-T7kFm2uDnPueba9y_enUjS8YpSvzb7dE2Rmxu_zYJaU9MWXq3321Z_JPETya9YZoDtgnXCK2D8gFPS6T3q3Tzrvk173Sa8R1I801s1mdmEN143_VLKdMuVf_IDxdyJ_F_0EZuvcYQ
CitedBy_id crossref_primary_10_3390_app9235115
crossref_primary_10_3390_met10010017
crossref_primary_10_1016_j_mechmat_2023_104753
Cites_doi 10.1016/j.scriptamat.2011.09.033
10.1016/S0890-6955(02)00075-5
10.1016/j.msea.2006.09.069
10.31399/asm.tb.ttg2.9781627082693
10.1007/s11837-011-0038-x
10.1016/S1359-6454(01)00300-7
10.1007/BF02813267
10.1016/0001-6160(63)90133-0
10.1533/9781845699819
10.1016/0001-6160(53)90009-1
10.1016/0001-6160(84)90175-5
10.1016/j.actamat.2006.11.017
10.1016/j.actamat.2013.02.030
10.1016/0001-6160(66)90319-1
10.5957/jsp.1987.3.4.237
10.1243/PIME_PROC_1995_209_107_02
10.1016/j.actamat.2014.05.030
10.1007/BF02648537
10.1016/j.commatsci.2009.04.022
10.1016/j.ijplas.2011.09.002
10.1016/j.actamat.2013.09.005
10.1016/0001-6160(53)90027-3
10.1007/s11661-009-0097-6
10.1016/S0924-0136(98)00012-0
10.1088/0965-0393/3/1/009
10.1016/S0007-8506(07)62448-2
10.1016/j.matchar.2014.08.012
10.1016/j.jmatprotec.2004.10.003
10.1016/j.jmps.2011.02.007
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 Springer
Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 Springer
– notice: Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
7X8
5PM
DOI 10.1007/s10853-018-2650-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

ProQuest Materials Science Collection
PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 14728
ExternalDocumentID PMC6428275
A548362135
30956349
10_1007_s10853_018_2650_4
Genre Journal Article
GroupedDBID -4Y
-58
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PKN
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c576t-b0d803b9e34f686f891c9b02eaeb1ced622470ad19391ab04993a407afa8c2023
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440287100053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2461
IngestDate Tue Nov 04 02:01:00 EST 2025
Sun Nov 09 11:27:49 EST 2025
Sun Nov 09 11:59:04 EST 2025
Tue Nov 04 22:27:07 EST 2025
Sat Nov 29 09:54:22 EST 2025
Wed Nov 26 09:47:05 EST 2025
Wed Feb 19 02:33:59 EST 2025
Tue Nov 18 22:31:45 EST 2025
Sat Nov 29 02:41:15 EST 2025
Fri Feb 21 02:45:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Laser Forming (LF)
Electron Backscatter Diffraction (EBSD)
Twinning Systems
Twinning Modes
Schmid Factor
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-b0d803b9e34f686f891c9b02eaeb1ced622470ad19391ab04993a407afa8c2023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1889-3041
0000-0003-0539-0426
0000-0003-1981-4517
0000-0002-2587-3233
OpenAccessLink https://link.springer.com/10.1007/s10853-018-2650-4
PMID 30956349
PQID 2259524433
PQPubID 2043599
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6428275
proquest_miscellaneous_2205414144
proquest_miscellaneous_2116910161
proquest_journals_2259524433
gale_infotracacademiconefile_A548362135
gale_incontextgauss_ISR_A548362135
pubmed_primary_30956349
crossref_primary_10_1007_s10853_018_2650_4
crossref_citationtrail_10_1007_s10853_018_2650_4
springer_journals_10_1007_s10853_018_2650_4
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Full Set - Includes `Journal of Materials Science Letters
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationTitleAlternate J Mater Sci
PublicationYear 2018
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References DahotreNBHarimkarSPLaser fabrication and machining of materials2008New YorkSpringer
YauCLChanKCLeeWBLaser bending of leadframe materialsJ Mater Process Technol19988211712110.1016/S0924-0136(98)00012-0
GuanYSunSZhaoGLuanYInfluence of material properties on the laser-forming process of sheet metalsJ Mater Process Technol200516712413110.1016/j.jmatprotec.2004.10.003
HsiaoY-CFinite element analysis of laser forming1997CambridgeMassachusetts Institute of Technology
XinYWangMZengZStrengthening and toughening of magnesium alloy by 10–12 extension twinsScr Mater201266252810.1016/j.scriptamat.2011.09.033
TaylorBWeidmannEMetallographic preparation of titanium2016DenmarkStruers Application Notes
HuZKovacevicRLabudovicMExperimental and numerical modeling of buckling instability of laser sheet formingInt J Mach Tools Manuf2002421427143910.1016/S0890-6955(02)00075-5
DonachieMJTitanium: a technical guide20002Materials ParkASM International
Namba Y (1987) Laser forming of metals and alloys. In: Proceedings of LAMP’87. Osaka, pp 601–606
MasubushiKLuebkeWHPhase II report laser forming of plates for ship construction1995CambridgeMassachusets Institute of technology
CahnRWPlastic deformation of alpha-uranium; twinning and slipActa Metall19531495210.1016/0001-6160(53)90009-1
AshbyMFEasterlingKEThe transformation hardening of steel surfaces by laser beams—I. Hypo-eutectoid steelsActa Metall1984321935194810.1016/0001-6160(84)90175-5
JiangLJonasJJLuoAAInfluence of 10–12 extension twinning on the flow behavior of AZ31 Mg alloyMater Sci Eng A2007445–44630230910.1016/j.msea.2006.09.069
YooMHSlip, twinning, and fracture in hexagonal close-packed metalsMetall Trans A19811240941810.1007/BF02648537
WelschGBoyerRCollingsEWMaterials properties handbook: titanium alloys1993Materials ParkASM International
ScullyKLaser line heatingJ Ship Prod19873237246
GardeAMReed-HillREThe importance of mechanical twinning in the stress-strain behavior of swaged high purity fine-grained titanium below 424 °KMetall Trans197122885288810.1007/BF02813267
Els-BotesAFidderHWoudbergSMcGrathPJMechanical characterisation of the effect of various forming processes applied to commercially pure titaniumMater Charact20149620621210.1016/j.matchar.2014.08.012
ToméCNBeyerleinIJWangJMcCabeRJA multi-scale statistical study of twinning in magnesiumJOM201163192310.1007/s11837-011-0038-x
YuQWangJJiangYTwin–twin interactions in magnesiumActa Mater201477284210.1016/j.actamat.2014.05.030
FernándezAJérusalemAGutiérrez-UrrutiaIPérez-PradoMTThree-dimensional investigation of grain boundary–twin interactions in a Mg AZ31 alloy by electron backscatter diffraction and continuum modelingActa Mater2013617679769210.1016/j.actamat.2013.09.005
MeyersMAVöhringerOLubardaVAThe onset of twinning in metals: a constitutive descriptionActa Mater2001494025403910.1016/S1359-6454(01)00300-7
GeigerMVollertsenFThe Mechanisms of laser formingCIRP Ann19934230130410.1016/S0007-8506(07)62448-2
OppedalALEl KadiriHToméCNEffect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesiumInt J Plast201230–31416110.1016/j.ijplas.2011.09.002
El KadiriHKapilJOppedalALThe effect of twin–twin interactions on the nucleation and propagation of {101¯2} twinning in magnesiumActa Mater2013613549356310.1016/j.actamat.2013.02.030
VollertsenFKomelIKalsRThe laser bending of steel foils for microparts by the buckling mechanism—a modelModel Simul Mater Sci Eng1995310711910.1088/0965-0393/3/1/009
ShenHVollertsenFModelling of laser forming—an reviewComput Mater Sci20094683484010.1016/j.commatsci.2009.04.022
Reed-HillBEBuchananERZig-zag twins in zirconiumActa Metall196311737510.1016/0001-6160(63)90133-0
WangLYangYEisenlohrPTwin nucleation by slip transfer across grain boundaries in commercial purity titaniumMetall Mater Trans A20104142143010.1007/s11661-009-0097-6
BeyerleinIJMcCabeRJToméCNEffect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling studyJ Mech Phys Solids201159988100310.1016/j.jmps.2011.02.007
ProustGToméCNKaschnerGCModeling texture, twinning and hardening evolution during deformation of hexagonal materialsActa Mater2007552137214810.1016/j.actamat.2006.11.017
PrattPLCleavage deformation in zinc and sodium chlorideActa Metall1953169269910.1016/0001-6160(53)90027-3
RobertsEPartridgePGThe accommodation around {101̄2} 〈1̄011〉twins in magnesiumActa Metall19661451352710.1016/0001-6160(66)90319-1
LawrenceJPouJAdvances in laser materials processing: technology, research and applications2010Boca RatonCRC Press10.1533/9781845699819
ArnetHVollertsenFExtending laser bending for the generation of convex shapesProc Inst Mech Eng Part B J Eng Manuf199520943344210.1243/PIME_PROC_1995_209_107_02
PL Pratt (2650_CR28) 1953; 1
MF Ashby (2650_CR35) 1984; 32
F Vollertsen (2650_CR6) 1995; 3
Y-C Hsiao (2650_CR12) 1997
MJ Donachie (2650_CR15) 2000
Z Hu (2650_CR11) 2002; 42
K Scully (2650_CR4) 1987; 3
CL Yau (2650_CR10) 1998; 82
RW Cahn (2650_CR21) 1953; 1
MH Yoo (2650_CR32) 1981; 12
BE Reed-Hill (2650_CR24) 1963; 11
G Proust (2650_CR19) 2007; 55
H Kadiri El (2650_CR29) 2013; 61
2650_CR1
A Fernández (2650_CR23) 2013; 61
H Shen (2650_CR8) 2009; 46
K Masubushi (2650_CR2) 1995
NB Dahotre (2650_CR5) 2008
AL Oppedal (2650_CR26) 2012; 30–31
L Jiang (2650_CR25) 2007; 445–446
Y Guan (2650_CR33) 2005; 167
H Arnet (2650_CR7) 1995; 209
MA Meyers (2650_CR30) 2001; 49
B Taylor (2650_CR14) 2016
Y Xin (2650_CR22) 2012; 66
IJ Beyerlein (2650_CR17) 2011; 59
J Lawrence (2650_CR3) 2010
AM Garde (2650_CR31) 1971; 2
L Wang (2650_CR18) 2010; 41
G Welsch (2650_CR34) 1993
CN Tomé (2650_CR16) 2011; 63
M Geiger (2650_CR9) 1993; 42
Q Yu (2650_CR20) 2014; 77
A Els-Botes (2650_CR13) 2014; 96
E Roberts (2650_CR27) 1966; 14
References_xml – reference: DonachieMJTitanium: a technical guide20002Materials ParkASM International
– reference: Reed-HillBEBuchananERZig-zag twins in zirconiumActa Metall196311737510.1016/0001-6160(63)90133-0
– reference: JiangLJonasJJLuoAAInfluence of 10–12 extension twinning on the flow behavior of AZ31 Mg alloyMater Sci Eng A2007445–44630230910.1016/j.msea.2006.09.069
– reference: ScullyKLaser line heatingJ Ship Prod19873237246
– reference: WangLYangYEisenlohrPTwin nucleation by slip transfer across grain boundaries in commercial purity titaniumMetall Mater Trans A20104142143010.1007/s11661-009-0097-6
– reference: CahnRWPlastic deformation of alpha-uranium; twinning and slipActa Metall19531495210.1016/0001-6160(53)90009-1
– reference: ProustGToméCNKaschnerGCModeling texture, twinning and hardening evolution during deformation of hexagonal materialsActa Mater2007552137214810.1016/j.actamat.2006.11.017
– reference: HuZKovacevicRLabudovicMExperimental and numerical modeling of buckling instability of laser sheet formingInt J Mach Tools Manuf2002421427143910.1016/S0890-6955(02)00075-5
– reference: GardeAMReed-HillREThe importance of mechanical twinning in the stress-strain behavior of swaged high purity fine-grained titanium below 424 °KMetall Trans197122885288810.1007/BF02813267
– reference: Els-BotesAFidderHWoudbergSMcGrathPJMechanical characterisation of the effect of various forming processes applied to commercially pure titaniumMater Charact20149620621210.1016/j.matchar.2014.08.012
– reference: GuanYSunSZhaoGLuanYInfluence of material properties on the laser-forming process of sheet metalsJ Mater Process Technol200516712413110.1016/j.jmatprotec.2004.10.003
– reference: BeyerleinIJMcCabeRJToméCNEffect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling studyJ Mech Phys Solids201159988100310.1016/j.jmps.2011.02.007
– reference: AshbyMFEasterlingKEThe transformation hardening of steel surfaces by laser beams—I. Hypo-eutectoid steelsActa Metall1984321935194810.1016/0001-6160(84)90175-5
– reference: PrattPLCleavage deformation in zinc and sodium chlorideActa Metall1953169269910.1016/0001-6160(53)90027-3
– reference: MasubushiKLuebkeWHPhase II report laser forming of plates for ship construction1995CambridgeMassachusets Institute of technology
– reference: FernándezAJérusalemAGutiérrez-UrrutiaIPérez-PradoMTThree-dimensional investigation of grain boundary–twin interactions in a Mg AZ31 alloy by electron backscatter diffraction and continuum modelingActa Mater2013617679769210.1016/j.actamat.2013.09.005
– reference: El KadiriHKapilJOppedalALThe effect of twin–twin interactions on the nucleation and propagation of {101¯2} twinning in magnesiumActa Mater2013613549356310.1016/j.actamat.2013.02.030
– reference: WelschGBoyerRCollingsEWMaterials properties handbook: titanium alloys1993Materials ParkASM International
– reference: ArnetHVollertsenFExtending laser bending for the generation of convex shapesProc Inst Mech Eng Part B J Eng Manuf199520943344210.1243/PIME_PROC_1995_209_107_02
– reference: MeyersMAVöhringerOLubardaVAThe onset of twinning in metals: a constitutive descriptionActa Mater2001494025403910.1016/S1359-6454(01)00300-7
– reference: VollertsenFKomelIKalsRThe laser bending of steel foils for microparts by the buckling mechanism—a modelModel Simul Mater Sci Eng1995310711910.1088/0965-0393/3/1/009
– reference: XinYWangMZengZStrengthening and toughening of magnesium alloy by 10–12 extension twinsScr Mater201266252810.1016/j.scriptamat.2011.09.033
– reference: YooMHSlip, twinning, and fracture in hexagonal close-packed metalsMetall Trans A19811240941810.1007/BF02648537
– reference: GeigerMVollertsenFThe Mechanisms of laser formingCIRP Ann19934230130410.1016/S0007-8506(07)62448-2
– reference: YuQWangJJiangYTwin–twin interactions in magnesiumActa Mater201477284210.1016/j.actamat.2014.05.030
– reference: DahotreNBHarimkarSPLaser fabrication and machining of materials2008New YorkSpringer
– reference: ShenHVollertsenFModelling of laser forming—an reviewComput Mater Sci20094683484010.1016/j.commatsci.2009.04.022
– reference: TaylorBWeidmannEMetallographic preparation of titanium2016DenmarkStruers Application Notes
– reference: Namba Y (1987) Laser forming of metals and alloys. In: Proceedings of LAMP’87. Osaka, pp 601–606
– reference: RobertsEPartridgePGThe accommodation around {101̄2} 〈1̄011〉twins in magnesiumActa Metall19661451352710.1016/0001-6160(66)90319-1
– reference: ToméCNBeyerleinIJWangJMcCabeRJA multi-scale statistical study of twinning in magnesiumJOM201163192310.1007/s11837-011-0038-x
– reference: LawrenceJPouJAdvances in laser materials processing: technology, research and applications2010Boca RatonCRC Press10.1533/9781845699819
– reference: YauCLChanKCLeeWBLaser bending of leadframe materialsJ Mater Process Technol19988211712110.1016/S0924-0136(98)00012-0
– reference: OppedalALEl KadiriHToméCNEffect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesiumInt J Plast201230–31416110.1016/j.ijplas.2011.09.002
– reference: HsiaoY-CFinite element analysis of laser forming1997CambridgeMassachusetts Institute of Technology
– volume: 66
  start-page: 25
  year: 2012
  ident: 2650_CR22
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2011.09.033
– volume: 42
  start-page: 1427
  year: 2002
  ident: 2650_CR11
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(02)00075-5
– volume-title: Phase II report laser forming of plates for ship construction
  year: 1995
  ident: 2650_CR2
– volume: 445–446
  start-page: 302
  year: 2007
  ident: 2650_CR25
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2006.09.069
– volume-title: Titanium: a technical guide
  year: 2000
  ident: 2650_CR15
  doi: 10.31399/asm.tb.ttg2.9781627082693
– volume-title: Laser fabrication and machining of materials
  year: 2008
  ident: 2650_CR5
– volume: 63
  start-page: 19
  year: 2011
  ident: 2650_CR16
  publication-title: JOM
  doi: 10.1007/s11837-011-0038-x
– volume: 49
  start-page: 4025
  year: 2001
  ident: 2650_CR30
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00300-7
– volume: 2
  start-page: 2885
  year: 1971
  ident: 2650_CR31
  publication-title: Metall Trans
  doi: 10.1007/BF02813267
– volume: 11
  start-page: 73
  year: 1963
  ident: 2650_CR24
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(63)90133-0
– volume-title: Advances in laser materials processing: technology, research and applications
  year: 2010
  ident: 2650_CR3
  doi: 10.1533/9781845699819
– volume: 1
  start-page: 49
  year: 1953
  ident: 2650_CR21
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(53)90009-1
– volume: 32
  start-page: 1935
  year: 1984
  ident: 2650_CR35
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(84)90175-5
– volume: 55
  start-page: 2137
  year: 2007
  ident: 2650_CR19
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.11.017
– volume: 61
  start-page: 3549
  year: 2013
  ident: 2650_CR29
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.02.030
– volume: 14
  start-page: 513
  year: 1966
  ident: 2650_CR27
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(66)90319-1
– volume-title: Materials properties handbook: titanium alloys
  year: 1993
  ident: 2650_CR34
– volume: 3
  start-page: 237
  year: 1987
  ident: 2650_CR4
  publication-title: J Ship Prod
  doi: 10.5957/jsp.1987.3.4.237
– volume: 209
  start-page: 433
  year: 1995
  ident: 2650_CR7
  publication-title: Proc Inst Mech Eng Part B J Eng Manuf
  doi: 10.1243/PIME_PROC_1995_209_107_02
– volume: 77
  start-page: 28
  year: 2014
  ident: 2650_CR20
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.05.030
– volume: 12
  start-page: 409
  year: 1981
  ident: 2650_CR32
  publication-title: Metall Trans A
  doi: 10.1007/BF02648537
– ident: 2650_CR1
– volume: 46
  start-page: 834
  year: 2009
  ident: 2650_CR8
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2009.04.022
– volume: 30–31
  start-page: 41
  year: 2012
  ident: 2650_CR26
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2011.09.002
– volume-title: Finite element analysis of laser forming
  year: 1997
  ident: 2650_CR12
– volume: 61
  start-page: 7679
  year: 2013
  ident: 2650_CR23
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.09.005
– volume: 1
  start-page: 692
  year: 1953
  ident: 2650_CR28
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(53)90027-3
– volume: 41
  start-page: 421
  year: 2010
  ident: 2650_CR18
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-009-0097-6
– volume: 82
  start-page: 117
  year: 1998
  ident: 2650_CR10
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(98)00012-0
– volume-title: Metallographic preparation of titanium
  year: 2016
  ident: 2650_CR14
– volume: 3
  start-page: 107
  year: 1995
  ident: 2650_CR6
  publication-title: Model Simul Mater Sci Eng
  doi: 10.1088/0965-0393/3/1/009
– volume: 42
  start-page: 301
  year: 1993
  ident: 2650_CR9
  publication-title: CIRP Ann
  doi: 10.1016/S0007-8506(07)62448-2
– volume: 96
  start-page: 206
  year: 2014
  ident: 2650_CR13
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2014.08.012
– volume: 167
  start-page: 124
  year: 2005
  ident: 2650_CR33
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.10.003
– volume: 59
  start-page: 988
  year: 2011
  ident: 2650_CR17
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2011.02.007
SSID ssj0005721
Score 2.2762957
Snippet Microstructural deformation mechanisms present during three different forming processes in commercially pure Ti were analysed. Room temperature mechanical...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14713
SubjectTerms ambient temperature
Beamforming
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
deformation
Deformation mechanisms
Dislocations
Electron backscatter diffraction
Laser beams
Lasers
Materials Science
Mechanical twinning
Metal plates
Metals
Microstructure
phase transition
Phase transitions
Polymer Sciences
Solid Mechanics
Strain rate
Titanium
X-ray diffraction
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS-QwEB90vQ_6Qb3zVR9HFEFQCmmbbZuPIr7gkGP1Dr-FtEl1Qbuy3fXvd6aPfaGCfs40TSYzmRky8xuAw1DEiRBGuKFEbRJacldmpu1S1SfGRAS4XnYt-RPd3MT39_JvXcddNNnuzZNkeVNPFLuhacHQF08W3QpXzMMCWruYtLFz-3-c1xH5XgMRTmBpzVPme1NMGaPZK3nCJs3mS848mpa26GLlW7tYheXa9WSnlaz8hDmb_4KlCUDCNbjsVCmzlvUydtdlz5SuV0HMDvuWdXP2bKlUmE6W6dww9L1tn5Hji9-zl6rqwBbr8O_i_O7syq1bLbgpBhwDN-Em5kEibSCyMA6zWHqpTLhvNd7lqTUhWvqIa4PunvR0QnFSoDEW1JmOU-rAvgGtvJfbLWDSsynnKBvWoG_jCd3OksQmOKMR6D8aB3jDc5XWOOTUDuNJjRGUiUcKeaSIR0o4cDz65KUC4fiM-IAOUhG4RU7ZMw96WBTq-rajTjE8Q4PtBW0HjmqirIc_T3VdjIBbIDysKcrdRiBUrd6FwktQttExCgIH9kfDqJj02qJz2xsijUc4RORRf0Ljc2rDjkGtA5uVjI02GBBEZCCkA9GU9I0ICBh8eiTvPpYA4RRT-hEu_aSRwfHSP-Tb9peod2DRJyEu0xp3oYWSaPfgR_o66Bb936VGvgE85S46
  priority: 102
  providerName: Springer Nature
Title Response of Ti microstructure in mechanical and laser forming processes
URI https://link.springer.com/article/10.1007/s10853-018-2650-4
https://www.ncbi.nlm.nih.gov/pubmed/30956349
https://www.proquest.com/docview/2259524433
https://www.proquest.com/docview/2116910161
https://www.proquest.com/docview/2205414144
https://pubmed.ncbi.nlm.nih.gov/PMC6428275
Volume 53
WOSCitedRecordID wos000440287100053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-4803
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0005721
  issn: 0022-2461
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-4803
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0005721
  issn: 0022-2461
  databaseCode: KB.
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-4803
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0005721
  issn: 0022-2461
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-4803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005721
  issn: 0022-2461
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjgf2wPgcYaMyCAkJFJYPN4mf0IY2QKBqagfqm-XYzqjEktKs_P3cJU67VqIvvESKckns3J3vLr77HcDrhGc554b7iUBt4koEvijMwKeqT4yJCHC96VryLR0Os8lEXLgfbrVLq-zWxGahNpWmf-THKHdigLYojj_MfvvUNYp2V10LjR3YJaQy3oPd07PhxWiV5JFGYYcXTshp3b5mWzyHpgpDaZQUdFN8vmaZNtfnWwZqM3lyYwe1MUzn-_87pQdw37mk7KSVoYdwx5aPYO8WUOFj-DRqU2ktqwp2OWXXlMbXQs8u5pZNS3ZtqYSYOM5UaRj65HbOyCHG-9msrUaw9RP4fn52-fGz71ow-BoDkRs_D0wWxLmwMS-SLCkyEWqRB5FVuMZraxL0ANJAGXQDRahyip9ihTGiKlSmqTP7U-iVVWmfAROh1UGAMmMN-jwhV4Miz22OTzQc_UrjQdB9fqkdPjm1yfglV8jKxDGJHJPEMck9eLu8ZdaCc2wjfkU8lQR6UVJWzZVa1LX8Mh7JEwzb0JCH8cCDN46oqPDlWrkiBZwC4WStUR51TJVO7Wu54qgHL5eXUWFpF0aVtlogTUj4RORpb6GJAmrPjsGuBwetuC0nGBN0ZMyFB-maIC4JCDB8_Uo5_dkAh1OsGaU49HedyK6G_s_v9nz7RA_hXkQ61OQ3HkEPRc--gLv6z820nvdhJ51kfaeVePb19H2f0mvHeByNf_wFcDo98w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQk48KYYCiwIhASyurY3tveAUAWURg0RalOpt2W9u4ZI1A5xA-JP8RuZ8SNpIpFbD5w9fqz9zcs78w3A81ikmRBW-LFEbRJacl_mtudT1yfmRES4Xk8tGSTDYXpyIj9vwJ-uF4bKKjubWBtqWxr6R76DuJM99EVR9Hbyw6epUbS72o3QaGBx4H7_wpStetN_j9_3RRjufRi92_fbqQK-wdj6zM-4TXmUSReJPE7jPJWBkRkPnUazZZyN0aklXFuMbGSgM0oJIo1pj851asKa6ABN_iVB1r8uFTxalJQkYdCxkxNPW7eL2rTqoWPExB1xiUGRL5b84Ko3OOcOV0s1V_Zraze4d-N_e4E34XobcLPdRkNuwYYrbsO1czSMd-DjYVMo7FiZs9GYnVKRYkOsO5s6Ni7YqaMGacIz04VlmHG4KaNwH89nk6bXwlV34fhCVnIPNouycPeBycAZzlEjnMWILhC6l2eZy_CKVmDUbD3g3edWpmVfpyEg39WCN5oQohAhihCihAev5qdMGuqRdcLPCEOKKD0Kqhn6qmdVpfpHh2oXk1IMU4Ko58HLVigv8eZGty0YuARiAVuS3O5ApFqjVqkFgjx4Oj-M5oj2mHThyhnKBMS-RHnEGpmQ0_B5TOU92GrgPV9gRMSYkZAeJEvAnwsQHfrykWL8raZFp0w6TPDRX3cqsnj0f763B-sX-gSu7I8-DdSgPzx4CFdD0t-6knMbNhGG7hFcNj_PxtX0cW0JGHy5aM35C3eTlUo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB61FFXloQe0JYW2BiEhUUU4iTeJHxHttqhohbjEm-XETrtS8a42u_39ncmxlwAJ9TkTJx6PPd_IM98A7MUizYQwwo8l7iahJfdlYTo-VX1iTESE61XXktOk10tvbuRZ0-e0bLPd2yvJuqaBWJrc-HBoisO5wjd0MxgG4yojxPDFU3gmqGcQhesX17McjyQMWrpwIk5rrzXvGmLBMS0fz3P-aTl3cukCtfJL3Vf_PaPX8LKBpOyotqE38MS6dVibIyrcgO_ndSqtZYOCXfbZLaXx1dSzk5FlfcduLZUQ04oz7QxDTG5HjAAxvs-GdTWCLd_CVffb5fEPv2nB4OcYiIz9jJuUR5m0kSjiNC5SGeQy46HVeMbn1sSIABKuDcJAGeiM4qdIY4yoC53m1Jn9Hay4gbObwGRgc87RZqxBzBMI3SmyzGY4ohGIK40HvNW_yht-cmqT8UfNmJVJRwp1pEhHSnhwMH1lWJNzPCS8S4uqiPTCUVbNLz0pS3Vyca6OMGxDRx5EHQ_2G6FigB_PdVOkgFMgnqwFye3WOFSz7UuFh6PsIGCKIg92po9xw9ItjHZ2MEGZgPiJCGk_IBNyas-Owa4H72t7m04wIurISEgPkgVLnAoQYfjiE9f_XRGHU6wZJvjrX1p7nP36vXr78Cjpz_D87GtXnZ70fm7Bi5Dsucp83IYVNEr7EVbzv-N-OfpUbdR_LlQ6Ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+Ti+microstructure+in+mechanical+and+laser+forming+processes&rft.jtitle=Journal+of+materials+science&rft.au=Fidder%2C+H&rft.au=Ocel%C3%ADk%2C+V&rft.au=Botes%2C+A&rft.au=De+Hosson%2C+J+T+M&rft.date=2018-10-01&rft.issn=0022-2461&rft.volume=53&rft.issue=20&rft.spage=14713&rft_id=info:doi/10.1007%2Fs10853-018-2650-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon