Deep Learning in Spinal Endoscopy: U-Net Models for Neural Tissue Detection

Biportal endoscopic spine surgery (BESS) is minimally invasive and therefore benefits both surgeons and patients. However, concerning complications include dural tears and neural tissue injuries. In this study, we aimed to develop a deep learning model for neural tissue segmentation to enhance the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) Jg. 11; H. 11; S. 1082
Hauptverfasser: Lee, Hyung Rae, Rhee, Wounsuk, Chang, Sam Yeol, Chang, Bong-Soon, Kim, Hyoungmin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 01.11.2024
MDPI
Schlagworte:
ISSN:2306-5354, 2306-5354
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Biportal endoscopic spine surgery (BESS) is minimally invasive and therefore benefits both surgeons and patients. However, concerning complications include dural tears and neural tissue injuries. In this study, we aimed to develop a deep learning model for neural tissue segmentation to enhance the safety and efficacy of endoscopic spinal surgery. We used frames extracted from videos of 28 endoscopic spine surgeries, comprising 2307 images for training and 635 images for validation. A U-Net-like architecture is employed for neural tissue segmentation. Quantitative assessments include the Dice-Sorensen coefficient, Jaccard index, precision, recall, average precision, and image-processing time. Our findings revealed that the best-performing model achieved a Dice-Sorensen coefficient of 0.824 and a Jaccard index of 0.701. The precision and recall values were 0.810 and 0.839, respectively, with an average precision of 0.890. The model processed images at 43 ms per frame, equating to 23.3 frames per second. Qualitative evaluations indicated the effective identification of neural tissue features. Our U-Net-based model robustly performed neural tissue segmentation, indicating its potential to support spine surgeons, especially those with less experience, and improve surgical outcomes in endoscopic procedures. Therefore, further advancements may enhance the clinical applicability of this technique.
AbstractList Biportal endoscopic spine surgery (BESS) is minimally invasive and therefore benefits both surgeons and patients. However, concerning complications include dural tears and neural tissue injuries. In this study, we aimed to develop a deep learning model for neural tissue segmentation to enhance the safety and efficacy of endoscopic spinal surgery. We used frames extracted from videos of 28 endoscopic spine surgeries, comprising 2307 images for training and 635 images for validation. A U-Net-like architecture is employed for neural tissue segmentation. Quantitative assessments include the Dice-Sorensen coefficient, Jaccard index, precision, recall, average precision, and image-processing time. Our findings revealed that the best-performing model achieved a Dice-Sorensen coefficient of 0.824 and a Jaccard index of 0.701. The precision and recall values were 0.810 and 0.839, respectively, with an average precision of 0.890. The model processed images at 43 ms per frame, equating to 23.3 frames per second. Qualitative evaluations indicated the effective identification of neural tissue features. Our U-Net-based model robustly performed neural tissue segmentation, indicating its potential to support spine surgeons, especially those with less experience, and improve surgical outcomes in endoscopic procedures. Therefore, further advancements may enhance the clinical applicability of this technique.
Biportal endoscopic spine surgery (BESS) is minimally invasive and therefore benefits both surgeons and patients. However, concerning complications include dural tears and neural tissue injuries. In this study, we aimed to develop a deep learning model for neural tissue segmentation to enhance the safety and efficacy of endoscopic spinal surgery. We used frames extracted from videos of 28 endoscopic spine surgeries, comprising 2307 images for training and 635 images for validation. A U-Net-like architecture is employed for neural tissue segmentation. Quantitative assessments include the Dice-Sorensen coefficient, Jaccard index, precision, recall, average precision, and image-processing time. Our findings revealed that the best-performing model achieved a Dice-Sorensen coefficient of 0.824 and a Jaccard index of 0.701. The precision and recall values were 0.810 and 0.839, respectively, with an average precision of 0.890. The model processed images at 43 ms per frame, equating to 23.3 frames per second. Qualitative evaluations indicated the effective identification of neural tissue features. Our U-Net-based model robustly performed neural tissue segmentation, indicating its potential to support spine surgeons, especially those with less experience, and improve surgical outcomes in endoscopic procedures. Therefore, further advancements may enhance the clinical applicability of this technique.Biportal endoscopic spine surgery (BESS) is minimally invasive and therefore benefits both surgeons and patients. However, concerning complications include dural tears and neural tissue injuries. In this study, we aimed to develop a deep learning model for neural tissue segmentation to enhance the safety and efficacy of endoscopic spinal surgery. We used frames extracted from videos of 28 endoscopic spine surgeries, comprising 2307 images for training and 635 images for validation. A U-Net-like architecture is employed for neural tissue segmentation. Quantitative assessments include the Dice-Sorensen coefficient, Jaccard index, precision, recall, average precision, and image-processing time. Our findings revealed that the best-performing model achieved a Dice-Sorensen coefficient of 0.824 and a Jaccard index of 0.701. The precision and recall values were 0.810 and 0.839, respectively, with an average precision of 0.890. The model processed images at 43 ms per frame, equating to 23.3 frames per second. Qualitative evaluations indicated the effective identification of neural tissue features. Our U-Net-based model robustly performed neural tissue segmentation, indicating its potential to support spine surgeons, especially those with less experience, and improve surgical outcomes in endoscopic procedures. Therefore, further advancements may enhance the clinical applicability of this technique.
Audience Academic
Author Lee, Hyung Rae
Kim, Hyoungmin
Rhee, Wounsuk
Chang, Sam Yeol
Chang, Bong-Soon
AuthorAffiliation 2 Ministry of Health and Welfare, Government of the Republic of Korea, Sejong 30113, Republic of Korea; rhee1998@snu.ac.kr
3 Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; sam310@seoul.ac.kr (S.Y.C.); bschang@snu.ac.kr (B.-S.C.)
1 Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea; drhrleeos@gmail.com
AuthorAffiliation_xml – name: 1 Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea; drhrleeos@gmail.com
– name: 3 Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; sam310@seoul.ac.kr (S.Y.C.); bschang@snu.ac.kr (B.-S.C.)
– name: 2 Ministry of Health and Welfare, Government of the Republic of Korea, Sejong 30113, Republic of Korea; rhee1998@snu.ac.kr
Author_xml – sequence: 1
  givenname: Hyung Rae
  orcidid: 0000-0003-3125-1470
  surname: Lee
  fullname: Lee, Hyung Rae
– sequence: 2
  givenname: Wounsuk
  orcidid: 0000-0001-7770-5760
  surname: Rhee
  fullname: Rhee, Wounsuk
– sequence: 3
  givenname: Sam Yeol
  surname: Chang
  fullname: Chang, Sam Yeol
– sequence: 4
  givenname: Bong-Soon
  surname: Chang
  fullname: Chang, Bong-Soon
– sequence: 5
  givenname: Hyoungmin
  surname: Kim
  fullname: Kim, Hyoungmin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39593742$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9v1SAUgImZcXPuX1ia-OJLJ79aijExyzZ18Tof3J4J0NPKTS9UaE3230u9m-4uS4QHCP3Odzj0vER7PnhA6JjgE8YkfmtcAN87DxCd78kycEOfoQPKcF1WrOJ7D_b76CilNcaYMFrRmr9A-0xWkglOD9CXc4CxWIGOPqsK54vvo_N6KC58G5IN4-274qa8gqn4GloYUtGFWFzBHDNy7VKaoTiHCezkgn-Fnnd6SHB0tx6im48X12efy9W3T5dnp6vSVqKeSoO10ZpZ1kldS8BaMmOB6LwRvKONEZy3VGDMDRaC2NbUtSRGS1JxYRvJDtHl1tsGvVZjdBsdb1XQTv05CLFXOk7ODqBqYC0Xbc05bzjVwugK004C5bVtTMuz68PWNc5mA60FP-XSdqS7X7z7ofrwSxFSScKbJhve3Bli-DlDmtTGJQvDoD2EOSlGGONE5Ltn9PUjdB3mmF97S2EqZEX_Ub3OFTjfhZzYLlJ12pAG55xsoU6eoPJsYeNs7pfO5fOdgOOHlf4t8b4XMvB-C9gYUorQKesmvfzYbHaDIlgt3aee7r4cXj8Kv8_wn8Dfg3LglQ
CitedBy_id crossref_primary_10_1007_s00256_025_04917_2
crossref_primary_10_5124_jkma_25_0102
Cites_doi 10.1371/journal.pone.0262689
10.1109/TPAMI.2018.2844175
10.14444/8038
10.1016/j.compbiomed.2021.104384
10.31616/asj.2021.0527
10.1186/s13018-018-0725-1
10.1007/978-3-319-24574-4_28
10.1007/s00464-023-10524-w
10.1007/s10278-022-00629-4
10.1007/s43465-024-01134-2
10.31616/asj.2018.0210
10.1109/ICCV.2019.00612
10.1109/ICCV.2019.00223
10.1109/TPAMI.2017.2699184
10.1109/LGRS.2018.2802944
10.31616/asj.2022.0366
10.1007/978-3-030-33128-3
10.1016/j.wneu.2020.01.080
10.1007/978-3-319-66179-7_65
10.1109/ACCESS.2021.3086020
10.1109/ICCV.2017.322
10.1109/TPAMI.2016.2572683
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering11111082
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_6e3d47d6444842a7ba502f9e246c8bd4
PMC11591488
A818088332
39593742
10_3390_bioengineering11111082
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c576t-b0abaa3c3f9a69e0a93bce1a0a974f28b744d27004b0771cdb6691ba91547c893
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001366711000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2306-5354
IngestDate Fri Oct 03 12:38:18 EDT 2025
Tue Nov 04 02:04:31 EST 2025
Thu Oct 02 10:10:10 EDT 2025
Fri Jul 25 11:56:53 EDT 2025
Tue Nov 11 10:49:35 EST 2025
Tue Nov 04 18:27:33 EST 2025
Thu Jan 02 22:24:59 EST 2025
Tue Nov 18 21:31:39 EST 2025
Sat Nov 29 07:14:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords deep learning
endoscopic spine surgery
image segmentation
computer vision
neural tissue
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-b0abaa3c3f9a69e0a93bce1a0a974f28b744d27004b0771cdb6691ba91547c893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7770-5760
0000-0003-3125-1470
0000-0002-4500-9653
OpenAccessLink https://doaj.org/article/6e3d47d6444842a7ba502f9e246c8bd4
PMID 39593742
PQID 3133027952
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_6e3d47d6444842a7ba502f9e246c8bd4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11591488
proquest_miscellaneous_3133417547
proquest_journals_3133027952
gale_infotracmisc_A818088332
gale_infotracacademiconefile_A818088332
pubmed_primary_39593742
crossref_citationtrail_10_3390_bioengineering11111082
crossref_primary_10_3390_bioengineering11111082
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_25) 2018; 15
ref_14
Kim (ref_3) 2018; 13
ref_13
ref_12
Niha (ref_15) 2024; 74
ref_16
Kim (ref_2) 2019; 13
He (ref_18) 2020; 42
Park (ref_6) 2020; 136
Ryu (ref_7) 2024; 38
Chen (ref_10) 2018; 40
Chris (ref_20) 2019; 6
Kundu (ref_19) 2022; 35
Lewandrowski (ref_5) 2021; 15
Shelhamer (ref_11) 2017; 39
Kwon (ref_4) 2022; 16
ref_24
ref_23
ref_22
Junjie (ref_1) 2023; 17
ref_21
ref_27
ref_9
Siddique (ref_17) 2021; 9
ref_8
Bu (ref_26) 2024; 58
References_xml – ident: ref_9
  doi: 10.1371/journal.pone.0262689
– volume: 42
  start-page: 386
  year: 2020
  ident: ref_18
  article-title: Mask R-CNN
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2844175
– volume: 15
  start-page: 280
  year: 2021
  ident: ref_5
  article-title: Dural Tears During Lumbar Spinal Endoscopy: Surgeon Skill, Training, Incidence, Risk Factors, and Management
  publication-title: Int. J. Spine Surg.
  doi: 10.14444/8038
– ident: ref_14
  doi: 10.1016/j.compbiomed.2021.104384
– volume: 17
  start-page: 418
  year: 2023
  ident: ref_1
  article-title: Comparison of Unilateral Biportal Endoscopy Decompression and Microscopic Decompression Effectiveness in Lumbar Spinal Stenosis Treatment: A Systematic Review and Meta-analysis
  publication-title: Asian Spine J.
  doi: 10.31616/asj.2021.0527
– volume: 13
  start-page: 22
  year: 2018
  ident: ref_3
  article-title: Clinical comparison of unilateral biportal endoscopic technique versus open microdiscectomy for single-level lumbar discectomy: A multicenter, retrospective analysis
  publication-title: J. Orthop. Surg. Res.
  doi: 10.1186/s13018-018-0725-1
– ident: ref_16
  doi: 10.1007/978-3-319-24574-4_28
– volume: 38
  start-page: 171
  year: 2024
  ident: ref_7
  article-title: Deep learning-based vessel automatic recognition for laparoscopic right hemicolectomy
  publication-title: Surg. Endosc.
  doi: 10.1007/s00464-023-10524-w
– volume: 35
  start-page: 1111
  year: 2022
  ident: ref_19
  article-title: Nested U-Net for Segmentation of Red Lesions in Retinal Fundus Images and Sub-image Classification for Removal of False Positives
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-022-00629-4
– volume: 74
  start-page: S-5
  year: 2024
  ident: ref_15
  article-title: An Artificial Intelligence model for implant segmentation on periapical radiographs
  publication-title: J. Pak. Med. Assoc.
– volume: 58
  start-page: 587
  year: 2024
  ident: ref_26
  article-title: A Multi-Element Identification System Based on Deep Learning for the Visual Field of Percutaneous Endoscopic Spine Surgery
  publication-title: Indian J. Orthop.
  doi: 10.1007/s43465-024-01134-2
– volume: 13
  start-page: 334
  year: 2019
  ident: ref_2
  article-title: Biportal Endoscopic Spinal Surgery for Lumbar Spinal Stenosis
  publication-title: Asian Spine J.
  doi: 10.31616/asj.2018.0210
– ident: ref_23
– ident: ref_21
– ident: ref_24
  doi: 10.1109/ICCV.2019.00612
– ident: ref_27
  doi: 10.1109/ICCV.2019.00223
– volume: 40
  start-page: 834
  year: 2018
  ident: ref_10
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 15
  start-page: 749
  year: 2018
  ident: ref_25
  article-title: Road Extraction by Deep Residual U-Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
– volume: 16
  start-page: 789
  year: 2022
  ident: ref_4
  article-title: Lumbar Spinal Stenosis: Review Update 2022
  publication-title: Asian Spine J.
  doi: 10.31616/asj.2022.0366
– ident: ref_8
  doi: 10.1007/978-3-030-33128-3
– volume: 136
  start-page: e578
  year: 2020
  ident: ref_6
  article-title: Dural Tears in Percutaneous Biportal Endoscopic Spine Surgery: Anatomical Location and Management
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2020.01.080
– ident: ref_13
  doi: 10.1007/978-3-319-66179-7_65
– volume: 9
  start-page: 82031
  year: 2021
  ident: ref_17
  article-title: U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3086020
– ident: ref_12
  doi: 10.1109/ICCV.2017.322
– ident: ref_22
– volume: 39
  start-page: 640
  year: 2017
  ident: ref_11
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– volume: 6
  start-page: 014006
  year: 2019
  ident: ref_20
  article-title: Recurrent residual U-Net for medical image segmentation
  publication-title: J. Med. Imaging
SSID ssj0001325264
Score 2.2934442
Snippet Biportal endoscopic spine surgery (BESS) is minimally invasive and therefore benefits both surgeons and patients. However, concerning complications include...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1082
SubjectTerms Back surgery
Bone surgery
computer vision
Datasets
Deep learning
Effectiveness
endoscopic spine surgery
Endoscopy
Equipment and supplies
Frames (data processing)
Frames per second
Image enhancement
Image processing
Image segmentation
Injuries
Learning curves
Medical imaging
Neural networks
neural tissue
Patients
Performance evaluation
Recall
Segmentation
Spine
Surgeons
Surgery
Training
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcKAH3tCFgoyExCnaxHZimwsqtBUS0gqprdSb5VfKSlWy7KZI_HtmEu8jAsGBa-xJYs94PGPPfEPIW1apQsiqzrQs60zoQmQWzNYMrN0AEpYHKYZiE3I2U5eX-ms6cFulsMq1TuwVdWg9npFPOThT4ELpkn1YfM-wahTerqYSGrfJHURJYH3o3tn2jIWzEjb8ITGYg3c_dfM2bnH-UF0UuWKjPamH7v9dQe_sUOPoyZ3t6PTB_w7kIbmfDFF6NEjOI3IrNo_J_g484RPy5TjGBU0IrFd03tCzBRbRoidNaDGd5ed7epHNYkexotr1ioIBTBHtA7qc9wylx7HrY72ap-Ti9OT80-csFV_IPLggXeZy66zlntfaVjrmVnPnY2FzZGXNlJNCBLy1Fi6XsvDBVZUunNVgk0kPVtAzste0TTwgNHBVl-C25DoCDV47B5d7eJ_QzEkuJ6RcT7_xCZkcC2RcG_BQkG3mz2ybkOmGbjFgc_yT4iNyd9MbsbX7B-3yyqSlaqrIg5ABDEWhBLPS2TJntY5MVF65ICbkHcqGQQ0Av-ltSmSAwSKWljnC9Hms4QyfOxz1hJXrx81rCTFJc6zMVjwm5M2mGSkxGq6J7c3QR4DdJ2Dqng_CuBkSR6RpKYBajcR0NOZxSzP_1uOKg3MAa1WpF3__r5fkHgPLbkjIPCR73fImviJ3_Y9uvlq-7lfgLzbkOfU
  priority: 102
  providerName: ProQuest
Title Deep Learning in Spinal Endoscopy: U-Net Models for Neural Tissue Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/39593742
https://www.proquest.com/docview/3133027952
https://www.proquest.com/docview/3133417547
https://pubmed.ncbi.nlm.nih.gov/PMC11591488
https://doaj.org/article/6e3d47d6444842a7ba502f9e246c8bd4
Volume 11
WOSCitedRecordID wos001366711000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7S
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4QAHxJtAiRYJiZMV27v27nJraSoQIrJoK4WTtS-XSJUTNS4SF347M7tusAVSL1x8yOwk3tkZz0w88w0hb_NSZlyUTaJE0SRcZTzRELYmEO060LDUCR6HTYjFQi6XqhqM-sKasAgPHAU3Kz1zXDhw21zyXAujizRvlM95aaVxAQkUop5BMhX-XWF5Aa4-tgQzyOtnZrX2fxD-8EGRpTIfeaMA2v_3o3ngm8Z1kwNHdPyQPOgjSHoQ7_wRueXbx-T-AFfwCfl85P2G9tCp53TV0pMNTr-i89atsQ_l53t6lix8R3EU2sWWQuRKEaYDlpyGk6BHvgtFWu1TcnY8P_3wMemnJiQWcocuMak2WjPLGqVL5VOtmLE-0ymeQZNLIzh3-LqZm1SIzDpTliozWkEwJSyEL8_IXrtu_QtCHZNNAflGqjzw4PtiZ1IL38dVbgQTE1JcS6-2PaQ4Tra4qCG1QKnX_5b6hMx2fJsIqnEjxyEezm41gmKHD0BV6l5V6ptUZULe4dHWaLpwm1b3HQiwWQTBqg-w7x2HL8PP7Y9WgsnZMflaOere5Lc1g2wfcnxVAPnNjoycWMbW-vVVXMMhYOMguudRl3ZbYggRLThwy5GWjfY8prSr7wEQHKJ6MDIpX_4PKb0i93II3GK_5T7Z6y6v_Gty1_7oVtvLKbktlnJK7hzOF9XXaTC6KdbLVuF6gtdfc6BXn75U334DKcwzAg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQceD8WChgJxCnaxHZiGwmhwrZqtWWF1FbqLfUrZaUqWXa3oP4pfiMzSfYRgeDUA9fYk9jJ5_FMPPMNIa9ZphIhsyLSMi0ioRMRGTBbI7B2PSAs9lI0xSbkaKROTvSXDfJzkQuDYZULnVgral85_Efe5-BMgQulU_Zh8i3CqlF4urooodHAYhguf4DLNnu_P4Dv-4ax3Z2jT3tRW1UgcmBbzyMbG2sMd7zQJtMhNppbFxIT4xgLpqwUwuNxrLCxlInzNst0Yo0GY0M6heRLoPKvCdT-dajg4eqfDmcpGBhNIjLnOu7bcRVWvIKonpJYsc4eWJcK-H1DWNsRu9Gaa9vf7p3_7cXdJbdbQ5tuNyvjHtkI5X1ya41-8QEZDkKY0JZh9oyOS3o4wSJhdKf0FabrXL6jx9EozClWjDufUTDwKbKZQJejGrB0EOZ1LFv5kBxfyWwekc2yKsMTQj1XRQpuWawDyOCxurexg_sJzazkskfSxefOXcu8jgVAznPwwBAm-Z9h0iP9pdyk4R75p8RHRNOyN3KH1xeq6VneqqI8C9wL6cEQFkowI61JY1bowETmlPWiR94iFnPUcDBMZ9pEDZgscoXl20gPgDWq4XFbnZ6gmVy3eYHIvNWMs3wFxx55tWxGSYz2K0N10fQRYNcKeHWPG_Avp8SRSVsKkFadZdGZc7elHH-tedPB-QFdpNTTv4_rJbmxd_T5ID_YHw2fkZsMrNgm-XSLbM6nF-E5ue6-z8ez6Yt69VNyetWr5hdzcpcB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELemDSF44BtWGGAkEE9RE9uJYySENtqKqaiqYJP2lvkro9KUdG0H2r_GX8ddkn5EIHjaA6-xL7GTu_PvYt_vCHnNkjQSMskDJeM8ECoSgQbYGgDadaBhoZOiLjYhR6P05ESNt8jPZS4MHqtc-sTKUbvS4j_yLodgCkIoFbNu3hyLGPcGH6YXAVaQwp3WZTmNWkWG_uoHhG_z94c9-NZvGBv0jz5-CpoKA4EFnL0ITKiN1tzyXOlE-VArbqyPdIjjzVlqpBAOt2aFCaWMrDNJoiKjFQAPaVMkYgL3vyMBZIB17Rz0R-Mv6z88nMUAN-q0ZM5V2DWT0q9ZBtFZRWHKWitiVTjg9-VhY31sn93cWAwHd__n13iP3GkgON2vbeY-2fLFA3J7g5jxIRn2vJ_Shnv2jE4K-nWK5cNov3AlJvJcvaPHwcgvKNaSO59TgP4UeU6gy1GlyrTnF9Upt-IROb6W2Twm20VZ-F1CHU_zGAK2UHmQwQ13Z0IL9xOKGcllh8TLT5_ZhpMdS4OcZxCbocpkf1aZDumu5KY1K8k_JQ5Qs1a9kVW8ulDOzrLGSWWJ505IBxBZpIJpaXQcslx5JhKbGic65C3qZYa-D4ZpdZPCAZNFFrFsH4kDsHo1PG6v1RN8lm03L7Uza3zmPFurZoe8WjWjJJ4DLHx5WfcRgHgFvLontSGspsSRY1sKkE5bJtKac7ulmHyrGNUhLAIvlaZP_z6ul-QmGEv2-XA0fEZuMYC3dVbqHtlezC79c3LDfl9M5rMXjSug5PS6zeYXPUWhEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Spinal+Endoscopy%3A+U-Net+Models+for+Neural+Tissue+Detection&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Lee%2C+Hyung+Rae&rft.au=Rhee%2C+Wounsuk&rft.au=Chang%2C+Sam+Yeol&rft.au=Chang%2C+Bong-Soon&rft.date=2024-11-01&rft.pub=MDPI&rft.eissn=2306-5354&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fbioengineering11111082&rft_id=info%3Apmid%2F39593742&rft.externalDocID=PMC11591488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon