CardioRiskNet: A Hybrid AI-Based Model for Explainable Risk Prediction and Prognosis in Cardiovascular Disease

The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, alth...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioengineering (Basel) Ročník 11; číslo 8; s. 822
Hlavní autoři: Talaat, Fatma M., Elnaggar, Ahmed R., Shaban, Warda M., Shehata, Mohamed, Elhosseini, Mostafa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.08.2024
MDPI
Témata:
ISSN:2306-5354, 2306-5354
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet’s novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care.
AbstractList The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet's novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care.The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet's novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care.
The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet’s novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care.
Audience Academic
Author Elnaggar, Ahmed R.
Shehata, Mohamed
Shaban, Warda M.
Elhosseini, Mostafa
Talaat, Fatma M.
AuthorAffiliation 1 Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; fatma.nada@ai.kfs.edu.eg
4 Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology, Mansoura 35511, Egypt; warda_mohammed@nilehi.edu.eg
6 Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; melhosseini@mans.edu.eg
2 Faculty of Computer Science & Engineering, New Mansoura University, Gamasa 35712, Egypt
5 Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
3 Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; ahmedrefaatelnaggar@gmail.com
AuthorAffiliation_xml – name: 6 Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; melhosseini@mans.edu.eg
– name: 4 Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology, Mansoura 35511, Egypt; warda_mohammed@nilehi.edu.eg
– name: 3 Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; ahmedrefaatelnaggar@gmail.com
– name: 1 Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; fatma.nada@ai.kfs.edu.eg
– name: 5 Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
– name: 2 Faculty of Computer Science & Engineering, New Mansoura University, Gamasa 35712, Egypt
Author_xml – sequence: 1
  givenname: Fatma M.
  orcidid: 0000-0001-6116-2191
  surname: Talaat
  fullname: Talaat, Fatma M.
– sequence: 2
  givenname: Ahmed R.
  surname: Elnaggar
  fullname: Elnaggar, Ahmed R.
– sequence: 3
  givenname: Warda M.
  surname: Shaban
  fullname: Shaban, Warda M.
– sequence: 4
  givenname: Mohamed
  orcidid: 0000-0001-6640-6183
  surname: Shehata
  fullname: Shehata, Mohamed
– sequence: 5
  givenname: Mostafa
  orcidid: 0000-0002-1259-6193
  surname: Elhosseini
  fullname: Elhosseini, Mostafa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39199780$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhgep2Fr7F0rAG2-2JpPJTCKCrGu1C_UD0etwJjkzZp1Ntslssf_ejNtqWwqSi3y973Nywvu02PPBY1EcM3rCuaIvWxfQ984jRud7xqiksiwfFQclp_VMcFHt3VrvF0cprSiljJeirKsnxT5XTKlG0oPCLyBaF7669PMTjq_InJxdtdFZMl_O3kJCSz4GiwPpQiSnvzYDOA_tgGQykC8RrTOjC56At3kbeh-SS8R5suNeQjLbASJ55xJm3LPicQdDwqPr-bD4_v702-Jsdv75w3IxP58Z0dTjTGHZopCdZaLNS1lRyQxljEvsakYFdkAlNlAKS2XXQFs1XAGFzkBdS2X4YbHccW2Ald5Et4Z4pQM4_ecgxF5DHJ0ZUFsqWslqK4TkVakoVKqshK07U6IsgWXWmx1rs23XaA36McJwB3r3xrsfug-XOr9XMFXLTHhxTYjhYotp1GuXDA4DeAzbpDlVilVM0SpLn9-TrsI2-vxXk6rJT6wq_k_VQ-7A-S7kwmaC6rmk-S9qzifWyQOqPCyuncmR6lw-v2M4vt3p3xZv4pIFr3cCE0NKETtt3AhTADLZDZpRPQVUPxzQbK_v2W8q_Mf4GyEj7XI
CitedBy_id crossref_primary_10_3389_frai_2025_1583459
crossref_primary_10_3389_fneur_2025_1551427
crossref_primary_10_37349_emed_2025_1001347
crossref_primary_10_1016_j_rineng_2025_104636
crossref_primary_10_1016_j_eij_2025_100782
crossref_primary_10_1080_03091902_2025_2540128
crossref_primary_10_1002_widm_70018
crossref_primary_10_1007_s00521_025_11560_4
crossref_primary_10_1007_s00521_025_11553_3
crossref_primary_10_36548_jiip_2025_2_010
crossref_primary_10_1007_s00521_025_11396_y
crossref_primary_10_1007_s00521_025_11629_0
crossref_primary_10_3390_bioengineering11101016
Cites_doi 10.1109/ICIMCIS48181.2019.8985205
10.3390/app14010447
10.1002/widm.1312
10.1007/s12015-021-10302-y
10.1007/s00521-023-08681-z
10.1111/ene.14608
10.1016/j.ijmedinf.2022.104786
10.1007/s10994-023-06454-2
10.1007/s11042-023-14817-z
10.3390/electronics12071558
10.1016/j.compbiomed.2023.106998
10.1016/j.jcrc.2024.154792
10.1371/journal.pone.0192726
10.1515/med-2022-0508
10.1007/10984697_1
10.46338/ijetae0523_04
10.1007/s12551-022-01040-7
10.1016/j.cmpb.2019.05.005
10.3390/s23020828
10.3390/diagnostics14020144
10.1016/j.health.2022.100016
10.3390/iot4030016
10.3390/biology12010117
10.1007/s42044-023-00148-7
10.1155/2021/3383146
10.1007/s12553-020-00505-7
10.1016/j.eswa.2020.113918
10.1007/s11042-023-16686-y
10.1016/j.icte.2021.08.021
10.1186/s12911-020-1023-5
10.3390/a16020088
10.1007/s11042-023-16194-z
10.1007/s00521-023-08428-w
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering11080822
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest MSED
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_d05b816d55834290a49245d6fc2e82a1
PMC11351968
A807396334
39199780
10_3390_bioengineering11080822
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c576t-9e2be58fd15be2b84081c01138ef6105efa08e7a25d08f7ab4739a0afca6689c3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305296200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2306-5354
IngestDate Mon Nov 10 04:34:09 EST 2025
Tue Nov 04 02:05:35 EST 2025
Fri Sep 05 10:15:51 EDT 2025
Fri Jul 25 11:50:29 EDT 2025
Tue Nov 11 10:55:24 EST 2025
Tue Nov 04 18:27:49 EST 2025
Mon Jul 21 05:54:42 EDT 2025
Sat Nov 29 07:18:08 EST 2025
Tue Nov 18 21:57:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords cardiovascular diseases (CVDs)
active learning
eXplainable artificial intelligence
risk prediction
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-9e2be58fd15be2b84081c01138ef6105efa08e7a25d08f7ab4739a0afca6689c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6640-6183
0000-0002-1259-6193
0000-0001-6116-2191
OpenAccessLink https://doaj.org/article/d05b816d55834290a49245d6fc2e82a1
PMID 39199780
PQID 3097834443
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_d05b816d55834290a49245d6fc2e82a1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11351968
proquest_miscellaneous_3099141904
proquest_journals_3097834443
gale_infotracmisc_A807396334
gale_infotracacademiconefile_A807396334
pubmed_primary_39199780
crossref_citationtrail_10_3390_bioengineering11080822
crossref_primary_10_3390_bioengineering11080822
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_36
Li (ref_10) 2022; 163
Shaban (ref_18) 2024; 83
Elsedimy (ref_32) 2024; 83
ref_12
ref_11
ref_33
ref_31
ref_30
Siam (ref_37) 2023; 35
Alaghbari (ref_35) 2023; 4
Khan (ref_14) 2023; 2023
Cacciarelli (ref_23) 2024; 113
ref_16
Arifin (ref_34) 2023; 13
Talaat (ref_38) 2023; 35
Maheshwari (ref_8) 2021; 2021
Swathy (ref_15) 2022; 8
ref_25
ref_24
Petruzzo (ref_3) 2021; 28
Holzinger (ref_22) 2019; 9
Moradi (ref_19) 2023; 15
ref_1
Pal (ref_27) 2022; 17
Bayon (ref_28) 2023; 82
ref_2
ref_29
Chang (ref_17) 2022; 2
Hossain (ref_20) 2023; 6
ref_26
Mezzatesta (ref_6) 2019; 177
Katarya (ref_13) 2021; 11
Hossain (ref_9) 2021; 164
ref_5
ref_4
Sun (ref_21) 2024; 82
Coronnello (ref_7) 2022; 18
References_xml – ident: ref_5
– ident: ref_11
  doi: 10.1109/ICIMCIS48181.2019.8985205
– ident: ref_24
  doi: 10.3390/app14010447
– volume: 9
  start-page: e1312
  year: 2019
  ident: ref_22
  article-title: Causability and explainability of artificial intelligence in medicine
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1312
– volume: 18
  start-page: 559
  year: 2022
  ident: ref_7
  article-title: Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine Learning
  publication-title: Stem Cell Rev. Rep.
  doi: 10.1007/s12015-021-10302-y
– volume: 35
  start-page: 18571
  year: 2023
  ident: ref_38
  article-title: Stress monitoring using wearable sensors: IoT techniques in medical field
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08681-z
– volume: 2023
  start-page: 1406060
  year: 2023
  ident: ref_14
  article-title: A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease Prediction
  publication-title: Hindawi Health Soc. Care Community
– volume: 28
  start-page: 893
  year: 2021
  ident: ref_3
  article-title: The Framingham cardiovascular risk score and 5-year progression of multiple sclerosis
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.14608
– volume: 163
  start-page: 104786
  year: 2022
  ident: ref_10
  article-title: Automating and improving cardiovascular disease prediction using machine learning and EMR data features from a regional healthcare system
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2022.104786
– volume: 113
  start-page: 185
  year: 2024
  ident: ref_23
  article-title: Active learning for data streams: A survey
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-023-06454-2
– ident: ref_1
– volume: 82
  start-page: 31759
  year: 2023
  ident: ref_28
  article-title: Heart disease risk prediction using deep learning techniques with feature augmentation
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-14817-z
– ident: ref_2
  doi: 10.3390/electronics12071558
– ident: ref_4
  doi: 10.1016/j.compbiomed.2023.106998
– volume: 82
  start-page: 154792
  year: 2024
  ident: ref_21
  article-title: Artificial intelligence and machine learning: Definition of terms and current concepts in critical care research
  publication-title: J. Crit. Care
  doi: 10.1016/j.jcrc.2024.154792
– ident: ref_25
  doi: 10.1371/journal.pone.0192726
– volume: 17
  start-page: 1100
  year: 2022
  ident: ref_27
  article-title: Risk prediction of cardiovascular disease using machine learning classifiers
  publication-title: Open Med.
  doi: 10.1515/med-2022-0508
– ident: ref_31
  doi: 10.1007/10984697_1
– volume: 13
  start-page: 24
  year: 2023
  ident: ref_34
  article-title: Long Short-Term Memory (LSTM): Trends and Future Research Potential
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
  doi: 10.46338/ijetae0523_04
– volume: 15
  start-page: 19
  year: 2023
  ident: ref_19
  article-title: Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-022-01040-7
– volume: 177
  start-page: 9
  year: 2019
  ident: ref_6
  article-title: A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2019.05.005
– ident: ref_26
  doi: 10.3390/s23020828
– ident: ref_33
  doi: 10.3390/diagnostics14020144
– volume: 2
  start-page: 100016
  year: 2022
  ident: ref_17
  article-title: An artificial intelligence model for heart disease detection using machine learning algorithms
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2022.100016
– volume: 4
  start-page: 345
  year: 2023
  ident: ref_35
  article-title: Deep Autoencoder-Based Integrated Model for Anomaly Detection and Efficient Feature Extraction in IoT Networks
  publication-title: IoT
  doi: 10.3390/iot4030016
– ident: ref_30
  doi: 10.3390/biology12010117
– volume: 6
  start-page: 397
  year: 2023
  ident: ref_20
  article-title: Heart disease prediction using distinct artificial intelligence techniques: Performance analysis and comparison
  publication-title: Iran J. Comput. Sci.
  doi: 10.1007/s42044-023-00148-7
– volume: 2021
  start-page: 3383146
  year: 2021
  ident: ref_8
  article-title: Nanotechnology-based sensitive biosensors for COVID-19 prediction using fuzzy logic control
  publication-title: J. Nanomater.
  doi: 10.1155/2021/3383146
– ident: ref_12
– volume: 11
  start-page: 87
  year: 2021
  ident: ref_13
  article-title: Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis
  publication-title: Health Technol.
  doi: 10.1007/s12553-020-00505-7
– volume: 164
  start-page: 113918
  year: 2021
  ident: ref_9
  article-title: Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113918
– volume: 83
  start-page: 30867
  year: 2024
  ident: ref_18
  article-title: Early diagnosis of liver disease using improved binary butterfly optimization and machine learning algorithms
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16686-y
– volume: 8
  start-page: 109
  year: 2022
  ident: ref_15
  article-title: A comparative study of classification and prediction of Cardio-Vascular Diseases (CVD) using Machine Learning and Deep Learning techniques
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.08.021
– ident: ref_36
– ident: ref_29
  doi: 10.1186/s12911-020-1023-5
– ident: ref_16
  doi: 10.3390/a16020088
– volume: 83
  start-page: 23901
  year: 2024
  ident: ref_32
  article-title: New cardiovascular disease prediction approach using support vector machine and quantum-behaved particle swarm optimization
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-16194-z
– volume: 35
  start-page: 12891
  year: 2023
  ident: ref_37
  article-title: Automatic stress detection in car drivers based on non-invasive physiological signals using machine learning techniques
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08428-w
SSID ssj0001325264
Score 2.3731296
Snippet The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 822
SubjectTerms active learning
Artificial intelligence
Cardiovascular disease
Cardiovascular diseases
cardiovascular diseases (CVDs)
Decision making
Explainable artificial intelligence
Fatalities
Imaging techniques
Integration
Learning
Medical research
Medicine, Experimental
Mortality
Patients
Predictions
Prognosis
Risk assessment
risk prediction
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIBDy5vQgoyExClaJ7YThwvaLlRFQqsVAtRb5NhOiaiSstki9d8z43gfEQgO3HbX9irWTOZhf_MNIa8gNeaG1yaG2EPGAmL6uCoqG1e2cHXOjLS-6v3rx3w-V2dnxSIcuPUBVrm2id5Q287gGfmE-4IDIQR_e_kjxq5ReLsaWmjcJLeQJYF76N5ie8bCUwkOfygM5pDdT6qmc1ueP4TAI-P5yCd56v7fDfSOhxqjJ3fc0cnB_27kHtkPgSidDppzn9xw7QNyd4ee8CFpZx6s-qnpv8_d6g2d0tNrLPCi0w_xMXg_S7GT2gWFuJcili8UYlFcQBdLvAJCsVPdWvjaIaSv6WnT0tkIBEvfDZdEj8iXk_efZ6dx6M8QG8hSVnHh0spJVdtEVvARUkWVGLAXXLkaojLpas2Uy3UqLVN1riuR80IzXRudZaow_DHZa7vWPSWU1QnTzEqRCg0eEjJ8hVxu2oFU80rIiMi1hEoTyMuxh8ZFCUkMSrb8s2QjMtmsuxzoO_654hgVYDMb6bf9D93yvAxvc2mZrFSSWSlBkmnBtIA0FtS6NqlTqU4i8hrVp0QjAY9pdKh1gM0i3VY5VXhBmnEuInI0mgkvtxkPr5WoDMalL7caFJGXm2FciYC51nVXfk6RCIj24C-eDPq62RIvEF2kWETUSJNHex6PtM03Tz2e-IaOmXr29-c6JHdSCP4GoOQR2Vstr9xzctv8XDX98oV_SX8BLzVIIw
  priority: 102
  providerName: ProQuest
Title CardioRiskNet: A Hybrid AI-Based Model for Explainable Risk Prediction and Prognosis in Cardiovascular Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/39199780
https://www.proquest.com/docview/3097834443
https://www.proquest.com/docview/3099141904
https://pubmed.ncbi.nlm.nih.gov/PMC11351968
https://doaj.org/article/d05b816d55834290a49245d6fc2e82a1
Volume 11
WOSCitedRecordID wos001305296200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7S
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeBpTISEqeoSWwnDre2dLUrQRUtD5VT5NiONmKVrtruSlz47cw42dIIpL1wiZLajmLP2DNTf_MZ4C2Gxtzw2oToe8hQoE8fVnllw8rmrs4iI63Pev_2MVss1HKZF3tHfREmrKMH7gZubCNZqTi1UiqOa2ekBUYM-IbaJE4l2gc-6PXsBVP-3xWeSDT1XUowx7h-XDUr94fhj8DvxHU-sEaetP_vpXnPNg1xk3uG6OghPOg9SDbpvvwR3HLtY7i_xyv4BNqZR5meNpsfC7d9zybs-CdlZrHJSThFs2UZHYF2ztBhZQTC6zOoGDVgxZr2bkheTLcWH1eExWs2rGnZbIBeZR-63Z2n8PVo_mV2HPYHK4QGw4ttmLukclLVNpYV3mKMp2KDE50rV6M7JV2tI-UynUgbqTrTlch4riNdG52mKjf8GRy0q9a9ABbVcaQjK0UiNIoHQ3NFJGzaoSuRVUIGIK8HuDQ96zgdfnFeYvRBgin_LZgAxrt2Fx3vxo0tpiS_XW3izfY_oDaVvTaVN2lTAO9I-iXNbvxMo_skBews8WSVE0U7mynnIoDDQU2clWZYfK0_Zb8qbEruk2aEEDyAN7tiaklIt9atLn2dPBbopuErnnfqtusSzwkWpKIA1EARB30elrTNmecMj_1JjKl6-T9G6RXcS9C363CQh3CwXV-613DXXG2bzXoEt7OlGsGd6XxRnI78vBwRpLbw1890_TXH8uLkU_H9N2ZhQEk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuF8CA4wE4imqE9uJg4RQ1zG1WqkqNNDeMsd2IGJKRtuB9qf4jZyTpJcIBE974K2t7ShOv3P8Of7OOYS8gK0xNzw3PnAP6Qvg9H6WZNbPbOLymBlp66j3T-N4MlFHR8l0i_xcxsKgrHLpE2tHbSuD78h7vA44EELwt6fffKwahaeryxIaDSwO3PkP2LLN34z24P99GYb77w4HQ7-tKuAb4NYLP3Fh5qTKbSAz-AgbHBUYQDlXLgcuIV2umXKxDqVlKo91JmKeaKZzo6NIJYbDdS-Ry0AjQlVLBafrdzo8lEAwmkBkzhPWy4rKrfMKouQeM6x31sC6VMDvC8LGithVa24sf_s3_7cHd4vcaIk27TeWcZtsufIOub6RfvEuKQe1GPdDMf86cYvXtE-H5xjARvsjfxdWd0uxUtwJBV5PUavYBppRHECnMzziQlhTXVr4WqFksZjToqSDjsiX7jWHYPfIxwuZ8H2yXVale0goywOmmZUiFBoYgMu4wlx12gHjijMhPSKXiEhNm5wda4ScpLBJQySlf0aSR3qrcadNepJ_jthFwK16Y3rx-odq9jltvVVqmcxUEFkpATlhwrSAbTqYbW5Cp0IdeOQVwjVFJwi3aXQbywGTxXRiaV_hAXDEufDITqcnOC_TbV6CNm2d5zxdI9Yjz1fNOBIFgaWrzuo-SSCAzcIlHjT2sZoST1A9pZhHVMdyOnPutpTFlzq1elAXrIzUo7_f1zNydXj4fpyOR5ODx-RaCES3EYXukO3F7Mw9IVfM90Uxnz2tHQQlxxdtWL8AWkWl7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAgeuF8CA4wE4imqE9uNg4RQ1zKt2lRVCNDeMsd2IGJKRtuB9tf4dZzjpJcIBE974K2t7ShOv3P8Of7OOYS8gK0xN7wwIXAPGQrg9GGe5jbMbeqKhBlpfdT7p8NkMlFHR-l0i_xcxsKgrHLpE72jtrXBd-Q97gMOhBC8V7SyiOlo7-3ptxArSOFJ67KcRgORA3f-A7Zv8zfjEfzXL-N4792H4X7YVhgIDfDsRZi6OHdSFTaSOXyEzY6KDCCeK1cAr5Cu0Ey5RMfSMlUkOhcJTzXThdH9vkoNh-teIpcTTFruZYPT9fsdHksgG01QMucp6-Vl7dY5BlF-j9nWO-uhLxvw--KwsTp2lZsbS-Hezf_5Id4iN1oCTgeNxdwmW666Q65vpGW8S6qhF-m-L-dfJ27xmg7o_jkGttHBONyFVd9SrCB3QoHvU9QwtgFoFAfQ6QyPvhDuVFcWvtYoZSzntKzosCP-paPmcOwe-XghE75Ptqu6cg8JZUXENLNSxEIDM3A5V5jDTjtgYkkuZEDkEh2ZaZO2Y-2Qkww2b4iq7M-oCkhvNe60SVvyzxG7CL5Vb0w77n-oZ5-z1otllslcRX0rJaAoTpkWsH0Hcy5M7FSso4C8Quhm6BzhNo1uYzxgsphmLBsoPBjucy4CstPpCU7NdJuXAM5apzrP1ugNyPNVM45EoWDl6jPfJ40EsFy4xIPGVlZT4imqqhQLiOpYUWfO3Zaq_OJTrke-kGVfPfr7fT0jV8GessPx5OAxuRYD_220ojtkezE7c0_IFfN9Uc5nT72voOT4ou3qF4eHrqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CardioRiskNet%3A+A+Hybrid+AI-Based+Model+for+Explainable+Risk+Prediction+and+Prognosis+in+Cardiovascular+Disease&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Talaat%2C+Fatma+M.&rft.au=Elnaggar%2C+Ahmed+R.&rft.au=Shaban%2C+Warda+M.&rft.au=Shehata%2C+Mohamed&rft.date=2024-08-01&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=11&rft.issue=8&rft.spage=822&rft_id=info:doi/10.3390%2Fbioengineering11080822&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering11080822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon