CardioRiskNet: A Hybrid AI-Based Model for Explainable Risk Prediction and Prognosis in Cardiovascular Disease
The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, alth...
Saved in:
| Published in: | Bioengineering (Basel) Vol. 11; no. 8; p. 822 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
01.08.2024
MDPI |
| Subjects: | |
| ISSN: | 2306-5354, 2306-5354 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet’s novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care. |
|---|---|
| AbstractList | The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet's novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care.The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet's novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care. The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and prognostication methods. The traditional approaches, including the Framingham Risk Score, blood tests, imaging techniques, and clinical assessments, although widely utilized, are hindered by limitations such as a lack of precision, the reliance on static risk variables, and the inability to adapt to new patient data, thereby necessitating the exploration of alternative strategies. In response, this study introduces CardioRiskNet, a hybrid AI-based model designed to transcend these limitations. The proposed CardioRiskNet consists of seven parts: data preprocessing, feature selection and encoding, eXplainable AI (XAI) integration, active learning, attention mechanisms, risk prediction and prognosis, evaluation and validation, and deployment and integration. At first, the patient data are preprocessed by cleaning the data, handling the missing values, applying a normalization process, and extracting the features. Next, the most informative features are selected and the categorical variables are converted into a numerical form. Distinctively, CardioRiskNet employs active learning to iteratively select informative samples, enhancing its learning efficacy, while its attention mechanism dynamically focuses on the relevant features for precise risk prediction. Additionally, the integration of XAI facilitates interpretability and transparency in the decision-making processes. According to the experimental results, CardioRiskNet demonstrates superior performance in terms of accuracy, sensitivity, specificity, and F1-Score, with values of 98.7%, 98.7%, 99%, and 98.7%, respectively. These findings show that CardioRiskNet can accurately assess and prognosticate the CVD risk, demonstrating the power of active learning and AI to surpass the conventional methods. Thus, CardioRiskNet’s novel approach and high performance advance the management of CVDs and provide healthcare professionals a powerful tool for patient care. |
| Audience | Academic |
| Author | Elnaggar, Ahmed R. Shehata, Mohamed Shaban, Warda M. Elhosseini, Mostafa Talaat, Fatma M. |
| AuthorAffiliation | 1 Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; fatma.nada@ai.kfs.edu.eg 4 Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology, Mansoura 35511, Egypt; warda_mohammed@nilehi.edu.eg 6 Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; melhosseini@mans.edu.eg 2 Faculty of Computer Science & Engineering, New Mansoura University, Gamasa 35712, Egypt 5 Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA 3 Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; ahmedrefaatelnaggar@gmail.com |
| AuthorAffiliation_xml | – name: 6 Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; melhosseini@mans.edu.eg – name: 4 Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology, Mansoura 35511, Egypt; warda_mohammed@nilehi.edu.eg – name: 3 Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; ahmedrefaatelnaggar@gmail.com – name: 1 Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; fatma.nada@ai.kfs.edu.eg – name: 5 Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA – name: 2 Faculty of Computer Science & Engineering, New Mansoura University, Gamasa 35712, Egypt |
| Author_xml | – sequence: 1 givenname: Fatma M. orcidid: 0000-0001-6116-2191 surname: Talaat fullname: Talaat, Fatma M. – sequence: 2 givenname: Ahmed R. surname: Elnaggar fullname: Elnaggar, Ahmed R. – sequence: 3 givenname: Warda M. surname: Shaban fullname: Shaban, Warda M. – sequence: 4 givenname: Mohamed orcidid: 0000-0001-6640-6183 surname: Shehata fullname: Shehata, Mohamed – sequence: 5 givenname: Mostafa orcidid: 0000-0002-1259-6193 surname: Elhosseini fullname: Elhosseini, Mostafa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39199780$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl1rFDEUhgep2Fr7F0rAG2-2JpPJTCKCrGu1C_UD0etwJjkzZp1Ntslssf_ejNtqWwqSi3y973Nywvu02PPBY1EcM3rCuaIvWxfQ984jRud7xqiksiwfFQclp_VMcFHt3VrvF0cprSiljJeirKsnxT5XTKlG0oPCLyBaF7669PMTjq_InJxdtdFZMl_O3kJCSz4GiwPpQiSnvzYDOA_tgGQykC8RrTOjC56At3kbeh-SS8R5suNeQjLbASJ55xJm3LPicQdDwqPr-bD4_v702-Jsdv75w3IxP58Z0dTjTGHZopCdZaLNS1lRyQxljEvsakYFdkAlNlAKS2XXQFs1XAGFzkBdS2X4YbHccW2Ald5Et4Z4pQM4_ecgxF5DHJ0ZUFsqWslqK4TkVakoVKqshK07U6IsgWXWmx1rs23XaA36McJwB3r3xrsfug-XOr9XMFXLTHhxTYjhYotp1GuXDA4DeAzbpDlVilVM0SpLn9-TrsI2-vxXk6rJT6wq_k_VQ-7A-S7kwmaC6rmk-S9qzifWyQOqPCyuncmR6lw-v2M4vt3p3xZv4pIFr3cCE0NKETtt3AhTADLZDZpRPQVUPxzQbK_v2W8q_Mf4GyEj7XI |
| CitedBy_id | crossref_primary_10_3389_frai_2025_1583459 crossref_primary_10_3389_fneur_2025_1551427 crossref_primary_10_37349_emed_2025_1001347 crossref_primary_10_1016_j_rineng_2025_104636 crossref_primary_10_1016_j_eij_2025_100782 crossref_primary_10_1080_03091902_2025_2540128 crossref_primary_10_1002_widm_70018 crossref_primary_10_1007_s00521_025_11560_4 crossref_primary_10_1007_s00521_025_11553_3 crossref_primary_10_36548_jiip_2025_2_010 crossref_primary_10_1007_s00521_025_11396_y crossref_primary_10_1007_s00521_025_11629_0 crossref_primary_10_3390_bioengineering11101016 |
| Cites_doi | 10.1109/ICIMCIS48181.2019.8985205 10.3390/app14010447 10.1002/widm.1312 10.1007/s12015-021-10302-y 10.1007/s00521-023-08681-z 10.1111/ene.14608 10.1016/j.ijmedinf.2022.104786 10.1007/s10994-023-06454-2 10.1007/s11042-023-14817-z 10.3390/electronics12071558 10.1016/j.compbiomed.2023.106998 10.1016/j.jcrc.2024.154792 10.1371/journal.pone.0192726 10.1515/med-2022-0508 10.1007/10984697_1 10.46338/ijetae0523_04 10.1007/s12551-022-01040-7 10.1016/j.cmpb.2019.05.005 10.3390/s23020828 10.3390/diagnostics14020144 10.1016/j.health.2022.100016 10.3390/iot4030016 10.3390/biology12010117 10.1007/s42044-023-00148-7 10.1155/2021/3383146 10.1007/s12553-020-00505-7 10.1016/j.eswa.2020.113918 10.1007/s11042-023-16686-y 10.1016/j.icte.2021.08.021 10.1186/s12911-020-1023-5 10.3390/a16020088 10.1007/s11042-023-16194-z 10.1007/s00521-023-08428-w |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/bioengineering11080822 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2306-5354 |
| ExternalDocumentID | oai_doaj_org_article_d05b816d55834290a49245d6fc2e82a1 PMC11351968 A807396334 39199780 10_3390_bioengineering11080822 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c576t-9e2be58fd15be2b84081c01138ef6105efa08e7a25d08f7ab4739a0afca6689c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305296200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2306-5354 |
| IngestDate | Mon Nov 10 04:34:09 EST 2025 Tue Nov 04 02:05:35 EST 2025 Fri Sep 05 10:15:51 EDT 2025 Fri Jul 25 11:50:29 EDT 2025 Tue Nov 11 10:55:24 EST 2025 Tue Nov 04 18:27:49 EST 2025 Mon Jul 21 05:54:42 EDT 2025 Sat Nov 29 07:18:08 EST 2025 Tue Nov 18 21:57:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | cardiovascular diseases (CVDs) active learning eXplainable artificial intelligence risk prediction |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c576t-9e2be58fd15be2b84081c01138ef6105efa08e7a25d08f7ab4739a0afca6689c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6640-6183 0000-0002-1259-6193 0000-0001-6116-2191 |
| OpenAccessLink | https://www.proquest.com/docview/3097834443?pq-origsite=%requestingapplication% |
| PMID | 39199780 |
| PQID | 3097834443 |
| PQPubID | 2055440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d05b816d55834290a49245d6fc2e82a1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11351968 proquest_miscellaneous_3099141904 proquest_journals_3097834443 gale_infotracmisc_A807396334 gale_infotracacademiconefile_A807396334 pubmed_primary_39199780 crossref_citationtrail_10_3390_bioengineering11080822 crossref_primary_10_3390_bioengineering11080822 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Bioengineering (Basel) |
| PublicationTitleAlternate | Bioengineering (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_36 Li (ref_10) 2022; 163 Shaban (ref_18) 2024; 83 Elsedimy (ref_32) 2024; 83 ref_12 ref_11 ref_33 ref_31 ref_30 Siam (ref_37) 2023; 35 Alaghbari (ref_35) 2023; 4 Khan (ref_14) 2023; 2023 Cacciarelli (ref_23) 2024; 113 ref_16 Arifin (ref_34) 2023; 13 Talaat (ref_38) 2023; 35 Maheshwari (ref_8) 2021; 2021 Swathy (ref_15) 2022; 8 ref_25 ref_24 Petruzzo (ref_3) 2021; 28 Holzinger (ref_22) 2019; 9 Moradi (ref_19) 2023; 15 ref_1 Pal (ref_27) 2022; 17 Bayon (ref_28) 2023; 82 ref_2 ref_29 Chang (ref_17) 2022; 2 Hossain (ref_20) 2023; 6 ref_26 Mezzatesta (ref_6) 2019; 177 Katarya (ref_13) 2021; 11 Hossain (ref_9) 2021; 164 ref_5 ref_4 Sun (ref_21) 2024; 82 Coronnello (ref_7) 2022; 18 |
| References_xml | – ident: ref_5 – ident: ref_11 doi: 10.1109/ICIMCIS48181.2019.8985205 – ident: ref_24 doi: 10.3390/app14010447 – volume: 9 start-page: e1312 year: 2019 ident: ref_22 article-title: Causability and explainability of artificial intelligence in medicine publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1312 – volume: 18 start-page: 559 year: 2022 ident: ref_7 article-title: Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine Learning publication-title: Stem Cell Rev. Rep. doi: 10.1007/s12015-021-10302-y – volume: 35 start-page: 18571 year: 2023 ident: ref_38 article-title: Stress monitoring using wearable sensors: IoT techniques in medical field publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08681-z – volume: 2023 start-page: 1406060 year: 2023 ident: ref_14 article-title: A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease Prediction publication-title: Hindawi Health Soc. Care Community – volume: 28 start-page: 893 year: 2021 ident: ref_3 article-title: The Framingham cardiovascular risk score and 5-year progression of multiple sclerosis publication-title: Eur. J. Neurol. doi: 10.1111/ene.14608 – volume: 163 start-page: 104786 year: 2022 ident: ref_10 article-title: Automating and improving cardiovascular disease prediction using machine learning and EMR data features from a regional healthcare system publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2022.104786 – volume: 113 start-page: 185 year: 2024 ident: ref_23 article-title: Active learning for data streams: A survey publication-title: Mach. Learn. doi: 10.1007/s10994-023-06454-2 – ident: ref_1 – volume: 82 start-page: 31759 year: 2023 ident: ref_28 article-title: Heart disease risk prediction using deep learning techniques with feature augmentation publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-14817-z – ident: ref_2 doi: 10.3390/electronics12071558 – ident: ref_4 doi: 10.1016/j.compbiomed.2023.106998 – volume: 82 start-page: 154792 year: 2024 ident: ref_21 article-title: Artificial intelligence and machine learning: Definition of terms and current concepts in critical care research publication-title: J. Crit. Care doi: 10.1016/j.jcrc.2024.154792 – ident: ref_25 doi: 10.1371/journal.pone.0192726 – volume: 17 start-page: 1100 year: 2022 ident: ref_27 article-title: Risk prediction of cardiovascular disease using machine learning classifiers publication-title: Open Med. doi: 10.1515/med-2022-0508 – ident: ref_31 doi: 10.1007/10984697_1 – volume: 13 start-page: 24 year: 2023 ident: ref_34 article-title: Long Short-Term Memory (LSTM): Trends and Future Research Potential publication-title: Int. J. Emerg. Technol. Adv. Eng. doi: 10.46338/ijetae0523_04 – volume: 15 start-page: 19 year: 2023 ident: ref_19 article-title: Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning publication-title: Biophys. Rev. doi: 10.1007/s12551-022-01040-7 – volume: 177 start-page: 9 year: 2019 ident: ref_6 article-title: A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.05.005 – ident: ref_26 doi: 10.3390/s23020828 – ident: ref_33 doi: 10.3390/diagnostics14020144 – volume: 2 start-page: 100016 year: 2022 ident: ref_17 article-title: An artificial intelligence model for heart disease detection using machine learning algorithms publication-title: Healthc. Anal. doi: 10.1016/j.health.2022.100016 – volume: 4 start-page: 345 year: 2023 ident: ref_35 article-title: Deep Autoencoder-Based Integrated Model for Anomaly Detection and Efficient Feature Extraction in IoT Networks publication-title: IoT doi: 10.3390/iot4030016 – ident: ref_30 doi: 10.3390/biology12010117 – volume: 6 start-page: 397 year: 2023 ident: ref_20 article-title: Heart disease prediction using distinct artificial intelligence techniques: Performance analysis and comparison publication-title: Iran J. Comput. Sci. doi: 10.1007/s42044-023-00148-7 – volume: 2021 start-page: 3383146 year: 2021 ident: ref_8 article-title: Nanotechnology-based sensitive biosensors for COVID-19 prediction using fuzzy logic control publication-title: J. Nanomater. doi: 10.1155/2021/3383146 – ident: ref_12 – volume: 11 start-page: 87 year: 2021 ident: ref_13 article-title: Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis publication-title: Health Technol. doi: 10.1007/s12553-020-00505-7 – volume: 164 start-page: 113918 year: 2021 ident: ref_9 article-title: Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113918 – volume: 83 start-page: 30867 year: 2024 ident: ref_18 article-title: Early diagnosis of liver disease using improved binary butterfly optimization and machine learning algorithms publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16686-y – volume: 8 start-page: 109 year: 2022 ident: ref_15 article-title: A comparative study of classification and prediction of Cardio-Vascular Diseases (CVD) using Machine Learning and Deep Learning techniques publication-title: ICT Express doi: 10.1016/j.icte.2021.08.021 – ident: ref_36 – ident: ref_29 doi: 10.1186/s12911-020-1023-5 – ident: ref_16 doi: 10.3390/a16020088 – volume: 83 start-page: 23901 year: 2024 ident: ref_32 article-title: New cardiovascular disease prediction approach using support vector machine and quantum-behaved particle swarm optimization publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-16194-z – volume: 35 start-page: 12891 year: 2023 ident: ref_37 article-title: Automatic stress detection in car drivers based on non-invasive physiological signals using machine learning techniques publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08428-w |
| SSID | ssj0001325264 |
| Score | 2.3731296 |
| Snippet | The global prevalence of cardiovascular diseases (CVDs) as a leading cause of death highlights the imperative need for refined risk assessment and... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 822 |
| SubjectTerms | active learning Artificial intelligence Cardiovascular disease Cardiovascular diseases cardiovascular diseases (CVDs) Decision making Explainable artificial intelligence Fatalities Imaging techniques Integration Learning Medical research Medicine, Experimental Mortality Patients Predictions Prognosis Risk assessment risk prediction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9y-KAP4rfVUyIIPpVtm6RNfNtbPU6Q5RCFewv5xOLRld09wf_emaS3tijci2-7m0xpMpNkZvOb3xDyhovOM8FdqbhqSh4qW1prTSlqGWsmWu9zovCnbr2WFxfqfFLqCzFhmR44T9zCV8LKuvVCSAZ7Z2XgmVz4NromyMakwAe8nkkwlf5dYY2Aoz6nBDOI6xe234Q_DH8Ifkeu89lplEj7_96aJ2fTHDc5OYhO75N7owdJl_nNH5BbYXhI7k54BR-RYZVQpp_73fd12L-jS3r2CzOz6PJjeQLHlqdYAu2SgsNKEYQ3ZlBRFKDnW7y7QX1RM3j4ukEsXr-j_UBXM_QqfZ9vdx6Tr6cfvqzOyrGwQukgvNiXKjQ2CBl9LSx8hBhP1g4WOpMhgjslQjSVDJ1phK9k7IzlHVOmMtGZtpXKsSfkaNgM4RmhgkWJpY6qykcOcsZ6ZzsVuYhMqEYWRFxPsHYj6zgWv7jUEH2gYvS_FVOQxUHuR-bduFHiBPV36I282ekHsCY9WpO-yZoK8ha1r3F1w2s6MyYpwGCRJ0svJd5stozxghzPesKqdPPma_vR466w0ywlzXDOWUFeH5pREpFuQ9hcpT6q5uCmwSOeZnM7DIkphAXJqiByZoizMc9bhv5b4gyvUyXGVj7_H7P0gtxpwLfLOMhjcrTfXoWX5Lb7ue9321dpJf4GYFo5wQ priority: 102 providerName: Directory of Open Access Journals |
| Title | CardioRiskNet: A Hybrid AI-Based Model for Explainable Risk Prediction and Prognosis in Cardiovascular Disease |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39199780 https://www.proquest.com/docview/3097834443 https://www.proquest.com/docview/3099141904 https://pubmed.ncbi.nlm.nih.gov/PMC11351968 https://doaj.org/article/d05b816d55834290a49245d6fc2e82a1 |
| Volume | 11 |
| WOSCitedRecordID | wos001305296200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7P dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7S dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: PIMPY dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXQ5w4P0ILJWRkDhFTWI7sbmgtnS1K0EVLSCVU-T4ARGrZGm6SFz47Xic9BGB4MAlamu7ijXjmbH9zTcIvaAs04RRFQoqkpCaqAzLspQhi7mNCUu17hKF32aLBV8uRd4fuLU9rHJjE72h1o2CM_Ix8QkHlFLy-vJbCFWj4Ha1L6FxgI6AJYF46F6-O2MhCXMOv0sMJm53Py6rxux4_gACD4znA5_kqft_N9B7HmqIntxzRye3_3cid9CtPhDFk05z7qJrpr6Hbu7RE95H9cyDVc-r9uvCrF_hCT79AQleeHIWTp330xgqqV1gF_diwPL1iVgYBuB8BVdAIHYsa-2-NgDpq1pc1Xg2AMHiN90l0QP08WT-YXYa9vUZQuV2KetQmKQ0jFsds9J9dFtFHitnLwg31kVlzFgZcZPJhOmI20yWNCNCRtIqmaZcKPIQHdZNbR4jzIjlUDEpirSlbpwstSozYSmzhImEB4htJFSonrwcamhcFG4TA5It_izZAI234y47-o5_jpiCAmx7A_22_6FZfS761VzoiJU8TjVjTpKJiKRTdMp0alVieCLjAL0E9SnASLjXVLLPdXCTBbqtYsLhgjQlhAboeNDTLW41bN4oUdEbl7bYaVCAnm-bYSQA5mrTXPk-IqYu2nN_8ajT1-2UiAB0EY8CxAeaPJjzsKWuvnjq8dgXdEz5k7-_11N0I3HBXweUPEaH69WVeYauq-_rql2N0EG25CN0NJ0v8vORPwUZ-YXrn-_h-XPu2vOzd_mnX2PvUD8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuF8KA4wE4ilq4ktiIyHUdUytVqoJDWlvwbEdiJiS0Xag_Sl-I-ck6SUCwdMeeGtrnyhOv3Nx_J1zCHkhZOK4FDbQQrNA-DALsiwzgYxUHnEZO9ckCk-S6VQdH-vDLfJzmQuDtMqlTawNtassviPv8zrhQAjB355-C7BrFJ6uLltoNLA48Oc_YMs2fzPeg__3JWP7746Go6DtKhBYiK0XgfYs81LlLpIZfIQNjoosoJwrn0MsIX1uQuUTw6QLVZ6YTCRcm9Dk1sSx0pbDdS-RyxBGMFVTBQ_X73Q4kxBgNInInOuwnxWVX9cVRMo9Vljv-MC6VcDvDmHDI3bZmhvub__m__bgbpEbbaBNB41m3CZbvrxDrm-UX7xLymFNxv1QzL9O_eI1HdDROSaw0cE42AXv7ih2ijuhENdT5Cq2iWYUBejhDI-4ENbUlA6-VkhZLOa0KOmwQ_Kle80h2D3y8UIWfJ9sl1XpHxIqea6wI1QYulyAnMmczRKdC5lzqZnqEblERGrb4uzYI-QkhU0aIin9M5J6pL-SO23Kk_xTYhcBt5qN5cXrH6rZ57S1VqkLZaai2EkJyGE6NKDIQro4t8wrZqIeeYVwTdEIwm1a0-ZywGKxnFg6UHgAHHMuemSnMxOMl-0OL0GbtsZznq4R2yPPV8MoiYTA0ldn9RwdCYhm4RIPGv1YLYlrZE-psEdUR3M6a-6OlMWXurR6VDesjNWjv9_XM3J1dPR-kk7G04PH5BqDQLchhe6Q7cXszD8hV-z3RTGfPa0NBCWfLlqxfgHikaa2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBSE48H4UFjASiFPUJLYTGwmhbku11a6qCoG0t-D4ARGrZGm7oP1r_DpmkvQRgeC0B25t7Yni9JuH429mCHnBRWqZ4CZQXMUBd2Ee5HmuAxFJHzGRWNskCh-l06k8PlazHfJzlQuDtMqVTawNta0MviPvszrhgHPO-r6lRcxG47en3wLsIIUnrat2Gg1EDt35D9i-Ld5MRvBfv4zj8bsPw4Og7TAQGIizl4Fyce6E9DYSOXyEzY6MDCCeSechrhDO61C6VMfChtKnOucpUzrU3ugkkcowuO4lcjnFouU1bXC2eb_DYgHBRpOUzJgK-3lRuU2NQaTfY7X1jj-s2wb87hy2vGOXubnlCsc3_-eHeIvcaANwOmg05jbZceUdcn2rLONdUg5rku77YvF16pav6YAenGNiGx1Mgn3w-pZiB7kTCvE-RQ5jm4BGUYDO5nj0hXCnurTwtUIqY7GgRUmHHfIvHTWHY_fIxwtZ8H2yW1ale0ioYF5ip6gwtJ6DnM6tyVPlufBMqFj2iFihIzNt0XbsHXKSweYNUZX9GVU90l_LnTZlS_4psY_gW8_GsuP1D9X8c9ZascyGIpdRYoUAFMUq1KDgXNjEm9jJWEc98gqhm6FxhNs0us3xgMVimbFsIPFgOGGM98heZyYYNdMdXgE4a43qItugt0eer4dREomCpavO6jkq4hDlwiUeNLqyXhJTyKqSYY_IjhZ11twdKYsvdcn1qG5kmchHf7-vZ-Qq6FN2NJkePibXYoh_G67oHtldzs_cE3LFfF8Wi_nT2lZQ8umi9eoXDNivcw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CardioRiskNet%3A+A+Hybrid+AI-Based+Model+for+Explainable+Risk+Prediction+and+Prognosis+in+Cardiovascular+Disease&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Talaat%2C+Fatma+M.&rft.au=Elnaggar%2C+Ahmed+R.&rft.au=Shaban%2C+Warda+M.&rft.au=Shehata%2C+Mohamed&rft.date=2024-08-01&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=11&rft.issue=8&rft.spage=822&rft_id=info:doi/10.3390%2Fbioengineering11080822&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering11080822 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |