Comparison of Machine Learning Algorithms and Hybrid Computational Intelligence Algorithms for Rehabilitation Classification and Prognosis in Reverse Total Shoulder Arthroplasty
Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases....
Gespeichert in:
| Veröffentlicht in: | Bioengineering (Basel) Jg. 12; H. 2; S. 150 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
01.02.2025
MDPI |
| Schlagworte: | |
| ISSN: | 2306-5354, 2306-5354 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases. In Phase I, classification performance of simple machine learning algorithms applied on data of patients suffering of reverse total shoulder arthroplasty (RTSA), examining algorithms’ classification accuracy and patients’ rehabilitation prognosis. In Phase II, hybrid computational intelligence algorithms were developed and applied in order to search for the minimum possible training set that achieves the maximum classification and prognostic performance. The data included features like age and gender, passive range of available motion of all movements (preoperative and postoperative), visual analog pain scale (preoperative and postoperative), and total rehabilitation time. In Phase I, K-nearest neighbors (ΚΝΝ) classification algorithm and K-means clustering algorithm (GAKmeans) were applied. Also, a genetic algorithm (GA)-based clustering algorithm (GAClust) was also applied. To achieve 100% performance on the test set, KNN used 80% of the data in the training set, whereas K-means and GAClust used 90% and 53.3%, respectively. In Phase II, additional computational intelligence algorithms were developed, namely, GAKNN (Genetic Algorithm K-nearest neighbors), GAKmeans, and GA2Clust (genetic algorithm-based clustering algorithm 2), for genetic algorithm optimization of the training set. Genetic algorithm optimization of the training set using hybrid algorithms in Phase II resulted in 100% performance on the test set by using only 35% of the available data for training. The proposed hybrid algorithms can reliably be used for patients’ rehabilitation prognosis. |
|---|---|
| AbstractList | Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases. In Phase I, classification performance of simple machine learning algorithms applied on data of patients suffering of reverse total shoulder arthroplasty (RTSA), examining algorithms’ classification accuracy and patients’ rehabilitation prognosis. In Phase II, hybrid computational intelligence algorithms were developed and applied in order to search for the minimum possible training set that achieves the maximum classification and prognostic performance. The data included features like age and gender, passive range of available motion of all movements (preoperative and postoperative), visual analog pain scale (preoperative and postoperative), and total rehabilitation time. In Phase I, K-nearest neighbors (ΚΝΝ) classification algorithm and K-means clustering algorithm (GAKmeans) were applied. Also, a genetic algorithm (GA)-based clustering algorithm (GAClust) was also applied. To achieve 100% performance on the test set, KNN used 80% of the data in the training set, whereas K-means and GAClust used 90% and 53.3%, respectively. In Phase II, additional computational intelligence algorithms were developed, namely, GAKNN (Genetic Algorithm K-nearest neighbors), GAKmeans, and GA2Clust (genetic algorithm-based clustering algorithm 2), for genetic algorithm optimization of the training set. Genetic algorithm optimization of the training set using hybrid algorithms in Phase II resulted in 100% performance on the test set by using only 35% of the available data for training. The proposed hybrid algorithms can reliably be used for patients’ rehabilitation prognosis. Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases. In Phase I, classification performance of simple machine learning algorithms applied on data of patients suffering of reverse total shoulder arthroplasty (RTSA), examining algorithms' classification accuracy and patients' rehabilitation prognosis. In Phase II, hybrid computational intelligence algorithms were developed and applied in order to search for the minimum possible training set that achieves the maximum classification and prognostic performance. The data included features like age and gender, passive range of available motion of all movements (preoperative and postoperative), visual analog pain scale (preoperative and postoperative), and total rehabilitation time. In Phase I, K-nearest neighbors (ΚΝΝ) classification algorithm and K-means clustering algorithm (GAKmeans) were applied. Also, a genetic algorithm (GA)-based clustering algorithm (GAClust) was also applied. To achieve 100% performance on the test set, KNN used 80% of the data in the training set, whereas K-means and GAClust used 90% and 53.3%, respectively. In Phase II, additional computational intelligence algorithms were developed, namely, GAKNN (Genetic Algorithm K-nearest neighbors), GAKmeans, and GA2Clust (genetic algorithm-based clustering algorithm 2), for genetic algorithm optimization of the training set. Genetic algorithm optimization of the training set using hybrid algorithms in Phase II resulted in 100% performance on the test set by using only 35% of the available data for training. The proposed hybrid algorithms can reliably be used for patients' rehabilitation prognosis.Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and prognosis algorithms for postoperative patients in the rehabilitation phase are still lacking. The present study was carried out in two phases. In Phase I, classification performance of simple machine learning algorithms applied on data of patients suffering of reverse total shoulder arthroplasty (RTSA), examining algorithms' classification accuracy and patients' rehabilitation prognosis. In Phase II, hybrid computational intelligence algorithms were developed and applied in order to search for the minimum possible training set that achieves the maximum classification and prognostic performance. The data included features like age and gender, passive range of available motion of all movements (preoperative and postoperative), visual analog pain scale (preoperative and postoperative), and total rehabilitation time. In Phase I, K-nearest neighbors (ΚΝΝ) classification algorithm and K-means clustering algorithm (GAKmeans) were applied. Also, a genetic algorithm (GA)-based clustering algorithm (GAClust) was also applied. To achieve 100% performance on the test set, KNN used 80% of the data in the training set, whereas K-means and GAClust used 90% and 53.3%, respectively. In Phase II, additional computational intelligence algorithms were developed, namely, GAKNN (Genetic Algorithm K-nearest neighbors), GAKmeans, and GA2Clust (genetic algorithm-based clustering algorithm 2), for genetic algorithm optimization of the training set. Genetic algorithm optimization of the training set using hybrid algorithms in Phase II resulted in 100% performance on the test set by using only 35% of the available data for training. The proposed hybrid algorithms can reliably be used for patients' rehabilitation prognosis. |
| Audience | Academic |
| Author | Adamopoulos, Adam Tatsios, Petros I. Raptis, Christos Vrouva, Sotiria Koumantakis, George A. Sopidou, Varvara |
| AuthorAffiliation | 2 Department of Physical Therapy, 401 Army General Hospital of Athens, 11525 Athens, Greece 4 Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; vsopidou@uniwa.gr 1 Physiotherapy Department, School of Health and Care Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; gkoumantakis@uniwa.gr (G.A.K.); ptatsios@uniwa.gr (P.I.T.) 3 Medical Physics Laboratory, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; craptis@med.duth.gr (C.R.); adam@med.duth.gr (A.A.) |
| AuthorAffiliation_xml | – name: 1 Physiotherapy Department, School of Health and Care Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; gkoumantakis@uniwa.gr (G.A.K.); ptatsios@uniwa.gr (P.I.T.) – name: 2 Department of Physical Therapy, 401 Army General Hospital of Athens, 11525 Athens, Greece – name: 4 Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica (UNIWA), 12243 Athens, Greece; vsopidou@uniwa.gr – name: 3 Medical Physics Laboratory, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; craptis@med.duth.gr (C.R.); adam@med.duth.gr (A.A.) |
| Author_xml | – sequence: 1 givenname: Sotiria orcidid: 0000-0001-8183-3335 surname: Vrouva fullname: Vrouva, Sotiria – sequence: 2 givenname: George A. orcidid: 0000-0001-7709-2802 surname: Koumantakis fullname: Koumantakis, George A. – sequence: 3 givenname: Varvara orcidid: 0000-0001-9143-5023 surname: Sopidou fullname: Sopidou, Varvara – sequence: 4 givenname: Petros I. orcidid: 0000-0001-5156-3733 surname: Tatsios fullname: Tatsios, Petros I. – sequence: 5 givenname: Christos surname: Raptis fullname: Raptis, Christos – sequence: 6 givenname: Adam orcidid: 0000-0001-6760-3971 surname: Adamopoulos fullname: Adamopoulos, Adam |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40001670$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkt9q2zAUh83oWLuur1AEu9lNOv21bBiMELY1kLGxdddClo9tBUfKJLuQx9obTm6ykpTC8IUl-ft98pHO6-zMeQdZdk3wDWMlfl9ZD661DiBY1xKKKSYCv8guKMP5TDDBz47G59lVjGuMMWFU0Jy_ys75NMslvsj-LPxmq4ON3iHfoK_adMmLVqCDS24071sf7NBtItKuRre7KtgaTaFx0IP1Tvdo6Qboe9uCM3AcaHxAP6DTle3tHkaLXsdoG2v200n5PfjW-Wgjsi7h9xAioDs_JPHPzo99DQHNw9AFv03hYfcme9noPsLV4X2Z_fr86W5xO1t9-7JczFczI2Q-zLiuOMeCSI3zkrGaGyCSUsOx0bQgTECpSYENN6KRlcAFGA5FGrIcyryu2GW23Htrr9dqG-xGh53y2qqHBR9apcNgTQ-KYpPruoJGmCodLS3SfRBqpKyAaMFJcn3cu7ZjtYHagBuC7k-kp1-c7VTr7xUhhSCioMnw7mAI_vcIcVAbG006du3Aj1ExIgmTqa4ioW-foGs_hnRRDxQuucTyiGp1qsC6xqeNzSRV84IWJecyn7a9eYZKTw0ba1JXNjatnwSujyt9LPFfxyUg3wMm-BgDNI8IwWrqbvV8d6fghydBc-iq9Eu2_1_8L9nECHg |
| CitedBy_id | crossref_primary_10_3390_app15126840 |
| Cites_doi | 10.1177/24715492221137186 10.3390/a17060236 10.1016/j.jse.2018.01.013 10.1053/j.sart.2020.10.008 10.1016/j.jse.2024.01.033 10.1016/j.jisako.2023.10.015 10.1016/j.csbj.2020.04.005 10.1016/j.jse.2020.07.042 10.1088/1361-6579/aacfd9 10.1177/24715492211038172 10.1186/s40945-021-00121-2 10.1302/2046-3758.127.BJR-2023-0111.R1 10.1016/j.jseint.2022.10.004 10.1109/TIT.1967.1053964 10.1016/j.jse.2017.11.011 10.1007/s12306-023-00811-z 10.1016/j.jse.2012.11.016 10.1016/j.jse.2019.10.005 10.1016/j.jse.2022.06.005 10.4055/cios22084 10.1016/j.jse.2020.03.049 10.1007/s12178-023-09823-5 10.3390/jpm12010109 10.1038/s41598-022-10358-x 10.1016/j.jse.2016.12.073 10.1186/s40634-021-00352-z 10.1016/j.jor.2022.08.020 10.3389/fmedt.2022.1076755 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/bioengineering12020150 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physical Therapy |
| EISSN | 2306-5354 |
| ExternalDocumentID | oai_doaj_org_article_20c6adbef5cb4002820112c77be1a541 PMC11851582 A828944762 40001670 10_3390_bioengineering12020150 |
| Genre | Journal Article |
| GeographicLocations | Greece Thrace |
| GeographicLocations_xml | – name: Greece – name: Thrace |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c576t-4ab440517a06933d4ce1722c40ca28135e9a180c4c5f7b508ec4e8f7b36e96db3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001430709700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2306-5354 |
| IngestDate | Fri Oct 03 12:51:44 EDT 2025 Tue Nov 04 02:05:30 EST 2025 Thu Sep 04 18:16:31 EDT 2025 Fri Jul 25 11:53:59 EDT 2025 Tue Nov 11 10:51:32 EST 2025 Tue Nov 04 18:11:47 EST 2025 Sat Mar 01 01:25:52 EST 2025 Tue Nov 18 21:36:12 EST 2025 Sat Nov 29 07:14:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | hybrid machine learning algorithms reverse total shoulder arthroplasty prognosis genetic algorithms |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c576t-4ab440517a06933d4ce1722c40ca28135e9a180c4c5f7b508ec4e8f7b36e96db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7709-2802 0000-0001-8183-3335 0000-0001-9143-5023 0000-0001-6760-3971 0000-0001-5156-3733 |
| OpenAccessLink | https://doaj.org/article/20c6adbef5cb4002820112c77be1a541 |
| PMID | 40001670 |
| PQID | 3170947078 |
| PQPubID | 2055440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_20c6adbef5cb4002820112c77be1a541 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11851582 proquest_miscellaneous_3171378138 proquest_journals_3170947078 gale_infotracmisc_A828944762 gale_infotracacademiconefile_A828944762 pubmed_primary_40001670 crossref_primary_10_3390_bioengineering12020150 crossref_citationtrail_10_3390_bioengineering12020150 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Bioengineering (Basel) |
| PublicationTitleAlternate | Bioengineering (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Kennedy (ref_4) 2021; 11 ref_14 Shi (ref_2) 2022; 6 Kumar (ref_26) 2021; 30 Wagner (ref_6) 2020; 29 Devana (ref_11) 2021; 5 Matsuki (ref_25) 2018; 27 Levin (ref_15) 2024; 33 Galvin (ref_18) 2022; 31 Kohan (ref_30) 2017; 26 Ramkumar (ref_33) 2018; 27 Pereira (ref_28) 2022; 14 Howard (ref_29) 2023; 16 Farley (ref_8) 2021; 6 (ref_19) 2021; 8 Lee (ref_31) 2023; 15 Franceschetti (ref_27) 2024; 108 McLendon (ref_17) 2021; 6 Urban (ref_16) 2020; 18 Powling (ref_9) 2023; 12 ref_24 Burns (ref_32) 2018; 39 ref_23 ref_21 Khoriati (ref_13) 2024; 9 Ek (ref_1) 2013; 22 Hagen (ref_7) 2020; 29 Cover (ref_20) 1967; 13 Ikotun (ref_22) 2023; 629 Kumar (ref_12) 2022; 34 ref_5 Anderson (ref_3) 2021; 31 Gupta (ref_10) 2022; 7 |
| References_xml | – volume: 6 start-page: 24715492221137186 year: 2022 ident: ref_2 article-title: Increasing Rate of Shoulder Arthroplasty for Geriatric Proximal Humerus Fractures in the United States, 2010–2019 publication-title: J. Shoulder Elb. Arthroplast. doi: 10.1177/24715492221137186 – volume: 6 start-page: e20.00156 year: 2021 ident: ref_8 article-title: Prevalence of Shoulder Arthroplasty in the United States and the Increasing Burden of Revision Shoulder Arthroplasty publication-title: JB JS Open Access – ident: ref_24 doi: 10.3390/a17060236 – volume: 27 start-page: 1198 year: 2018 ident: ref_33 article-title: Mobile technology and telemedicine for shoulder range of motion: Validation of a motion-based machine-learning software development kit publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2018.01.013 – volume: 31 start-page: 81 year: 2021 ident: ref_3 article-title: The relationship between age and short-term complications following reverse total shoulder arthroplasty for proximal humerus fractures publication-title: Semin. Arthroplast. doi: 10.1053/j.sart.2020.10.008 – volume: 14 start-page: e23322 year: 2022 ident: ref_28 article-title: Clinical and Functional Results of Reverse Total Shoulder Arthroplasty and Postoperative Rehabilitation Protocol publication-title: Cureus – volume: 33 start-page: 1633 year: 2024 ident: ref_15 article-title: Artificial intelligence in shoulder and elbow surgery: Overview of current and future applications publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2024.01.033 – volume: 9 start-page: 227 year: 2024 ident: ref_13 article-title: Artificial intelligence and the orthopaedic surgeon: A review of the literature and potential applications for future practice: Current concepts publication-title: J. ISAKOS doi: 10.1016/j.jisako.2023.10.015 – volume: 18 start-page: 967 year: 2020 ident: ref_16 article-title: Classifying shoulder implants in X-ray images using deep learning publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.04.005 – volume: 30 start-page: e225 year: 2021 ident: ref_26 article-title: Using machine learning to predict clinical outcomes after shoulder arthroplasty with a minimal feature set publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2020.07.042 – volume: 39 start-page: 075007 year: 2018 ident: ref_32 article-title: Shoulder physiotherapy exercise recognition: Machine learning the inertial signals from a smartwatch publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aacfd9 – volume: 5 start-page: 24715492211038172 year: 2021 ident: ref_11 article-title: Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Reverse Total Shoulder Arthroplasty publication-title: J. Shoulder Elb. Arthroplast. doi: 10.1177/24715492211038172 – volume: 11 start-page: 28 year: 2021 ident: ref_4 article-title: Protocol for a multicenter, randomised controlled trial of surgeon-directed home therapy vs. outpatient rehabilitation by physical therapists for reverse total shoulder arthroplasty: The SHORT trial publication-title: Arch Physiother. doi: 10.1186/s40945-021-00121-2 – ident: ref_23 – volume: 629 start-page: 849 year: 2023 ident: ref_22 article-title: K-means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data publication-title: Inf. Sci. – volume: 12 start-page: 447 year: 2023 ident: ref_9 article-title: Artificial intelligence in orthopaedic surgery publication-title: Bone Jt. Res. doi: 10.1302/2046-3758.127.BJR-2023-0111.R1 – volume: 7 start-page: 158 year: 2022 ident: ref_10 article-title: Research on artificial intelligence in shoulder and elbow surgery is increasing publication-title: JSES Int. doi: 10.1016/j.jseint.2022.10.004 – volume: 6 start-page: e20.00128 year: 2021 ident: ref_17 article-title: Machine Learning Can Predict Level of Improvement in Shoulder Arthroplasty publication-title: JB JS Open Access – volume: 13 start-page: 21 year: 1967 ident: ref_20 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 27 start-page: 808 year: 2018 ident: ref_25 article-title: Outcomes of reverse shoulder arthroplasty in small- and large-stature patients publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2017.11.011 – volume: 108 start-page: 163 year: 2024 ident: ref_27 article-title: Machine learning can predict anterior elevation after reverse total shoulder arthroplasty: A new tool for daily outpatient clinic? publication-title: Musculoskelet. Surg. doi: 10.1007/s12306-023-00811-z – volume: 22 start-page: 1199 year: 2013 ident: ref_1 article-title: Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: Results after five to fifteen years publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2012.11.016 – volume: 29 start-page: 442 year: 2020 ident: ref_7 article-title: A randomized single-blinded trial of early rehabilitation versus immobilization after reverse total shoulder arthroplasty publication-title: J Shoulder Elb. Surg. doi: 10.1016/j.jse.2019.10.005 – volume: 31 start-page: e534 year: 2022 ident: ref_18 article-title: Outcomes and complications of primary reverse shoulder arthroplasty with minimum of 2 years’ follow-up: A systematic review and meta-analysis publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2022.06.005 – volume: 15 start-page: 135 year: 2023 ident: ref_31 article-title: Comparison of Clinical Performance of Inlay versus Onlay Humerus Implants in Reverse Total Shoulder Arthroplasty publication-title: Clin. Orthop. Surg. doi: 10.4055/cios22084 – volume: 29 start-page: 2601 year: 2020 ident: ref_6 article-title: The incidence of shoulder arthroplasty: Rise and future projections compared with hip and knee arthroplasty publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2020.03.049 – volume: 16 start-page: 145 year: 2023 ident: ref_29 article-title: Optimizing Outcomes After Reverse Total Shoulder Arthroplasty: Rehabilitation, Expected Outcomes, and Maximizing Return to Activities publication-title: Curr. Rev. Musculoskelet. Med. doi: 10.1007/s12178-023-09823-5 – ident: ref_5 doi: 10.3390/jpm12010109 – ident: ref_21 doi: 10.1038/s41598-022-10358-x – volume: 26 start-page: 1238 year: 2017 ident: ref_30 article-title: Dislocation following reverse total shoulder arthroplasty publication-title: J. Shoulder Elb. Surg. doi: 10.1016/j.jse.2016.12.073 – volume: 8 start-page: 37 year: 2021 ident: ref_19 article-title: Evaluation of the inter and intraobserver reproducibility of the GRASP method: A goniometric method to measure the isolated glenohumeral range of motion in the shoulder joint publication-title: J. Exp. Orthop. doi: 10.1186/s40634-021-00352-z – volume: 34 start-page: 201 year: 2022 ident: ref_12 article-title: Current understanding on artificial intelligence and machine learning in orthopaedics—A scoping review publication-title: J. Orthop. doi: 10.1016/j.jor.2022.08.020 – ident: ref_14 doi: 10.3389/fmedt.2022.1076755 |
| SSID | ssj0001325264 |
| Score | 2.2953196 |
| Snippet | Despite the increasing application of machine learning and computational intelligence algorithms in medicine and physiotherapy, accurate classification and... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 150 |
| SubjectTerms | Accuracy Algorithms Arthroplasty Artificial intelligence Classification Cluster analysis Clustering Comparative analysis Computer applications Data mining Datasets Genetic algorithms Genomes hybrid machine learning algorithms Intelligence Joint replacement surgery Learning algorithms Machine learning Optimization Orthopedics Patient satisfaction Physical therapy Prognosis Rehabilitation reverse total shoulder arthroplasty prognosis Shoulder Test sets Therapeutics, Physiological Vector quantization |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADb2igICMhcYo2sZ3XCS0VVZGgWkGReotsx9mNVJI2SZH6s_iHzDjebCIQHLglsSfKKJOZ-ZzxN4S8SbKo5IZJX6mU-yKU0pdxxvAoYUwFWaAsz-yn5OQkPTvLVm7BrXNllVufaB110WhcI19AnAMkgtw07y4ufewahX9XXQuNm-QWsiRwW7q32q2xcBZBwB82BnNA9wtVNWbH8xcC8kfEP4tJlrr_dwc9iVDz6slJODq6_7-KPCD3XCJKl4PlPCQ3TP2I3J3QEz4mPw_HJoW0KelnW3dpqKNkXdPl-Rpu3G--d1TWBT2-xt1fdOgT4dYY6ccJ5edUAHJl-mXGEk5tf06sXBpO8ZartsFCwKqjVQ3TsYTE0NMGAAP9usHm3KZFDbDVAwj310_It6MPp4fHvmvx4GsAOr0vpBICacJkEGecF0IbyKiYFoGWLA15ZDIZpoEWOioTBcmk0cKkcMhjk8WF4k_JXt3UZp9QyHRSE8lQFlIKWWYSC2c1ZrRZwQEFeyTavuRcO82wDcd5DjgIjSP_s3F4ZDHKXQwMIP-UeI82NM5GBm97oWnXuXMIOQt0LAtlykgrYZEveFqmk0SZUEYi9MhbtMAc_Qw8ppZuuwQoi4xd-RKhshAQyzxyMJsJ_kHPh7d2mDv_1OU7I_TI63EYJbHmrjbNlZ0T8gReAsx5Npj8qJKwWCEBVdPZxzDTeT5SVxvLXg6IFnLolD3_-3O9IHcYtlq2BfIHZK9vr8xLclv_6KuufWW_819OE2NV priority: 102 providerName: ProQuest |
| Title | Comparison of Machine Learning Algorithms and Hybrid Computational Intelligence Algorithms for Rehabilitation Classification and Prognosis in Reverse Total Shoulder Arthroplasty |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40001670 https://www.proquest.com/docview/3170947078 https://www.proquest.com/docview/3171378138 https://pubmed.ncbi.nlm.nih.gov/PMC11851582 https://doaj.org/article/20c6adbef5cb4002820112c77be1a541 |
| Volume | 12 |
| WOSCitedRecordID | wos001430709700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7P dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7S dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: PIMPY dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVt2kNzKP2O22RRodCTiS3JX8dN2JBAs5gkhe3JSLKcNaR28DqBXPqf-g87IzuuTQq59GK8K8l4rLHmPTN6Q8iXKAkKbph0lYq5K3wpXRkmDM8ixpSXeMrqzH6Llst4tUrSUakvzAnr5IG7BwfkXIcyV6YItBKWIYBHMh1FyvgysFvWGaCeEZmyX1c4CyDUd1uCOfD6fVXW5q_Cnw-cH7n-JBpZ0f6HS_MoNk3zJkeB6OgVedkjSDrv7vw1eWKqN2R7pCv4lvw-HKoL0rqgpzZh0tBeS_WSzq8u66Zs1z83VFY5Pb7DbVu0K_DQfxykJyOtzvEAALn0bCLvTW1hTUw56n7iJdOmxgy-ckPLCrpj7oehFzUgfXq-xqrapkELsEYDDG7v3pHvR4uLw2O3r83gamAorSukEgL1vaQXJpznQhuAQkwLT0sW-zwwifRjTwsdFJECFGi0MDGc8tAkYa74e7JV1ZXZIRQgSmwC6ctcSiGLRGLGq0YomuQc6KtDgvs5ynRvGdbPuMqAwODcZv-eW4fsD-OuO-mOR0ccoAsMvVF62_4BDpn1Dpk95pAO-YoOlOECAbepZb_PAYxFqa1sjhxXCAhCDtmd9IQXW0-b710w6xeWTQZwDwg5SjQ55PPQjCMxWa4y9Y3t4_MIJgH6fOg8djBJWJAfganxxJcnNk9bqnJtZceBigL4jdnH__GUPpEXDCsp2_z3XbLVNjdmjzzXt225aWbkabSKZ-TZwWKZns3sqz3DrNzUHs_x-GsB7enJafrjD51hXFQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceFMCBRYJxMmKvV7H9gGhUKgSNY0iCFJvZne9TiK1dklSUP4UEv-QmbWT2ALBqQduTrxreezZeaxnvg_gZRgHmW-4dJSKfEd4UjqyE3M6CjlXbuwqizM7CIfD6OQkHu3Aj3UvDJVVrm2iNdRpoWmPvI1-DjMRwqZ5e_7VIdYo-rq6ptAo1eLIrL5jyrZ403-P7_cV54cfxgc9p2IVcDTG1ktHSCUEIVNJt4PZfCq0QSfOtXC15JHnByaWXuRqoYMsVBi_GC1MhId-x8SdVPl43StwFcMIHtlSwdF2T8fnAQYYZSOy78duW80Ks8UV9DgGZx61-Nd8oKUK-N0h1Dxis1qz5v4Ob_9vD-4O3KoCbdYtV8Zd2DH5PbhZg1-8Dz8PNiSMrMjYsa0rNayCnJ2w7ukEBVlOzxZM5inrrai7jZU8GNUeKuvXIE3rEzAXYB8bKOjM8o9SZVb5ky45mhdU6DhbsFmOw6lExrBxgQkR-zQl8nEzJwmIygInL1cP4POlPLOHsJsXuXkEDCO5yATSk6mUQmaxpMJgTRF7nPqY5bcgWCtVoivJiGbkNME8j5Qx-bMytqC9mXdeIpz8c8Y70tnNaEIot38U80lSGbyEu7ojU2WyQCthM3v0JFyHoTKeDITXgtek8QnZUbxNLat2EBSWEMmSLm0FCIG-ugX7jZFo_3Tz9Frvk8r-LpKt0rfgxeY0zaSawtwUF3aM54f4EnDMXrnENiIJmwuFKGrUWHwNmZtn8tnUorNjxo45QsQf__2-nsP13vh4kAz6w6MncIMTrbRtBtiH3eX8wjyFa_rbcraYP7M2hsGXy16bvwBr7r9W |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceFMMBRYJxMmKvV7H9gGh0BI1aokiKFJvZne9TiK1dklSUH4WV34dM2snsQWCUw_cbO-u5bHnuZ75BuBllIR5YLh0lYoDV_hSurKbcDqKOFde4imLM3sUDYfxyUky2oKfq1oYSqtc6USrqLNS0x55B-0cRiKETdPJ67SI0X7_7flXlzpI0Z_WVTuNikUOzfI7hm_zN4N9_NavOO-_P947cOsOA65GP3vhCqmEIJQq6XUxss-ENmjQuRaeljz2g9Ak0o89LXSYRwp9GaOFifEw6Jqkm6kA73sFrkYEWm7TBkeb_Z2Ah-hsVEXJQZB4HTUtzQZj0OfoqPlU7t-wh7ZtwO_GoWEd25mbDVPYv_0_v8Q7cKt2wFmvkpi7sGWKe3CzAct4H37srZszsjJnH2y-qWE1FO2Y9U7HSMhicjZnssjYwZKq3ljVH6PeW2WDBtRpcwHGCOxjCx2d2b6klLFVndItR7OSEiCnczYtcDqlzhh2XGKgxD5NqCm5mREF1OICFy-WD-Dzpbyzh7BdlIV5BAw9vNiE0peZlELmiaSEYU2efJIFGP07EK4YLNU1ZdR-5DTF-I8YM_0zYzrQWa87r5BP_rniHfHvejYhl9sL5Wyc1oow5Z7uykyZPNRK2IgfLQzXUaSML0PhO_CauD8l_YqPqWVdJoLEElJZ2qMtAiHQhjuw25qJelG3h1cykNZ6eZ5uBMCBF-thWkm5hoUpL-wcP4jwI-CcnUrc1iQJGyNFSGrcEsQWze2RYjqxqO0YyWPsEPPHf3-u53AdRTI9GgwPn8ANTt2mbY3ALmwvZhfmKVzT3xbT-eyZVTcMvly2aP4C0XLIEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Machine+Learning+Algorithms+and+Hybrid+Computational+Intelligence+Algorithms+for+Rehabilitation+Classification+and+Prognosis+in+Reverse+Total+Shoulder+Arthroplasty&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Sotiria+Vrouva&rft.au=George+A.+Koumantakis&rft.au=Varvara+Sopidou&rft.au=Petros+I.+Tatsios&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2306-5354&rft.volume=12&rft.issue=2&rft.spage=150&rft_id=info:doi/10.3390%2Fbioengineering12020150&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_20c6adbef5cb4002820112c77be1a541 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |