Artificial Flora Algorithm-Based Feature Selection with Gradient Boosted Tree Model for Diabetes Classification

Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Three different datasets are used to develop a novel medical data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Diabetes, metabolic syndrome and obesity Ročník 14; s. 2789 - 2806
Hlavní autoři: P, Nagaraj, P, Deepalakshmi, Mansour, Romany F, Almazroa, Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: New Zealand Dove Medical Press Limited 01.01.2021
Taylor & Francis Ltd
Dove
Dove Medical Press
Témata:
ISSN:1178-7007, 1178-7007
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus. The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%. The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.
AbstractList Purpose: Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Methods: Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus. Results: The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%. Conclusion: The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently. Keywords: diabetes, GBT, feature selection, artificial flora, classification
Purpose: Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Methods: Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients’ electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients’ cases to type I, type II, or gestational diabetes mellitus. Results: The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%. Conclusion: The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.
Nagaraj P,1 Deepalakshmi P,1 Romany F Mansour,2 Ahmed Almazroa3 1Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Education, Virudhunagar, Tamil Nadu, India; 2Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, Egypt; 3Department of imaging Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi ArabiaCorrespondence: Nagaraj PDepartment of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Srivilliputtur, Virudhunagar, Tamil Nadu, 626126, IndiaEmail nagaraj.p@klu.ac.inPurpose: Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes.Methods: Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus.Results: The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%.Conclusion: The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.Keywords: diabetes, GBT, feature selection, artificial flora, classification
Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes.PURPOSEClassification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes.Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus.METHODSThree different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus.The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%.RESULTSThe effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%.The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.CONCLUSIONThe AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.
Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus. The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%. The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.
Audience Academic
Author Almazroa, Ahmed
Mansour, Romany F
P, Nagaraj
P, Deepalakshmi
Author_xml – sequence: 1
  givenname: Nagaraj
  orcidid: 0000-0003-1803-8544
  surname: P
  fullname: P, Nagaraj
– sequence: 2
  givenname: Deepalakshmi
  surname: P
  fullname: P, Deepalakshmi
– sequence: 3
  givenname: Romany F
  orcidid: 0000-0001-5857-8495
  surname: Mansour
  fullname: Mansour, Romany F
– sequence: 4
  givenname: Ahmed
  orcidid: 0000-0002-8854-6344
  surname: Almazroa
  fullname: Almazroa, Ahmed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34188504$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiJbSG2e0EhLiQII_1mvvBSlNSanUqoeUszXxR-LIWbf2Loh_j7cJJalqH2zZz7zjGb9vi6M2tKYo3mM0JrjiXy9u5rfjOcWEC_6qOMGYixFHiB_t7Y-Ls5TWaBgcVYS8KY5phYVgqDopwiR2zjrlwJczHyKUE78M0XWrzegcktHlzEDXR1POjTeqc6Etf-fb8jKCdqbtyvMQUpe5u2hMeRO08aUNsbxwsDCdSeXUQ0pDChiC3xWvLfhkznbrafFz9v1u-mN0fXt5NZ1cjxTjdTcitaVKEAZVo0HRBpgldcPQosaaE8OEbXRDrUUgjDAKNKINbhaKY6h5xulpcbXV1QHW8j66DcQ_MoCTjwchLiXkypU3UjBuRWM5ZZpWloHASumhO4iSnE9lrW9brft-sTFa5aoj-APRw5vWreQy_JKCUCJYlQU-7wRieOhN6uTGJWW8h9aEPknCqroRqGI8ox-foevQxza3KlOMUMyJqP9TS8gFuNaGnFcNonKS68esERxnavwClac2G6eykazL5wcBn_YCVgZ8t0rB98PHpUPww35Hnlrxz1cZ-LIFVAwpRWOfEIzk4Fw5OFfunJtx8gxXrnv0S36x8y8H_QVRo-5j
CitedBy_id crossref_primary_10_1049_cvi2_12116
crossref_primary_10_1016_j_diabres_2023_110859
crossref_primary_10_3390_a15050156
crossref_primary_10_2147_DMSO_S403556
crossref_primary_10_3390_s22228794
crossref_primary_10_3390_electronics11244089
crossref_primary_10_1007_s42979_024_03435_7
crossref_primary_10_1016_j_jaim_2024_101051
crossref_primary_10_1002_ima_22710
crossref_primary_10_1186_s40537_022_00632_0
crossref_primary_10_32604_cmc_2023_037431
crossref_primary_10_3390_diagnostics12092161
crossref_primary_10_1016_j_compeleceng_2022_108014
crossref_primary_10_3390_app15010336
crossref_primary_10_1109_ACCESS_2022_3165193
crossref_primary_10_1080_08839514_2024_2331919
crossref_primary_10_1007_s00500_023_08246_1
Cites_doi 10.1016/j.siny.2008.09.002
10.1016/j.patcog.2016.11.003
10.1073/pnas.1921562117
10.1016/j.eswa.2019.04.029
10.1016/j.compbiomed.2019.103375
10.28991/cej-03091102
10.1007/s10462-019-09682-y
10.1016/j.ins.2019.07.056
10.21833/ijaas.2017.09.022
10.1109/ACCESS.2020.3001149
10.1109/TITB.2009.2039485
10.1016/j.ecl.2010.05.009
10.1007/978-3-319-13102-3_6
10.1016/j.ijcce.2021.01.001
10.1016/j.eswa.2013.04.003
10.1088/1757-899X/1070/1/012059
10.4236/jilsa.2013.53015
10.1016/j.tem.2018.09.004
10.1016/S0140-6736(06)68341-4
10.1016/j.eswa.2006.09.012
10.4304/jcp.5.8.1160-1168
10.1111/jdi.13039
10.1007/978-981-13-1280-9_6
10.1007/s13534-017-0047-y
10.17485/IJST/v14i10.2187
10.1007/978-981-15-5345-5_7
10.1109/RBME.2017.2705064
10.1016/j.dib.2018.10.018
10.3390/app8030329
10.1186/s40537-019-0175-6
10.1038/s41586-019-1236-x
10.1016/j.eswa.2019.02.037
ContentType Journal Article
Copyright 2021 P et al.
COPYRIGHT 2021 Dove Medical Press Limited
2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 P et al. 2021 P et al.
Copyright_xml – notice: 2021 P et al.
– notice: COPYRIGHT 2021 Dove Medical Press Limited
– notice: 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 P et al. 2021 P et al.
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.2147/DMSO.S312787
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database (ProQuest)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Nursing & Allied Health Database (Alumni Edition)
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate P et al
EISSN 1178-7007
EndPage 2806
ExternalDocumentID oai_doaj_org_article_857f89f735d34f5a81ccd8504032b61c
PMC8232854
A673159871
34188504
10_2147_DMSO_S312787
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GrantInformation_xml – fundername: ;
GroupedDBID ---
0YH
29F
2WC
53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAYXX
ABUWG
ACGFO
ADBBV
ADRAZ
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQTUD
AZQEC
BAWUL
BCNDV
BENPR
BKEYQ
BPHCQ
BVXVI
C1A
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
EBS
EJD
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HYE
IAO
IHR
IHW
IPNFZ
ITC
KQ8
M2O
M48
M~E
NAPCQ
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
RIG
RNS
RPM
TDBHL
TR2
UKHRP
VDV
ALIPV
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c576t-26f3c825a49dac39a5f26950b61d72e58f9d93ff0a8e8ecad03919bc71a6739a3
IEDL.DBID 7RV
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664503500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1178-7007
IngestDate Fri Oct 03 12:44:58 EDT 2025
Tue Nov 04 01:53:57 EST 2025
Fri Sep 05 12:13:34 EDT 2025
Sun Nov 09 06:21:17 EST 2025
Tue Nov 11 10:52:23 EST 2025
Tue Nov 04 18:25:42 EST 2025
Thu May 22 21:23:44 EDT 2025
Thu Jan 02 22:55:56 EST 2025
Tue Nov 18 22:34:23 EST 2025
Sat Nov 29 03:01:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GBT
artificial flora
classification
diabetes
feature selection
Language English
License http://creativecommons.org/licenses/by-nc/3.0
2021 P et al.
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-26f3c825a49dac39a5f26950b61d72e58f9d93ff0a8e8ecad03919bc71a6739a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5857-8495
0000-0003-1803-8544
0000-0002-8854-6344
OpenAccessLink https://www.proquest.com/docview/2552317286?pq-origsite=%requestingapplication%
PMID 34188504
PQID 2552317286
PQPubID 3933170
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_857f89f735d34f5a81ccd8504032b61c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8232854
proquest_miscellaneous_2546980457
proquest_journals_2552317286
gale_infotracmisc_A673159871
gale_infotracacademiconefile_A673159871
gale_healthsolutions_A673159871
pubmed_primary_34188504
crossref_primary_10_2147_DMSO_S312787
crossref_citationtrail_10_2147_DMSO_S312787
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New Zealand
PublicationPlace_xml – name: New Zealand
– name: Macclesfield
PublicationTitle Diabetes, metabolic syndrome and obesity
PublicationTitleAlternate Diabetes Metab Syndr Obes
PublicationYear 2021
Publisher Dove Medical Press Limited
Taylor & Francis Ltd
Dove
Dove Medical Press
Publisher_xml – name: Dove Medical Press Limited
– name: Taylor & Francis Ltd
– name: Dove
– name: Dove Medical Press
References Nagaraj (ref51) 2020; 16
ref10
Remeseiro (ref17) 2019; 112
Singh (ref38) 2019; 130
Polat (ref30) 2008; 34
Aishwarya (ref29) 2014; 3
Li (ref34) 2020; 8
Aslam (ref33) 2013; 40
Sapna (ref28) 2012; 9
Graham (ref41) 2019; 2
Bavkar (ref48) 2021; 14
Taghiyev (ref44) 2019; 21
ref43
Zhou (ref5) 2019; 569
Barakat (ref13) 2010; 14
Sneha (ref4) 2019; 6
Singh (ref24) 2017; 10
Melendez-Ramirez (ref7) 2010; 39
ref9
ref3
Mansour (ref14) 2017; 10
Bhoi (ref46) 2021; 12
Sheikhpour (ref16) 2017; 64
ref40
Johns (ref11) 2018; 29
Kumari (ref47) 2021; 2
Doa’ei (ref22) 2018; 4
Asaduzzaman (ref35) 2018; 21
ref37
ref36
Alirezaei (ref26) 2019; 127
ref32
ref2
ref1
ref39
Ren (ref31) 2010; 5
Yogev (ref12) 2009; 14
Marghilnai (ref20) 2017; 4
Abdollahi (ref42) 2021; arXiv
Patra (ref45) 2021; 1070
Daneman (ref8) 2006; 367
Azrar (ref25) 2018; 9
Cheng (ref49) 2018; 8
Yan (ref6) 2019; 10
Mansour (ref21) 2013; 05
Friedman (ref50) 2020; 117
ref23
Mansour (ref19) 2018; 8
Solorio-Fernández (ref18) 2020; 53
ref27
Samanta (ref15) 2019; 505
References_xml – ident: ref37
– ident: ref1
– volume: 10
  start-page: 1
  year: 2017
  ident: ref24
  publication-title: J Comput Biol Bioinform
– volume: 14
  start-page: 77
  year: 2009
  ident: ref12
  publication-title: Semin Fetal Neonatal Med
  doi: 10.1016/j.siny.2008.09.002
– volume: 64
  start-page: 141
  year: 2017
  ident: ref16
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.11.003
– volume: 117
  start-page: 21175
  year: 2020
  ident: ref50
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1921562117
– volume: 130
  start-page: 188
  year: 2019
  ident: ref38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.04.029
– volume: 112
  start-page: 103375
  year: 2019
  ident: ref17
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103375
– volume: 4
  start-page: 1653
  year: 2018
  ident: ref22
  publication-title: Civ Eng J
  doi: 10.28991/cej-03091102
– volume: 9
  start-page: 320
  year: 2018
  ident: ref25
  publication-title: Int J Adv Comput Sci Appl
– ident: ref27
– volume: 2
  start-page: 22
  year: 2019
  ident: ref41
  publication-title: SMU Data Sci Rev
– ident: ref9
– volume: 53
  start-page: 907
  year: 2020
  ident: ref18
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09682-y
– volume: 505
  start-page: 84
  year: 2019
  ident: ref15
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.07.056
– volume: 4
  start-page: 156
  year: 2017
  ident: ref20
  publication-title: Int J Adv Appl Sci
  doi: 10.21833/ijaas.2017.09.022
– volume: 8
  start-page: 107562
  year: 2020
  ident: ref34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001149
– volume: 14
  start-page: 1114
  year: 2010
  ident: ref13
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2009.2039485
– ident: ref36
– ident: ref2
– volume: 39
  start-page: 625
  year: 2010
  ident: ref7
  publication-title: Endocrinol Metab Clin North Am
  doi: 10.1016/j.ecl.2010.05.009
– ident: ref32
  doi: 10.1007/978-3-319-13102-3_6
– volume: 2
  start-page: 40
  year: 2021
  ident: ref47
  publication-title: Int J Cognit Comput Eng
  doi: 10.1016/j.ijcce.2021.01.001
– volume: 40
  start-page: 5402
  year: 2013
  ident: ref33
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.04.003
– volume: 1070
  start-page: 012059
  year: 2021
  ident: ref45
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/1070/1/012059
– ident: ref40
– volume: 05
  start-page: 135
  year: 2013
  ident: ref21
  publication-title: J Intell Learn Syst Appl
  doi: 10.4236/jilsa.2013.53015
– volume: 29
  start-page: 743
  year: 2018
  ident: ref11
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2018.09.004
– ident: ref39
– ident: ref3
– volume: 367
  start-page: 847
  year: 2006
  ident: ref8
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68341-4
– volume: 34
  start-page: 482
  year: 2008
  ident: ref30
  publication-title: Expert Syst Appl Int J
  doi: 10.1016/j.eswa.2006.09.012
– volume: 5
  start-page: 1160
  year: 2010
  ident: ref31
  publication-title: J Comput
  doi: 10.4304/jcp.5.8.1160-1168
– volume: 10
  start-page: 1358
  year: 2019
  ident: ref6
  publication-title: J Diabetes Investig
  doi: 10.1111/jdi.13039
– ident: ref23
  doi: 10.1007/978-981-13-1280-9_6
– volume: 8
  start-page: 41
  year: 2018
  ident: ref19
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-017-0047-y
– volume: 3
  start-page: 1375
  year: 2014
  ident: ref29
  publication-title: Int J Sci Eng Technol Res
– volume: 14
  start-page: 869
  year: 2021
  ident: ref48
  publication-title: Indian J Sci Technol
  doi: 10.17485/IJST/v14i10.2187
– ident: ref43
  doi: 10.1007/978-981-15-5345-5_7
– volume: 10
  start-page: 334
  year: 2017
  ident: ref14
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2017.2705064
– volume: 21
  start-page: 700
  year: 2018
  ident: ref35
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.10.018
– volume: 8
  start-page: 329
  year: 2018
  ident: ref49
  publication-title: Appl Sci
  doi: 10.3390/app8030329
– volume: 6
  start-page: 1
  year: 2019
  ident: ref4
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0175-6
– volume: 569
  start-page: 663
  year: 2019
  ident: ref5
  publication-title: Nature
  doi: 10.1038/s41586-019-1236-x
– volume: 12
  start-page: 3074
  year: 2021
  ident: ref46
  publication-title: Turk J Comput Math Educ
– volume: arXiv
  year: 2021
  ident: ref42
  publication-title: arXiv
– volume: 127
  start-page: 47
  year: 2019
  ident: ref26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.02.037
– volume: 21
  start-page: 34
  year: 2019
  ident: ref44
  publication-title: J Control Eng Appl Inf
– volume: 9
  start-page: 234
  year: 2012
  ident: ref28
  publication-title: Int J Comput Sci Issues
– volume: 16
  start-page: 84
  year: 2020
  ident: ref51
  publication-title: Electron Gov Int J
– ident: ref10
SSID ssj0000070422
Score 2.477758
Snippet Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify...
Purpose: Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to...
Nagaraj P,1 Deepalakshmi P,1 Romany F Mansour,2 Ahmed Almazroa3 1Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2789
SubjectTerms Accuracy
Algorithms
Analysis
artificial flora
Artificial intelligence
Classification
Comparative analysis
Data mining
Datasets
Decision trees
Diabetes
Diagnosis
Discriminant analysis
Electronic health records
Feature selection
gbt
Genetic algorithms
Gestational diabetes
Hypoglycemic agents
Medical advice systems
Medical records
Optimization
Original Research
Patients
Support vector machines
Type 2 diabetes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhRAXRHkGCjUSiAMKTeI4do670IVLC9IWqTfLcex2pSVB2Sy_vzN2GiVCiAvHjWezmYftmez4-wh5a2EWJTYzseQIql0kOq7SKomddqLWmeXaSE82Ic7P5eVl-X1C9YU9YQEeOBjuRHLhZOkE4zXLHdcyNaaWHGKPZVWRGlx9E1FOiqmQ-AoEtwrMKjIW8Dl0vSMtz8nns_W3j2uWZgI76Sb7kYft_3NxnuxO887JyVa0ekgeDDkkXYRnPyR3bPOI3Dsb_iV_TFocCcgQdAX1uKaL7VXbbfrrn_ESdq2aYuK37yxdexYccA3F97H0S-cbwHq6bP3ZD3rRWUuRLm1LIbmlQ_vMjnoqTfwJ79cn5Mfq9OLT13ggVogNlBd9nBWOGSgNdV7W2rBSc5cVJU_AnrUA_0hX1iVzLtHSSmt0jTDyZWVEqgsB4uwpOWjaxj4nVEMFVMOiKZjOc7iZzJkt8sqyqrAscVVEPtyaV5kBdRzJL7YKqg90hkJnqMEZEXk3Sv8KaBt_kVuip0YZxMj2FyBy1BA56l-RE5Fj9LMKB07Hma4WoCMkeVBJRuS9l8C5Dg9t9HBkAVRH1KyZ5NFMEuaomQ_fxpIa1oidgmIOkmuRySIib8Zh_Cb2vTW23aMMMnxC2g0qPwuhNyoN-YdEdSIiZkE5s8p8pNlcewRxCXm05PmL_2HGl-R-hn0-_rXUETnou719Re6a3_1m17320_IGhqs6Pg
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial Flora Algorithm-Based Feature Selection with Gradient Boosted Tree Model for Diabetes Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/34188504
https://www.proquest.com/docview/2552317286
https://www.proquest.com/docview/2546980457
https://pubmed.ncbi.nlm.nih.gov/PMC8232854
https://doaj.org/article/857f89f735d34f5a81ccd8504032b61c
Volume 14
WOSCitedRecordID wos000664503500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1178-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070422
  issn: 1178-7007
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1178-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070422
  issn: 1178-7007
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1178-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070422
  issn: 1178-7007
  databaseCode: 7RV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1178-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070422
  issn: 1178-7007
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1178-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070422
  issn: 1178-7007
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1178-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070422
  issn: 1178-7007
  databaseCode: 8C1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1178-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070422
  issn: 1178-7007
  databaseCode: M2O
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1178-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070422
  issn: 1178-7007
  databaseCode: 0YH
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgQ4gXvj8CoxgJxAMKS-wkdp5QO1bgoV21DlSeIsdxtkmlGWnK38-d44ZGCF54yUN8TX258_l3l_MdIa8MrKLAMO3LGItqJ4Hy8zAP_FKVolDMxEpL22xCTKdysUhnLuC2dmmVW5toDXVRaYyRHwL0BSgimEzeX_3wsWsUfl11LTSuk_0QsTHoszj92sVYsJZNxFib744NeQ4_TOYn7-Y8ZAJz6HZ2Iluw_0-zvLMv9XMmdzah8Z3_nf5dctvBTzps9eUeuWZW98nNifvA_oBUONIWlaBjcOUVHS7P4TnNxXd_BBteQREzbmpD57aBDkiVYiiXfqxt7lhDR5U9NkLPamModlpbUsDF1GXerKntwol_YVXiIfkyPj47-uS7ngy-Bs-k8VlScg1epYrSQmmeqrhkSRoHeRIWAkQry7RIeVkGShpptCqwAn2aaxGqRAA5f0T2VtXKPCFUgfNUgL0VXEURPExG3CRRbnieGB6UuUfebuWTaVewHPtmLDNwXFCaGUozc9L0yOuO-qot1PEXuhGKuqPB8tr2RlWfZ261ZjIWpUxLweOCR2WsZKh1IWMweJwBp9ojL1BRsvasamcksiHwCPgQnFCPvLEUaCZg0lq50w7AOhbc6lEe9Chheev-8FahMmde1tlvbfLIy24Yf4kpcytTbZAGm4MCYgeWH7e62zEN0EUiOx4RPa3uvZX-yOrywhYflwDBZRw9_fe0npFbDJN_bKzqgOw19cY8Jzf0z-ZyXQ_sKsXrQsJVHoUDsj86ns5OBzYkAtcJO4F7s8-T2bdfbM5OCg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAEX3o9AoYtExQGZOrt-rA8IJZTQqE2I1FQqJ7Ner9tKIS5OAuJP8RuZWTsmFoJbD1yzk2TH-ea1mZ0P4IVBK3IN1470aah24Con6SSuk6ksTBU3vtLSkk2Eo5E8OYnGG_BzdReG2ipXPtE66jTXdEa-i6kvpiIhl8Hbi68OsUbRv6srCo0SFgfmx3cs2eZvBnv4--5w3n8_ebfvVKwCjsbceuHwIBMa6yLlRanSIlJ-xoPId5Ogk4a4OZlFaSSyzFXSSKNVSjPUo0SHHRWEKC7wc6_Apkdgb8HmeDAcf6pPdWh6jsd52WFPFEC7e8Ojj6-PRIeH1LW3FvssRcCfgWAtEja7NNfCXv_W__bAbsPNKsFm3dIi7sCGmd2Fa8OqheAe5LRSjs1g_SkaAOtOT3Hfi7MvTg9DesooK14Whh1ZiiDELaPDavahsN1xC9bL7cUYNimMYcQlN2WY-bOqt2jOLM8ofYUF_X04vhR1H0Brls_MI2AKy8MUI0oolOfhh0lPmMBLjEgCI9wsacOrFR5iXY1kJ2aQaYylGaEnJvTEFXrasFNLX5SjSP4i1yNo1TI0QNy-kBenceWPYumHmYyyUPip8DJfyY7WqfTRpQuOmuo2bBMw4_I2bu0G4y7qiBkwltlteGklyBHiprWq7nOg6jRSrCG51ZBEB6abyysAx5UDnce_0duG5_UyvZOaAmcmX5IM0Z9iTYIqPyxtpVYakzNJ6rQhbFhR46k0V2bnZ3a8usQiQ_re439vaxuu70-Gh_HhYHTwBG5wanWyJ3Nb0FoUS_MUrupvi_N58azyEQw-X7aV_QJ6uqYG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFFW98KYYCl0kKg7IxNn1Y31AKCEEopIQKa1UTma93m0rhbg4CYi_xq9jZu2YWAhuPXDNTpId55vXZnY-Qp5psCJPM-WKAIdqh550007quUaaKJNMB1IJSzYRjcfi9DSebJGf67sw2Fa59onWUWe5wjPyNqS-kIpETIRtU7VFTPqD15dfXWSQwn9a13QaJUSO9I_vUL4tXg378FsfMjZ4e_zmvVsxDLgK8uyly0LDFdRI0o8zqXgsA8PCOPDSsJNFsFFh4izmxnhSaKGVzHCeepyqqCPDCMQ5fO41sg0puc9aZHsyHE0-1Sc8OEnHZ6zstkc6oHZ_NP34cso7LMIOvo04aOkC_gwKG1Gx2bG5EQIHN__nh3eL3KgSb9otLeU22dLzO2RnVLUW3CU5rpTjNOhgBoZBu7Mz2Pfy_Ivbg1CfUcyWV4WmU0sdBHimeIhN3xW2a25Je7m9MEOPC60pcszNKFQEtOo5WlDLP4pfYY3hHjm5EnXvk9Y8n-sHhEooGzOINBGXvg8fJnyuQz_VPA0190zqkBdrbCSqGtWOjCGzBEo2RFKCSEoqJDnksJa-LEeU_EWuhzCrZXCwuH0hL86Syk8lIoiMiE3Eg4z7JpCio1QmAnD1nIGmyiEHCNKkvKVbu8ekCzpCZgzlt0OeWwl0kLBpJat7HqA6jhprSO43JMGxqebyGsxJ5VgXyW8kO-RpvYzvxGbBuc5XKIO0qFCrgMp7pd3USkPSJlAdh0QNi2o8lebK_OLcjl0XUHyIwH_4720dkB0wreTDcHz0iOwy7ICyB3b7pLUsVvoxua6-LS8WxZPKXVDy-aqN7BfekK7G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Flora+Algorithm-Based+Feature+Selection+with+Gradient+Boosted+Tree+Model+for+Diabetes+Classification&rft.jtitle=Diabetes%2C+metabolic+syndrome+and+obesity&rft.au=P%2C+Nagaraj&rft.au=P%2C+Deepalakshmi&rft.au=Mansour%2C+Romany+F&rft.au=Almazroa%2C+Ahmed&rft.date=2021-01-01&rft.issn=1178-7007&rft.eissn=1178-7007&rft.volume=14&rft.spage=2789&rft_id=info:doi/10.2147%2FDMSO.S312787&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-7007&client=summon