Artificial Flora Algorithm-Based Feature Selection with Gradient Boosted Tree Model for Diabetes Classification
Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Three different datasets are used to develop a novel medical data...
Uložené v:
| Vydané v: | Diabetes, metabolic syndrome and obesity Ročník 14; s. 2789 - 2806 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New Zealand
Dove Medical Press Limited
01.01.2021
Taylor & Francis Ltd Dove Dove Medical Press |
| Predmet: | |
| ISSN: | 1178-7007, 1178-7007 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes.
Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus.
The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%.
The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently. |
|---|---|
| AbstractList | Purpose: Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Methods: Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus. Results: The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%. Conclusion: The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently. Keywords: diabetes, GBT, feature selection, artificial flora, classification Purpose: Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Methods: Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients’ electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients’ cases to type I, type II, or gestational diabetes mellitus. Results: The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%. Conclusion: The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently. Nagaraj P,1 Deepalakshmi P,1 Romany F Mansour,2 Ahmed Almazroa3 1Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Education, Virudhunagar, Tamil Nadu, India; 2Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, Egypt; 3Department of imaging Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi ArabiaCorrespondence: Nagaraj PDepartment of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Srivilliputtur, Virudhunagar, Tamil Nadu, 626126, IndiaEmail nagaraj.p@klu.ac.inPurpose: Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes.Methods: Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus.Results: The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%.Conclusion: The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.Keywords: diabetes, GBT, feature selection, artificial flora, classification Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes.PURPOSEClassification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes.Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus.METHODSThree different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus.The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%.RESULTSThe effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%.The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.CONCLUSIONThe AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently. Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus. The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%. The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently. |
| Audience | Academic |
| Author | Almazroa, Ahmed Mansour, Romany F P, Nagaraj P, Deepalakshmi |
| Author_xml | – sequence: 1 givenname: Nagaraj orcidid: 0000-0003-1803-8544 surname: P fullname: P, Nagaraj – sequence: 2 givenname: Deepalakshmi surname: P fullname: P, Deepalakshmi – sequence: 3 givenname: Romany F orcidid: 0000-0001-5857-8495 surname: Mansour fullname: Mansour, Romany F – sequence: 4 givenname: Ahmed orcidid: 0000-0002-8854-6344 surname: Almazroa fullname: Almazroa, Ahmed |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34188504$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1vEzEQhleoiJbSG2e0EhLiQII_1mvvBSlNSanUqoeUszXxR-LIWbf2Loh_j7cJJalqH2zZz7zjGb9vi6M2tKYo3mM0JrjiXy9u5rfjOcWEC_6qOMGYixFHiB_t7Y-Ls5TWaBgcVYS8KY5phYVgqDopwiR2zjrlwJczHyKUE78M0XWrzegcktHlzEDXR1POjTeqc6Etf-fb8jKCdqbtyvMQUpe5u2hMeRO08aUNsbxwsDCdSeXUQ0pDChiC3xWvLfhkznbrafFz9v1u-mN0fXt5NZ1cjxTjdTcitaVKEAZVo0HRBpgldcPQosaaE8OEbXRDrUUgjDAKNKINbhaKY6h5xulpcbXV1QHW8j66DcQ_MoCTjwchLiXkypU3UjBuRWM5ZZpWloHASumhO4iSnE9lrW9brft-sTFa5aoj-APRw5vWreQy_JKCUCJYlQU-7wRieOhN6uTGJWW8h9aEPknCqroRqGI8ox-foevQxza3KlOMUMyJqP9TS8gFuNaGnFcNonKS68esERxnavwClac2G6eykazL5wcBn_YCVgZ8t0rB98PHpUPww35Hnlrxz1cZ-LIFVAwpRWOfEIzk4Fw5OFfunJtx8gxXrnv0S36x8y8H_QVRo-5j |
| CitedBy_id | crossref_primary_10_1049_cvi2_12116 crossref_primary_10_1016_j_diabres_2023_110859 crossref_primary_10_3390_a15050156 crossref_primary_10_2147_DMSO_S403556 crossref_primary_10_3390_s22228794 crossref_primary_10_3390_electronics11244089 crossref_primary_10_1007_s42979_024_03435_7 crossref_primary_10_1016_j_jaim_2024_101051 crossref_primary_10_1002_ima_22710 crossref_primary_10_1186_s40537_022_00632_0 crossref_primary_10_32604_cmc_2023_037431 crossref_primary_10_3390_diagnostics12092161 crossref_primary_10_1016_j_compeleceng_2022_108014 crossref_primary_10_3390_app15010336 crossref_primary_10_1109_ACCESS_2022_3165193 crossref_primary_10_1080_08839514_2024_2331919 crossref_primary_10_1007_s00500_023_08246_1 |
| Cites_doi | 10.1016/j.siny.2008.09.002 10.1016/j.patcog.2016.11.003 10.1073/pnas.1921562117 10.1016/j.eswa.2019.04.029 10.1016/j.compbiomed.2019.103375 10.28991/cej-03091102 10.1007/s10462-019-09682-y 10.1016/j.ins.2019.07.056 10.21833/ijaas.2017.09.022 10.1109/ACCESS.2020.3001149 10.1109/TITB.2009.2039485 10.1016/j.ecl.2010.05.009 10.1007/978-3-319-13102-3_6 10.1016/j.ijcce.2021.01.001 10.1016/j.eswa.2013.04.003 10.1088/1757-899X/1070/1/012059 10.4236/jilsa.2013.53015 10.1016/j.tem.2018.09.004 10.1016/S0140-6736(06)68341-4 10.1016/j.eswa.2006.09.012 10.4304/jcp.5.8.1160-1168 10.1111/jdi.13039 10.1007/978-981-13-1280-9_6 10.1007/s13534-017-0047-y 10.17485/IJST/v14i10.2187 10.1007/978-981-15-5345-5_7 10.1109/RBME.2017.2705064 10.1016/j.dib.2018.10.018 10.3390/app8030329 10.1186/s40537-019-0175-6 10.1038/s41586-019-1236-x 10.1016/j.eswa.2019.02.037 |
| ContentType | Journal Article |
| Copyright | 2021 P et al. COPYRIGHT 2021 Dove Medical Press Limited 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 P et al. 2021 P et al. |
| Copyright_xml | – notice: 2021 P et al. – notice: COPYRIGHT 2021 Dove Medical Press Limited – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 P et al. 2021 P et al. |
| DBID | AAYXX CITATION NPM 3V. 7RV 7XB 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH KB0 M2O MBDVC NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.2147/DMSO.S312787 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & allied health premium. ProQuest Central (purchase pre-March 2016) Public Health Database (subscription) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Nursing & Allied Health Database (Alumni Edition) Research Library Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7RV name: Nursing & allied health premium. url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | P et al |
| EISSN | 1178-7007 |
| EndPage | 2806 |
| ExternalDocumentID | oai_doaj_org_article_857f89f735d34f5a81ccd8504032b61c PMC8232854 A673159871 34188504 10_2147_DMSO_S312787 |
| Genre | Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 0YH 29F 2WC 53G 5VS 7RV 8C1 8FI 8FJ 8G5 AAYXX ABUWG ACGFO ADBBV ADRAZ AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AQTUD AZQEC BAWUL BCNDV BENPR BKEYQ BPHCQ BVXVI C1A CCPQU CITATION DIK DWQXO E3Z EBD EBS EJD FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HYE IAO IHR IHW IPNFZ ITC KQ8 M2O M48 M~E NAPCQ O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC RIG RNS RPM TDBHL TR2 UKHRP VDV ALIPV NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c576t-26f3c825a49dac39a5f26950b61d72e58f9d93ff0a8e8ecad03919bc71a6739a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664503500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1178-7007 |
| IngestDate | Fri Oct 03 12:44:58 EDT 2025 Tue Nov 04 01:53:57 EST 2025 Fri Sep 05 12:13:34 EDT 2025 Sun Nov 09 06:21:17 EST 2025 Tue Nov 11 10:52:23 EST 2025 Tue Nov 04 18:25:42 EST 2025 Thu May 22 21:23:44 EDT 2025 Thu Jan 02 22:55:56 EST 2025 Tue Nov 18 22:34:23 EST 2025 Sat Nov 29 03:01:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | GBT artificial flora classification diabetes feature selection |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/3.0 2021 P et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c576t-26f3c825a49dac39a5f26950b61d72e58f9d93ff0a8e8ecad03919bc71a6739a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5857-8495 0000-0003-1803-8544 0000-0002-8854-6344 |
| OpenAccessLink | https://doaj.org/article/857f89f735d34f5a81ccd8504032b61c |
| PMID | 34188504 |
| PQID | 2552317286 |
| PQPubID | 3933170 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_857f89f735d34f5a81ccd8504032b61c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8232854 proquest_miscellaneous_2546980457 proquest_journals_2552317286 gale_infotracmisc_A673159871 gale_infotracacademiconefile_A673159871 gale_healthsolutions_A673159871 pubmed_primary_34188504 crossref_primary_10_2147_DMSO_S312787 crossref_citationtrail_10_2147_DMSO_S312787 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New Zealand |
| PublicationPlace_xml | – name: New Zealand – name: Macclesfield |
| PublicationTitle | Diabetes, metabolic syndrome and obesity |
| PublicationTitleAlternate | Diabetes Metab Syndr Obes |
| PublicationYear | 2021 |
| Publisher | Dove Medical Press Limited Taylor & Francis Ltd Dove Dove Medical Press |
| Publisher_xml | – name: Dove Medical Press Limited – name: Taylor & Francis Ltd – name: Dove – name: Dove Medical Press |
| References | Nagaraj (ref51) 2020; 16 ref10 Remeseiro (ref17) 2019; 112 Singh (ref38) 2019; 130 Polat (ref30) 2008; 34 Aishwarya (ref29) 2014; 3 Li (ref34) 2020; 8 Aslam (ref33) 2013; 40 Sapna (ref28) 2012; 9 Graham (ref41) 2019; 2 Bavkar (ref48) 2021; 14 Taghiyev (ref44) 2019; 21 ref43 Zhou (ref5) 2019; 569 Barakat (ref13) 2010; 14 Sneha (ref4) 2019; 6 Singh (ref24) 2017; 10 Melendez-Ramirez (ref7) 2010; 39 ref9 ref3 Mansour (ref14) 2017; 10 Bhoi (ref46) 2021; 12 Sheikhpour (ref16) 2017; 64 ref40 Johns (ref11) 2018; 29 Kumari (ref47) 2021; 2 Doa’ei (ref22) 2018; 4 Asaduzzaman (ref35) 2018; 21 ref37 ref36 Alirezaei (ref26) 2019; 127 ref32 ref2 ref1 ref39 Ren (ref31) 2010; 5 Yogev (ref12) 2009; 14 Marghilnai (ref20) 2017; 4 Abdollahi (ref42) 2021; arXiv Patra (ref45) 2021; 1070 Daneman (ref8) 2006; 367 Azrar (ref25) 2018; 9 Cheng (ref49) 2018; 8 Yan (ref6) 2019; 10 Mansour (ref21) 2013; 05 Friedman (ref50) 2020; 117 ref23 Mansour (ref19) 2018; 8 Solorio-Fernández (ref18) 2020; 53 ref27 Samanta (ref15) 2019; 505 |
| References_xml | – ident: ref37 – ident: ref1 – volume: 10 start-page: 1 year: 2017 ident: ref24 publication-title: J Comput Biol Bioinform – volume: 14 start-page: 77 year: 2009 ident: ref12 publication-title: Semin Fetal Neonatal Med doi: 10.1016/j.siny.2008.09.002 – volume: 64 start-page: 141 year: 2017 ident: ref16 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.11.003 – volume: 117 start-page: 21175 year: 2020 ident: ref50 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1921562117 – volume: 130 start-page: 188 year: 2019 ident: ref38 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.04.029 – volume: 112 start-page: 103375 year: 2019 ident: ref17 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103375 – volume: 4 start-page: 1653 year: 2018 ident: ref22 publication-title: Civ Eng J doi: 10.28991/cej-03091102 – volume: 9 start-page: 320 year: 2018 ident: ref25 publication-title: Int J Adv Comput Sci Appl – ident: ref27 – volume: 2 start-page: 22 year: 2019 ident: ref41 publication-title: SMU Data Sci Rev – ident: ref9 – volume: 53 start-page: 907 year: 2020 ident: ref18 publication-title: Artif Intell Rev doi: 10.1007/s10462-019-09682-y – volume: 505 start-page: 84 year: 2019 ident: ref15 publication-title: Inf Sci doi: 10.1016/j.ins.2019.07.056 – volume: 4 start-page: 156 year: 2017 ident: ref20 publication-title: Int J Adv Appl Sci doi: 10.21833/ijaas.2017.09.022 – volume: 8 start-page: 107562 year: 2020 ident: ref34 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001149 – volume: 14 start-page: 1114 year: 2010 ident: ref13 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2009.2039485 – ident: ref36 – ident: ref2 – volume: 39 start-page: 625 year: 2010 ident: ref7 publication-title: Endocrinol Metab Clin North Am doi: 10.1016/j.ecl.2010.05.009 – ident: ref32 doi: 10.1007/978-3-319-13102-3_6 – volume: 2 start-page: 40 year: 2021 ident: ref47 publication-title: Int J Cognit Comput Eng doi: 10.1016/j.ijcce.2021.01.001 – volume: 40 start-page: 5402 year: 2013 ident: ref33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.04.003 – volume: 1070 start-page: 012059 year: 2021 ident: ref45 publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/1070/1/012059 – ident: ref40 – volume: 05 start-page: 135 year: 2013 ident: ref21 publication-title: J Intell Learn Syst Appl doi: 10.4236/jilsa.2013.53015 – volume: 29 start-page: 743 year: 2018 ident: ref11 publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2018.09.004 – ident: ref39 – ident: ref3 – volume: 367 start-page: 847 year: 2006 ident: ref8 publication-title: Lancet doi: 10.1016/S0140-6736(06)68341-4 – volume: 34 start-page: 482 year: 2008 ident: ref30 publication-title: Expert Syst Appl Int J doi: 10.1016/j.eswa.2006.09.012 – volume: 5 start-page: 1160 year: 2010 ident: ref31 publication-title: J Comput doi: 10.4304/jcp.5.8.1160-1168 – volume: 10 start-page: 1358 year: 2019 ident: ref6 publication-title: J Diabetes Investig doi: 10.1111/jdi.13039 – ident: ref23 doi: 10.1007/978-981-13-1280-9_6 – volume: 8 start-page: 41 year: 2018 ident: ref19 publication-title: Biomed Eng Lett doi: 10.1007/s13534-017-0047-y – volume: 3 start-page: 1375 year: 2014 ident: ref29 publication-title: Int J Sci Eng Technol Res – volume: 14 start-page: 869 year: 2021 ident: ref48 publication-title: Indian J Sci Technol doi: 10.17485/IJST/v14i10.2187 – ident: ref43 doi: 10.1007/978-981-15-5345-5_7 – volume: 10 start-page: 334 year: 2017 ident: ref14 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2017.2705064 – volume: 21 start-page: 700 year: 2018 ident: ref35 publication-title: Data Brief doi: 10.1016/j.dib.2018.10.018 – volume: 8 start-page: 329 year: 2018 ident: ref49 publication-title: Appl Sci doi: 10.3390/app8030329 – volume: 6 start-page: 1 year: 2019 ident: ref4 publication-title: J Big Data doi: 10.1186/s40537-019-0175-6 – volume: 569 start-page: 663 year: 2019 ident: ref5 publication-title: Nature doi: 10.1038/s41586-019-1236-x – volume: 12 start-page: 3074 year: 2021 ident: ref46 publication-title: Turk J Comput Math Educ – volume: arXiv year: 2021 ident: ref42 publication-title: arXiv – volume: 127 start-page: 47 year: 2019 ident: ref26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.02.037 – volume: 21 start-page: 34 year: 2019 ident: ref44 publication-title: J Control Eng Appl Inf – volume: 9 start-page: 234 year: 2012 ident: ref28 publication-title: Int J Comput Sci Issues – volume: 16 start-page: 84 year: 2020 ident: ref51 publication-title: Electron Gov Int J – ident: ref10 |
| SSID | ssj0000070422 |
| Score | 2.4776819 |
| Snippet | Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify... Purpose: Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to... Nagaraj P,1 Deepalakshmi P,1 Romany F Mansour,2 Ahmed Almazroa3 1Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2789 |
| SubjectTerms | Accuracy Algorithms Analysis artificial flora Artificial intelligence Classification Comparative analysis Data mining Datasets Decision trees Diabetes Diagnosis Discriminant analysis Electronic health records Feature selection gbt Genetic algorithms Gestational diabetes Hypoglycemic agents Medical advice systems Medical records Optimization Original Research Patients Support vector machines Type 2 diabetes |
| SummonAdditionalLinks | – databaseName: Nursing & allied health premium. dbid: 7RV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgIMQL37DAACOBeEDZkjiO7SfUAoWXDUQH2lvk2s42qSRbmvL3c-e4oRGCF17ra3uXO59_dznfEfLS5kIzJnjMrbJxbmHPKWFEnKuFTDXYCLPGD5sQR0fy5ER9CQm3VSir3PhE76htYzBHfgDQF6CIyGTx9uIyxqlR-HY1jNC4Sq6liI3BnsXX70OOBXvZ5FnW17vjQJ6D94fzz_tzlmYCa-i2TiLfsP9Pt7x1Lo1rJrcOodnt_2X_DrkV4Ced9PZyl1xx9T1y4zC8YL9PGlzpm0rQGYTymk6Wp_A73dmPeAoHnqWIGdeto3M_QAe0SjGVSz-2vnaso9PGXxuhx61zFCetLSngYhoqb1bUT-HEv_Am8YB8m304fvcpDjMZYgORSRdnRcUMRJU6V1YbpjSvskLxZFGkVmSOy0pZxaoq0dJJZ7TFDvRqYUSqCwHk7CHZqZva7RKqUmcSI7VME51zmajESS4sAExTmMrmEXmz0U9pQsNynJuxLCFwQW2WqM0yaDMirwbqi75Rx1_opqjqgQbba_sPmva0DLu1BD4qqSrBuGV5xYFFY6zk4PBYBpKaiDxHQyn7u6qDkygnICPgQwhCI_LaU6CbAKaNDrcdQHRsuDWi3BtRwvY24-WNQZXBvazK39YUkRfDMn4TS-Zq16yRBoeDAmIHkR_1tjsIDdBFojgRESOrHj2V8Up9fuabj0uA4JLnj__N1hNyM8PiH5-r2iM7Xbt2T8l187M7X7XP_C79BZGgRio priority: 102 providerName: ProQuest |
| Title | Artificial Flora Algorithm-Based Feature Selection with Gradient Boosted Tree Model for Diabetes Classification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34188504 https://www.proquest.com/docview/2552317286 https://www.proquest.com/docview/2546980457 https://pubmed.ncbi.nlm.nih.gov/PMC8232854 https://doaj.org/article/857f89f735d34f5a81ccd8504032b61c |
| Volume | 14 |
| WOSCitedRecordID | wos000664503500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1178-7007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070422 issn: 1178-7007 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1178-7007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070422 issn: 1178-7007 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Nursing & allied health premium. customDbUrl: eissn: 1178-7007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070422 issn: 1178-7007 databaseCode: 7RV dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1178-7007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070422 issn: 1178-7007 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1178-7007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070422 issn: 1178-7007 databaseCode: 8C1 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1178-7007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070422 issn: 1178-7007 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1178-7007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070422 issn: 1178-7007 databaseCode: M2O dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1178-7007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070422 issn: 1178-7007 databaseCode: 0YH dateStart: 20081001 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgIMQL4pvAKEYC8YCyJXEc24_tWIGHdtU6UHmKXNthlbpmSlP-fu6cLGqEEC-8WGp8UXJf9l16_h0h72wqNGOCh9wqG6YWfE4JI8JULWWswUaYNb7ZhJhO5WKhZnutvrAmrIEHbgR3LLkopCoE45alBdcyNsZKDrbHkmUWG1x9I6H2kqkm8BUIbtV0VpGhgN9N1Tu25Tn-NJmfHc1ZnAispNvbjzxs_5-L897u1K-c3NuKxg_JgzaGpMPm3R-RW27zmNybtP-SPyElzjTIEHQM-bimw_XPslrVl1fhCHYtSzHw21WOzn0XHFANxe-x9HPlC8BqOir92Q96UTlHsV3amkJwS9vymS31rTTxEV6vT8m38enFyZewbawQGkgv6jDJCmYgNdSpstowpXmRZIpHIE8rEsdloaxiRRFp6aQz2iKMvFoaEetMADl7Rg425ca9IFTFzkRGgloinXIZqciBxixEiSYzhU0D8vFGvLlpUcex-cU6h-wDlZGjMvJWGQF531FfN2gbf6EboaY6GsTI9hfAcvLWcvJ_WU5A3qCe8-bAaefp-RB4hCAPMsmAfPAU6Ovw0ka3RxaAdUTN6lEe9ijBR01_-saW8naN2OaQzEFwLRKZBeRtN413Yt3bxpU7pMEOnxB2A8vPG9PrmIb4QyI7ARE9o-xJpT-zWV16BHEJcbTk6cv_IcZX5H6CdT7-s9QhOairnXtN7ppf9WpbDchtcf4dx4WEUZ7EA3JndDqdnQ-8w8I4Sc7g2uzrZPbjN7weQDM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAEX3o9AoYtExQGZ-r27B4QSSmjUJkRqKpWTcXbXbaUQFycB8af4jcysHRMLwa0HrtlJsuN889rMzgfwQoc8DQIeOZGW2gk12pzkijuhnAgvRYwEWlmyCT4cipMTOdqAn6u7MNRWufKJ1lHrXNEZ-S6mvpiKcF_Eby--OsQaRf-urig0SlgcmB_fsWSbv-nv4e-74_u99-N3-07FKuAozK0Xjh9ngcK6KA2lTlUg0yjzYxm5k9jT3DeRyKSWQZa5qTDCqFTTDHU5UdxLY47iAX7uFdgMCewt2Bz1B6NP9akOTc8Jfb_ssCcKoN29wdHH10eB53Pq2luLfZYi4M9AsBYJm12aa2Gvd-t_e2C34WaVYLNOaRF3YMPM7sK1QdVCcA9yWinHZrDeFA2AdaanuO_F2ReniyFdM8qKl4VhR5YiCHHL6LCafShsd9yCdXN7MYaNC2MYcclNGWb-rOotmjPLM0pfYUF_H44vRd0H0JrlM_MImPSMcpVIheemYSRc6RoRcY0ptIpVpsM2vFrhIVHVSHZiBpkmWJoRehJCT1Khpw07tfRFOYrkL3JdglYtQwPE7Qt5cZpU_ijBfWRCZjyIdBBmEW5RKS0idOmBj5qqNmwTMJPyNm7tBpMO6ogZMJbZbXhpJcgR4qZVWt3nQNVppFhDcqshiQ5MNZdXAE4qBzpPfqO3Dc_rZXonNQXOTL4kGaI_xZoEVX5Y2kqtNCZngtRpA29YUeOpNFdm52d2vLrAIkNE4eN_b2sbru-PB4fJYX948ARu-NTqZE_mtqC1KJbmKVxV3xbn8-JZ5SMYfL5sK_sFOt-lCw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFFW98KYYCl0kKg7IxF4_dveAUEIIRCUhUlqpnIyzu24rhbg4CYi_xq9jZu2YWAhuPXDNTpId55vXZnY-Qp7pkKdBwCM30lK7oQabk1xxN5RT4aeAkUArSzbBRyNxeirHW-Tn-i4MtlWufaJ11DpXeEbehtQXUhHORNzOqraIca__-vKriwxS-E_rmk6jhMiR-fEdyrfFq0EPfutDxvpvj9-8dyuGAVdBnr10WZwFCmqkNJQ6VYFMo4zFMvKmsa85M5HIpJZBlnmpMMKoVOM8dTlV3E9jDuIBfO41sg0pechaZHs8GI4_1Sc8OEknZKzstkc6oHZvOPn4chL4jGMH30YctHQBfwaFjajY7NjcCIH9m__zw7tFblSJN-2UlnKbbJn5HbIzrFoL7pIcV8pxGrQ_A8OgndkZ7Ht5_sXtQqjXFLPlVWHoxFIHAZ4pHmLTd4XtmlvSbm4vzNDjwhiKHHMzChUBrXqOFtTyj-JXWGO4R06uRN37pDXP5-YBodI3ylMiFb6XhpHwpGdExDWk1ipWmQ4d8mKNjURVo9qRMWSWQMmGSEoQSUmFJIcc1tKX5YiSv8h1EWa1DA4Wty_kxVlS-akE9pEJmfEg0kGYRbBFpbSIwNUHDDRVDjlAkCblLd3aPSYd0BEyYyi_HfLcSqCDhE2rtLrnAarjqLGG5H5DEhybai6vwZxUjnWR_EayQ57Wy_hObBacm3yFMkiLCrUKqLxX2k2tNCRtAtVxCG9YVOOpNFfmF-d27LqA4kNE4cN_b-uA7IBpJR8Go6NHZJdhB5Q9sNsnrWWxMo_JdfVtebEonlTugpLPV21kvwCQIK3L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Flora+Algorithm-Based+Feature+Selection+with+Gradient+Boosted+Tree+Model+for+Diabetes+Classification&rft.jtitle=Diabetes%2C+metabolic+syndrome+and+obesity&rft.au=P.%2C+Nagaraj&rft.au=P.%2C+Deepalakshmi&rft.au=Mansour%2C+Romany+F&rft.au=Almazroa%2C+Ahmed&rft.date=2021-01-01&rft.pub=Dove+Medical+Press+Limited&rft.issn=1178-7007&rft.eissn=1178-7007&rft.volume=14&rft.spage=2789&rft_id=info:doi/10.2147%2Fdmso.s312787&rft.externalDocID=A673159871 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-7007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-7007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-7007&client=summon |