Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders

Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful informati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PLoS computational biology Ročník 17; číslo 9; s. e1009439
Hlavní autori: Whiteway, Matthew R., Biderman, Dan, Friedman, Yoni, Dipoppa, Mario, Buchanan, E. Kelly, Wu, Anqi, Zhou, John, Bonacchi, Niccolò, Miska, Nathaniel J., Noel, Jean-Paul, Rodriguez, Erica, Schartner, Michael, Socha, Karolina, Urai, Anne E., Salzman, C. Daniel, Cunningham, John P., Paninski, Liam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 22.09.2021
Public Library of Science (PLoS)
Predmet:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.
Bibliografia:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1009439