Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders

Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology Jg. 17; H. 9; S. e1009439
Hauptverfasser: Whiteway, Matthew R., Biderman, Dan, Friedman, Yoni, Dipoppa, Mario, Buchanan, E. Kelly, Wu, Anqi, Zhou, John, Bonacchi, Niccolò, Miska, Nathaniel J., Noel, Jean-Paul, Rodriguez, Erica, Schartner, Michael, Socha, Karolina, Urai, Anne E., Salzman, C. Daniel, Cunningham, John P., Paninski, Liam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 22.09.2021
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7358, 1553-734X, 1553-7358
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.
AbstractList Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.
Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.
Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone. The quantification of animal behavior is a crucial step towards understanding how neural activity produces coordinated movements, and how those movements are affected by genes, drugs, and environmental manipulations. In recent years video cameras have become an inexpensive and ubiquitous way to monitor animal behavior across many species and experimental paradigms. Here we propose a new computer vision algorithm that extracts a succinct summary of an animal’s pose on each frame. This summary contains information about a predetermined set of body parts of interest (such as joints on a limb), as well as information about previously unidentified aspects of the animal’s pose. Experimenters can thus track body parts they think are relevant to their experiment, and allow the algorithm to discover new dimensions of behavior that might also be important for downstream analyses. We demonstrate this algorithm on videos from four different experimental setups, and show how these new dimensions of behavior can aid in downstream behavioral and neural analyses.
Audience Academic
Author Wu, Anqi
Schartner, Michael
Rodriguez, Erica
Noel, Jean-Paul
Zhou, John
Salzman, C. Daniel
Paninski, Liam
Friedman, Yoni
Miska, Nathaniel J.
Cunningham, John P.
Socha, Karolina
Buchanan, E. Kelly
Whiteway, Matthew R.
Dipoppa, Mario
Biderman, Dan
Bonacchi, Niccolò
Urai, Anne E.
AuthorAffiliation 14 New York State Psychiatric Institute, New York, New York, United States of America
7 Department of Computer Science, Columbia University, New York, New York, United States of America
15 Kavli Institute for Brain Sciences, New York, New York, United States of America
13 Department of Psychiatry, Columbia University, New York, New York, United States of America
5 Department of Neuroscience, Columbia University, New York, New York, United States of America
12 Cognitive Psychology Unit, Leiden University, Leiden, The Netherlands
2 Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
6 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
3 Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
4 Department of Statistics, Columbia University, New York, New York, United States of America
10 Center for Ne
AuthorAffiliation_xml – name: 11 Institute of Ophthalmology, University College London, London, United Kingdom
– name: 5 Department of Neuroscience, Columbia University, New York, New York, United States of America
– name: 13 Department of Psychiatry, Columbia University, New York, New York, United States of America
– name: 15 Kavli Institute for Brain Sciences, New York, New York, United States of America
– name: 3 Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
– name: 10 Center for Neural Science, New York University, New York, New York, United States of America
– name: 12 Cognitive Psychology Unit, Leiden University, Leiden, The Netherlands
– name: 6 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
– name: 7 Department of Computer Science, Columbia University, New York, New York, United States of America
– name: 9 Sainsbury-Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom
– name: 1 Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
– name: 8 Champalimaud Centre for the Unknown, Lisbon, Portugal
– name: 2 Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
– name: 14 New York State Psychiatric Institute, New York, New York, United States of America
– name: 4 Department of Statistics, Columbia University, New York, New York, United States of America
– name: University of California at Berkeley, UNITED STATES
Author_xml – sequence: 1
  givenname: Matthew R.
  orcidid: 0000-0003-3756-1349
  surname: Whiteway
  fullname: Whiteway, Matthew R.
– sequence: 2
  givenname: Dan
  orcidid: 0000-0003-2054-8439
  surname: Biderman
  fullname: Biderman, Dan
– sequence: 3
  givenname: Yoni
  orcidid: 0000-0003-4966-6869
  surname: Friedman
  fullname: Friedman, Yoni
– sequence: 4
  givenname: Mario
  surname: Dipoppa
  fullname: Dipoppa, Mario
– sequence: 5
  givenname: E. Kelly
  orcidid: 0000-0003-1448-5662
  surname: Buchanan
  fullname: Buchanan, E. Kelly
– sequence: 6
  givenname: Anqi
  surname: Wu
  fullname: Wu, Anqi
– sequence: 7
  givenname: John
  orcidid: 0000-0003-3565-5376
  surname: Zhou
  fullname: Zhou, John
– sequence: 8
  givenname: Niccolò
  orcidid: 0000-0001-5228-6918
  surname: Bonacchi
  fullname: Bonacchi, Niccolò
– sequence: 9
  givenname: Nathaniel J.
  orcidid: 0000-0001-8587-4919
  surname: Miska
  fullname: Miska, Nathaniel J.
– sequence: 10
  givenname: Jean-Paul
  orcidid: 0000-0001-5297-3363
  surname: Noel
  fullname: Noel, Jean-Paul
– sequence: 11
  givenname: Erica
  orcidid: 0000-0001-5966-714X
  surname: Rodriguez
  fullname: Rodriguez, Erica
– sequence: 12
  givenname: Michael
  orcidid: 0000-0002-4854-3034
  surname: Schartner
  fullname: Schartner, Michael
– sequence: 13
  givenname: Karolina
  orcidid: 0000-0002-1677-1489
  surname: Socha
  fullname: Socha, Karolina
– sequence: 14
  givenname: Anne E.
  orcidid: 0000-0001-5270-6513
  surname: Urai
  fullname: Urai, Anne E.
– sequence: 15
  givenname: C. Daniel
  surname: Salzman
  fullname: Salzman, C. Daniel
– sequence: 16
  givenname: John P.
  surname: Cunningham
  fullname: Cunningham, John P.
– sequence: 17
  givenname: Liam
  surname: Paninski
  fullname: Paninski, Liam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34550974$$D View this record in MEDLINE/PubMed
BookMark eNqVk9tq3DAQhk1JaQ7tG5R2oTftxW4l6-heFELoYSG0pYdrMZbHGwWvtJXspXn7ylknZEMoFAs8yN__a2asOS4OfPBYFM8pWVCm6NvLMEQP3WJja7eghFScVY-KIyoEmysm9MGd-LA4TumSkBxW8klxyLgQpFL8qLDfIPaud8E7v5ptITqoXef6q5nzM_BuDd2sxgvYuhBzuHUNhjQb0kgnXLt5GjYYty5hs1OPVhmEoQ_obWgwpqfF4xa6hM-m90nx6-OHn2ef5-dfPy3PTs_nVihZzSkTBK3VLeONUFBrAbQhllqsEbRqsOXAS1VzbSVtaAlC0pYJVVotNOeUnRQvd76bLiQz9SeZUui8JJcsE8sd0QS4NJuYy4tXJoAz1xshrszYDtuh0ZZwDmXbtgBcV7oiFgSyWoKspZQ8e72fThvqNTYWfZ87tGe6_8W7C7MKW6OznSqrbPB6Mojh94CpN2uXLHYdeAzDmLfKmauK64y-uoc-XN1ErSAX4Hwb8rl2NDWnUilBOCvHvBcPUPlp8u-0-Y61Lu_vCd7sCTLT459-BUNKZvnj-3-wX_bZF3cbeNu5m8uZAb4DbAwpRWxvEUrMOAM3XTDjDJhpBrLs3T2Zdf31vcyFuu7f4r8kkg8t
CitedBy_id crossref_primary_10_1088_1741_2552_ad3eb3
crossref_primary_10_1016_j_anbehav_2025_123226
crossref_primary_10_1038_s42003_022_04080_7
crossref_primary_10_1038_s41593_023_01490_6
crossref_primary_10_7554_eLife_81830
crossref_primary_10_1109_TII_2023_3264284
crossref_primary_10_3389_fnbeh_2025_1663089
crossref_primary_10_1016_j_bionps_2024_100107
crossref_primary_10_1016_j_celrep_2025_115338
crossref_primary_10_1038_s41593_024_01649_9
crossref_primary_10_1038_s42256_022_00477_5
crossref_primary_10_1016_j_cub_2022_09_045
Cites_doi 10.1016/j.cell.2019.05.023
10.14224/1.38599
10.1371/journal.pcbi.1000028
10.3791/59979
10.1098/rsif.2014.0672
10.1038/s41593-019-0502-4
10.1016/j.neuron.2015.11.031
10.1111/2041-210X.13256
10.1109/29.45532
10.1038/s41586-019-1787-x
10.1016/j.neucom.2015.03.110
10.7554/eLife.10989
10.1016/j.neuron.2014.09.005
10.1126/science.aaz9468
10.1126/science.aau2013
10.1523/JNEUROSCI.1920-17.2018
10.1371/journal.pcbi.1007791
10.1016/j.cub.2017.12.002
10.3389/fnsys.2019.00020
10.7554/eLife.57258
10.18653/v1/K16-1002
10.1038/nmeth.1468
10.1038/s41592-018-0234-5
10.1038/s41593-020-00733-0
10.1038/s41593-018-0209-y
10.1126/science.aav7893
10.1186/s12915-018-0494-7
10.7554/eLife.63711
10.7554/eLife.47994
10.1016/j.cell.2018.04.019
10.1145/1150402.1150454
10.1038/s41593-020-00706-3
10.1088/0954-898X_9_4_001
10.1016/j.neuron.2020.07.032
10.1016/j.neuron.2019.01.038
10.1007/978-3-319-46672-9_10
10.1038/nn.3812
10.1016/j.neuron.2016.12.041
10.5244/C.30.119
10.1016/j.conb.2021.01.008
10.1037/0033-2909.83.3.482
10.1016/j.cub.2019.11.022
10.1038/nature05453
10.1109/TPAMI.2017.2784440
10.1109/ICCV.2019.00770
10.7554/eLife.67490
10.1016/j.conb.2019.10.008
10.1101/2020.08.20.259705
10.1016/j.neuron.2019.09.038
10.1007/978-3-319-46493-0_47
10.1016/j.neuron.2018.03.037
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Whiteway et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Whiteway et al 2021 Whiteway et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Whiteway et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Whiteway et al 2021 Whiteway et al
CorporateAuthor The International Brain Laboratory
International Brain Laboratory
CorporateAuthor_xml – name: The International Brain Laboratory
– name: International Brain Laboratory
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009439
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Canada in Context
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic



Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Partitioning variability in animal behavioral videos
EISSN 1553-7358
ExternalDocumentID 2582586463
oai_doaj_org_article_8c044a2fffaa489890ca5e3b6a6b6664
PMC8489729
A677504324
34550974
10_1371_journal_pcbi_1009439
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: UF1 NS107696
– fundername: NINDS NIH HHS
  grantid: U19 NS123716
– fundername: NIMH NIH HHS
  grantid: R21 MH116348
– fundername: NIMH NIH HHS
  grantid: RF1 MH120680
– fundername: Wellcome Trust
  grantid: 209558/Z/17/Z
– fundername: NIMH NIH HHS
  grantid: T32 MH015144
– fundername: NIMH NIH HHS
  grantid: R01 MH082017
– fundername: NINDS NIH HHS
  grantid: T32 NS064929
– fundername: NINDS NIH HHS
  grantid: U19 NS104649
– fundername: NINDS NIH HHS
  grantid: U19 NS107613
– fundername: ;
– fundername: ;
  grantid: U19NS107613
– fundername: ;
  grantid: T32MH015144
– fundername: ;
  grantid: GAT3708
– fundername: ;
  grantid: 542963
– fundername: ;
  grantid: DBI-1707398
– fundername: ;
  grantid: R21MH116348
– fundername: ;
  grantid: 209558
– fundername: ;
  grantid: 216324
– fundername: ;
  grantid: UF1NS107696
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c5769-1350ecc8f34d57ab85a1d0c1cebea87def4a427b48c61d12a561f3572c8584413
IEDL.DBID FPL
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:11:48 EST 2021
Fri Oct 03 12:42:23 EDT 2025
Tue Nov 04 01:56:05 EST 2025
Thu Sep 04 19:53:38 EDT 2025
Sat Nov 29 14:44:37 EST 2025
Tue Nov 11 10:29:08 EST 2025
Tue Nov 04 17:57:01 EST 2025
Thu Nov 13 15:07:59 EST 2025
Thu Nov 13 15:37:12 EST 2025
Mon Jul 21 06:03:12 EDT 2025
Sat Nov 29 02:42:18 EST 2025
Tue Nov 18 20:02:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5769-1350ecc8f34d57ab85a1d0c1cebea87def4a427b48c61d12a561f3572c8584413
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-1448-5662
0000-0001-8587-4919
0000-0001-5297-3363
0000-0003-3565-5376
0000-0001-5966-714X
0000-0003-3756-1349
0000-0002-4854-3034
0000-0002-1677-1489
0000-0001-5228-6918
0000-0001-5270-6513
0000-0003-4966-6869
0000-0003-2054-8439
OpenAccessLink http://dx.doi.org/10.1371/journal.pcbi.1009439
PMID 34550974
PQID 2582586463
PQPubID 1436340
ParticipantIDs plos_journals_2582586463
doaj_primary_oai_doaj_org_article_8c044a2fffaa489890ca5e3b6a6b6664
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8489729
proquest_miscellaneous_2575827948
proquest_journals_2582586463
gale_infotracmisc_A677504324
gale_infotracacademiconefile_A677504324
gale_incontextgauss_ISR_A677504324
gale_incontextgauss_ISN_A677504324
pubmed_primary_34550974
crossref_primary_10_1371_journal_pcbi_1009439
crossref_citationtrail_10_1371_journal_pcbi_1009439
PublicationCentury 2000
PublicationDate 20210922
PublicationDateYYYYMMDD 2021-09-22
PublicationDate_xml – month: 9
  year: 2021
  text: 20210922
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References DJ Anderson (pcbi.1009439.ref001) 2014; 84
JW Krakauer (pcbi.1009439.ref003) 2017; 93
JD Seelig (pcbi.1009439.ref068) 2010; 7
A Arac (pcbi.1009439.ref056) 2019; 13
OG Sani (pcbi.1009439.ref070) 2021; 24
pcbi.1009439.ref071
EK Lee (pcbi.1009439.ref074) 2021; 10
pcbi.1009439.ref075
JE Markowitz (pcbi.1009439.ref025) 2018; 174
pcbi.1009439.ref072
pcbi.1009439.ref078
pcbi.1009439.ref079
pcbi.1009439.ref076
pcbi.1009439.ref077
S Saxena (pcbi.1009439.ref019) 2020; 16
A Gomez-Marin (pcbi.1009439.ref002) 2014; 17
RN Walsh (pcbi.1009439.ref049) 1976; 83
SR Datta (pcbi.1009439.ref005) 2019; 104
A Huk (pcbi.1009439.ref007) 2018; 38
pcbi.1009439.ref081
pcbi.1009439.ref082
pcbi.1009439.ref080
pcbi.1009439.ref086
pcbi.1009439.ref083
DM Darmohray (pcbi.1009439.ref064) 2019; 102
pcbi.1009439.ref084
pcbi.1009439.ref089
Y Ephraim (pcbi.1009439.ref051) 1989; 37
pcbi.1009439.ref087
GJ Stephens (pcbi.1009439.ref020) 2008; 4
A Bova (pcbi.1009439.ref063) 2019
pcbi.1009439.ref088
JM Graving (pcbi.1009439.ref011) 2019; 8
W Zhang (pcbi.1009439.ref057) 2019; 178
MS Lewicki (pcbi.1009439.ref073) 1998; 9
M Dipoppa (pcbi.1009439.ref047) 2018; 98
CL Ebbesen (pcbi.1009439.ref059) 2021; 68
SR Nilsson (pcbi.1009439.ref058) 2020
pcbi.1009439.ref050
pcbi.1009439.ref054
A Achille (pcbi.1009439.ref041) 2018; 40
TD Pereira (pcbi.1009439.ref012) 2019; 16
MW Mathis (pcbi.1009439.ref009) 2020; 60
T Abe (pcbi.1009439.ref048) 2020
JM Jones (pcbi.1009439.ref060) 2020; 9
ES Lein (pcbi.1009439.ref053) 2007; 445
S Musall (pcbi.1009439.ref022) 2019; 22
AB Wiltschko (pcbi.1009439.ref055) 2020; 23
S Christin (pcbi.1009439.ref008) 2019; 10
pcbi.1009439.ref067
pcbi.1009439.ref100
D Kobak (pcbi.1009439.ref069) 2016; 5
pcbi.1009439.ref039
GJ Berman (pcbi.1009439.ref004) 2018; 16
pcbi.1009439.ref036
pcbi.1009439.ref037
B Mimica (pcbi.1009439.ref018) 2018; 362
M Pachitariu (pcbi.1009439.ref094) 2017
A Achille (pcbi.1009439.ref040) 2018; 19
pcbi.1009439.ref030
pcbi.1009439.ref031
I Higgins (pcbi.1009439.ref038) 2017; 2
pcbi.1009439.ref035
pcbi.1009439.ref032
pcbi.1009439.ref033
N Dolensek (pcbi.1009439.ref061) 2020; 368
AW Azevedo (pcbi.1009439.ref062) 2019
MD Tissera (pcbi.1009439.ref034) 2016; 174
pcbi.1009439.ref042
A Mathis (pcbi.1009439.ref010) 2018; 21
GJ Berman (pcbi.1009439.ref021) 2014; 11
pcbi.1009439.ref045
pcbi.1009439.ref043
pcbi.1009439.ref044
JC Marques (pcbi.1009439.ref014) 2018; 28
International Brain Lab (pcbi.1009439.ref046) 2021; 10
K Luxem (pcbi.1009439.ref016) 2020
X Shi (pcbi.1009439.ref085) 2015; 28
DS Mearns (pcbi.1009439.ref017) 2020; 30
C Stringer (pcbi.1009439.ref023) 2019; 364
pcbi.1009439.ref092
pcbi.1009439.ref093
pcbi.1009439.ref090
pcbi.1009439.ref091
pcbi.1009439.ref096
pcbi.1009439.ref097
pcbi.1009439.ref095
pcbi.1009439.ref013
pcbi.1009439.ref098
pcbi.1009439.ref099
pcbi.1009439.ref027
pcbi.1009439.ref028
pcbi.1009439.ref026
AB Wiltschko (pcbi.1009439.ref024) 2015; 88
pcbi.1009439.ref029
SS Bidaye (pcbi.1009439.ref065) 2020; 108
TD Pereira (pcbi.1009439.ref006) 2020
JM Graving (pcbi.1009439.ref015) 2020
NA Steinmetz (pcbi.1009439.ref052) 2019; 576
C Segalin (pcbi.1009439.ref066) 2020
References_xml – ident: pcbi.1009439.ref086
– volume: 178
  start-page: 413
  issue: 2
  year: 2019
  ident: pcbi.1009439.ref057
  article-title: Correlated neural activity across the brains of socially interacting bats
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.023
– ident: pcbi.1009439.ref095
  doi: 10.14224/1.38599
– volume: 4
  start-page: e1000028
  issue: 4
  year: 2008
  ident: pcbi.1009439.ref020
  article-title: Dimensionality and dynamics in the behavior of C. elegans
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000028
– volume: 19
  start-page: 1947
  issue: 1
  year: 2018
  ident: pcbi.1009439.ref040
  article-title: Emergence of invariance and disentanglement in deep representations
  publication-title: The Journal of Machine Learning Research
– issue: 149
  year: 2019
  ident: pcbi.1009439.ref063
  article-title: Automated rat single-pellet reaching with 3-dimensional reconstruction of paw and digit trajectories
  publication-title: Journal of visualized experiments: JoVE
  doi: 10.3791/59979
– start-page: 730218
  year: 2019
  ident: pcbi.1009439.ref062
  article-title: A size principle for leg motor control in Drosophila
  publication-title: bioRxiv
– volume: 11
  start-page: 20140672
  issue: 99
  year: 2014
  ident: pcbi.1009439.ref021
  article-title: Mapping the stereotyped behaviour of freely moving fruit flies
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2014.0672
– volume: 22
  start-page: 1677
  issue: 10
  year: 2019
  ident: pcbi.1009439.ref022
  article-title: Single-trial neural dynamics are dominated by richly varied movements
  publication-title: Nature neuroscience
  doi: 10.1038/s41593-019-0502-4
– ident: pcbi.1009439.ref077
– volume: 88
  start-page: 1121
  issue: 6
  year: 2015
  ident: pcbi.1009439.ref024
  article-title: Mapping sub-second structure in mouse behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.11.031
– volume: 10
  start-page: 1632
  issue: 10
  year: 2019
  ident: pcbi.1009439.ref008
  article-title: Applications for deep learning in ecology
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.13256
– ident: pcbi.1009439.ref092
– volume: 37
  start-page: 1846
  issue: 12
  year: 1989
  ident: pcbi.1009439.ref051
  article-title: On the application of hidden Markov models for enhancing noisy speech
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
  doi: 10.1109/29.45532
– volume: 576
  start-page: 266
  issue: 7786
  year: 2019
  ident: pcbi.1009439.ref052
  article-title: Distributed coding of choice, action and engagement across the mouse brain
  publication-title: Nature
  doi: 10.1038/s41586-019-1787-x
– ident: pcbi.1009439.ref083
– volume: 174
  start-page: 42
  year: 2016
  ident: pcbi.1009439.ref034
  article-title: Deep extreme learning machines: supervised autoencoding architecture for classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.110
– volume: 5
  start-page: e10989
  year: 2016
  ident: pcbi.1009439.ref069
  article-title: Demixed principal component analysis of neural population data
  publication-title: Elife
  doi: 10.7554/eLife.10989
– ident: pcbi.1009439.ref039
– ident: pcbi.1009439.ref031
– volume: 84
  start-page: 18
  issue: 1
  year: 2014
  ident: pcbi.1009439.ref001
  article-title: Toward a science of computational ethology
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.09.005
– volume: 368
  start-page: 89
  issue: 6486
  year: 2020
  ident: pcbi.1009439.ref061
  article-title: Facial expressions of emotion states and their neuronal correlates in mice
  publication-title: Science
  doi: 10.1126/science.aaz9468
– volume: 362
  start-page: 584
  issue: 6414
  year: 2018
  ident: pcbi.1009439.ref018
  article-title: Efficient cortical coding of 3D posture in freely behaving rats
  publication-title: Science
  doi: 10.1126/science.aau2013
– ident: pcbi.1009439.ref097
– ident: pcbi.1009439.ref028
– ident: pcbi.1009439.ref045
– volume: 38
  start-page: 7551
  issue: 35
  year: 2018
  ident: pcbi.1009439.ref007
  article-title: Beyond trial-based paradigms: Continuous behavior, ongoing neural activity, and natural stimuli
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1920-17.2018
– volume: 16
  start-page: e1007791
  issue: 4
  year: 2020
  ident: pcbi.1009439.ref019
  article-title: Localized semi-nonnegative matrix factorization (LocaNMF) of widefield calcium imaging data
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1007791
– ident: pcbi.1009439.ref072
– volume: 28
  start-page: 181
  issue: 2
  year: 2018
  ident: pcbi.1009439.ref014
  article-title: Structure of the zebrafish locomotor repertoire revealed with unsupervised behavioral clustering
  publication-title: Current Biology
  doi: 10.1016/j.cub.2017.12.002
– volume: 13
  start-page: 20
  year: 2019
  ident: pcbi.1009439.ref056
  article-title: DeepBehavior: A deep learning toolbox for automated analysis of animal and human behavior imaging data
  publication-title: Frontiers in systems neuroscience
  doi: 10.3389/fnsys.2019.00020
– volume: 9
  start-page: e57258
  year: 2020
  ident: pcbi.1009439.ref060
  article-title: A machine-vision approach for automated pain measurement at millisecond timescales
  publication-title: Elife
  doi: 10.7554/eLife.57258
– ident: pcbi.1009439.ref099
  doi: 10.18653/v1/K16-1002
– ident: pcbi.1009439.ref036
– ident: pcbi.1009439.ref084
– ident: pcbi.1009439.ref090
– volume: 7
  start-page: 535
  issue: 7
  year: 2010
  ident: pcbi.1009439.ref068
  article-title: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior
  publication-title: Nature methods
  doi: 10.1038/nmeth.1468
– volume: 16
  start-page: 117
  issue: 1
  year: 2019
  ident: pcbi.1009439.ref012
  article-title: Fast animal pose estimation using deep neural networks
  publication-title: Nature methods
  doi: 10.1038/s41592-018-0234-5
– volume: 24
  start-page: 140
  issue: 1
  year: 2021
  ident: pcbi.1009439.ref070
  article-title: Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-020-00733-0
– ident: pcbi.1009439.ref098
– ident: pcbi.1009439.ref027
– volume: 21
  start-page: 1281
  issue: 9
  year: 2018
  ident: pcbi.1009439.ref010
  article-title: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
  publication-title: Nature neuroscience
  doi: 10.1038/s41593-018-0209-y
– ident: pcbi.1009439.ref075
– volume: 364
  issue: 6437
  year: 2019
  ident: pcbi.1009439.ref023
  article-title: Spontaneous behaviors drive multidimensional, brainwide activity
  publication-title: Science
  doi: 10.1126/science.aav7893
– volume: 16
  start-page: 23
  issue: 1
  year: 2018
  ident: pcbi.1009439.ref004
  article-title: Measuring behavior across scales
  publication-title: BMC biology
  doi: 10.1186/s12915-018-0494-7
– ident: pcbi.1009439.ref042
– year: 2020
  ident: pcbi.1009439.ref058
  article-title: Simple Behavioral Analysis (SimBA): an open source toolkit for computer classification of complex social behaviors in experimental animals
  publication-title: BioRxiv
– volume: 10
  start-page: e63711
  year: 2021
  ident: pcbi.1009439.ref046
  article-title: Standardized and reproducible measurement of decision-making in mice
  publication-title: Elife
  doi: 10.7554/eLife.63711
– ident: pcbi.1009439.ref081
– year: 2020
  ident: pcbi.1009439.ref016
  article-title: Identifying Behavioral Structure from Deep Variational Embeddings of Animal Motion
  publication-title: bioRxiv
– ident: pcbi.1009439.ref033
– year: 2020
  ident: pcbi.1009439.ref066
  article-title: The Mouse Action Recognition System (MARS): a software pipeline for automated analysis of social behaviors in mice
  publication-title: bioRxiv
– volume: 8
  start-page: e47994
  year: 2019
  ident: pcbi.1009439.ref011
  article-title: DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning
  publication-title: Elife
  doi: 10.7554/eLife.47994
– ident: pcbi.1009439.ref082
– volume: 174
  start-page: 44
  issue: 1
  year: 2018
  ident: pcbi.1009439.ref025
  article-title: The striatum organizes 3D behavior via moment-to-moment action selection
  publication-title: Cell
  doi: 10.1016/j.cell.2018.04.019
– ident: pcbi.1009439.ref067
– ident: pcbi.1009439.ref030
  doi: 10.1145/1150402.1150454
– volume: 23
  start-page: 1433
  issue: 11
  year: 2020
  ident: pcbi.1009439.ref055
  article-title: Revealing the structure of pharmacobehavioral space through motion sequencing
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-020-00706-3
– volume: 9
  start-page: R53
  issue: 4
  year: 1998
  ident: pcbi.1009439.ref073
  article-title: A review of methods for spike sorting: the detection and classification of neural action potentials
  publication-title: Network: Computation in Neural Systems
  doi: 10.1088/0954-898X_9_4_001
– volume: 108
  start-page: 469
  issue: 3
  year: 2020
  ident: pcbi.1009439.ref065
  article-title: Two brain pathways initiate distinct forward walking programs in Drosophila
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.07.032
– ident: pcbi.1009439.ref096
– ident: pcbi.1009439.ref050
– ident: pcbi.1009439.ref029
– ident: pcbi.1009439.ref044
– volume: 102
  start-page: 217
  issue: 1
  year: 2019
  ident: pcbi.1009439.ref064
  article-title: Spatial and temporal locomotor learning in mouse cerebellum
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.038
– ident: pcbi.1009439.ref035
– ident: pcbi.1009439.ref087
– start-page: 1
  year: 2020
  ident: pcbi.1009439.ref006
  article-title: Quantifying behavior to understand the brain
  publication-title: Nature Neuroscience
– year: 2020
  ident: pcbi.1009439.ref015
  article-title: VAE-SNE: a deep generative model for simultaneous dimensionality reduction and clustering
  publication-title: BioRxiv
– ident: pcbi.1009439.ref076
– year: 2020
  ident: pcbi.1009439.ref048
  article-title: Neuroscience cloud analysis as a service
  publication-title: bioRxiv
– ident: pcbi.1009439.ref032
  doi: 10.1007/978-3-319-46672-9_10
– volume: 17
  start-page: 1455
  issue: 11
  year: 2014
  ident: pcbi.1009439.ref002
  article-title: Big behavioral data: psychology, ethology and the foundations of neuroscience
  publication-title: Nature neuroscience
  doi: 10.1038/nn.3812
– ident: pcbi.1009439.ref093
– volume: 93
  start-page: 480
  issue: 3
  year: 2017
  ident: pcbi.1009439.ref003
  article-title: Neuroscience needs behavior: correcting a reductionist bias
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.12.041
– ident: pcbi.1009439.ref054
  doi: 10.5244/C.30.119
– volume: 68
  start-page: 91
  year: 2021
  ident: pcbi.1009439.ref059
  article-title: Body language signals for rodent social communication
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2021.01.008
– volume: 83
  start-page: 482
  issue: 3
  year: 1976
  ident: pcbi.1009439.ref049
  article-title: The open-field test: a critical review
  publication-title: Psychological bulletin
  doi: 10.1037/0033-2909.83.3.482
– ident: pcbi.1009439.ref088
– volume: 30
  start-page: 54
  issue: 1
  year: 2020
  ident: pcbi.1009439.ref017
  article-title: Deconstructing hunting behavior reveals a tightly coupled stimulus-response loop
  publication-title: Current Biology
  doi: 10.1016/j.cub.2019.11.022
– volume: 445
  start-page: 168
  issue: 7124
  year: 2007
  ident: pcbi.1009439.ref053
  article-title: Genome-wide atlas of gene expression in the adult mouse brain
  publication-title: Nature
  doi: 10.1038/nature05453
– ident: pcbi.1009439.ref071
– ident: pcbi.1009439.ref079
– ident: pcbi.1009439.ref080
– volume: 40
  start-page: 2897
  issue: 12
  year: 2018
  ident: pcbi.1009439.ref041
  article-title: Information dropout: Learning optimal representations through noisy computation
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2017.2784440
– ident: pcbi.1009439.ref037
– ident: pcbi.1009439.ref089
  doi: 10.1109/ICCV.2019.00770
– year: 2017
  ident: pcbi.1009439.ref094
  article-title: Suite2p: beyond 10,000 neurons with standard two-photon microscopy
  publication-title: Biorxiv
– ident: pcbi.1009439.ref091
– volume: 10
  start-page: e67490
  year: 2021
  ident: pcbi.1009439.ref074
  article-title: Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex
  publication-title: Elife
  doi: 10.7554/eLife.67490
– volume: 60
  start-page: 1
  year: 2020
  ident: pcbi.1009439.ref009
  article-title: Deep learning tools for the measurement of animal behavior in neuroscience
  publication-title: Current opinion in neurobiology
  doi: 10.1016/j.conb.2019.10.008
– ident: pcbi.1009439.ref100
– volume: 2
  start-page: 6
  issue: 5
  year: 2017
  ident: pcbi.1009439.ref038
  article-title: beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
  publication-title: International Conference on Learning Representations
– ident: pcbi.1009439.ref013
  doi: 10.1101/2020.08.20.259705
– ident: pcbi.1009439.ref026
– ident: pcbi.1009439.ref043
– volume: 104
  start-page: 11
  issue: 1
  year: 2019
  ident: pcbi.1009439.ref005
  article-title: Computational neuroethology: a call to action
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.09.038
– ident: pcbi.1009439.ref078
  doi: 10.1007/978-3-319-46493-0_47
– volume: 28
  start-page: 802
  year: 2015
  ident: pcbi.1009439.ref085
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– volume: 98
  start-page: 602
  issue: 3
  year: 2018
  ident: pcbi.1009439.ref047
  article-title: Vision and locomotion shape the interactions between neuron types in mouse visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.037
SSID ssj0035896
Score 2.4908662
Snippet Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009439
SubjectTerms Algorithms
Animal behavior
Animals
Artificial Intelligence - statistics & numerical data
Behavior, Animal
Biology and Life Sciences
Brain research
Cameras
Computational Biology
Computer and Information Sciences
Computer Simulation
Computer vision
Datasets
Encoders
Engineering and Technology
Feature extraction
Information processing
Machine learning
Machine vision
Markov Chains
Medicine and Health Sciences
Mice
Models, Statistical
Nervous system
Neural networks
Neural Networks, Computer
Principal components analysis
Production methods
Social Sciences
Supervised Machine Learning - statistics & numerical data
Unsupervised Machine Learning - statistics & numerical data
Video compression
Video data
Video Recording - statistics & numerical data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yKPginl9XPaWK4FO8tkma9PEUDwVZDr_Yt5KmyVm4a5fr9uD--5tpsnUrJ_fia_NLITPTZKaZ-Q0hb7lLeFVZRqsk1ZSDj0y1LDStkZ1MWJ2IkWf711e5XKrVqjjZafWFOWGeHtgL7lCZhHOdOee05tjrMDFaWFblOq_A9R6ZQBNZbIMpvwczocbOXNgUh0rGV6Fojsn0MOjo_dpUDeYIFBwbhe8cSiN3_7RDL9ZnXX-T-_l3FuXOsXT8kDwI_mR85NexR-7Y9hG55ztMXj0m5gRXGH66xpcQGHte7qu4aWPdNucw90-lfoxFeV0fYzL8adzb84b2wxp3k97Wfrb_dRjrYdMhBSamQT8hP48__fj4mYa-CtRAdFHQlIkENKcc47WQulJCp3ViUgMK1UrW1nHNM1lxZfK0TjMNPpZjQmZGgbsCp95Tsmi71u6TOLeWgQdgJUPmrDzXRgC0ZszppHKmjgjbCrY0gXQce1-cleNNmoTgw8upRHWUQR0RodOstSfduAX_AXU2YZEye3wAhlQGQypvM6SIvEGNl0iK0WLWzake-r788n1ZHuUSWfDB9_wn6NsM9C6AXAeLNTpUOoDIkGxrhjyYIeHTNrPhfbS-7Zr7MhMQ0Kuc5wxmbi3y5uHX0zC-FDPpWtsNiIEIMYNdWEXkmTfgSW4MS9whwIyInJn2TLDzkbb5PXKSKxApxGnP_4cmXpD7GWYO4d1fdkAWm4vBviR3zeWm6S9ejR_6NQSKWYc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI_gAIkXvmGFgQpC4imsbdIm94QGYgIJnU586d6iNE2PSltbLtdJ---x2_S2ogEPvF6c6mI7jp3YPxPykpcRz3PLaB7FmnLwkakWc00LRCdLrY7SHmf7-yexWMjVar70F27Op1WONrE31EVj8I78IEkhlpEZz9ib9ifFrlH4uupbaFwl1xAlIelT95ajJWap7PtzYWscKhhf-dI5JuIDL6nXrckrzBSYc2wXfuFo6hH8d3Z61h437jIn9PdcyguH09Ht_13WHXLLu6Xh4aBHd8kVW98jN4ZGlWf3iVmihvm72_AU4usB3vssrOpQ19UJzD0v-A-xtq9xIebUr0NnTyrquhaNkrPFMHu4gQx1t20QSROzqR-Qb0fvv777QH17BmogSJnTmKURKIAsGS9SoXOZ6riITGxAL7QUhS255onIuTRZXMSJBletZKlIjASvBw7Ph2RWN7XdI2FmLQPxWcEQgCvLtEmBtGCs1FFemiIgbJSMMh67HFtoHKv-QU5ADDPwSaE8lZdnQOhuVjtgd_yD_i0KfUeLyNv9D81mrfxGVtJEnOukLEutOfbejIxOLcszneUQCvKAvECVUYitUWPyzlp3zqmPXxbqMBMIpg8u7B-JPk-IXnmisoHFGu0LJoBliNk1odyfUIKFMJPhPVTfcc1OnSsdzBzV8vLh57th_Cgm5NW26ZAGAs0EjLkMyKNhB-z4xrBSHuLUgIjJ3pgwdjpSVz96aHMJLIVw7_Hf_9YTcjPB1CJ8HEz2yWy76exTct2cbiu3edbbgF_KCWco
  priority: 102
  providerName: ProQuest
Title Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders
URI https://www.ncbi.nlm.nih.gov/pubmed/34550974
https://www.proquest.com/docview/2582586463
https://www.proquest.com/docview/2575827948
https://pubmed.ncbi.nlm.nih.gov/PMC8489729
https://doaj.org/article/8c044a2fffaa489890ca5e3b6a6b6664
http://dx.doi.org/10.1371/journal.pcbi.1009439
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5RAEN_Yqya--K1F6wWNiU9YYD95bE0vNtYLqR85fSHLslSSFi7laNL_3hngqDS9GF_2gZ0hMDO7O7M781tC3rHcZ2lqqZf6gfYY-MielpH2MkQn41b7vMXZ_nEs53O1WETxdaB44wSfymCvl-mHpUkLPNOPYAndItshFQKDrVl8vJ55KVeR6MvjNnGOlp8WpX-YiyfLs6q-zdG8mS_51wI0e_i_n_6IPOhdTXe_s43H5I4tn5B73eWTV0-JidFq-v1Y9xJi5g6y-8otSleXxTnwXhfxu1ivV9Uu5smfurU9L7y6WeJEU9us4-52FV3drCpEx8QM6Wfk--zw28dPXn_lgmcg8Ii8gHIflKpyyjIudaq4DjLfBAZ0rZXMbM40C2XKlBFBFoQa3K-cchkaBZ4MLIjPyaSsSrtDXGEtBefASoqgWkJow4E0ozTXfpqbzCF0rYnE9HjkeC3GWdIeskmISzo5JSi-pBefQ7yBa9nhcfyD_gCVPNAimnb7APSU9IMzUcZnTId5nmvN8D5N32huaSq0SCG8Yw55iyaSIF5GiQk5p7qp6-To6zzZFxIB8sEt3Uh0MiJ63xPlFfys0X0RBIgMcbhGlLsjShj1ZtS9g-a6_uc6CTnE-kowQYFzbcK3d78ZuvGlmGRX2qpBGggeQ5iglUNedBY_yI1i9TvEng6Ro7EwEuy4pyx-t3DlCkQKIdzLzV_8itwPMVUID_vCXTJZXTT2NblrLldFfTElW3Ih21ZNyfbB4Tw-mbZbJ9N29EP7WXpTTNqNoY35L6CKj77EP_8AaldcGw
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcEL37DCgIBAPJklsRO7DwiNj2lVSzXBQH0zjuOUSFtSmmao_xR_I3f56BY04GkPvNbnKL7ene-c8-9HyDOeuDyKLKOR62nKIUemWgw0jRGdLLDaDSqc7S9jMZnI6XSwv0F-tndhsK2yjYlVoI5zg2fk234AtYwMechez79TZI3Cr6sthUZtFiO7-gElW_Fq-A7-3-e-v_v-4O0ebVgFqIHcekA9Frjw3jJhPA6EjmSgvdg1noHlaClim3DNfRFxaUIv9nwNGUbCAuEbCZs1xHx47gVykTMp0K9GgraRnwWy4gNDKh4qGJ82V_WY8LYby3g5N1GKnQkDjvTkp7bCijFgvS_05od5cVbS-3vv5qnNcPf6_6bGG-Rak3Y7O7Wf3CQbNrtFLtdEnKvbxOyjBzVn086xBq-smoZXTpo5OkuPYO4JoIGDdxfzwsE7AzOnsEcpLco5Bt3CxvXs-oTV0eUyR6RQ7Ba_Qz6fywrvkl6WZ3aTOKG1DBIlKxgCjIWhNgGIxowl2o0SE_cJay1BmQabHSlCDlX1wVFAjVbrSaH9qMZ--oSuZ81rbJJ_yL9BI1vLIrJ49UO-mKkmUClpXM61nySJ1hy5RV2jA8uiUIcRlLq8T56iiSrEDsmwOWmmy6JQw08TtRMKJAuAFP2PQh87Qi8aoSSHxRrdXAgBlSEmWUdyqyMJEdB0hjfRXdo1F-rEyGFm6wZnDz9ZD-NDseEws3mJMlBI-7BZyT65V3vcWm8MkQCgDu8T0fHFjmK7I1n6rYJul6BSKGfv__21HpMrewcfxmo8nIwekKs-tlHhh1B_i_SWi9I-JJfM8TItFo-q-OOQr-ftqb8AuIrDTA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGuYgX7mOFAQGBePKaxE6cPiA0GBXVpqriMlW8GMdxSqQtKU071L_Gr-OcxOkWNOBpD7zGx1F8cq728XcIec5Tl8exYTR2PUU5xMhUib6iCaKTBUa5QYWzfXggRqNoMumPN8jP5i4MllU2NrEy1EmhcY-85weQy0QhD1kvtWUR473B69l3ih2k8KS1aadRi8i-Wf2A9K18NdyDf_3C9wfvPr19T22HAaohzu5TjwUurCFKGU8CoeIoUF7iak_D0lQkEpNyxX0R80iHXuL5CqKNlAXC1xE4brD_8N5L5LKAHBPLCcfBl8YLsCCqeoNhWx4qGJ_Ya3tMeD0rJTszHWdYpdDn2Kr8jFusugesfURndlSU5wXAv9dxnnGMg5v_M0tvkRs2HHd2a_25TTZMfodcrRt0ru4SPUbNsnvWzokCba2KiVdOljsqz45h7inQgYN3GovSwbsEU6c0xxktlzM0xqVJ6tn1zqujlosCEUSxivwe-XwhK9wknbzIzRZxQmMYBFBGMAQeC0OlAyBNGEuVG6c66RLWSIXUFrMdW4ccyeogUkDuVvNJoixJK0tdQtezZjVmyT_o36DArWkRcbx6UMyn0howGWmXc-WnaaoUx56jrlaBYXGowhhSYN4lz1BcJWKK5ChKU7UsSzn8OJK7ocAmAhC6_5HoQ4vopSVKC1isVvaiCLAMscpalNstSrCMujW8harTrLmUpwIPMxuVOH_46XoYX4qFiLkplkgDCbYPTizqkvu19q35xhAhAPLzLhEtvWwxtj2SZ98qSPcIWApp7oO_f9YTcg0UVB4MR_sPyXUfq6vwfNTfJp3FfGkekSv6ZJGV88eVKXLI14tW1F8Wacxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partitioning+variability+in+animal+behavioral+videos+using+semi-supervised+variational+autoencoders&rft.jtitle=PLoS+computational+biology&rft.au=Whiteway%2C+Matthew+R&rft.au=Biderman%2C+Dan&rft.au=Friedman%2C+Yoni&rft.au=Dipoppa%2C+Mario&rft.date=2021-09-22&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=17&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009439&rft.externalDBID=ISN&rft.externalDocID=A677504324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon