Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder
Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However,...
Uložené v:
| Vydané v: | Human brain mapping Ročník 42; číslo 9; s. 2691 - 2705 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
15.06.2021
|
| Predmet: | |
| ISSN: | 1065-9471, 1097-0193, 1097-0193 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions.
Our main contribution is to enhance the individual uniqueness based on a framework applying an autoencoder network. Our approach is validated using six modalities of fMRI (resting‐state 1, resting‐state 2, working memory, motor, language, and emotion) from the HCP data set. |
|---|---|
| AbstractList | Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions. Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as "brain fingerprinting" to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter-subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest-rest pair). Furthermore, high-level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high-order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions.Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as "brain fingerprinting" to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter-subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest-rest pair). Furthermore, high-level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high-order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions. Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions. Our main contribution is to enhance the individual uniqueness based on a framework applying an autoencoder network. Our approach is validated using six modalities of fMRI (resting‐state 1, resting‐state 2, working memory, motor, language, and emotion) from the HCP data set. Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions. Our main contribution is to enhance the individual uniqueness based on a framework applying an autoencoder network. Our approach is validated using six modalities of fMRI (resting‐state 1, resting‐state 2, working memory, motor, language, and emotion) from the HCP data set. |
| Audience | Academic |
| Author | Hu, Wenxing Zhang, Aiying Cai, Biao Wang, Yu‐Ping Stephen, Julia M. Xiao, Li Wilson, Tony W. Calhoun, Vince D. Zhang, Gemeng |
| AuthorAffiliation | 4 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University Atlanta Georgia USA 3 Department of Neurological Sciences University of Nebraska Medical Center (UNMC) Omaha Nebraska USA 2 The Mind Research Network Albuquerque New Mexico USA 1 Biomedical Engineering Department Tulane University New Orleans Louisiana USA |
| AuthorAffiliation_xml | – name: 1 Biomedical Engineering Department Tulane University New Orleans Louisiana USA – name: 3 Department of Neurological Sciences University of Nebraska Medical Center (UNMC) Omaha Nebraska USA – name: 2 The Mind Research Network Albuquerque New Mexico USA – name: 4 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University Atlanta Georgia USA |
| Author_xml | – sequence: 1 givenname: Biao orcidid: 0000-0002-2706-4982 surname: Cai fullname: Cai, Biao organization: Tulane University – sequence: 2 givenname: Gemeng surname: Zhang fullname: Zhang, Gemeng organization: Tulane University – sequence: 3 givenname: Aiying orcidid: 0000-0001-9623-3922 surname: Zhang fullname: Zhang, Aiying organization: Tulane University – sequence: 4 givenname: Li surname: Xiao fullname: Xiao, Li organization: Tulane University – sequence: 5 givenname: Wenxing surname: Hu fullname: Hu, Wenxing organization: Tulane University – sequence: 6 givenname: Julia M. surname: Stephen fullname: Stephen, Julia M. organization: The Mind Research Network – sequence: 7 givenname: Tony W. orcidid: 0000-0002-5053-8306 surname: Wilson fullname: Wilson, Tony W. organization: University of Nebraska Medical Center (UNMC) – sequence: 8 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: Georgia State University, Georgia Institute of Technology, Emory University – sequence: 9 givenname: Yu‐Ping surname: Wang fullname: Wang, Yu‐Ping email: wyp@tulane.edu organization: Tulane University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33835637$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1URD_gwB9AkbjAIVt_O-FQqVSUViriAmfL64-tq8RenGTR_nsm7FJoBSgHj53nfT3jmWN0kHLyCL0keEEwpqe3y35BBWv5E3REcKtqTFp2MMdS1C1X5BAdD8MdxoQITJ6hQ8YaJiRTR2h9OSU7xpxMV9mckrdj7n0VYlr5si4xjRC9q66dhyhsYVPF5OImusl0Q2WSq9bFu2hnDhxWKY5xAwZ726HaRFOZacw-2ex8eY6eBlD6F_v1BH29_PDl4qq--fzx-uL8prZCSV4Hbjmk6JThdilaY7iUtnUtbRpDsHFUSiWJkUw65oMSy-Alt40NjHnbNI6doLOd73pa9t5ZyL-YTkNJvSlbnU3UD_-keKtXeaMbQhXhGAze7A1K_jb5YdR9HKzvOpN8ngZNBSGUc8oEoK8foXd5KvCkM0Ub6EIj2W9qZTqvYwoZ7rWzqT5XBItWUKKAWvyFgs_5PkKHfIhw_kDw6s9C7yv81WMA3u4AW_IwFB_uEYL1PD8a5kf_nB9gTx-xNo5mbiRkEbv_Kb5DXtt_W-ur9592ih_ETNf4 |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120651 crossref_primary_10_1016_j_neuroimage_2022_119288 crossref_primary_10_1002_hbm_26289 crossref_primary_10_1016_j_intell_2022_101654 crossref_primary_10_3389_fnins_2024_1405734 crossref_primary_10_1162_IMAG_a_129 crossref_primary_10_1007_s00429_023_02616_z crossref_primary_10_1038_s42003_024_06669_6 crossref_primary_10_1093_psyrad_kkab018 crossref_primary_10_7717_peerj_cs_2920 crossref_primary_10_3389_fnhum_2022_982905 crossref_primary_10_1162_imag_a_00443 crossref_primary_10_1016_j_neuroimage_2023_120329 crossref_primary_10_1093_cercor_bhad028 crossref_primary_10_1016_j_neuroimage_2024_120660 crossref_primary_10_1016_j_intell_2022_101665 crossref_primary_10_1109_JBHI_2025_3551385 crossref_primary_10_1109_TCDS_2023_3314155 crossref_primary_10_1038_s41386_024_01962_8 crossref_primary_10_3389_fnut_2023_1210726 crossref_primary_10_1002_sim_10096 crossref_primary_10_1093_braincomms_fcae154 crossref_primary_10_1038_s41398_021_01646_7 crossref_primary_10_1016_j_neunet_2025_108029 crossref_primary_10_1016_j_neunet_2024_106786 |
| Cites_doi | 10.1002/aic.690370209 10.1002/hbm.22058 10.1523/JNEUROSCI.2478-16.2017 10.1109/TMI.2019.2929959 10.1038/s41598-018-25089-1 10.1093/cercor/bhs352 10.1016/j.neuroimage.2013.05.079 10.1016/j.neuroimage.2017.03.064 10.1038/nn.3470 10.1109/ICASSP.2013.6639343 10.1073/pnas.0601417103 10.1523/JNEUROSCI.0185-14.2014 10.1016/0893-6080(94)00098-7 10.1016/j.neuroimage.2013.05.041 10.3389/fpubh.2016.00094 10.1162/089976698300017467 10.1109/72.655038 10.1109/TMI.2019.2926667 10.1109/TMI.2017.2786553 10.1038/nn.4511 10.1016/j.neuron.2014.10.015 10.1109/TBME.2018.2880428 10.1016/j.neuroimage.2013.04.127 10.1038/nn.4135 10.1109/TBME.2019.2921207 10.1002/hbm.24741 10.1002/hbm.23150 10.1007/978-3-642-23783-6_41 10.1016/j.neuroimage.2013.05.081 10.1016/j.neuroimage.2019.02.002 10.1073/pnas.0135058100 10.3389/fnagi.2017.00385 10.1101/812719 10.1002/hbm.23890 10.1109/JBHI.2018.2854659 10.1145/1390156.1390294 10.1002/mrm.1910340409 10.1073/pnas.1113148109 10.1016/0169-7439(87)80084-9 10.1109/MSP.2015.2478915 10.1126/science.1127647 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Wiley Periodicals LLC. 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. COPYRIGHT 2021 John Wiley & Sons, Inc. 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. – notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| DOI | 10.1002/hbm.25394 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Cai et al |
| EISSN | 1097-0193 |
| EndPage | 2705 |
| ExternalDocumentID | PMC8127140 A710595217 33835637 10_1002_hbm_25394 HBM25394 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Science Foundation funderid: #1539067 – fundername: National Institutes of Health funderid: P20 GM130447; R01 EB020407; R01 GM109068; R01 MH103220; R01 MH104680; R01 MH107354; R01 MH121101 – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIH HHS grantid: P20 GM130447 – fundername: NIH HHS grantid: R01 MH107354 – fundername: NIMH NIH HHS grantid: R01 MH104680 – fundername: NIH HHS grantid: R01 EB020407 – fundername: NIH HHS grantid: R01 GM109068 – fundername: NIH HHS grantid: R01 MH103220 – fundername: NIGMS NIH HHS grantid: R01 GM109068 – fundername: NIGMS NIH HHS grantid: P20 GM130447 – fundername: NIMH NIH HHS grantid: R01 MH121101 – fundername: ; grantid: #1539067 – fundername: ; grantid: P20 GM130447; R01 EB020407; R01 GM109068; R01 MH103220; R01 MH104680; R01 MH107354; R01 MH121101 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| ID | FETCH-LOGICAL-c5764-f4c4356d7a4cb59aa466c9d9288a10ad266761a636d3ef75bfe64c8cf33ec88d3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638183700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Tue Sep 30 16:01:16 EDT 2025 Thu Oct 02 11:17:24 EDT 2025 Sat Nov 29 14:58:39 EST 2025 Sat Nov 29 13:28:57 EST 2025 Sat Nov 29 10:24:48 EST 2025 Thu Apr 03 06:53:34 EDT 2025 Sat Nov 29 02:24:49 EST 2025 Tue Nov 18 22:39:13 EST 2025 Wed Jan 22 16:29:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | autoencoder network common connectivity patterns functional connectivity refined connectomes individual identification high-level cognition prediction |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5764-f4c4356d7a4cb59aa466c9d9288a10ad266761a636d3ef75bfe64c8cf33ec88d3 |
| Notes | Funding information National Institutes of Health, Grant/Award Numbers: P20 GM130447, R01 EB020407, R01 GM109068, R01 MH103220, R01 MH104680, R01 MH107354, R01 MH121101; National Science Foundation, Grant/Award Number: #1539067 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information National Institutes of Health, Grant/Award Numbers: P20 GM130447, R01 EB020407, R01 GM109068, R01 MH103220, R01 MH104680, R01 MH107354, R01 MH121101; National Science Foundation, Grant/Award Number: #1539067 |
| ORCID | 0000-0002-5053-8306 0000-0002-2706-4982 0000-0001-9623-3922 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25394 |
| PMID | 33835637 |
| PQID | 2528065863 |
| PQPubID | 996345 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8127140 proquest_miscellaneous_2511244235 proquest_journals_2528065863 gale_infotracmisc_A710595217 gale_infotracacademiconefile_A710595217 pubmed_primary_33835637 crossref_primary_10_1002_hbm_25394 crossref_citationtrail_10_1002_hbm_25394 wiley_primary_10_1002_hbm_25394_HBM25394 |
| PublicationCentury | 2000 |
| PublicationDate | June 15, 2021 |
| PublicationDateYYYYMMDD | 2021-06-15 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 15, 2021 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2010; 11 2017; 20 1987; 2 2015; 18 1991; 37 2011 2010 1995; 34 2009 2019; 39 2008 2014; 24 2018; 23 2018; 66 2014; 84 2006; 313 2016; 37 2017; 9 2019; 189 2012; 109 1995; 8 2016; 33 2016; 4 2018; 8 2018; 39 2019; 40 2013; 16 2017; 37 2013; 34 2020 2019; 67 2013; 80 2019 2017; 160 2013; 82 2017 2013 1998; 10 2014; 34 2003; 100 2006; 103 1998; 9 Lee H. (e_1_2_8_28_1) 2008 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 Van Der Maaten L. (e_1_2_8_38_1) 2009 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 Vincent P. (e_1_2_8_41_1) 2010; 11 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 109 start-page: 3516 issue: 9 year: 2012 end-page: 3521 article-title: Individual variability in functional connectivity predicts performance of a perceptual task publication-title: Proceedings of the National Academy of Sciences – volume: 34 start-page: 2154 issue: 9 year: 2013 end-page: 2177 article-title: Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Human Brain Mapping – volume: 2 start-page: 37 issue: 1–3 year: 1987 end-page: 52 article-title: Principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 11 start-page: 3371 issue: Dec year: 2010 end-page: 3408 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – volume: 103 start-page: 13848 issue: 37 year: 2006 end-page: 13853 article-title: Consistent resting‐state networks across healthy subjects publication-title: Proceedings of the National Academy of Sciences – volume: 34 start-page: 11297 issue: 34 year: 2014 end-page: 11303 article-title: Transfer of learning relates to intrinsic connectivity between hippocampus, ventromedial prefrontal cortex, and large‐scale networks publication-title: Journal of Neuroscience – start-page: 873 year: 2008 end-page: 880 – volume: 24 start-page: 663 issue: 3 year: 2014 end-page: 676 article-title: Tracking whole‐brain connectivity dynamics in the resting state publication-title: Cerebral Cortex – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 34 start-page: 537 issue: 4 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar mri publication-title: Magnetic Resonance in Medicine – volume: 80 start-page: 105 year: 2013 end-page: 124 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 23 start-page: 1479 issue: 4 year: 2018 end-page: 1489 article-title: Aberrant brain connectivity in schizophrenia detected via a fast gaussian graphical model publication-title: IEEE Journal of Biomedical and Health Informatics – start-page: 8595 year: 2013 end-page: 8598 – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 14 article-title: The quest for identifiability in human functional connectomes publication-title: Scientific Reports – volume: 40 start-page: 4843 issue: 16 year: 2019 end-page: 4858 article-title: Refined measure of functional connectomes for improved identifiability and prediction publication-title: Human Brain Mapping – volume: 16 start-page: 1348 issue: 9 year: 2013 end-page: 1355 article-title: Multi‐task connectivity reveals flexible hubs for adaptive task control publication-title: Nature Neuroscience – volume: 160 start-page: 140 year: 2017 end-page: 151 article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity? publication-title: NeuroImage – volume: 66 start-page: 1852 issue: 7 year: 2018 end-page: 1862 article-title: Capturing dynamic connectivity from resting state fmri using time‐varying graphical lasso publication-title: IEEE Transactions on Biomedical Engineering – volume: 20 start-page: 513 issue: 4 year: 2017 end-page: 515 article-title: Delayed stabilization and individualization in connectome development are related to psychiatric disorders publication-title: Nature Neuroscience – volume: 39 start-page: 902 issue: 2 year: 2018 end-page: 915 article-title: Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns publication-title: Human Brain Mapping – start-page: 833 year: 2011 end-page: 840 – start-page: 384 year: 2009 end-page: 391 – volume: 9 start-page: 165 issue: 1 year: 1998 end-page: 173 article-title: Limitations of nonlinear pca as performed with generic neural networks publication-title: IEEE Transactions on Neural Networks – start-page: 807 year: 2010 end-page: 814 – volume: 8 start-page: 549 issue: 4 year: 1995 end-page: 562 article-title: Generalizations of principal component analysis, optimization problems, and neural networks publication-title: Neural Networks – volume: 189 start-page: 676 year: 2019 end-page: 687 article-title: The individual functional connectome is unique and stable over months to years publication-title: NeuroImage – volume: 4 start-page: 94 year: 2016 article-title: Thinking, walking, talking: Integratory motor and cognitive brain function publication-title: Frontiers in Public Health – volume: 100 start-page: 253 issue: 1 year: 2003 end-page: 258 article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis publication-title: Proceedings of the National Academy of Sciences – volume: 67 start-page: 796 issue: 3 year: 2019 end-page: 806 article-title: A manifold regularized multi‐task learning model for iq prediction from two fmri paradigms publication-title: IEEE Transactions on Biomedical Engineering – volume: 37 start-page: 1224 issue: 5 year: 2017 end-page: 1234 article-title: Estimation of dynamic sparse connectivity patterns from resting state fmri publication-title: IEEE Transactions on Medical Imaging – volume: 37 start-page: 4841 issue: 18 year: 2017 end-page: 4847 article-title: Fluid intelligence predicts novel rule implementation in a distributed frontoparietal control network publication-title: Journal of Neuroscience – volume: 84 start-page: 262 issue: 2 year: 2014 end-page: 274 article-title: The chronnectome: Time‐varying connectivity networks as the next frontier in fmri data discovery publication-title: Neuron – volume: 39 start-page: 357 year: 2019 end-page: 365 article-title: Joint bayesian‐incorporating estimation of multiple gaussian graphical models to study brain connectivity development in adolescence publication-title: IEEE Transactions on Medical Imaging – volume: 37 start-page: 233 issue: 2 year: 1991 end-page: 243 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AICHE Journal – volume: 80 start-page: 62 year: 2013 end-page: 79 article-title: The Wu‐Minn human connectome project: An overview publication-title: NeuroImage – volume: 33 start-page: 52 issue: 3 year: 2016 end-page: 66 article-title: Time‐varying brain connectivity in fmri data: Whole‐brain data‐driven approaches for capturing and characterizing dynamic states publication-title: IEEE Signal Processing Magazine – volume: 9 start-page: 385 year: 2017 article-title: Linking inter‐individual variability in functional brain connectivity to cognitive ability in elderly individuals publication-title: Frontiers in Aging Neuroscience – volume: 37 start-page: 1986 issue: 5 year: 2016 end-page: 1997 article-title: Factors affecting characterization and localization of interindividual differences in functional connectivity using mri publication-title: Human Brain Mapping – volume: 80 start-page: 360 year: 2013 end-page: 378 article-title: Dynamic functional connectivity: Promise, issues, and interpretations publication-title: NeuroImage – year: 2017 – start-page: 1096 year: 2008 end-page: 1103 – volume: 82 start-page: 403 year: 2013 end-page: 415 article-title: Groupwise whole‐brain parcellation from resting‐state fmri data for network node identification publication-title: NeuroImage – year: 2019 – volume: 18 start-page: 1664 issue: 11 year: 2015 end-page: 1671 article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity publication-title: Nature Neuroscience – start-page: 812719 year: 2020 – volume: 10 start-page: 1299 issue: 5 year: 1998 end-page: 1319 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Computation – start-page: 873 volume-title: Advances in neural information processing systems year: 2008 ident: e_1_2_8_28_1 – ident: e_1_2_8_26_1 doi: 10.1002/aic.690370209 – ident: e_1_2_8_22_1 doi: 10.1002/hbm.22058 – ident: e_1_2_8_37_1 doi: 10.1523/JNEUROSCI.2478-16.2017 – ident: e_1_2_8_47_1 doi: 10.1109/TMI.2019.2929959 – ident: e_1_2_8_4_1 doi: 10.1038/s41598-018-25089-1 – ident: e_1_2_8_3_1 doi: 10.1093/cercor/bhs352 – ident: e_1_2_8_21_1 doi: 10.1016/j.neuroimage.2013.05.079 – ident: e_1_2_8_14_1 doi: 10.1016/j.neuroimage.2017.03.064 – ident: e_1_2_8_43_1 – ident: e_1_2_8_12_1 doi: 10.1038/nn.3470 – ident: e_1_2_8_27_1 doi: 10.1109/ICASSP.2013.6639343 – ident: e_1_2_8_33_1 – ident: e_1_2_8_13_1 doi: 10.1073/pnas.0601417103 – ident: e_1_2_8_16_1 doi: 10.1523/JNEUROSCI.0185-14.2014 – ident: e_1_2_8_24_1 doi: 10.1016/0893-6080(94)00098-7 – ident: e_1_2_8_39_1 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_2_8_29_1 doi: 10.3389/fpubh.2016.00094 – ident: e_1_2_8_35_1 doi: 10.1162/089976698300017467 – ident: e_1_2_8_32_1 doi: 10.1109/72.655038 – ident: e_1_2_8_45_1 doi: 10.1109/TMI.2019.2926667 – ident: e_1_2_8_9_1 doi: 10.1109/TMI.2017.2786553 – volume: 11 start-page: 3371 year: 2010 ident: e_1_2_8_41_1 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – ident: e_1_2_8_25_1 doi: 10.1038/nn.4511 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuron.2014.10.015 – ident: e_1_2_8_8_1 doi: 10.1109/TBME.2018.2880428 – ident: e_1_2_8_17_1 doi: 10.1016/j.neuroimage.2013.04.127 – ident: e_1_2_8_15_1 doi: 10.1038/nn.4135 – ident: e_1_2_8_44_1 doi: 10.1109/TBME.2019.2921207 – ident: e_1_2_8_7_1 doi: 10.1002/hbm.24741 – ident: e_1_2_8_2_1 doi: 10.1002/hbm.23150 – ident: e_1_2_8_34_1 doi: 10.1007/978-3-642-23783-6_41 – start-page: 384 volume-title: Artificial intelligence and statistics year: 2009 ident: e_1_2_8_38_1 – ident: e_1_2_8_36_1 doi: 10.1016/j.neuroimage.2013.05.081 – ident: e_1_2_8_20_1 doi: 10.1016/j.neuroimage.2019.02.002 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.0135058100 – ident: e_1_2_8_30_1 doi: 10.3389/fnagi.2017.00385 – ident: e_1_2_8_23_1 doi: 10.1101/812719 – ident: e_1_2_8_31_1 doi: 10.1002/hbm.23890 – ident: e_1_2_8_46_1 doi: 10.1109/JBHI.2018.2854659 – ident: e_1_2_8_40_1 doi: 10.1145/1390156.1390294 – ident: e_1_2_8_6_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.1113148109 – ident: e_1_2_8_42_1 doi: 10.1016/0169-7439(87)80084-9 – ident: e_1_2_8_10_1 doi: 10.1109/MSP.2015.2478915 – ident: e_1_2_8_19_1 doi: 10.1126/science.1127647 |
| SSID | ssj0011501 |
| Score | 2.5373578 |
| Snippet | Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an... Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as "brain fingerprinting" to identify an... |
| SourceID | pubmedcentral proquest gale pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2691 |
| SubjectTerms | Adult autoencoder network Biological Variation, Individual Brain Brain - diagnostic imaging Brain - physiology Cognition Cognition - physiology Cognitive ability common connectivity patterns Connectome - methods Default Mode Network - diagnostic imaging Default Mode Network - physiology Executive function Fingerprinting functional connectivity Functionals high‐level cognition prediction Humans individual identification Intelligence Machine learning Magnetic Resonance Imaging - methods Nerve Net - diagnostic imaging Nerve Net - physiology Neural networks refined connectomes |
| Title | Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25394 https://www.ncbi.nlm.nih.gov/pubmed/33835637 https://www.proquest.com/docview/2528065863 https://www.proquest.com/docview/2511244235 https://pubmed.ncbi.nlm.nih.gov/PMC8127140 |
| Volume | 42 |
| WOSCitedRecordID | wos000638183700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NgdBe-LEBC4zJIAS8hDWx49jwVBDVeFi1BxB9ixzH1iqxtGraSfz33DlpWCaQkHiJKvniJs6d_fl89x3AK4TUYsRVFWvuRrHwkselz8uYuMgkrzIEHSoUm8inUzWb6fMd-LDNhWn5IXqHG1lGmK_JwE3ZnPwmDb0oL9-lGdfiFtxOEq6obkMqzvsjBEQ6YbeFa2yscQre0gqN0pP-1sFidHNKvrYm3YyXvI5jw0I0uf9fr_AA7nX4k41bhXkIO67eh4NxjXvvy5_sNQsRocHVvg93z7qD9wNYTnD9a92GzFJsjEV5x3xwCpJvkKKn37M27TekTrF5n-rVMFNXbLmi3kiO9TFLzHfdNuxqbpjZrBdErFm51SP4Nvn89dNp3BVriC1uWUTshUXkJavcCFtm2hghpdWVTpUyychUKQXTJkZyWXHn86z0TgqrrOfcWaUq_hh260XtDoEh4JfaK260KEUuSm0RZSojXCYNIlYbwdvtVytsx2ROBTV-FC0Hc1rgwBZhYCN42YsuW_qOPwm9oU9fkEljP9Z0mQn4NESOVYxzAqGIc_IIjgaSaIp22LxVnqKbChr8i3B4rSSP4EXfTHdSeFvtFhuSSQhnpTyL4Emra_3jkg8hkxw7zwda2AsQQfiwpZ5fBKJwBG_Ex4jjFbTw7yNQnH48Cz-e_rvoM9hLKb6H6jhlR7C7Xm3cc7hjr9bzZnUcbBGv-UwdBz8HXr9_mf4CwDE6jQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VgigXHi2PQAGDEOUSuhs7jo24LIjVVnRXHIroLXIcW12pza72UYl_z4yTDU0FEhK3SJ44iTPj-Tye-QzwBiG16HFVxpq7Xiy85HHhsyImLjLJyxRBhwqHTWSTiTo91d-24OOmFqbmh2gDbmQZYb4mA6eA9OFv1tCz4uJ9knItbsBNgUCDDm74cTRp9xAQ6oTlFjrZWOMcvOEV6iWH7a0db3R9Tr7ilK4nTF4FssETDe_93zfch7sNAmWDWmUewJardmFvUOHq--Ine8tCTmgItu_C7XGz9b4H8yF6wDpwyCxlx1iUd8yHsCBFByl_-gOrC39D8RSbtsVeS2aqks0X1BvJsTZrifmm2yW7nBpm1qsZUWuWbvEQvg-_nHwexc1xDbHFRYuIvbCIvWSZGWGLVBsjpLS61IlSpt8zZULptH0juSy581laeCeFVdZz7qxSJX8E29Wsck-AIeSX2itutChEJgptEWcqI1wqDWJWG8G7zW_LbcNlTkdqnOc1C3OS48DmYWAjeN2KzmsCjz8JHdC_z8mosR9rmtoEfBuix8oHGcFQRDpZBPsdSTRG223eaE_eTAZLfETYvlaSR_CqbaY7KcGtcrM1yfQJaSU8jeBxrWzt61IUIZUcO886atgKEEV4t6WangWqcIRvxMiI4xXU8O8jkI8-jcPF038XfQk7o5PxcX58NPn6DO4klO1Dpzql-7C9Wqzdc7hlL1fT5eJFMMxf_Ko7-Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VgiouPFqggQIGIegldDd2HBtxWR6rIuhqDyD1Fjl-qCu12dU-KvHvmXGyoVuBhMQtkidO4sx4Po9nPgO8Qkgtely5VHPfS0WQPK1CUaXERSa5yxF0qHjYRDEaqdNTPd6C9-tamIYfogu4kWXE-ZoM3M9cOPrNGnpWXbzNcq7FDbgp8qJPOp2JcbeHgFAnLrfQyaYa5-A1r1AvO-pu3fBG1-fkK07pesLkVSAbPdHw7v99wz240yJQNmhU5j5s-XoX9gY1rr4vfrLXLOaExmD7LuyctFvvezAbogdsAofMUnaMRXnPQgwLUnSQ8qffsabwNxZPsUlX7LVgpnZsNqfeSI51WUsstN0u2OXEMLNaTola0_n5A_gx_Pz943HaHteQWly0iDQIi9hLusIIW-XaGCGl1U5nSpl-z7iM0mn7RnLpuA9FXgUvhVU2cO6tUo4_hO16Wvt9YAj5pQ6KGy0qUYhKW8SZygifS4OY1SZwuP5tpW25zOlIjfOyYWHOShzYMg5sAi870VlD4PEnoTf070syauzHmrY2Ad-G6LHKQUEwFJFOkcDBhiQao91sXmtP2U4GC3xE3L5WkifwomumOynBrfbTFcn0CWllPE_gUaNs3etSFCGXHDsvNtSwEyCK8M2WenIWqcIRvhEjI45XVMO_j0B5_OEkXjz-d9HnsDP-NCy_fRl9fQK3M0r2oUOd8gPYXs5X_incspfLyWL-LNrlL5LQOxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+connectome+fingerprinting%3A+Identifying+individuals+and+predicting+cognitive+functions+via+autoencoder&rft.jtitle=Human+brain+mapping&rft.au=Cai%2C+Biao&rft.au=Zhang%2C+Gemeng&rft.au=Zhang%2C+Aiying&rft.au=Xiao%2C+Li&rft.date=2021-06-15&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=42&rft.issue=9&rft.spage=2691&rft.epage=2705&rft_id=info:doi/10.1002%2Fhbm.25394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_25394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |