Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder

Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Human brain mapping Ročník 42; číslo 9; s. 2691 - 2705
Hlavní autori: Cai, Biao, Zhang, Gemeng, Zhang, Aiying, Xiao, Li, Hu, Wenxing, Stephen, Julia M., Wilson, Tony W., Calhoun, Vince D., Wang, Yu‐Ping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 15.06.2021
Predmet:
ISSN:1065-9471, 1097-0193, 1097-0193
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions. Our main contribution is to enhance the individual uniqueness based on a framework applying an autoencoder network. Our approach is validated using six modalities of fMRI (resting‐state 1, resting‐state 2, working memory, motor, language, and emotion) from the HCP data set.
AbstractList Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions.
Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as "brain fingerprinting" to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter-subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest-rest pair). Furthermore, high-level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high-order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions.Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as "brain fingerprinting" to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter-subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest-rest pair). Furthermore, high-level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high-order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions.
Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions. Our main contribution is to enhance the individual uniqueness based on a framework applying an autoencoder network. Our approach is validated using six modalities of fMRI (resting‐state 1, resting‐state 2, working memory, motor, language, and emotion) from the HCP data set.
Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions. Our main contribution is to enhance the individual uniqueness based on a framework applying an autoencoder network. Our approach is validated using six modalities of fMRI (resting‐state 1, resting‐state 2, working memory, motor, language, and emotion) from the HCP data set.
Audience Academic
Author Hu, Wenxing
Zhang, Aiying
Cai, Biao
Wang, Yu‐Ping
Stephen, Julia M.
Xiao, Li
Wilson, Tony W.
Calhoun, Vince D.
Zhang, Gemeng
AuthorAffiliation 4 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University Atlanta Georgia USA
3 Department of Neurological Sciences University of Nebraska Medical Center (UNMC) Omaha Nebraska USA
2 The Mind Research Network Albuquerque New Mexico USA
1 Biomedical Engineering Department Tulane University New Orleans Louisiana USA
AuthorAffiliation_xml – name: 1 Biomedical Engineering Department Tulane University New Orleans Louisiana USA
– name: 3 Department of Neurological Sciences University of Nebraska Medical Center (UNMC) Omaha Nebraska USA
– name: 2 The Mind Research Network Albuquerque New Mexico USA
– name: 4 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University Atlanta Georgia USA
Author_xml – sequence: 1
  givenname: Biao
  orcidid: 0000-0002-2706-4982
  surname: Cai
  fullname: Cai, Biao
  organization: Tulane University
– sequence: 2
  givenname: Gemeng
  surname: Zhang
  fullname: Zhang, Gemeng
  organization: Tulane University
– sequence: 3
  givenname: Aiying
  orcidid: 0000-0001-9623-3922
  surname: Zhang
  fullname: Zhang, Aiying
  organization: Tulane University
– sequence: 4
  givenname: Li
  surname: Xiao
  fullname: Xiao, Li
  organization: Tulane University
– sequence: 5
  givenname: Wenxing
  surname: Hu
  fullname: Hu, Wenxing
  organization: Tulane University
– sequence: 6
  givenname: Julia M.
  surname: Stephen
  fullname: Stephen, Julia M.
  organization: The Mind Research Network
– sequence: 7
  givenname: Tony W.
  orcidid: 0000-0002-5053-8306
  surname: Wilson
  fullname: Wilson, Tony W.
  organization: University of Nebraska Medical Center (UNMC)
– sequence: 8
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Georgia State University, Georgia Institute of Technology, Emory University
– sequence: 9
  givenname: Yu‐Ping
  surname: Wang
  fullname: Wang, Yu‐Ping
  email: wyp@tulane.edu
  organization: Tulane University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33835637$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URD_gwB9AkbjAIVt_O-FQqVSUViriAmfL64-tq8RenGTR_nsm7FJoBSgHj53nfT3jmWN0kHLyCL0keEEwpqe3y35BBWv5E3REcKtqTFp2MMdS1C1X5BAdD8MdxoQITJ6hQ8YaJiRTR2h9OSU7xpxMV9mckrdj7n0VYlr5si4xjRC9q66dhyhsYVPF5OImusl0Q2WSq9bFu2hnDhxWKY5xAwZ726HaRFOZacw-2ex8eY6eBlD6F_v1BH29_PDl4qq--fzx-uL8prZCSV4Hbjmk6JThdilaY7iUtnUtbRpDsHFUSiWJkUw65oMSy-Alt40NjHnbNI6doLOd73pa9t5ZyL-YTkNJvSlbnU3UD_-keKtXeaMbQhXhGAze7A1K_jb5YdR9HKzvOpN8ngZNBSGUc8oEoK8foXd5KvCkM0Ub6EIj2W9qZTqvYwoZ7rWzqT5XBItWUKKAWvyFgs_5PkKHfIhw_kDw6s9C7yv81WMA3u4AW_IwFB_uEYL1PD8a5kf_nB9gTx-xNo5mbiRkEbv_Kb5DXtt_W-ur9592ih_ETNf4
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120651
crossref_primary_10_1016_j_neuroimage_2022_119288
crossref_primary_10_1002_hbm_26289
crossref_primary_10_1016_j_intell_2022_101654
crossref_primary_10_3389_fnins_2024_1405734
crossref_primary_10_1162_IMAG_a_129
crossref_primary_10_1007_s00429_023_02616_z
crossref_primary_10_1038_s42003_024_06669_6
crossref_primary_10_1093_psyrad_kkab018
crossref_primary_10_7717_peerj_cs_2920
crossref_primary_10_3389_fnhum_2022_982905
crossref_primary_10_1162_imag_a_00443
crossref_primary_10_1016_j_neuroimage_2023_120329
crossref_primary_10_1093_cercor_bhad028
crossref_primary_10_1016_j_neuroimage_2024_120660
crossref_primary_10_1016_j_intell_2022_101665
crossref_primary_10_1109_JBHI_2025_3551385
crossref_primary_10_1109_TCDS_2023_3314155
crossref_primary_10_1038_s41386_024_01962_8
crossref_primary_10_3389_fnut_2023_1210726
crossref_primary_10_1002_sim_10096
crossref_primary_10_1093_braincomms_fcae154
crossref_primary_10_1038_s41398_021_01646_7
crossref_primary_10_1016_j_neunet_2025_108029
crossref_primary_10_1016_j_neunet_2024_106786
Cites_doi 10.1002/aic.690370209
10.1002/hbm.22058
10.1523/JNEUROSCI.2478-16.2017
10.1109/TMI.2019.2929959
10.1038/s41598-018-25089-1
10.1093/cercor/bhs352
10.1016/j.neuroimage.2013.05.079
10.1016/j.neuroimage.2017.03.064
10.1038/nn.3470
10.1109/ICASSP.2013.6639343
10.1073/pnas.0601417103
10.1523/JNEUROSCI.0185-14.2014
10.1016/0893-6080(94)00098-7
10.1016/j.neuroimage.2013.05.041
10.3389/fpubh.2016.00094
10.1162/089976698300017467
10.1109/72.655038
10.1109/TMI.2019.2926667
10.1109/TMI.2017.2786553
10.1038/nn.4511
10.1016/j.neuron.2014.10.015
10.1109/TBME.2018.2880428
10.1016/j.neuroimage.2013.04.127
10.1038/nn.4135
10.1109/TBME.2019.2921207
10.1002/hbm.24741
10.1002/hbm.23150
10.1007/978-3-642-23783-6_41
10.1016/j.neuroimage.2013.05.081
10.1016/j.neuroimage.2019.02.002
10.1073/pnas.0135058100
10.3389/fnagi.2017.00385
10.1101/812719
10.1002/hbm.23890
10.1109/JBHI.2018.2854659
10.1145/1390156.1390294
10.1002/mrm.1910340409
10.1073/pnas.1113148109
10.1016/0169-7439(87)80084-9
10.1109/MSP.2015.2478915
10.1126/science.1127647
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
COPYRIGHT 2021 John Wiley & Sons, Inc.
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
– notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25394
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Technology Research Database



MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Cai et al
EISSN 1097-0193
EndPage 2705
ExternalDocumentID PMC8127140
A710595217
33835637
10_1002_hbm_25394
HBM25394
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  funderid: #1539067
– fundername: National Institutes of Health
  funderid: P20 GM130447; R01 EB020407; R01 GM109068; R01 MH103220; R01 MH104680; R01 MH107354; R01 MH121101
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIH HHS
  grantid: P20 GM130447
– fundername: NIH HHS
  grantid: R01 MH107354
– fundername: NIMH NIH HHS
  grantid: R01 MH104680
– fundername: NIH HHS
  grantid: R01 EB020407
– fundername: NIH HHS
  grantid: R01 GM109068
– fundername: NIH HHS
  grantid: R01 MH103220
– fundername: NIGMS NIH HHS
  grantid: R01 GM109068
– fundername: NIGMS NIH HHS
  grantid: P20 GM130447
– fundername: NIMH NIH HHS
  grantid: R01 MH121101
– fundername: ;
  grantid: #1539067
– fundername: ;
  grantid: P20 GM130447; R01 EB020407; R01 GM109068; R01 MH103220; R01 MH104680; R01 MH107354; R01 MH121101
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5764-f4c4356d7a4cb59aa466c9d9288a10ad266761a636d3ef75bfe64c8cf33ec88d3
IEDL.DBID 24P
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638183700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:01:16 EDT 2025
Thu Oct 02 11:17:24 EDT 2025
Sat Nov 29 14:58:39 EST 2025
Sat Nov 29 13:28:57 EST 2025
Sat Nov 29 10:24:48 EST 2025
Thu Apr 03 06:53:34 EDT 2025
Sat Nov 29 02:24:49 EST 2025
Tue Nov 18 22:39:13 EST 2025
Wed Jan 22 16:29:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords autoencoder network
common connectivity patterns
functional connectivity
refined connectomes
individual identification
high-level cognition prediction
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5764-f4c4356d7a4cb59aa466c9d9288a10ad266761a636d3ef75bfe64c8cf33ec88d3
Notes Funding information
National Institutes of Health, Grant/Award Numbers: P20 GM130447, R01 EB020407, R01 GM109068, R01 MH103220, R01 MH104680, R01 MH107354, R01 MH121101; National Science Foundation, Grant/Award Number: #1539067
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information National Institutes of Health, Grant/Award Numbers: P20 GM130447, R01 EB020407, R01 GM109068, R01 MH103220, R01 MH104680, R01 MH107354, R01 MH121101; National Science Foundation, Grant/Award Number: #1539067
ORCID 0000-0002-5053-8306
0000-0002-2706-4982
0000-0001-9623-3922
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25394
PMID 33835637
PQID 2528065863
PQPubID 996345
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8127140
proquest_miscellaneous_2511244235
proquest_journals_2528065863
gale_infotracmisc_A710595217
gale_infotracacademiconefile_A710595217
pubmed_primary_33835637
crossref_primary_10_1002_hbm_25394
crossref_citationtrail_10_1002_hbm_25394
wiley_primary_10_1002_hbm_25394_HBM25394
PublicationCentury 2000
PublicationDate June 15, 2021
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: June 15, 2021
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 11
2017; 20
1987; 2
2015; 18
1991; 37
2011
2010
1995; 34
2009
2019; 39
2008
2014; 24
2018; 23
2018; 66
2014; 84
2006; 313
2016; 37
2017; 9
2019; 189
2012; 109
1995; 8
2016; 33
2016; 4
2018; 8
2018; 39
2019; 40
2013; 16
2017; 37
2013; 34
2020
2019; 67
2013; 80
2019
2017; 160
2013; 82
2017
2013
1998; 10
2014; 34
2003; 100
2006; 103
1998; 9
Lee H. (e_1_2_8_28_1) 2008
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
Van Der Maaten L. (e_1_2_8_38_1) 2009
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
Vincent P. (e_1_2_8_41_1) 2010; 11
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 109
  start-page: 3516
  issue: 9
  year: 2012
  end-page: 3521
  article-title: Individual variability in functional connectivity predicts performance of a perceptual task
  publication-title: Proceedings of the National Academy of Sciences
– volume: 34
  start-page: 2154
  issue: 9
  year: 2013
  end-page: 2177
  article-title: Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Human Brain Mapping
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  end-page: 52
  article-title: Principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  end-page: 13853
  article-title: Consistent resting‐state networks across healthy subjects
  publication-title: Proceedings of the National Academy of Sciences
– volume: 34
  start-page: 11297
  issue: 34
  year: 2014
  end-page: 11303
  article-title: Transfer of learning relates to intrinsic connectivity between hippocampus, ventromedial prefrontal cortex, and large‐scale networks
  publication-title: Journal of Neuroscience
– start-page: 873
  year: 2008
  end-page: 880
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  end-page: 676
  article-title: Tracking whole‐brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar mri
  publication-title: Magnetic Resonance in Medicine
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 23
  start-page: 1479
  issue: 4
  year: 2018
  end-page: 1489
  article-title: Aberrant brain connectivity in schizophrenia detected via a fast gaussian graphical model
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 8595
  year: 2013
  end-page: 8598
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 14
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Scientific Reports
– volume: 40
  start-page: 4843
  issue: 16
  year: 2019
  end-page: 4858
  article-title: Refined measure of functional connectomes for improved identifiability and prediction
  publication-title: Human Brain Mapping
– volume: 16
  start-page: 1348
  issue: 9
  year: 2013
  end-page: 1355
  article-title: Multi‐task connectivity reveals flexible hubs for adaptive task control
  publication-title: Nature Neuroscience
– volume: 160
  start-page: 140
  year: 2017
  end-page: 151
  article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity?
  publication-title: NeuroImage
– volume: 66
  start-page: 1852
  issue: 7
  year: 2018
  end-page: 1862
  article-title: Capturing dynamic connectivity from resting state fmri using time‐varying graphical lasso
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 20
  start-page: 513
  issue: 4
  year: 2017
  end-page: 515
  article-title: Delayed stabilization and individualization in connectome development are related to psychiatric disorders
  publication-title: Nature Neuroscience
– volume: 39
  start-page: 902
  issue: 2
  year: 2018
  end-page: 915
  article-title: Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns
  publication-title: Human Brain Mapping
– start-page: 833
  year: 2011
  end-page: 840
– start-page: 384
  year: 2009
  end-page: 391
– volume: 9
  start-page: 165
  issue: 1
  year: 1998
  end-page: 173
  article-title: Limitations of nonlinear pca as performed with generic neural networks
  publication-title: IEEE Transactions on Neural Networks
– start-page: 807
  year: 2010
  end-page: 814
– volume: 8
  start-page: 549
  issue: 4
  year: 1995
  end-page: 562
  article-title: Generalizations of principal component analysis, optimization problems, and neural networks
  publication-title: Neural Networks
– volume: 189
  start-page: 676
  year: 2019
  end-page: 687
  article-title: The individual functional connectome is unique and stable over months to years
  publication-title: NeuroImage
– volume: 4
  start-page: 94
  year: 2016
  article-title: Thinking, walking, talking: Integratory motor and cognitive brain function
  publication-title: Frontiers in Public Health
– volume: 100
  start-page: 253
  issue: 1
  year: 2003
  end-page: 258
  article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
  publication-title: Proceedings of the National Academy of Sciences
– volume: 67
  start-page: 796
  issue: 3
  year: 2019
  end-page: 806
  article-title: A manifold regularized multi‐task learning model for iq prediction from two fmri paradigms
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 37
  start-page: 1224
  issue: 5
  year: 2017
  end-page: 1234
  article-title: Estimation of dynamic sparse connectivity patterns from resting state fmri
  publication-title: IEEE Transactions on Medical Imaging
– volume: 37
  start-page: 4841
  issue: 18
  year: 2017
  end-page: 4847
  article-title: Fluid intelligence predicts novel rule implementation in a distributed frontoparietal control network
  publication-title: Journal of Neuroscience
– volume: 84
  start-page: 262
  issue: 2
  year: 2014
  end-page: 274
  article-title: The chronnectome: Time‐varying connectivity networks as the next frontier in fmri data discovery
  publication-title: Neuron
– volume: 39
  start-page: 357
  year: 2019
  end-page: 365
  article-title: Joint bayesian‐incorporating estimation of multiple gaussian graphical models to study brain connectivity development in adolescence
  publication-title: IEEE Transactions on Medical Imaging
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  end-page: 243
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AICHE Journal
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The Wu‐Minn human connectome project: An overview
  publication-title: NeuroImage
– volume: 33
  start-page: 52
  issue: 3
  year: 2016
  end-page: 66
  article-title: Time‐varying brain connectivity in fmri data: Whole‐brain data‐driven approaches for capturing and characterizing dynamic states
  publication-title: IEEE Signal Processing Magazine
– volume: 9
  start-page: 385
  year: 2017
  article-title: Linking inter‐individual variability in functional brain connectivity to cognitive ability in elderly individuals
  publication-title: Frontiers in Aging Neuroscience
– volume: 37
  start-page: 1986
  issue: 5
  year: 2016
  end-page: 1997
  article-title: Factors affecting characterization and localization of interindividual differences in functional connectivity using mri
  publication-title: Human Brain Mapping
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: NeuroImage
– year: 2017
– start-page: 1096
  year: 2008
  end-page: 1103
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  article-title: Groupwise whole‐brain parcellation from resting‐state fmri data for network node identification
  publication-title: NeuroImage
– year: 2019
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  end-page: 1671
  article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity
  publication-title: Nature Neuroscience
– start-page: 812719
  year: 2020
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  end-page: 1319
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Computation
– start-page: 873
  volume-title: Advances in neural information processing systems
  year: 2008
  ident: e_1_2_8_28_1
– ident: e_1_2_8_26_1
  doi: 10.1002/aic.690370209
– ident: e_1_2_8_22_1
  doi: 10.1002/hbm.22058
– ident: e_1_2_8_37_1
  doi: 10.1523/JNEUROSCI.2478-16.2017
– ident: e_1_2_8_47_1
  doi: 10.1109/TMI.2019.2929959
– ident: e_1_2_8_4_1
  doi: 10.1038/s41598-018-25089-1
– ident: e_1_2_8_3_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_8_21_1
  doi: 10.1016/j.neuroimage.2013.05.079
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuroimage.2017.03.064
– ident: e_1_2_8_43_1
– ident: e_1_2_8_12_1
  doi: 10.1038/nn.3470
– ident: e_1_2_8_27_1
  doi: 10.1109/ICASSP.2013.6639343
– ident: e_1_2_8_33_1
– ident: e_1_2_8_13_1
  doi: 10.1073/pnas.0601417103
– ident: e_1_2_8_16_1
  doi: 10.1523/JNEUROSCI.0185-14.2014
– ident: e_1_2_8_24_1
  doi: 10.1016/0893-6080(94)00098-7
– ident: e_1_2_8_39_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_8_29_1
  doi: 10.3389/fpubh.2016.00094
– ident: e_1_2_8_35_1
  doi: 10.1162/089976698300017467
– ident: e_1_2_8_32_1
  doi: 10.1109/72.655038
– ident: e_1_2_8_45_1
  doi: 10.1109/TMI.2019.2926667
– ident: e_1_2_8_9_1
  doi: 10.1109/TMI.2017.2786553
– volume: 11
  start-page: 3371
  year: 2010
  ident: e_1_2_8_41_1
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_25_1
  doi: 10.1038/nn.4511
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuron.2014.10.015
– ident: e_1_2_8_8_1
  doi: 10.1109/TBME.2018.2880428
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_8_15_1
  doi: 10.1038/nn.4135
– ident: e_1_2_8_44_1
  doi: 10.1109/TBME.2019.2921207
– ident: e_1_2_8_7_1
  doi: 10.1002/hbm.24741
– ident: e_1_2_8_2_1
  doi: 10.1002/hbm.23150
– ident: e_1_2_8_34_1
  doi: 10.1007/978-3-642-23783-6_41
– start-page: 384
  volume-title: Artificial intelligence and statistics
  year: 2009
  ident: e_1_2_8_38_1
– ident: e_1_2_8_36_1
  doi: 10.1016/j.neuroimage.2013.05.081
– ident: e_1_2_8_20_1
  doi: 10.1016/j.neuroimage.2019.02.002
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.0135058100
– ident: e_1_2_8_30_1
  doi: 10.3389/fnagi.2017.00385
– ident: e_1_2_8_23_1
  doi: 10.1101/812719
– ident: e_1_2_8_31_1
  doi: 10.1002/hbm.23890
– ident: e_1_2_8_46_1
  doi: 10.1109/JBHI.2018.2854659
– ident: e_1_2_8_40_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.1113148109
– ident: e_1_2_8_42_1
  doi: 10.1016/0169-7439(87)80084-9
– ident: e_1_2_8_10_1
  doi: 10.1109/MSP.2015.2478915
– ident: e_1_2_8_19_1
  doi: 10.1126/science.1127647
SSID ssj0011501
Score 2.5373578
Snippet Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an...
Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as "brain fingerprinting" to identify an...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2691
SubjectTerms Adult
autoencoder network
Biological Variation, Individual
Brain
Brain - diagnostic imaging
Brain - physiology
Cognition
Cognition - physiology
Cognitive ability
common connectivity patterns
Connectome - methods
Default Mode Network - diagnostic imaging
Default Mode Network - physiology
Executive function
Fingerprinting
functional connectivity
Functionals
high‐level cognition prediction
Humans
individual identification
Intelligence
Machine learning
Magnetic Resonance Imaging - methods
Nerve Net - diagnostic imaging
Nerve Net - physiology
Neural networks
refined connectomes
Title Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25394
https://www.ncbi.nlm.nih.gov/pubmed/33835637
https://www.proquest.com/docview/2528065863
https://www.proquest.com/docview/2511244235
https://pubmed.ncbi.nlm.nih.gov/PMC8127140
Volume 42
WOSCitedRecordID wos000638183700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NgdBe-LEBC4zJIAS8hDWx49jwVBDVeFi1BxB9ixzH1iqxtGraSfz33DlpWCaQkHiJKvniJs6d_fl89x3AK4TUYsRVFWvuRrHwkselz8uYuMgkrzIEHSoUm8inUzWb6fMd-LDNhWn5IXqHG1lGmK_JwE3ZnPwmDb0oL9-lGdfiFtxOEq6obkMqzvsjBEQ6YbeFa2yscQre0gqN0pP-1sFidHNKvrYm3YyXvI5jw0I0uf9fr_AA7nX4k41bhXkIO67eh4NxjXvvy5_sNQsRocHVvg93z7qD9wNYTnD9a92GzFJsjEV5x3xwCpJvkKKn37M27TekTrF5n-rVMFNXbLmi3kiO9TFLzHfdNuxqbpjZrBdErFm51SP4Nvn89dNp3BVriC1uWUTshUXkJavcCFtm2hghpdWVTpUyychUKQXTJkZyWXHn86z0TgqrrOfcWaUq_hh260XtDoEh4JfaK260KEUuSm0RZSojXCYNIlYbwdvtVytsx2ROBTV-FC0Hc1rgwBZhYCN42YsuW_qOPwm9oU9fkEljP9Z0mQn4NESOVYxzAqGIc_IIjgaSaIp22LxVnqKbChr8i3B4rSSP4EXfTHdSeFvtFhuSSQhnpTyL4Emra_3jkg8hkxw7zwda2AsQQfiwpZ5fBKJwBG_Ex4jjFbTw7yNQnH48Cz-e_rvoM9hLKb6H6jhlR7C7Xm3cc7hjr9bzZnUcbBGv-UwdBz8HXr9_mf4CwDE6jQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VgigXHi2PQAGDEOUSuhs7jo24LIjVVnRXHIroLXIcW12pza72UYl_z4yTDU0FEhK3SJ44iTPj-Tye-QzwBiG16HFVxpq7Xiy85HHhsyImLjLJyxRBhwqHTWSTiTo91d-24OOmFqbmh2gDbmQZYb4mA6eA9OFv1tCz4uJ9knItbsBNgUCDDm74cTRp9xAQ6oTlFjrZWOMcvOEV6iWH7a0db3R9Tr7ilK4nTF4FssETDe_93zfch7sNAmWDWmUewJardmFvUOHq--Ine8tCTmgItu_C7XGz9b4H8yF6wDpwyCxlx1iUd8yHsCBFByl_-gOrC39D8RSbtsVeS2aqks0X1BvJsTZrifmm2yW7nBpm1qsZUWuWbvEQvg-_nHwexc1xDbHFRYuIvbCIvWSZGWGLVBsjpLS61IlSpt8zZULptH0juSy581laeCeFVdZz7qxSJX8E29Wsck-AIeSX2itutChEJgptEWcqI1wqDWJWG8G7zW_LbcNlTkdqnOc1C3OS48DmYWAjeN2KzmsCjz8JHdC_z8mosR9rmtoEfBuix8oHGcFQRDpZBPsdSTRG223eaE_eTAZLfETYvlaSR_CqbaY7KcGtcrM1yfQJaSU8jeBxrWzt61IUIZUcO886atgKEEV4t6WangWqcIRvxMiI4xXU8O8jkI8-jcPF038XfQk7o5PxcX58NPn6DO4klO1Dpzql-7C9Wqzdc7hlL1fT5eJFMMxf_Ko7-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VgiouPFqggQIGIegldDd2HBtxWR6rIuhqDyD1Fjl-qCu12dU-KvHvmXGyoVuBhMQtkidO4sx4Po9nPgO8Qkgtely5VHPfS0WQPK1CUaXERSa5yxF0qHjYRDEaqdNTPd6C9-tamIYfogu4kWXE-ZoM3M9cOPrNGnpWXbzNcq7FDbgp8qJPOp2JcbeHgFAnLrfQyaYa5-A1r1AvO-pu3fBG1-fkK07pesLkVSAbPdHw7v99wz240yJQNmhU5j5s-XoX9gY1rr4vfrLXLOaExmD7LuyctFvvezAbogdsAofMUnaMRXnPQgwLUnSQ8qffsabwNxZPsUlX7LVgpnZsNqfeSI51WUsstN0u2OXEMLNaTola0_n5A_gx_Pz943HaHteQWly0iDQIi9hLusIIW-XaGCGl1U5nSpl-z7iM0mn7RnLpuA9FXgUvhVU2cO6tUo4_hO16Wvt9YAj5pQ6KGy0qUYhKW8SZygifS4OY1SZwuP5tpW25zOlIjfOyYWHOShzYMg5sAi870VlD4PEnoTf070syauzHmrY2Ad-G6LHKQUEwFJFOkcDBhiQao91sXmtP2U4GC3xE3L5WkifwomumOynBrfbTFcn0CWllPE_gUaNs3etSFCGXHDsvNtSwEyCK8M2WenIWqcIRvhEjI45XVMO_j0B5_OEkXjz-d9HnsDP-NCy_fRl9fQK3M0r2oUOd8gPYXs5X_incspfLyWL-LNrlL5LQOxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+connectome+fingerprinting%3A+Identifying+individuals+and+predicting+cognitive+functions+via+autoencoder&rft.jtitle=Human+brain+mapping&rft.au=Cai%2C+Biao&rft.au=Zhang%2C+Gemeng&rft.au=Zhang%2C+Aiying&rft.au=Xiao%2C+Li&rft.date=2021-06-15&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=42&rft.issue=9&rft.spage=2691&rft.epage=2705&rft_id=info:doi/10.1002%2Fhbm.25394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_25394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon