Reconciling inconsistencies in precipitation–productivity relationships implications for climate change
Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empiri...
Gespeichert in:
| Veröffentlicht in: | The New phytologist Jg. 214; H. 1; S. 41 - 47 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
New Phytologist Trust
01.04.2017
Wiley Subscription Services, Inc Wiley |
| Schlagworte: | |
| ISSN: | 0028-646X, 1469-8137 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT–ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT–ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. |
|---|---|
| AbstractList | Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 SUMMARY: Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT-ANPP relationships are important both ecologically and to land-atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT-ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT-ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT–ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT–ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. Precipitation ( PPT ) is a primary climatic determinant of plant growth and aboveground net primary production ( ANPP ) over much of the globe. Thus, PPT – ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT – ANPP relationships derived from long‐term site‐based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT – ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. Contents Summary 41 I. Introduction 41 II. The PPT–ANPP relationship: spatial vs temporal models 42 III. Inconsistencies with a linear temporal model 43 IV. Revision of the temporal PPT–ANPP model to better forecast climate change impacts 44 V. Conclusions 45 Acknowledgements 46 References 46 See also the Commentary on this article by Luo et al. , 214 : 5–7 . Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT-ANPP relationships are important both ecologically and to land-atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT-ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT-ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. See also the Commentary on this article by Luo et al., 214: 5-7 . Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 Summary Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT–ANPP relationships derived from long‐term site‐based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT–ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. See also the Commentary on this article by Luo et al., 214: 5–7. 41 I. I. Introduction Terrestrial ecosystems cover less than one-third of the Earth's surface, yet account for approximately two-thirds of global net primary production (NPP), with the carbon (C) resident in terrestrial plant biomass equivalent to c. 70% of that in the atmosphere (Houghton, ). The aboveground fraction of NPP (ANPP) is particularly important both as an integrator of terrestrial ecosystem function (Fahey & Knapp, ), and because humans depend on ANPP for food, fiber and fuel (Haberl et al., ). Thus, in this era of unprecedented climate change, an understanding of the primary controls of ANPP is important from climatological, ecological and socioeconomic perspectives. There is a rich history of foundational studies documenting water availability as a key determinant of spatial and temporal patterns of ANPP (e.g. Rosenzweig, ; Webb et al., ), and more recent analyses have confirmed that precipitation (PPT) inputs, or alternative measures of water availability, limit or co-limit ANPP, as well as gross primary production (GPP), over much of the globe (Fig. ; Nemani et al., ; Garbulsky et al., ; Ahlström et al., ; Seddon et al., ). Of course, some biomes are more strongly limited by water than others (Fig. ) but, even in cold or humid regions, in which temperature or other factors are expected to more strongly limit ANPP, ecosystems are surprisingly sensitive to variations in water availability, directly or indirectly (Schuur, ; Vicente-Serrano et al., ; Winkler et al., ). Thus, forecast changes in PPT are predicted to have significant impacts on ANPP from local scales that extend to the global C cycle (Reichstein et al., ). While a warming atmosphere is the most certain climatic change occurring, the global hydrological cycle has been forecast to intensify as well (IPCC, ). This intensification may be manifest in many ways, including increased interannual PPT variability, more frequent extreme PPT years (wet and dry) and alterations in annual PPT amount, with some regions expected to become wetter and others drier (Lau et al., ; Polade et al., ). Recent climatological trends have supported these predictions (Huntington, ; Fischer & Knutti, ; Hubbart et al., ). Thus, forecasting how future ecosystem structure and function will respond to changing PPT regimes requires a robust understanding of the relationship between PPT and ANPP. Key to such forecasts is the presumption that the contemporary form of the PPT-ANPP relationship is appropriate for the prediction of responses to climate change. In the last two decades, ecologists have conducted scores of analyses of long-term ANPP datasets, and modeling and experimental studies, to provide insights into how ANPP (and other C cycle components) will respond to future PPT regimes. Although much has been learned, this body of research includes a number of results that are inconsistent with one another and our current understanding of the PPT-ANPP relationship. This lack of clarity with regard to how ANPP responds to a primary climatic control suggests that the PPT-ANPP relationship needs to be revisited. Below, we summarize recent research results with an emphasis on discrepancies between what has been observed vs expected based on our contemporary understanding of the PPT-ANPP relationship. We then reconcile these inconsistencies with a new conceptual model for the PPT-ANPP relationship, one which highlights research needs that, when addressed, will improve forecasts of C cycle responses to future changes in PPT. 41 II. II. The PPT-ANPP relationship: spatial vs temporal models The PPT-ANPP relationship is typically derived from multi-year measurements of PPT and ANPP, and is viewed through either a spatial or temporal lens. This has led to two distinct models: spatial models based on ANPP data combined from many sites arrayed along PPT gradients, and temporal models derived from individual sites in which PPT and ANPP have varied over time (Fig. ). These two models are often related because spatial models are usually based on mean values from site-based temporal models (Huxman et al., ). Statistical relationships for spatial models are usually nonlinear (concave down or saturating, Fig. ) when they span large gradients in PPT, although these can be linear when models are restricted to a single biome (Fig. , e.g. grasslands - Sala et al., ). Temporal PPT-ANPP relationships from long-term site-level data are almost always portrayed as linear regardless of the ecosystem type (Fig. ). Although more complex nonlinear statistical models have been fitted to some PPT-ANPP relationships, in most cases, linear and nonlinear models explain equal amounts of variation, nonlinearities tend to be weak, and support for nonlinear over linear models is minimal (Hsu et al., ; Hsu & Adler, ). Spatial and temporal models often share the same data, but the slopes of spatial relationships are usually much steeper than those of temporal models (Fig. ). Thus, temporal models predict that ANPP will be less sensitive to future changes in PPT than do spatial models (Estiarte et al., ). Several mechanisms have been posited to explain why spatial models predict greater sensitivity of ANPP to PPT. The most likely is that spatial models include both vegetation and PPT change along gradients of PPT, whereas vegetation does not change appreciably over time in temporal models. This places a 'vegetation constraint' (Lauenroth & Sala, ) on ANPP responses to PPT at the site level. For example, plants in arid ecosystems tend to be smaller, with inherently slower absolute growth rates and reduced plant and meristem densities relative to those in more mesic ecosystems (Knapp & Smith, ; Huxman et al., ; La Pierre et al., ). As a result, ANPP responses to wet years in arid ecosystems are constrained by these plant community characteristics. Indeed, Gaitan et al. estimated that two-thirds of the increase in ANPP along regional PPT gradients in Patagonia could be attributed to changes in plant communities and not to direct responses to increased PPT. In addition, Sala et al. argued that 'legacy effects' of previous year's PPT on current year's ANPP are widespread. In this case, previous wet or dry years can dampen ANPP responses in subsequent years and reduce the slope of site-based PPT-ANPP relationships. Despite differences in sensitivity to PPT, both models predict that the sensitivity of ANPP to PPT decreases from dry to wet ecosystems, as a result of increasing biogeochemical limitations of ANPP as ecosystems get wetter (Huxman et al., ). Although climate change is expected to affect plant community and biogeochemical constraints on ANPP, both of which are implicitly incorporated into empirically derived spatial models, there is little evidence that spatial models are superior to temporal models for the prediction of ANPP responses to future changes in PPT (Estiarte et al., ; Wilcox et al., ). For example, when predictions from temporal vs spatial models were compared with results from multiyear PPT manipulation experiments, temporal models performed consistently better (Estiarte et al., ). This is probably because substantial changes in plant communities (turnover of dominant life-forms) and corresponding alterations in soil biogeochemistry only occur over very long time scales (decades to centuries; Smith et al., ; Wilcox et al., ). However, even over long time scales, the novelty of future climates and interactions with other global change drivers are expected to lead to communities that do not match current climate-vegetation patterns (Zarnetske et al., ). Thus, at least for near to mid-term (decade to century) forecasts of climate change effects on ANPP, temporal models are preferred over spatial models (Estiarte et al., ). These temporal models are the focus of the remainder of this review. 42 III. III. Inconsistencies with a linear temporal model Evidence for positive asymmetry Despite the near-universal use of linear models to describe the temporal relationship between PPT and ANPP (Fig. ), results from a number of recent studies are inconsistent with an underlying linear relationship (Fig. ). For example, when long-term PPT-ANPP relationships from multiple biomes were assessed, maximum ANPP values in response to high PPT years deviated more from the long-term mean than did minimum ANPP values in low PPT years (Knapp & Smith, ). This positive asymmetry in maximum vs minimum ANPP responses to PPT could not be explained by corresponding asymmetry in PPT, and suggests that ANPP in these ecosystems responded more to wet than dry years. Subsequent analyses of long-term data from > 100 additional sites revealed similar patterns of asymmetry worldwide (Fig. ). Experimental manipulations of PPT offer further support for positive asymmetry in ANPP responses to PPT. Wu et al. synthesized results from 28 experiments and reported that ANPP was much more sensitive to increased than decreased PPT (Fig. ). Unger & Jongen reported similar patterns from an even larger number of experiments. Further, they noted that positive asymmetry in ANPP responses to PPT was particularly pronounced in arid and semi-arid regions, as did Knapp & Smith . Ahlström et al. reported positive asymmetries in GPP in semi-arid ecosystems as well. Taken together, these observational and experimental analyses are inconsistent with an underlying linear model describing the PPT-ANPP relationship. Mechanisms that may lead to positive asymmetric responses in ANPP to PPT are varied. These include maintenance of ANPP during dry years as a result of the carry-over of soil water from previous years (Sala et al., ), as well as plants increasing water use efficiency during drought years (Gutschick & BassiriRad, ; Huxman et al., ). In wet years, other resources (e.g. soil nutrients) may be increased in concert with PPT, leading to higher than expected ANPP (Seastedt & Knapp, ). In addition, wet years are characterized by more numerous large P |
| Author | Alan K. Knapp Melinda D. Smith Philippe Ciais |
| Author_xml | – sequence: 1 givenname: Alan K. surname: Knapp fullname: Knapp, Alan K. email: aknapp@colostate.edu organization: Colorado State University – sequence: 2 givenname: Philippe surname: Ciais fullname: Ciais, Philippe organization: CEA CNRS UVSQ – sequence: 3 givenname: Melinda D. surname: Smith fullname: Smith, Melinda D. organization: Colorado State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28001290$$D View this record in MEDLINE/PubMed https://hal.science/hal-02904608$$DView record in HAL |
| BookMark | eNqNkstuEzEUhi1URNOWBQ8AitQNXUzr4_F1WVVAKkWAKpDYWY7jIY4m9mDPFGXHO_CGPEmdJg1SJS5e2MdH3390bkfoIMTgEHoB-BzKuQjd4hxoLeEJGgHlqpJQiwM0wpjIilP-5RAd5bzEGCvGyTN0SCTGQBQeoesbZ2OwvvXh69iHYmefe1c8Lpf_uEvO-s73pvcx_Prxs0txPtje3_p-PU6uvffnhe_yCXramDa757v3GH1---bT1aSafnh3fXU5rSwTHKqaKNFQsPOGC8tITYwiChxI4jhVkhnG6Myyuakb2QA3IIAzx4Uk1ImZU_UxOtvGXZhWd8mvTFrraLyeXE71xodLYZRjeQuFfb1lS9rfBpd7vfLZurY1wcUha1JaQhWVmP0TBSmELBeG_0AZ1JgKuYl6-ghdxiGF0p9CSYplSXRDvdpRw2zl5vuqHsb0u2abYs7JNXsEsN6sgC4roO9XoLAXj1i7G1-fjG__pvjuW7f-c2j9_uPkQfFyq1jmPqa9QpV2AmO4vgO46cnG |
| CitedBy_id | crossref_primary_10_1038_s41467_018_05948_1 crossref_primary_10_3390_f16010153 crossref_primary_10_1002_ecs2_3899 crossref_primary_10_1016_j_scitotenv_2021_148264 crossref_primary_10_1016_j_jhydrol_2022_128645 crossref_primary_10_1016_j_scitotenv_2024_177788 crossref_primary_10_1002_ldr_3854 crossref_primary_10_1016_j_jaridenv_2024_105157 crossref_primary_10_1038_s41467_024_45508_4 crossref_primary_10_1016_j_agrformet_2021_108567 crossref_primary_10_1111_1365_2745_13588 crossref_primary_10_1002_ecs2_70031 crossref_primary_10_1016_j_jaridenv_2022_104863 crossref_primary_10_1111_gcb_15170 crossref_primary_10_1002_ecy_2474 crossref_primary_10_1016_j_agrformet_2019_107622 crossref_primary_10_1111_gcb_15051 crossref_primary_10_3389_fpls_2021_778861 crossref_primary_10_1016_j_scitotenv_2019_133952 crossref_primary_10_1016_j_scitotenv_2025_178367 crossref_primary_10_1038_s43247_024_01664_5 crossref_primary_10_1016_j_agrformet_2020_108039 crossref_primary_10_1038_s41559_019_0958_3 crossref_primary_10_1016_j_geosus_2024_08_002 crossref_primary_10_1007_s42974_025_00231_y crossref_primary_10_1016_j_jag_2023_103638 crossref_primary_10_1038_s41467_025_56159_4 crossref_primary_10_1186_s13717_021_00328_y crossref_primary_10_1002_ecy_3459 crossref_primary_10_1007_s11104_018_3790_7 crossref_primary_10_1111_gcb_15729 crossref_primary_10_1111_jvs_13165 crossref_primary_10_1016_j_agrformet_2022_108954 crossref_primary_10_1016_j_agrformet_2023_109788 crossref_primary_10_1016_j_scitotenv_2023_164978 crossref_primary_10_59717_j_xinn_geo_2023_100015 crossref_primary_10_1111_ele_13761 crossref_primary_10_3389_fevo_2023_1106089 crossref_primary_10_1016_j_agrformet_2022_109252 crossref_primary_10_3390_rs15184621 crossref_primary_10_1360_TB_2025_0206 crossref_primary_10_1007_s00382_022_06158_8 crossref_primary_10_5194_essd_12_789_2020 crossref_primary_10_1029_2020GL092293 crossref_primary_10_1111_nph_15832 crossref_primary_10_1111_gcb_17463 crossref_primary_10_1111_geb_70121 crossref_primary_10_1016_j_scitotenv_2021_147062 crossref_primary_10_3390_f13060838 crossref_primary_10_3390_su14084787 crossref_primary_10_1016_j_ecolind_2024_112631 crossref_primary_10_1016_j_jenvman_2025_124709 crossref_primary_10_1016_j_scitotenv_2021_152786 crossref_primary_10_1111_1365_2435_13300 crossref_primary_10_1111_ele_12765 crossref_primary_10_1111_geb_13898 crossref_primary_10_1007_s11258_023_01382_6 crossref_primary_10_1016_j_ecolind_2022_109144 crossref_primary_10_1186_s13021_022_00210_0 crossref_primary_10_1016_j_scitotenv_2022_154760 crossref_primary_10_1111_ddi_13718 crossref_primary_10_1016_j_agrformet_2023_109752 crossref_primary_10_1016_j_ecolind_2023_110291 crossref_primary_10_1002_ldr_3715 crossref_primary_10_1007_s00442_020_04787_6 crossref_primary_10_1016_j_eja_2024_127370 crossref_primary_10_1002_ecy_2572 crossref_primary_10_3390_environments6060071 crossref_primary_10_1007_s11104_022_05812_8 crossref_primary_10_1002_wat2_1481 crossref_primary_10_1016_j_agrformet_2024_110025 crossref_primary_10_1029_2019GB006264 crossref_primary_10_1029_2023EF004096 crossref_primary_10_1016_j_scitotenv_2021_151224 crossref_primary_10_1111_gcb_16959 crossref_primary_10_1016_j_scitotenv_2022_158819 crossref_primary_10_3390_rs14205074 crossref_primary_10_1016_j_agrformet_2018_01_020 crossref_primary_10_1016_j_agrformet_2021_108354 crossref_primary_10_1111_jvs_13187 crossref_primary_10_1111_1365_2435_70094 crossref_primary_10_1002_ecy_70189 crossref_primary_10_3390_agronomy13092296 crossref_primary_10_1016_j_scitotenv_2020_136691 crossref_primary_10_1111_gcb_16392 crossref_primary_10_3390_su16145900 crossref_primary_10_1038_s42003_025_07518_w crossref_primary_10_34133_ehs_0067 crossref_primary_10_1007_s00442_023_05315_y crossref_primary_10_1017_dry_2024_1 crossref_primary_10_1016_j_scitotenv_2022_157856 crossref_primary_10_1080_17550874_2023_2277282 crossref_primary_10_3390_agriculture12122112 crossref_primary_10_1016_j_agrformet_2025_110432 crossref_primary_10_3389_fevo_2023_1189059 crossref_primary_10_1016_j_agrformet_2023_109617 crossref_primary_10_3390_jof8040384 crossref_primary_10_1007_s11368_017_1737_x crossref_primary_10_5194_esurf_9_1045_2021 crossref_primary_10_1016_j_agrformet_2017_03_006 crossref_primary_10_1002_ece3_6612 crossref_primary_10_1002_ecy_70159 crossref_primary_10_1002_ecm_1590 crossref_primary_10_1007_s00442_022_05279_5 crossref_primary_10_1016_j_geoderma_2020_114812 crossref_primary_10_1016_j_soilbio_2023_109145 crossref_primary_10_1111_1365_2745_13264 crossref_primary_10_1016_j_foreco_2023_121677 crossref_primary_10_1016_j_soilbio_2018_12_022 crossref_primary_10_1007_s11258_018_0828_0 crossref_primary_10_1038_s41598_020_65161_3 crossref_primary_10_1111_1365_2435_14011 crossref_primary_10_1016_j_ecolind_2020_107253 crossref_primary_10_1111_geb_13356 crossref_primary_10_1016_j_agrformet_2025_110720 crossref_primary_10_1016_j_foreco_2018_07_007 crossref_primary_10_1007_s11104_021_05206_2 crossref_primary_10_1111_gcb_15801 crossref_primary_10_1007_s11104_023_05894_y crossref_primary_10_1111_tpj_17144 crossref_primary_10_1016_j_scitotenv_2023_168464 crossref_primary_10_1111_gcb_17428 crossref_primary_10_1016_j_rse_2020_112108 crossref_primary_10_1111_gcb_16218 crossref_primary_10_1073_pnas_2023691118 crossref_primary_10_1016_j_scitotenv_2020_142506 crossref_primary_10_1038_s41597_023_02349_y crossref_primary_10_1016_j_soilbio_2021_108229 crossref_primary_10_1016_j_indcrop_2025_120974 crossref_primary_10_1016_j_scitotenv_2020_140204 crossref_primary_10_1016_j_ecolind_2022_108925 crossref_primary_10_1111_gcb_15480 crossref_primary_10_1002_ecy_70166 crossref_primary_10_1029_2021JG006753 crossref_primary_10_1002_ldr_4576 crossref_primary_10_1111_gcb_70282 crossref_primary_10_1016_j_jhydrol_2025_133189 crossref_primary_10_1111_jvs_12954 crossref_primary_10_1111_jvs_13008 crossref_primary_10_3390_f10020188 crossref_primary_10_1002_ecs2_2088 crossref_primary_10_1111_geb_13343 crossref_primary_10_3390_rs14143320 crossref_primary_10_1111_1365_2435_13972 crossref_primary_10_1016_j_agrformet_2024_109918 crossref_primary_10_3390_plants12051158 crossref_primary_10_1016_j_envres_2023_117565 crossref_primary_10_1016_j_fmre_2022_09_028 crossref_primary_10_1371_journal_pone_0249959 crossref_primary_10_3390_f11010113 crossref_primary_10_1007_s42729_024_02035_x crossref_primary_10_1177_2754124X231204715 crossref_primary_10_1002_ece3_6072 crossref_primary_10_1002_ece3_11517 crossref_primary_10_1002_ecs2_3719 crossref_primary_10_1111_nph_15860 crossref_primary_10_1007_s12571_024_01501_9 crossref_primary_10_1016_j_ecolind_2022_109100 crossref_primary_10_1016_j_jhydrol_2023_129235 crossref_primary_10_1016_j_jaridenv_2024_105299 crossref_primary_10_1002_eap_2978 crossref_primary_10_3389_fpls_2021_832044 crossref_primary_10_1111_oik_09829 crossref_primary_10_1111_1365_2745_13962 crossref_primary_10_1111_gcb_15270 crossref_primary_10_1111_jbi_15025 crossref_primary_10_1016_j_soilbio_2024_109321 crossref_primary_10_3389_fenvs_2020_00088 crossref_primary_10_1007_s00442_019_04506_w crossref_primary_10_1016_j_ecolind_2024_112317 crossref_primary_10_1007_s00484_024_02786_3 crossref_primary_10_1002_ece3_11528 crossref_primary_10_1007_s11104_025_07768_x crossref_primary_10_1016_j_apsoil_2022_104385 crossref_primary_10_3389_fpls_2022_1088202 crossref_primary_10_1029_2021JG006607 crossref_primary_10_1016_j_agee_2017_07_023 crossref_primary_10_1029_2024EF004798 crossref_primary_10_1038_s41467_019_08602_6 crossref_primary_10_1111_nph_16381 crossref_primary_10_1007_s11368_023_03703_8 crossref_primary_10_1093_treephys_tpae161 crossref_primary_10_1002_ece3_5439 crossref_primary_10_1016_j_scitotenv_2025_180115 crossref_primary_10_1002_ecm_70005 crossref_primary_10_1029_2021JG006735 crossref_primary_10_1016_j_jclepro_2023_135898 crossref_primary_10_1111_1365_2435_13750 crossref_primary_10_1016_j_envres_2025_120958 crossref_primary_10_3389_fpls_2022_916706 crossref_primary_10_1111_nph_14476 crossref_primary_10_1073_pnas_2305050120 crossref_primary_10_3390_rs15102591 crossref_primary_10_3390_rs16162991 crossref_primary_10_1016_j_pedobi_2023_150873 crossref_primary_10_1029_2024EF004760 crossref_primary_10_1007_s10533_020_00713_3 crossref_primary_10_1016_j_geoderma_2024_117042 crossref_primary_10_1016_j_jclepro_2021_128434 crossref_primary_10_1016_j_foreco_2020_118078 crossref_primary_10_5194_bg_15_3421_2018 crossref_primary_10_1038_s41598_017_15580_6 crossref_primary_10_3390_plants10091890 crossref_primary_10_1002_ecm_70012 crossref_primary_10_1029_2024EF005183 crossref_primary_10_1007_s11252_023_01362_8 crossref_primary_10_3390_microorganisms13040894 crossref_primary_10_3390_w14101573 crossref_primary_10_1007_s00442_019_04520_y crossref_primary_10_1016_j_rama_2019_08_010 crossref_primary_10_1016_j_apsoil_2021_104144 crossref_primary_10_1080_10106049_2020_1713230 crossref_primary_10_3389_ffgc_2023_1142979 crossref_primary_10_1007_s00442_019_04336_w crossref_primary_10_1016_j_scib_2021_10_002 crossref_primary_10_1093_jpe_rtaf051 crossref_primary_10_1111_jbi_14391 crossref_primary_10_3390_rs14071564 crossref_primary_10_1007_s10021_023_00850_4 crossref_primary_10_1111_ele_13126 crossref_primary_10_59717_j_xinn_geo_2024_100117 crossref_primary_10_1111_1365_2435_13135 crossref_primary_10_1111_geb_13824 crossref_primary_10_1029_2019EF001316 crossref_primary_10_1016_j_ecolind_2021_108023 crossref_primary_10_1007_s00442_025_05786_1 crossref_primary_10_1002_ldr_4415 crossref_primary_10_1002_ece3_5452 crossref_primary_10_1007_s11104_024_06928_9 crossref_primary_10_1073_pnas_2410748122 crossref_primary_10_1111_gcb_13706 crossref_primary_10_1016_j_scitotenv_2024_171170 crossref_primary_10_1016_j_scitotenv_2023_167856 crossref_primary_10_1029_2024GL113861 crossref_primary_10_1007_s10021_018_0296_3 crossref_primary_10_1111_1365_2435_14460 crossref_primary_10_1002_eco_2384 crossref_primary_10_1002_ecs2_3376 crossref_primary_10_1007_s00442_022_05281_x crossref_primary_10_1029_2022EF002760 crossref_primary_10_1111_ele_13455 crossref_primary_10_1016_j_agrformet_2021_108507 crossref_primary_10_1016_j_soilbio_2018_06_004 crossref_primary_10_1002_ece3_5585 crossref_primary_10_1186_s13717_023_00429_w crossref_primary_10_3390_agronomy15040851 crossref_primary_10_1016_j_geoderma_2021_115162 crossref_primary_10_1002_ecs2_4335 crossref_primary_10_1002_eco_2350 crossref_primary_10_1016_j_catena_2025_109179 crossref_primary_10_1111_gcb_14024 crossref_primary_10_1016_j_scitotenv_2023_168370 crossref_primary_10_1007_s11104_022_05435_z crossref_primary_10_1007_s11258_018_0887_2 crossref_primary_10_1093_plcell_koac322 crossref_primary_10_1088_1748_9326_acd396 crossref_primary_10_1007_s00442_025_05785_2 crossref_primary_10_1111_gcb_17404 crossref_primary_10_1002_ecy_70105 crossref_primary_10_1016_j_jenvman_2024_123729 crossref_primary_10_1002_ecy_2981 crossref_primary_10_3390_plants12152836 crossref_primary_10_1016_j_agrformet_2022_109195 crossref_primary_10_1016_j_agrformet_2022_109073 crossref_primary_10_1111_jvs_13223 crossref_primary_10_1029_2018JG004799 crossref_primary_10_1111_gcb_15345 crossref_primary_10_1111_oik_08098 crossref_primary_10_1093_nsr_nwad049 crossref_primary_10_1016_j_agrformet_2020_108126 crossref_primary_10_1016_j_agee_2025_109831 crossref_primary_10_1128_mSystems_00061_19 crossref_primary_10_3390_rs14174198 crossref_primary_10_1093_treephys_tpab027 crossref_primary_10_1016_j_agee_2025_109834 crossref_primary_10_1016_j_ecolind_2022_108630 crossref_primary_10_1111_nph_17543 crossref_primary_10_5194_bg_19_1913_2022 crossref_primary_10_1016_j_jhydrol_2025_132945 crossref_primary_10_1016_j_foreco_2019_06_035 crossref_primary_10_1016_j_geoderma_2020_114650 crossref_primary_10_3389_fpls_2018_00254 crossref_primary_10_1111_jvs_13077 crossref_primary_10_1016_j_scitotenv_2018_02_114 crossref_primary_10_1016_j_agrformet_2025_110682 crossref_primary_10_1186_s13717_023_00440_1 crossref_primary_10_1038_s41586_024_08478_7 crossref_primary_10_1016_j_scitotenv_2019_135899 crossref_primary_10_3390_f15071142 crossref_primary_10_1002_ecy_3483 crossref_primary_10_1007_s00442_023_05401_1 crossref_primary_10_1007_s10021_020_00555_y crossref_primary_10_3390_rs12132130 crossref_primary_10_1016_j_scitotenv_2024_174903 crossref_primary_10_3390_rs11030360 crossref_primary_10_1111_1365_2745_70076 crossref_primary_10_1007_s11427_020_1837_9 crossref_primary_10_1016_j_ecolind_2022_108762 crossref_primary_10_1016_j_foreco_2019_06_021 crossref_primary_10_1029_2023JG007641 crossref_primary_10_1111_jvs_13082 crossref_primary_10_1007_s42452_021_04679_1 crossref_primary_10_1111_1365_2745_13779 crossref_primary_10_3390_agronomy13082030 crossref_primary_10_5194_bg_18_2213_2021 crossref_primary_10_1007_s00442_018_4284_2 crossref_primary_10_1016_j_agrformet_2023_109350 crossref_primary_10_1111_oik_10749 crossref_primary_10_1016_j_soilbio_2019_107638 crossref_primary_10_1029_2023JG007637 crossref_primary_10_1111_gcb_16172 crossref_primary_10_1007_s11104_020_04551_y crossref_primary_10_1093_jpe_rtae059 crossref_primary_10_1016_j_plaphy_2025_109914 crossref_primary_10_1007_s11104_021_05029_1 crossref_primary_10_1016_j_ecolind_2024_112507 crossref_primary_10_1016_j_fmre_2025_06_007 crossref_primary_10_1016_j_ecolind_2025_113208 crossref_primary_10_2478_eko_2023_0039 crossref_primary_10_3389_fevo_2023_1146850 crossref_primary_10_1111_gcb_16403 crossref_primary_10_1088_1748_9326_acde90 crossref_primary_10_1111_ele_14067 crossref_primary_10_1016_j_scitotenv_2021_146901 crossref_primary_10_1111_1365_2745_13324 crossref_primary_10_1002_ece3_71625 crossref_primary_10_3390_rs16132368 crossref_primary_10_1002_ecy_2136 crossref_primary_10_1111_geb_12761 crossref_primary_10_1038_s41559_024_02500_x crossref_primary_10_3390_ijerph19116915 crossref_primary_10_1111_1365_2435_14328 crossref_primary_10_1111_gcb_16998 crossref_primary_10_1016_j_scitotenv_2017_10_203 crossref_primary_10_1016_j_agrformet_2023_109325 crossref_primary_10_1007_s10021_024_00951_8 crossref_primary_10_1016_j_agrformet_2023_109323 crossref_primary_10_1038_s41559_025_02806_4 crossref_primary_10_1088_1748_9326_ab70bb crossref_primary_10_1163_2031356X_35010012 crossref_primary_10_1088_1748_9326_add94d crossref_primary_10_1016_j_agrformet_2024_110176 crossref_primary_10_1016_j_rama_2025_03_009 crossref_primary_10_1016_j_gloplacha_2025_104893 crossref_primary_10_1016_j_agrformet_2025_110598 |
| Cites_doi | 10.1007/s00442-008-1116-9 10.1029/2008GL035408 10.1111/gcb.13156 10.1086/282523 10.1002/eco.65 10.1111/j.1466-8238.2009.00504.x 10.1146/annurev.earth.35.031306.140057 10.1126/science.291.5503.481 10.1111/gcb.13269 10.2307/1938237 10.1046/j.1469-8137.2003.00866.x 10.1038/srep04364 10.1890/ES13-00210.1 10.1007/s10021-015-9949-7 10.1007/978-3-319-08807-5_14 10.1093/acprof:oso/9780195168662.001.0001 10.1038/nature02561 10.1641/B580908 10.1111/gcb.13161 10.1890/15-1437.1 10.1890/13-2186.1 10.1890/07-0626.1 10.1086/285494 10.1038/nature16986 10.1111/j.1365-2486.2012.02687.x 10.5194/bg-11-2909-2014 10.1038/nature11836 10.1890/15-1197.1 10.1111/1365-2745.12273 10.1002/grl.50420 10.1111/j.1365-2486.2008.01629.x 10.1038/nature12350 10.1126/science.1082750 10.2307/1941874 10.1111/gcb.13441 10.1098/rstb.2011.0347 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2 10.5194/bg-9-3857-2012 10.1890/09-1275.1 10.1016/j.scitotenv.2016.05.108 10.1126/science.aaa1668 10.1890/08-1815.1 10.1890/07-0992.1 10.1111/j.1365-2745.2011.01833.x 10.1073/pnas.1207068110 10.1111/gcb.12888 10.1016/j.jhydrol.2005.07.003 10.1111/gcb.13412 10.1111/j.1469-8137.2008.02436.x 10.1126/science.1222732 10.1002/2014GB004826 10.1007/s100219900016 10.1002/2013GL058499 10.1073/pnas.0704243104 10.1111/j.1365-2486.2010.02302.x |
| ContentType | Journal Article |
| Copyright | 2016 New Phytologist Trust 2016 The Authors. New Phytologist © 2016 New Phytologist Trust 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. Copyright © 2017 New Phytologist Trust Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2016 New Phytologist Trust – notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust – notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. – notice: Copyright © 2017 New Phytologist Trust – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7U8 7X8 JXQ 7S9 L.6 1XC |
| DOI | 10.1111/nph.14381 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts TOXLINE MEDLINE - Academic Toxline AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management TOXLINE MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | TOXLINE AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1469-8137 |
| EndPage | 47 |
| ExternalDocumentID | oai:HAL:hal-02904608v1 4321440805 28001290 10_1111_nph_14381 NPH14381 90001550 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: US National Science Foundation (NSF) |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABUFD ADXHL CITATION O8X CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7U8 7X8 JXQ 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c5761-3297f41cdf67c5232a9291e182e64985a554bc5da3f8f16a17165e67824e7be93 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 366 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398130300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X |
| IngestDate | Tue Oct 14 20:04:07 EDT 2025 Fri Sep 05 17:25:32 EDT 2025 Tue Oct 07 09:45:29 EDT 2025 Fri Sep 05 13:37:11 EDT 2025 Fri Jul 25 10:47:57 EDT 2025 Wed Feb 19 02:35:02 EST 2025 Sat Nov 29 04:38:26 EST 2025 Tue Nov 18 22:11:22 EST 2025 Wed Jan 22 16:54:33 EST 2025 Thu Jul 03 22:32:07 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | precipitation productivity drought carbon cycle variability climate change climate extremes |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 The Authors. New Phytologist © 2016 New Phytologist Trust. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5761-3297f41cdf67c5232a9291e182e64985a554bc5da3f8f16a17165e67824e7be93 |
| Notes | 214 Luo , 5–7 See also the Commentary on this article by et al. . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
| ORCID | 0000-0001-8560-4943 |
| OpenAccessLink | https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14381 |
| PMID | 28001290 |
| PQID | 1884084605 |
| PQPubID | 2026848 |
| PageCount | 7 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02904608v1 proquest_miscellaneous_2000494805 proquest_miscellaneous_1877818701 proquest_miscellaneous_1851304785 proquest_journals_1884084605 pubmed_primary_28001290 crossref_primary_10_1111_nph_14381 crossref_citationtrail_10_1111_nph_14381 wiley_primary_10_1111_nph_14381_NPH14381 jstor_primary_90001550 |
| PublicationCentury | 2000 |
| PublicationDate | April 2017 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Lancaster |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2017 |
| Publisher | New Phytologist Trust Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2007; 104 2010; 19 2011; 99 2008; 35 2012; 18 2015; 348 2012; 367 2011; 17 2007; 35 2014; 5 2014; 4 2014b; 11 2001; 291 2009; 90 2003; 160 2011; 21 2008; 158 2013; 110 2010; 3 2014; 95 2003; 84 2012; 336 1992; 2 2014a; 28 2006; 319 2016; 19 2012 2013; 40 2008; 18 2013; 500 1968; 102 2008; 58 2008; 14 2016; 97 2007 1993; 141 1978; 59 2016; 566 2014; 41 2004; 429 2015; 21 2016; 531 2008; 89 2016 2013; 294 2015 1998; 1 2008; 178 2003; 300 2016; 22 2014; 102 2012; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 Raz‐Yaseef N (e_1_2_7_38_1) 2010; 3 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 28239892 - New Phytol. 2017 Apr;214(1):5-7 |
| References_xml | – volume: 89 start-page: 2140 year: 2008 end-page: 2153 article-title: Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau publication-title: Ecology – volume: 95 start-page: 2646 year: 2014 end-page: 2656 article-title: Resistance and resilience of a grassland ecosystem to climate extremes publication-title: Ecology – volume: 97 start-page: 1553 year: 2016 end-page: 1563 article-title: Soil moisture mediates alpine life form and community productivity responses to warming publication-title: Ecology – volume: 2 start-page: 397 year: 1992 end-page: 403 article-title: Long‐term forage production of North American shortgrass steppe publication-title: Ecological Applications – volume: 17 start-page: 927 year: 2011 end-page: 942 article-title: Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation publication-title: Global Change Biology – volume: 566 start-page: 463 year: 2016 end-page: 467 article-title: More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest publication-title: Science of the Total Environment – volume: 367 start-page: 3135 year: 2012 end-page: 3144 article-title: Legacies of precipitation fluctuations on primary production: theory and data synthesis publication-title: Philosophical Transactions of the Royal Society of London B – volume: 3 start-page: 143 year: 2010 end-page: 154 article-title: Ecohydrology of a semi‐arid forest: partitioning among water balance components and its implications for predicted precipitation changes publication-title: Ecohydrology – volume: 21 start-page: 2624 year: 2015 end-page: 2633 article-title: Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments publication-title: Global Change Biology – volume: 178 start-page: 719 year: 2008 end-page: 739 article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? publication-title: New Phytologist – volume: 19 start-page: 253 year: 2010 end-page: 267 article-title: Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems publication-title: Global Ecology and Biogeography – volume: 99 start-page: 651 year: 2011 end-page: 655 article-title: The ecological role of climate extremes: current understanding and future prospects publication-title: Journal of Ecology – volume: 41 start-page: 547 year: 2014 end-page: 554 article-title: Detection of spatially aggregated changes in temperature and precipitation extremes publication-title: Geophysical Research Letters – volume: 84 start-page: 1165 year: 2003 end-page: 1170 article-title: Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation publication-title: Ecology – volume: 102 start-page: 1419 year: 2014 end-page: 1428 article-title: Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands publication-title: Journal of Ecology – volume: 319 start-page: 83 year: 2006 end-page: 95 article-title: Evidence for intensification of the global water cycle: review and synthesis publication-title: Journal of Hydrology – volume: 22 start-page: 1809 year: 2016 end-page: 1820 article-title: Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling publication-title: Global Change Biology – volume: 35 start-page: L23710 year: 2008 article-title: Relationship between variability in aboveground net primary production and precipitation in global grasslands publication-title: Geophysical Research Letters – start-page: 347 year: 2015 end-page: 393 – volume: 110 start-page: 52 year: 2013 end-page: 57 article-title: Response of vegetation to drought time‐scales across global land biomes publication-title: Proceedings of the National Academy of Sciences, USA – year: 2016 article-title: Global‐change drivers of ecosystem functioning modulated by natural variability and saturating responses publication-title: Global Change Biology – volume: 4 start-page: 4364 year: 2014 article-title: The key role of dry days in changing regional climate and precipitation regimes publication-title: Scientific Reports – year: 2016 article-title: Carbon cycle responses of semi‐arid ecosystems to positive asymmetry in rainfall publication-title: Global Change Biology – volume: 40 start-page: 3163 year: 2013 end-page: 3169 article-title: A canonical response of precipitation characteristics to global warming from CMIP5 models publication-title: Geophysical Research Letters – volume: 58 start-page: 811 year: 2008 end-page: 821 article-title: Consequences of more extreme precipitation regimes for terrestrial ecosystems publication-title: BioScience – volume: 22 start-page: 2570 year: 2016 end-page: 2581 article-title: Few multi‐year precipitation‐reduction experiments find a shift in the productivity–precipitation relationship publication-title: Global Change Biology – volume: 14 start-page: 1986 year: 2008 end-page: 1999 article-title: Modeled interactive effects of precipitation, temperature, and CO on ecosystem carbon and water dynamics in different climatic zones publication-title: Global Change Biology – volume: 21 start-page: 1429 year: 2011 end-page: 1442 article-title: Ecological forecasting and data assimilation in a data‐rich era publication-title: Ecological Applications – volume: 28 start-page: 585 year: 2014a end-page: 600 article-title: Impact of large‐scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data publication-title: Global Biogeochemical Cycles – volume: 18 start-page: 453 year: 2008 end-page: 466 article-title: Modeling patterns of nonlinearity in ecosystem responses to temperature, CO , and precipitation changes publication-title: Ecological Applications – volume: 11 start-page: 2909 year: 2014b end-page: 2924 article-title: Extreme events in gross primary production: a characterization across continents publication-title: Biogeosciences – volume: 348 start-page: 895 year: 2015 end-page: 899 article-title: The dominant role of semi‐arid ecosystems in the trend and variability of the land CO sink publication-title: Science – volume: 291 start-page: 481 year: 2001 end-page: 484 article-title: Variation among biomes in temporal dynamics of aboveground primary production publication-title: Science – volume: 141 start-page: 621 year: 1993 end-page: 633 article-title: Consequences of non‐equilibrium resource availability across multiple time scales: the transient maxima hypothesis publication-title: American Naturalist – volume: 97 start-page: 561 year: 2016 end-page: 568 article-title: Does ecosystem sensitivity to precipitation at the site‐level conform to regional‐scale predictions? publication-title: Ecology – volume: 102 start-page: 67 year: 1968 end-page: 74 article-title: Net primary productivity of terrestrial environments: predictions from climatological data publication-title: American Naturalist – year: 2007 – volume: 104 start-page: 12942 year: 2007 end-page: 12947 article-title: Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems publication-title: Proceedings of the National Academy of Sciences, USA – volume: 158 start-page: 129 year: 2008 end-page: 140 article-title: Increasing precipitation event size increases aboveground net primary productivity in a semi‐arid grassland publication-title: Oecologia – volume: 160 start-page: 21 year: 2003 end-page: 42 article-title: Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences publication-title: New Phytologist – volume: 500 start-page: 287 year: 2013 end-page: 295 article-title: Climate extremes and the carbon cycle publication-title: Nature – volume: 18 start-page: 2246 year: 2012 end-page: 2255 article-title: Sensitivity of mean annual primary production to precipitation publication-title: Global Change Biology – volume: 531 start-page: 229 year: 2016 end-page: 232 article-title: Sensitivity of global terrestrial ecosystems to climate variability publication-title: Nature – volume: 429 start-page: 651 year: 2004 end-page: 654 article-title: Convergence across biomes to a common rain‐use efficiency publication-title: Nature – year: 2012 – volume: 300 start-page: 1560 year: 2003 end-page: 1563 article-title: Climate‐driven increases in global terrestrial net primary production from 1982 to 1999 publication-title: Science – volume: 19 start-page: 521 year: 2016 end-page: 533 article-title: Drivers of variation in aboveground net primary productivity and plant composition differ across a broad precipitation gradient publication-title: Ecosystems – volume: 59 start-page: 1239 year: 1978 end-page: 1247 article-title: Primary productivity and water use in native forest, grassland, and desert ecosystems publication-title: Ecology – volume: 336 start-page: 1515 year: 2012 end-page: 1518 article-title: Biotic multipliers of climate change publication-title: Science – volume: 9 start-page: 3857 year: 2012 end-page: 3874 article-title: A framework for benchmarking land models publication-title: Biogeosciences – volume: 294 start-page: 349 year: 2013 end-page: 352 article-title: Ecosystem resilience despite large‐scale altered hydroclimatic conditions publication-title: Nature – volume: 1 start-page: 206 year: 1998 end-page: 215 article-title: Contrasting climatic controls on the estimated productivity of global terrestrial biomes publication-title: Ecosystems – volume: 90 start-page: 3279 year: 2009 end-page: 3289 article-title: A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change publication-title: Ecology – volume: 22 start-page: 1394 year: 2016 end-page: 1405 article-title: A cross‐biome synthesis of soil respiration and its determinants under simulated precipitation changes publication-title: Global Change Biology – volume: 5 start-page: 58 year: 2014 article-title: Anticipating changes in variability of grassland production due to increases in interannual precipitation variability publication-title: Ecosphere – volume: 35 start-page: 313 year: 2007 end-page: 347 article-title: Balancing the global carbon budget publication-title: Annual Review of Earth and Planetary Sciences – ident: e_1_2_7_14_1 doi: 10.1007/s00442-008-1116-9 – ident: e_1_2_7_53_1 doi: 10.1029/2008GL035408 – ident: e_1_2_7_30_1 doi: 10.1111/gcb.13156 – ident: e_1_2_7_40_1 doi: 10.1086/282523 – volume: 3 start-page: 143 year: 2010 ident: e_1_2_7_38_1 article-title: Ecohydrology of a semi‐arid forest: partitioning among water balance components and its implications for predicted precipitation changes publication-title: Ecohydrology doi: 10.1002/eco.65 – ident: e_1_2_7_10_1 doi: 10.1111/j.1466-8238.2009.00504.x – ident: e_1_2_7_17_1 doi: 10.1146/annurev.earth.35.031306.140057 – ident: e_1_2_7_26_1 doi: 10.1126/science.291.5503.481 – ident: e_1_2_7_5_1 doi: 10.1111/gcb.13269 – ident: e_1_2_7_49_1 doi: 10.2307/1938237 – ident: e_1_2_7_11_1 doi: 10.1046/j.1469-8137.2003.00866.x – ident: e_1_2_7_36_1 doi: 10.1038/srep04364 – ident: e_1_2_7_18_1 doi: 10.1890/ES13-00210.1 – ident: e_1_2_7_27_1 doi: 10.1007/s10021-015-9949-7 – ident: e_1_2_7_47_1 doi: 10.1007/978-3-319-08807-5_14 – ident: e_1_2_7_6_1 doi: 10.1093/acprof:oso/9780195168662.001.0001 – ident: e_1_2_7_22_1 doi: 10.1038/nature02561 – ident: e_1_2_7_24_1 doi: 10.1641/B580908 – ident: e_1_2_7_16_1 doi: 10.1111/gcb.13161 – ident: e_1_2_7_50_1 doi: 10.1890/15-1437.1 – ident: e_1_2_7_15_1 doi: 10.1890/13-2186.1 – ident: e_1_2_7_55_1 doi: 10.1890/07-0626.1 – ident: e_1_2_7_43_1 doi: 10.1086/285494 – ident: e_1_2_7_44_1 doi: 10.1038/nature16986 – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-2486.2012.02687.x – ident: e_1_2_7_57_1 doi: 10.5194/bg-11-2909-2014 – ident: e_1_2_7_37_1 doi: 10.1038/nature11836 – ident: e_1_2_7_51_1 doi: 10.1890/15-1197.1 – ident: e_1_2_7_9_1 doi: 10.1111/1365-2745.12273 – ident: e_1_2_7_28_1 doi: 10.1002/grl.50420 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2486.2008.01629.x – ident: e_1_2_7_39_1 doi: 10.1038/nature12350 – ident: e_1_2_7_35_1 doi: 10.1126/science.1082750 – ident: e_1_2_7_29_1 doi: 10.2307/1941874 – ident: e_1_2_7_8_1 doi: 10.1111/gcb.13441 – ident: e_1_2_7_41_1 doi: 10.1098/rstb.2011.0347 – ident: e_1_2_7_42_1 doi: 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2 – ident: e_1_2_7_33_1 doi: 10.5194/bg-9-3857-2012 – ident: e_1_2_7_32_1 doi: 10.1890/09-1275.1 – ident: e_1_2_7_20_1 doi: 10.1016/j.scitotenv.2016.05.108 – ident: e_1_2_7_2_1 doi: 10.1126/science.aaa1668 – ident: e_1_2_7_46_1 doi: 10.1890/08-1815.1 – ident: e_1_2_7_3_1 doi: 10.1890/07-0992.1 – ident: e_1_2_7_45_1 doi: 10.1111/j.1365-2745.2011.01833.x – ident: e_1_2_7_48_1 doi: 10.1073/pnas.1207068110 – ident: e_1_2_7_25_1 doi: 10.1111/gcb.12888 – ident: e_1_2_7_21_1 doi: 10.1016/j.jhydrol.2005.07.003 – ident: e_1_2_7_13_1 doi: 10.1111/gcb.13412 – ident: e_1_2_7_34_1 doi: 10.1111/j.1469-8137.2008.02436.x – ident: e_1_2_7_54_1 doi: 10.1126/science.1222732 – ident: e_1_2_7_56_1 doi: 10.1002/2014GB004826 – ident: e_1_2_7_4_1 doi: 10.1007/s100219900016 – ident: e_1_2_7_7_1 doi: 10.1002/2013GL058499 – ident: e_1_2_7_12_1 doi: 10.1073/pnas.0704243104 – ident: e_1_2_7_23_1 – ident: e_1_2_7_52_1 doi: 10.1111/j.1365-2486.2010.02302.x – reference: 28239892 - New Phytol. 2017 Apr;214(1):5-7 |
| SSID | ssj0009562 |
| Score | 2.65301 |
| SecondaryResourceType | review_article |
| Snippet | Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP... Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 Summary Precipitation (PPT) is a primary climatic determinant of plant growth... Precipitation ( PPT ) is a primary climatic determinant of plant growth and aboveground net primary production ( ANPP ) over much of the globe. Thus, PPT –... Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 SUMMARY: Precipitation (PPT) is a primary climatic determinant of plant growth... 41 I. I. Introduction Terrestrial ecosystems cover less than one-third of the Earth's surface, yet account for approximately two-thirds of global net primary... Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT-ANPP... |
| SourceID | hal proquest pubmed crossref wiley jstor |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 41 |
| SubjectTerms | Arid zones Atmosphere Biogeochemistry Carbon cycle Climate Change climate extremes Continental interfaces, environment Data collection Drought Ecological function Ecosystem structure ecosystems Environmental impact Extreme drought Grasslands Hydrologic cycle Models, Theoretical Moisture content Nonlinear Dynamics nonlinear models Ocean, Atmosphere Plant biomass Plant Development Plant growth precipitation Primary production primary productivity productivity Rain Sciences of the Universe Semiarid lands Soil water Statistical models Tansley insight Terrestrial ecosystems Terrestrial environments Time Factors Variability vegetation Vegetation patterns Water use |
| Subtitle | implications for climate change |
| Title | Reconciling inconsistencies in precipitation–productivity relationships |
| URI | https://www.jstor.org/stable/90001550 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14381 https://www.ncbi.nlm.nih.gov/pubmed/28001290 https://www.proquest.com/docview/1884084605 https://www.proquest.com/docview/1851304785 https://www.proquest.com/docview/1877818701 https://www.proquest.com/docview/2000494805 https://hal.science/hal-02904608 |
| Volume | 214 |
| WOSCitedRecordID | wos000398130300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1469-8137 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SNIde-k67bbq4pYdeXCxZtmR6Sh_LFsISSkP3ZmRZZh2C16yTQG_9D_2H_SWdkWyzgaQUevNjzMoazer7rNE3AG-EKpOkkDqMhS5CkVVxqKyxCOSkUVUquS60KzYhFwu1XGYnO_B-2Avj9SHGD24UGe7_mgJcF91WkDft6h3V7ibqw4QLyu9fFluCuykfFJhTkS57VSHK4hmfvDYX7a4oE9InJd4EN6-jVzf9zO7_V8MfwL0edQZHfpg8hB3bPIL9D2tEhj8ewxlx0MbUtDM9ILWGpiPnU9neDs-DlhQw2l7M-_fPX61XiXVlJ4LNkE23qrGFQb2VoR4gIA7MeY2g2AZ-h_ETOJ19_vZxHvY1GEKDTISFMc9kJZgp0W8GSSvXiKeYRVZiU5GpRCMcKUxS6rhSFUs1qe8kFmdALqwsbBYfwF6zbuwzCHTMk6qsIlYiLZPIXq1CvFNFhmUm1SKewNvBG7np34nqZJznA1HBnstdz03g9WjaelWOG43QpeN90tGeHx3ndC3iGS0Iqys0OnAeH82yyNO2CRwOQyDvw7rLmUI-rGgpeQKvxtsYkLTKohu7viSbhNFapvqrjZSIlGTEbrfhvXYP_dZTPwTHRnLlPyBil7mRdnsn5IuTuTt4_u-mL-AuJ_Di8pMOYe9ic2lfwr65uqi7zRR25VJN4c6nr7PT46kLuj_v1iyM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL0a3SR44XtQGGAQD7wExY4TOxIv46MqolQT2qS-RY7jqEFTGrXbJN74D_xDfgn3xknUSRtC4q1pblTHvrc-x74-F-C11EUc58oEkTR5INMyCrSzDoGcsrpMlDC5aYtNqPlcLxbp0Q6868_CeH2IYcGNIqP9v6YApwXprSivm-VbKt6N3GdXohvFI9j9-G1yMtsS3U1Er8KcyGTRKQtRJs_w8KX56MaSsiF9YuJVkPMygm2noMmd_2v8XbjdQU926H3lHuy4-j7svV8hPPzxAL4TEa1tRcfTGUk21BvyAKrdu8Fr1pAMRtMpev_--avxUrFt7Qm27lPqlhU2kVVbaeoMUTGzpxUiY8f8MeOHcDL5dPxhGnSFGAKLdIQHkUhVKbktcPAsMldhEFRxh9TEJTLVsUFMktu4MFGpS54YkuCJHU6DQjqVuzTah1G9qt1jYCYScVmUIS-QmymksE4j6ClDy1ObGBmN4U0_HJnt3omKZZxmPVvBnsvanhvDq8G08dIcVxrhmA73SUx7ejjL6LtQpLQrrC_QaL8d8sEsDT13G8NB7wNZF9ubjGskxZr2k8fwcriNUUlbLaZ2q3OyiTltaOq_2iiFcEmF_Hob0Qn40G898j44NFJov4qIXda62vWdkM2Ppu2HJ_9u-gJuTo-_zrLZ5_mXp3BLEJppE5YOYHS2PnfPYM9enFWb9fMu6v4A4dAvUA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXGNiFe-B4UBhjEAy-ZYseJHYmXwaiKqKoKMalvkePYatCURu02iTf-A_-QX8K9dhJ10oaQeGubW8Wx743Psa_PJeStUFWallJHidBlJHKXRMoaC0BOGuUyyXWpfbEJOZupxSKf75D3_VmYoA8xLLhhZPj3NQa4bSu3FeVNuzzC4t3AffZEmmcQlnsnX8en0y3R3Yz3KsyZyBadshBm8gx_vjIf3VpiNmRITLwOcl5FsH4KGt_7v8bfJ3c76EmPg688IDu2eUj2P6wAHv54RL4jEW1MjcfTKUo2NBv0AKzdu4HvtEUZjLZT9P7981cbpGJ97Qm67lPqljU0kdZbaeoUUDE1ZzUgY0vDMePH5HT86dvHSdQVYogM0BEWJTyXTjBTweAZYK5cA6hiFqiJzUSuUg2YpDRppROnHMs0SvCkFqZBLqwsbZ4ckN1m1dinhOqEp65yMauAm0mgsFYB6HGxYbnJtEhG5F0_HIXpngmLZZwVPVuBnit8z43Im8G0DdIc1xrBmA7XUUx7cjwt8LeY57grrC7B6MAP-WCWx4G7jchh7wNFF9ubgikgxQr3k0fk9XAZohK3WnRjVxdokzLc0FR_tZES4JKM2c02vBPwwXs9CT44NJKrsIoIXeZd7eZOKGbzif_w7N9NX5Hb85NxMf08-_Kc3OEIZny-0iHZPV9f2Bdk31ye15v1yy7o_gAoQS7L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconciling+inconsistencies+in+precipitation-productivity+relationships%3A+implications+for+climate+change&rft.jtitle=The+New+phytologist&rft.au=Knapp%2C+Alan+K&rft.au=Ciais%2C+Philippe&rft.au=Smith%2C+Melinda+D&rft.date=2017-04-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=214&rft.issue=1&rft.spage=41&rft.epage=47&rft_id=info:doi/10.1111%2Fnph.14381&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |