Reconciling inconsistencies in precipitation–productivity relationships implications for climate change

Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empiri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist Jg. 214; H. 1; S. 41 - 47
Hauptverfasser: Knapp, Alan K., Ciais, Philippe, Smith, Melinda D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England New Phytologist Trust 01.04.2017
Wiley Subscription Services, Inc
Wiley
Schlagworte:
ISSN:0028-646X, 1469-8137
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT–ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT–ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change.
AbstractList Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 SUMMARY: Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT-ANPP relationships are important both ecologically and to land-atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT-ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT-ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change.
Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT–ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT–ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change.
Precipitation ( PPT ) is a primary climatic determinant of plant growth and aboveground net primary production ( ANPP ) over much of the globe. Thus, PPT – ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT – ANPP relationships derived from long‐term site‐based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT – ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. Contents Summary 41 I. Introduction 41 II. The PPT–ANPP relationship: spatial vs temporal models 42 III. Inconsistencies with a linear temporal model 43 IV. Revision of the temporal PPT–ANPP model to better forecast climate change impacts 44 V. Conclusions 45 Acknowledgements 46 References 46 See also the Commentary on this article by Luo et al. , 214 : 5–7 .
Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT-ANPP relationships are important both ecologically and to land-atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT-ANPP relationships derived from long-term site-based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT-ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. See also the Commentary on this article by Luo et al., 214: 5-7 .
Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 Summary Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP relationships are important both ecologically and to land–atmosphere models that couple terrestrial vegetation to the global carbon cycle. Empirical PPT–ANPP relationships derived from long‐term site‐based data are almost always portrayed as linear, but recent evidence has accumulated that is inconsistent with an underlying linear relationship. We review, and then reconcile, these inconsistencies with a nonlinear model that incorporates observed asymmetries in PPT–ANPP relationships. Although data are currently lacking for parameterization, this new model highlights research needs that, when met, will improve our understanding of carbon cycle dynamics, as well as forecasts of ecosystem responses to climate change. See also the Commentary on this article by Luo et al., 214: 5–7.
41 I. I. Introduction Terrestrial ecosystems cover less than one-third of the Earth's surface, yet account for approximately two-thirds of global net primary production (NPP), with the carbon (C) resident in terrestrial plant biomass equivalent to c. 70% of that in the atmosphere (Houghton, ). The aboveground fraction of NPP (ANPP) is particularly important both as an integrator of terrestrial ecosystem function (Fahey & Knapp, ), and because humans depend on ANPP for food, fiber and fuel (Haberl et al., ). Thus, in this era of unprecedented climate change, an understanding of the primary controls of ANPP is important from climatological, ecological and socioeconomic perspectives. There is a rich history of foundational studies documenting water availability as a key determinant of spatial and temporal patterns of ANPP (e.g. Rosenzweig, ; Webb et al., ), and more recent analyses have confirmed that precipitation (PPT) inputs, or alternative measures of water availability, limit or co-limit ANPP, as well as gross primary production (GPP), over much of the globe (Fig. ; Nemani et al., ; Garbulsky et al., ; Ahlström et al., ; Seddon et al., ). Of course, some biomes are more strongly limited by water than others (Fig. ) but, even in cold or humid regions, in which temperature or other factors are expected to more strongly limit ANPP, ecosystems are surprisingly sensitive to variations in water availability, directly or indirectly (Schuur, ; Vicente-Serrano et al., ; Winkler et al., ). Thus, forecast changes in PPT are predicted to have significant impacts on ANPP from local scales that extend to the global C cycle (Reichstein et al., ). While a warming atmosphere is the most certain climatic change occurring, the global hydrological cycle has been forecast to intensify as well (IPCC, ). This intensification may be manifest in many ways, including increased interannual PPT variability, more frequent extreme PPT years (wet and dry) and alterations in annual PPT amount, with some regions expected to become wetter and others drier (Lau et al., ; Polade et al., ). Recent climatological trends have supported these predictions (Huntington, ; Fischer & Knutti, ; Hubbart et al., ). Thus, forecasting how future ecosystem structure and function will respond to changing PPT regimes requires a robust understanding of the relationship between PPT and ANPP. Key to such forecasts is the presumption that the contemporary form of the PPT-ANPP relationship is appropriate for the prediction of responses to climate change. In the last two decades, ecologists have conducted scores of analyses of long-term ANPP datasets, and modeling and experimental studies, to provide insights into how ANPP (and other C cycle components) will respond to future PPT regimes. Although much has been learned, this body of research includes a number of results that are inconsistent with one another and our current understanding of the PPT-ANPP relationship. This lack of clarity with regard to how ANPP responds to a primary climatic control suggests that the PPT-ANPP relationship needs to be revisited. Below, we summarize recent research results with an emphasis on discrepancies between what has been observed vs expected based on our contemporary understanding of the PPT-ANPP relationship. We then reconcile these inconsistencies with a new conceptual model for the PPT-ANPP relationship, one which highlights research needs that, when addressed, will improve forecasts of C cycle responses to future changes in PPT. 41 II. II. The PPT-ANPP relationship: spatial vs temporal models The PPT-ANPP relationship is typically derived from multi-year measurements of PPT and ANPP, and is viewed through either a spatial or temporal lens. This has led to two distinct models: spatial models based on ANPP data combined from many sites arrayed along PPT gradients, and temporal models derived from individual sites in which PPT and ANPP have varied over time (Fig. ). These two models are often related because spatial models are usually based on mean values from site-based temporal models (Huxman et al., ). Statistical relationships for spatial models are usually nonlinear (concave down or saturating, Fig. ) when they span large gradients in PPT, although these can be linear when models are restricted to a single biome (Fig. , e.g. grasslands - Sala et al., ). Temporal PPT-ANPP relationships from long-term site-level data are almost always portrayed as linear regardless of the ecosystem type (Fig. ). Although more complex nonlinear statistical models have been fitted to some PPT-ANPP relationships, in most cases, linear and nonlinear models explain equal amounts of variation, nonlinearities tend to be weak, and support for nonlinear over linear models is minimal (Hsu et al., ; Hsu & Adler, ). Spatial and temporal models often share the same data, but the slopes of spatial relationships are usually much steeper than those of temporal models (Fig. ). Thus, temporal models predict that ANPP will be less sensitive to future changes in PPT than do spatial models (Estiarte et al., ). Several mechanisms have been posited to explain why spatial models predict greater sensitivity of ANPP to PPT. The most likely is that spatial models include both vegetation and PPT change along gradients of PPT, whereas vegetation does not change appreciably over time in temporal models. This places a 'vegetation constraint' (Lauenroth & Sala, ) on ANPP responses to PPT at the site level. For example, plants in arid ecosystems tend to be smaller, with inherently slower absolute growth rates and reduced plant and meristem densities relative to those in more mesic ecosystems (Knapp & Smith, ; Huxman et al., ; La Pierre et al., ). As a result, ANPP responses to wet years in arid ecosystems are constrained by these plant community characteristics. Indeed, Gaitan et al. estimated that two-thirds of the increase in ANPP along regional PPT gradients in Patagonia could be attributed to changes in plant communities and not to direct responses to increased PPT. In addition, Sala et al. argued that 'legacy effects' of previous year's PPT on current year's ANPP are widespread. In this case, previous wet or dry years can dampen ANPP responses in subsequent years and reduce the slope of site-based PPT-ANPP relationships. Despite differences in sensitivity to PPT, both models predict that the sensitivity of ANPP to PPT decreases from dry to wet ecosystems, as a result of increasing biogeochemical limitations of ANPP as ecosystems get wetter (Huxman et al., ). Although climate change is expected to affect plant community and biogeochemical constraints on ANPP, both of which are implicitly incorporated into empirically derived spatial models, there is little evidence that spatial models are superior to temporal models for the prediction of ANPP responses to future changes in PPT (Estiarte et al., ; Wilcox et al., ). For example, when predictions from temporal vs spatial models were compared with results from multiyear PPT manipulation experiments, temporal models performed consistently better (Estiarte et al., ). This is probably because substantial changes in plant communities (turnover of dominant life-forms) and corresponding alterations in soil biogeochemistry only occur over very long time scales (decades to centuries; Smith et al., ; Wilcox et al., ). However, even over long time scales, the novelty of future climates and interactions with other global change drivers are expected to lead to communities that do not match current climate-vegetation patterns (Zarnetske et al., ). Thus, at least for near to mid-term (decade to century) forecasts of climate change effects on ANPP, temporal models are preferred over spatial models (Estiarte et al., ). These temporal models are the focus of the remainder of this review. 42 III. III. Inconsistencies with a linear temporal model Evidence for positive asymmetry Despite the near-universal use of linear models to describe the temporal relationship between PPT and ANPP (Fig. ), results from a number of recent studies are inconsistent with an underlying linear relationship (Fig. ). For example, when long-term PPT-ANPP relationships from multiple biomes were assessed, maximum ANPP values in response to high PPT years deviated more from the long-term mean than did minimum ANPP values in low PPT years (Knapp & Smith, ). This positive asymmetry in maximum vs minimum ANPP responses to PPT could not be explained by corresponding asymmetry in PPT, and suggests that ANPP in these ecosystems responded more to wet than dry years. Subsequent analyses of long-term data from > 100 additional sites revealed similar patterns of asymmetry worldwide (Fig. ). Experimental manipulations of PPT offer further support for positive asymmetry in ANPP responses to PPT. Wu et al. synthesized results from 28 experiments and reported that ANPP was much more sensitive to increased than decreased PPT (Fig. ). Unger & Jongen reported similar patterns from an even larger number of experiments. Further, they noted that positive asymmetry in ANPP responses to PPT was particularly pronounced in arid and semi-arid regions, as did Knapp & Smith . Ahlström et al. reported positive asymmetries in GPP in semi-arid ecosystems as well. Taken together, these observational and experimental analyses are inconsistent with an underlying linear model describing the PPT-ANPP relationship. Mechanisms that may lead to positive asymmetric responses in ANPP to PPT are varied. These include maintenance of ANPP during dry years as a result of the carry-over of soil water from previous years (Sala et al., ), as well as plants increasing water use efficiency during drought years (Gutschick & BassiriRad, ; Huxman et al., ). In wet years, other resources (e.g. soil nutrients) may be increased in concert with PPT, leading to higher than expected ANPP (Seastedt & Knapp, ). In addition, wet years are characterized by more numerous large P
Author Alan K. Knapp
Melinda D. Smith
Philippe Ciais
Author_xml – sequence: 1
  givenname: Alan K.
  surname: Knapp
  fullname: Knapp, Alan K.
  email: aknapp@colostate.edu
  organization: Colorado State University
– sequence: 2
  givenname: Philippe
  surname: Ciais
  fullname: Ciais, Philippe
  organization: CEA CNRS UVSQ
– sequence: 3
  givenname: Melinda D.
  surname: Smith
  fullname: Smith, Melinda D.
  organization: Colorado State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28001290$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02904608$$DView record in HAL
BookMark eNqNkstuEzEUhi1URNOWBQ8AitQNXUzr4_F1WVVAKkWAKpDYWY7jIY4m9mDPFGXHO_CGPEmdJg1SJS5e2MdH3390bkfoIMTgEHoB-BzKuQjd4hxoLeEJGgHlqpJQiwM0wpjIilP-5RAd5bzEGCvGyTN0SCTGQBQeoesbZ2OwvvXh69iHYmefe1c8Lpf_uEvO-s73pvcx_Prxs0txPtje3_p-PU6uvffnhe_yCXramDa757v3GH1---bT1aSafnh3fXU5rSwTHKqaKNFQsPOGC8tITYwiChxI4jhVkhnG6Myyuakb2QA3IIAzx4Uk1ImZU_UxOtvGXZhWd8mvTFrraLyeXE71xodLYZRjeQuFfb1lS9rfBpd7vfLZurY1wcUha1JaQhWVmP0TBSmELBeG_0AZ1JgKuYl6-ghdxiGF0p9CSYplSXRDvdpRw2zl5vuqHsb0u2abYs7JNXsEsN6sgC4roO9XoLAXj1i7G1-fjG__pvjuW7f-c2j9_uPkQfFyq1jmPqa9QpV2AmO4vgO46cnG
CitedBy_id crossref_primary_10_1038_s41467_018_05948_1
crossref_primary_10_3390_f16010153
crossref_primary_10_1002_ecs2_3899
crossref_primary_10_1016_j_scitotenv_2021_148264
crossref_primary_10_1016_j_jhydrol_2022_128645
crossref_primary_10_1016_j_scitotenv_2024_177788
crossref_primary_10_1002_ldr_3854
crossref_primary_10_1016_j_jaridenv_2024_105157
crossref_primary_10_1038_s41467_024_45508_4
crossref_primary_10_1016_j_agrformet_2021_108567
crossref_primary_10_1111_1365_2745_13588
crossref_primary_10_1002_ecs2_70031
crossref_primary_10_1016_j_jaridenv_2022_104863
crossref_primary_10_1111_gcb_15170
crossref_primary_10_1002_ecy_2474
crossref_primary_10_1016_j_agrformet_2019_107622
crossref_primary_10_1111_gcb_15051
crossref_primary_10_3389_fpls_2021_778861
crossref_primary_10_1016_j_scitotenv_2019_133952
crossref_primary_10_1016_j_scitotenv_2025_178367
crossref_primary_10_1038_s43247_024_01664_5
crossref_primary_10_1016_j_agrformet_2020_108039
crossref_primary_10_1038_s41559_019_0958_3
crossref_primary_10_1016_j_geosus_2024_08_002
crossref_primary_10_1007_s42974_025_00231_y
crossref_primary_10_1016_j_jag_2023_103638
crossref_primary_10_1038_s41467_025_56159_4
crossref_primary_10_1186_s13717_021_00328_y
crossref_primary_10_1002_ecy_3459
crossref_primary_10_1007_s11104_018_3790_7
crossref_primary_10_1111_gcb_15729
crossref_primary_10_1111_jvs_13165
crossref_primary_10_1016_j_agrformet_2022_108954
crossref_primary_10_1016_j_agrformet_2023_109788
crossref_primary_10_1016_j_scitotenv_2023_164978
crossref_primary_10_59717_j_xinn_geo_2023_100015
crossref_primary_10_1111_ele_13761
crossref_primary_10_3389_fevo_2023_1106089
crossref_primary_10_1016_j_agrformet_2022_109252
crossref_primary_10_3390_rs15184621
crossref_primary_10_1360_TB_2025_0206
crossref_primary_10_1007_s00382_022_06158_8
crossref_primary_10_5194_essd_12_789_2020
crossref_primary_10_1029_2020GL092293
crossref_primary_10_1111_nph_15832
crossref_primary_10_1111_gcb_17463
crossref_primary_10_1111_geb_70121
crossref_primary_10_1016_j_scitotenv_2021_147062
crossref_primary_10_3390_f13060838
crossref_primary_10_3390_su14084787
crossref_primary_10_1016_j_ecolind_2024_112631
crossref_primary_10_1016_j_jenvman_2025_124709
crossref_primary_10_1016_j_scitotenv_2021_152786
crossref_primary_10_1111_1365_2435_13300
crossref_primary_10_1111_ele_12765
crossref_primary_10_1111_geb_13898
crossref_primary_10_1007_s11258_023_01382_6
crossref_primary_10_1016_j_ecolind_2022_109144
crossref_primary_10_1186_s13021_022_00210_0
crossref_primary_10_1016_j_scitotenv_2022_154760
crossref_primary_10_1111_ddi_13718
crossref_primary_10_1016_j_agrformet_2023_109752
crossref_primary_10_1016_j_ecolind_2023_110291
crossref_primary_10_1002_ldr_3715
crossref_primary_10_1007_s00442_020_04787_6
crossref_primary_10_1016_j_eja_2024_127370
crossref_primary_10_1002_ecy_2572
crossref_primary_10_3390_environments6060071
crossref_primary_10_1007_s11104_022_05812_8
crossref_primary_10_1002_wat2_1481
crossref_primary_10_1016_j_agrformet_2024_110025
crossref_primary_10_1029_2019GB006264
crossref_primary_10_1029_2023EF004096
crossref_primary_10_1016_j_scitotenv_2021_151224
crossref_primary_10_1111_gcb_16959
crossref_primary_10_1016_j_scitotenv_2022_158819
crossref_primary_10_3390_rs14205074
crossref_primary_10_1016_j_agrformet_2018_01_020
crossref_primary_10_1016_j_agrformet_2021_108354
crossref_primary_10_1111_jvs_13187
crossref_primary_10_1111_1365_2435_70094
crossref_primary_10_1002_ecy_70189
crossref_primary_10_3390_agronomy13092296
crossref_primary_10_1016_j_scitotenv_2020_136691
crossref_primary_10_1111_gcb_16392
crossref_primary_10_3390_su16145900
crossref_primary_10_1038_s42003_025_07518_w
crossref_primary_10_34133_ehs_0067
crossref_primary_10_1007_s00442_023_05315_y
crossref_primary_10_1017_dry_2024_1
crossref_primary_10_1016_j_scitotenv_2022_157856
crossref_primary_10_1080_17550874_2023_2277282
crossref_primary_10_3390_agriculture12122112
crossref_primary_10_1016_j_agrformet_2025_110432
crossref_primary_10_3389_fevo_2023_1189059
crossref_primary_10_1016_j_agrformet_2023_109617
crossref_primary_10_3390_jof8040384
crossref_primary_10_1007_s11368_017_1737_x
crossref_primary_10_5194_esurf_9_1045_2021
crossref_primary_10_1016_j_agrformet_2017_03_006
crossref_primary_10_1002_ece3_6612
crossref_primary_10_1002_ecy_70159
crossref_primary_10_1002_ecm_1590
crossref_primary_10_1007_s00442_022_05279_5
crossref_primary_10_1016_j_geoderma_2020_114812
crossref_primary_10_1016_j_soilbio_2023_109145
crossref_primary_10_1111_1365_2745_13264
crossref_primary_10_1016_j_foreco_2023_121677
crossref_primary_10_1016_j_soilbio_2018_12_022
crossref_primary_10_1007_s11258_018_0828_0
crossref_primary_10_1038_s41598_020_65161_3
crossref_primary_10_1111_1365_2435_14011
crossref_primary_10_1016_j_ecolind_2020_107253
crossref_primary_10_1111_geb_13356
crossref_primary_10_1016_j_agrformet_2025_110720
crossref_primary_10_1016_j_foreco_2018_07_007
crossref_primary_10_1007_s11104_021_05206_2
crossref_primary_10_1111_gcb_15801
crossref_primary_10_1007_s11104_023_05894_y
crossref_primary_10_1111_tpj_17144
crossref_primary_10_1016_j_scitotenv_2023_168464
crossref_primary_10_1111_gcb_17428
crossref_primary_10_1016_j_rse_2020_112108
crossref_primary_10_1111_gcb_16218
crossref_primary_10_1073_pnas_2023691118
crossref_primary_10_1016_j_scitotenv_2020_142506
crossref_primary_10_1038_s41597_023_02349_y
crossref_primary_10_1016_j_soilbio_2021_108229
crossref_primary_10_1016_j_indcrop_2025_120974
crossref_primary_10_1016_j_scitotenv_2020_140204
crossref_primary_10_1016_j_ecolind_2022_108925
crossref_primary_10_1111_gcb_15480
crossref_primary_10_1002_ecy_70166
crossref_primary_10_1029_2021JG006753
crossref_primary_10_1002_ldr_4576
crossref_primary_10_1111_gcb_70282
crossref_primary_10_1016_j_jhydrol_2025_133189
crossref_primary_10_1111_jvs_12954
crossref_primary_10_1111_jvs_13008
crossref_primary_10_3390_f10020188
crossref_primary_10_1002_ecs2_2088
crossref_primary_10_1111_geb_13343
crossref_primary_10_3390_rs14143320
crossref_primary_10_1111_1365_2435_13972
crossref_primary_10_1016_j_agrformet_2024_109918
crossref_primary_10_3390_plants12051158
crossref_primary_10_1016_j_envres_2023_117565
crossref_primary_10_1016_j_fmre_2022_09_028
crossref_primary_10_1371_journal_pone_0249959
crossref_primary_10_3390_f11010113
crossref_primary_10_1007_s42729_024_02035_x
crossref_primary_10_1177_2754124X231204715
crossref_primary_10_1002_ece3_6072
crossref_primary_10_1002_ece3_11517
crossref_primary_10_1002_ecs2_3719
crossref_primary_10_1111_nph_15860
crossref_primary_10_1007_s12571_024_01501_9
crossref_primary_10_1016_j_ecolind_2022_109100
crossref_primary_10_1016_j_jhydrol_2023_129235
crossref_primary_10_1016_j_jaridenv_2024_105299
crossref_primary_10_1002_eap_2978
crossref_primary_10_3389_fpls_2021_832044
crossref_primary_10_1111_oik_09829
crossref_primary_10_1111_1365_2745_13962
crossref_primary_10_1111_gcb_15270
crossref_primary_10_1111_jbi_15025
crossref_primary_10_1016_j_soilbio_2024_109321
crossref_primary_10_3389_fenvs_2020_00088
crossref_primary_10_1007_s00442_019_04506_w
crossref_primary_10_1016_j_ecolind_2024_112317
crossref_primary_10_1007_s00484_024_02786_3
crossref_primary_10_1002_ece3_11528
crossref_primary_10_1007_s11104_025_07768_x
crossref_primary_10_1016_j_apsoil_2022_104385
crossref_primary_10_3389_fpls_2022_1088202
crossref_primary_10_1029_2021JG006607
crossref_primary_10_1016_j_agee_2017_07_023
crossref_primary_10_1029_2024EF004798
crossref_primary_10_1038_s41467_019_08602_6
crossref_primary_10_1111_nph_16381
crossref_primary_10_1007_s11368_023_03703_8
crossref_primary_10_1093_treephys_tpae161
crossref_primary_10_1002_ece3_5439
crossref_primary_10_1016_j_scitotenv_2025_180115
crossref_primary_10_1002_ecm_70005
crossref_primary_10_1029_2021JG006735
crossref_primary_10_1016_j_jclepro_2023_135898
crossref_primary_10_1111_1365_2435_13750
crossref_primary_10_1016_j_envres_2025_120958
crossref_primary_10_3389_fpls_2022_916706
crossref_primary_10_1111_nph_14476
crossref_primary_10_1073_pnas_2305050120
crossref_primary_10_3390_rs15102591
crossref_primary_10_3390_rs16162991
crossref_primary_10_1016_j_pedobi_2023_150873
crossref_primary_10_1029_2024EF004760
crossref_primary_10_1007_s10533_020_00713_3
crossref_primary_10_1016_j_geoderma_2024_117042
crossref_primary_10_1016_j_jclepro_2021_128434
crossref_primary_10_1016_j_foreco_2020_118078
crossref_primary_10_5194_bg_15_3421_2018
crossref_primary_10_1038_s41598_017_15580_6
crossref_primary_10_3390_plants10091890
crossref_primary_10_1002_ecm_70012
crossref_primary_10_1029_2024EF005183
crossref_primary_10_1007_s11252_023_01362_8
crossref_primary_10_3390_microorganisms13040894
crossref_primary_10_3390_w14101573
crossref_primary_10_1007_s00442_019_04520_y
crossref_primary_10_1016_j_rama_2019_08_010
crossref_primary_10_1016_j_apsoil_2021_104144
crossref_primary_10_1080_10106049_2020_1713230
crossref_primary_10_3389_ffgc_2023_1142979
crossref_primary_10_1007_s00442_019_04336_w
crossref_primary_10_1016_j_scib_2021_10_002
crossref_primary_10_1093_jpe_rtaf051
crossref_primary_10_1111_jbi_14391
crossref_primary_10_3390_rs14071564
crossref_primary_10_1007_s10021_023_00850_4
crossref_primary_10_1111_ele_13126
crossref_primary_10_59717_j_xinn_geo_2024_100117
crossref_primary_10_1111_1365_2435_13135
crossref_primary_10_1111_geb_13824
crossref_primary_10_1029_2019EF001316
crossref_primary_10_1016_j_ecolind_2021_108023
crossref_primary_10_1007_s00442_025_05786_1
crossref_primary_10_1002_ldr_4415
crossref_primary_10_1002_ece3_5452
crossref_primary_10_1007_s11104_024_06928_9
crossref_primary_10_1073_pnas_2410748122
crossref_primary_10_1111_gcb_13706
crossref_primary_10_1016_j_scitotenv_2024_171170
crossref_primary_10_1016_j_scitotenv_2023_167856
crossref_primary_10_1029_2024GL113861
crossref_primary_10_1007_s10021_018_0296_3
crossref_primary_10_1111_1365_2435_14460
crossref_primary_10_1002_eco_2384
crossref_primary_10_1002_ecs2_3376
crossref_primary_10_1007_s00442_022_05281_x
crossref_primary_10_1029_2022EF002760
crossref_primary_10_1111_ele_13455
crossref_primary_10_1016_j_agrformet_2021_108507
crossref_primary_10_1016_j_soilbio_2018_06_004
crossref_primary_10_1002_ece3_5585
crossref_primary_10_1186_s13717_023_00429_w
crossref_primary_10_3390_agronomy15040851
crossref_primary_10_1016_j_geoderma_2021_115162
crossref_primary_10_1002_ecs2_4335
crossref_primary_10_1002_eco_2350
crossref_primary_10_1016_j_catena_2025_109179
crossref_primary_10_1111_gcb_14024
crossref_primary_10_1016_j_scitotenv_2023_168370
crossref_primary_10_1007_s11104_022_05435_z
crossref_primary_10_1007_s11258_018_0887_2
crossref_primary_10_1093_plcell_koac322
crossref_primary_10_1088_1748_9326_acd396
crossref_primary_10_1007_s00442_025_05785_2
crossref_primary_10_1111_gcb_17404
crossref_primary_10_1002_ecy_70105
crossref_primary_10_1016_j_jenvman_2024_123729
crossref_primary_10_1002_ecy_2981
crossref_primary_10_3390_plants12152836
crossref_primary_10_1016_j_agrformet_2022_109195
crossref_primary_10_1016_j_agrformet_2022_109073
crossref_primary_10_1111_jvs_13223
crossref_primary_10_1029_2018JG004799
crossref_primary_10_1111_gcb_15345
crossref_primary_10_1111_oik_08098
crossref_primary_10_1093_nsr_nwad049
crossref_primary_10_1016_j_agrformet_2020_108126
crossref_primary_10_1016_j_agee_2025_109831
crossref_primary_10_1128_mSystems_00061_19
crossref_primary_10_3390_rs14174198
crossref_primary_10_1093_treephys_tpab027
crossref_primary_10_1016_j_agee_2025_109834
crossref_primary_10_1016_j_ecolind_2022_108630
crossref_primary_10_1111_nph_17543
crossref_primary_10_5194_bg_19_1913_2022
crossref_primary_10_1016_j_jhydrol_2025_132945
crossref_primary_10_1016_j_foreco_2019_06_035
crossref_primary_10_1016_j_geoderma_2020_114650
crossref_primary_10_3389_fpls_2018_00254
crossref_primary_10_1111_jvs_13077
crossref_primary_10_1016_j_scitotenv_2018_02_114
crossref_primary_10_1016_j_agrformet_2025_110682
crossref_primary_10_1186_s13717_023_00440_1
crossref_primary_10_1038_s41586_024_08478_7
crossref_primary_10_1016_j_scitotenv_2019_135899
crossref_primary_10_3390_f15071142
crossref_primary_10_1002_ecy_3483
crossref_primary_10_1007_s00442_023_05401_1
crossref_primary_10_1007_s10021_020_00555_y
crossref_primary_10_3390_rs12132130
crossref_primary_10_1016_j_scitotenv_2024_174903
crossref_primary_10_3390_rs11030360
crossref_primary_10_1111_1365_2745_70076
crossref_primary_10_1007_s11427_020_1837_9
crossref_primary_10_1016_j_ecolind_2022_108762
crossref_primary_10_1016_j_foreco_2019_06_021
crossref_primary_10_1029_2023JG007641
crossref_primary_10_1111_jvs_13082
crossref_primary_10_1007_s42452_021_04679_1
crossref_primary_10_1111_1365_2745_13779
crossref_primary_10_3390_agronomy13082030
crossref_primary_10_5194_bg_18_2213_2021
crossref_primary_10_1007_s00442_018_4284_2
crossref_primary_10_1016_j_agrformet_2023_109350
crossref_primary_10_1111_oik_10749
crossref_primary_10_1016_j_soilbio_2019_107638
crossref_primary_10_1029_2023JG007637
crossref_primary_10_1111_gcb_16172
crossref_primary_10_1007_s11104_020_04551_y
crossref_primary_10_1093_jpe_rtae059
crossref_primary_10_1016_j_plaphy_2025_109914
crossref_primary_10_1007_s11104_021_05029_1
crossref_primary_10_1016_j_ecolind_2024_112507
crossref_primary_10_1016_j_fmre_2025_06_007
crossref_primary_10_1016_j_ecolind_2025_113208
crossref_primary_10_2478_eko_2023_0039
crossref_primary_10_3389_fevo_2023_1146850
crossref_primary_10_1111_gcb_16403
crossref_primary_10_1088_1748_9326_acde90
crossref_primary_10_1111_ele_14067
crossref_primary_10_1016_j_scitotenv_2021_146901
crossref_primary_10_1111_1365_2745_13324
crossref_primary_10_1002_ece3_71625
crossref_primary_10_3390_rs16132368
crossref_primary_10_1002_ecy_2136
crossref_primary_10_1111_geb_12761
crossref_primary_10_1038_s41559_024_02500_x
crossref_primary_10_3390_ijerph19116915
crossref_primary_10_1111_1365_2435_14328
crossref_primary_10_1111_gcb_16998
crossref_primary_10_1016_j_scitotenv_2017_10_203
crossref_primary_10_1016_j_agrformet_2023_109325
crossref_primary_10_1007_s10021_024_00951_8
crossref_primary_10_1016_j_agrformet_2023_109323
crossref_primary_10_1038_s41559_025_02806_4
crossref_primary_10_1088_1748_9326_ab70bb
crossref_primary_10_1163_2031356X_35010012
crossref_primary_10_1088_1748_9326_add94d
crossref_primary_10_1016_j_agrformet_2024_110176
crossref_primary_10_1016_j_rama_2025_03_009
crossref_primary_10_1016_j_gloplacha_2025_104893
crossref_primary_10_1016_j_agrformet_2025_110598
Cites_doi 10.1007/s00442-008-1116-9
10.1029/2008GL035408
10.1111/gcb.13156
10.1086/282523
10.1002/eco.65
10.1111/j.1466-8238.2009.00504.x
10.1146/annurev.earth.35.031306.140057
10.1126/science.291.5503.481
10.1111/gcb.13269
10.2307/1938237
10.1046/j.1469-8137.2003.00866.x
10.1038/srep04364
10.1890/ES13-00210.1
10.1007/s10021-015-9949-7
10.1007/978-3-319-08807-5_14
10.1093/acprof:oso/9780195168662.001.0001
10.1038/nature02561
10.1641/B580908
10.1111/gcb.13161
10.1890/15-1437.1
10.1890/13-2186.1
10.1890/07-0626.1
10.1086/285494
10.1038/nature16986
10.1111/j.1365-2486.2012.02687.x
10.5194/bg-11-2909-2014
10.1038/nature11836
10.1890/15-1197.1
10.1111/1365-2745.12273
10.1002/grl.50420
10.1111/j.1365-2486.2008.01629.x
10.1038/nature12350
10.1126/science.1082750
10.2307/1941874
10.1111/gcb.13441
10.1098/rstb.2011.0347
10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2
10.5194/bg-9-3857-2012
10.1890/09-1275.1
10.1016/j.scitotenv.2016.05.108
10.1126/science.aaa1668
10.1890/08-1815.1
10.1890/07-0992.1
10.1111/j.1365-2745.2011.01833.x
10.1073/pnas.1207068110
10.1111/gcb.12888
10.1016/j.jhydrol.2005.07.003
10.1111/gcb.13412
10.1111/j.1469-8137.2008.02436.x
10.1126/science.1222732
10.1002/2014GB004826
10.1007/s100219900016
10.1002/2013GL058499
10.1073/pnas.0704243104
10.1111/j.1365-2486.2010.02302.x
ContentType Journal Article
Copyright 2016 New Phytologist Trust
2016 The Authors. New Phytologist © 2016 New Phytologist Trust
2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 New Phytologist Trust
– notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust
– notice: 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7U8
7X8
JXQ
7S9
L.6
1XC
DOI 10.1111/nph.14381
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
TOXLINE
MEDLINE - Academic
Toxline
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
TOXLINE
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList TOXLINE

AGRICOLA
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 47
ExternalDocumentID oai:HAL:hal-02904608v1
4321440805
28001290
10_1111_nph_14381
NPH14381
90001550
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: US National Science Foundation (NSF)
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABUFD
ADXHL
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7U8
7X8
JXQ
7S9
L.6
1XC
ID FETCH-LOGICAL-c5761-3297f41cdf67c5232a9291e182e64985a554bc5da3f8f16a17165e67824e7be93
IEDL.DBID WIN
ISICitedReferencesCount 366
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398130300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
IngestDate Tue Oct 14 20:04:07 EDT 2025
Fri Sep 05 17:25:32 EDT 2025
Tue Oct 07 09:45:29 EDT 2025
Fri Sep 05 13:37:11 EDT 2025
Fri Jul 25 10:47:57 EDT 2025
Wed Feb 19 02:35:02 EST 2025
Sat Nov 29 04:38:26 EST 2025
Tue Nov 18 22:11:22 EST 2025
Wed Jan 22 16:54:33 EST 2025
Thu Jul 03 22:32:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords precipitation
productivity
drought
carbon cycle
variability
climate change
climate extremes
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5761-3297f41cdf67c5232a9291e182e64985a554bc5da3f8f16a17165e67824e7be93
Notes 214
Luo
,
5–7
See also the Commentary on this article by
et al.
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0001-8560-4943
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14381
PMID 28001290
PQID 1884084605
PQPubID 2026848
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_02904608v1
proquest_miscellaneous_2000494805
proquest_miscellaneous_1877818701
proquest_miscellaneous_1851304785
proquest_journals_1884084605
pubmed_primary_28001290
crossref_primary_10_1111_nph_14381
crossref_citationtrail_10_1111_nph_14381
wiley_primary_10_1111_nph_14381_NPH14381
jstor_primary_90001550
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2007; 104
2010; 19
2011; 99
2008; 35
2012; 18
2015; 348
2012; 367
2011; 17
2007; 35
2014; 5
2014; 4
2014b; 11
2001; 291
2009; 90
2003; 160
2011; 21
2008; 158
2013; 110
2010; 3
2014; 95
2003; 84
2012; 336
1992; 2
2014a; 28
2006; 319
2016; 19
2012
2013; 40
2008; 18
2013; 500
1968; 102
2008; 58
2008; 14
2016; 97
2007
1993; 141
1978; 59
2016; 566
2014; 41
2004; 429
2015; 21
2016; 531
2008; 89
2016
2013; 294
2015
1998; 1
2008; 178
2003; 300
2016; 22
2014; 102
2012; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Raz‐Yaseef N (e_1_2_7_38_1) 2010; 3
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
28239892 - New Phytol. 2017 Apr;214(1):5-7
References_xml – volume: 89
  start-page: 2140
  year: 2008
  end-page: 2153
  article-title: Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau
  publication-title: Ecology
– volume: 95
  start-page: 2646
  year: 2014
  end-page: 2656
  article-title: Resistance and resilience of a grassland ecosystem to climate extremes
  publication-title: Ecology
– volume: 97
  start-page: 1553
  year: 2016
  end-page: 1563
  article-title: Soil moisture mediates alpine life form and community productivity responses to warming
  publication-title: Ecology
– volume: 2
  start-page: 397
  year: 1992
  end-page: 403
  article-title: Long‐term forage production of North American shortgrass steppe
  publication-title: Ecological Applications
– volume: 17
  start-page: 927
  year: 2011
  end-page: 942
  article-title: Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation
  publication-title: Global Change Biology
– volume: 566
  start-page: 463
  year: 2016
  end-page: 467
  article-title: More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest
  publication-title: Science of the Total Environment
– volume: 367
  start-page: 3135
  year: 2012
  end-page: 3144
  article-title: Legacies of precipitation fluctuations on primary production: theory and data synthesis
  publication-title: Philosophical Transactions of the Royal Society of London B
– volume: 3
  start-page: 143
  year: 2010
  end-page: 154
  article-title: Ecohydrology of a semi‐arid forest: partitioning among water balance components and its implications for predicted precipitation changes
  publication-title: Ecohydrology
– volume: 21
  start-page: 2624
  year: 2015
  end-page: 2633
  article-title: Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments
  publication-title: Global Change Biology
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  article-title: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 19
  start-page: 253
  year: 2010
  end-page: 267
  article-title: Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems
  publication-title: Global Ecology and Biogeography
– volume: 99
  start-page: 651
  year: 2011
  end-page: 655
  article-title: The ecological role of climate extremes: current understanding and future prospects
  publication-title: Journal of Ecology
– volume: 41
  start-page: 547
  year: 2014
  end-page: 554
  article-title: Detection of spatially aggregated changes in temperature and precipitation extremes
  publication-title: Geophysical Research Letters
– volume: 84
  start-page: 1165
  year: 2003
  end-page: 1170
  article-title: Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation
  publication-title: Ecology
– volume: 102
  start-page: 1419
  year: 2014
  end-page: 1428
  article-title: Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands
  publication-title: Journal of Ecology
– volume: 319
  start-page: 83
  year: 2006
  end-page: 95
  article-title: Evidence for intensification of the global water cycle: review and synthesis
  publication-title: Journal of Hydrology
– volume: 22
  start-page: 1809
  year: 2016
  end-page: 1820
  article-title: Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling
  publication-title: Global Change Biology
– volume: 35
  start-page: L23710
  year: 2008
  article-title: Relationship between variability in aboveground net primary production and precipitation in global grasslands
  publication-title: Geophysical Research Letters
– start-page: 347
  year: 2015
  end-page: 393
– volume: 110
  start-page: 52
  year: 2013
  end-page: 57
  article-title: Response of vegetation to drought time‐scales across global land biomes
  publication-title: Proceedings of the National Academy of Sciences, USA
– year: 2016
  article-title: Global‐change drivers of ecosystem functioning modulated by natural variability and saturating responses
  publication-title: Global Change Biology
– volume: 4
  start-page: 4364
  year: 2014
  article-title: The key role of dry days in changing regional climate and precipitation regimes
  publication-title: Scientific Reports
– year: 2016
  article-title: Carbon cycle responses of semi‐arid ecosystems to positive asymmetry in rainfall
  publication-title: Global Change Biology
– volume: 40
  start-page: 3163
  year: 2013
  end-page: 3169
  article-title: A canonical response of precipitation characteristics to global warming from CMIP5 models
  publication-title: Geophysical Research Letters
– volume: 58
  start-page: 811
  year: 2008
  end-page: 821
  article-title: Consequences of more extreme precipitation regimes for terrestrial ecosystems
  publication-title: BioScience
– volume: 22
  start-page: 2570
  year: 2016
  end-page: 2581
  article-title: Few multi‐year precipitation‐reduction experiments find a shift in the productivity–precipitation relationship
  publication-title: Global Change Biology
– volume: 14
  start-page: 1986
  year: 2008
  end-page: 1999
  article-title: Modeled interactive effects of precipitation, temperature, and CO on ecosystem carbon and water dynamics in different climatic zones
  publication-title: Global Change Biology
– volume: 21
  start-page: 1429
  year: 2011
  end-page: 1442
  article-title: Ecological forecasting and data assimilation in a data‐rich era
  publication-title: Ecological Applications
– volume: 28
  start-page: 585
  year: 2014a
  end-page: 600
  article-title: Impact of large‐scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data
  publication-title: Global Biogeochemical Cycles
– volume: 18
  start-page: 453
  year: 2008
  end-page: 466
  article-title: Modeling patterns of nonlinearity in ecosystem responses to temperature, CO , and precipitation changes
  publication-title: Ecological Applications
– volume: 11
  start-page: 2909
  year: 2014b
  end-page: 2924
  article-title: Extreme events in gross primary production: a characterization across continents
  publication-title: Biogeosciences
– volume: 348
  start-page: 895
  year: 2015
  end-page: 899
  article-title: The dominant role of semi‐arid ecosystems in the trend and variability of the land CO sink
  publication-title: Science
– volume: 291
  start-page: 481
  year: 2001
  end-page: 484
  article-title: Variation among biomes in temporal dynamics of aboveground primary production
  publication-title: Science
– volume: 141
  start-page: 621
  year: 1993
  end-page: 633
  article-title: Consequences of non‐equilibrium resource availability across multiple time scales: the transient maxima hypothesis
  publication-title: American Naturalist
– volume: 97
  start-page: 561
  year: 2016
  end-page: 568
  article-title: Does ecosystem sensitivity to precipitation at the site‐level conform to regional‐scale predictions?
  publication-title: Ecology
– volume: 102
  start-page: 67
  year: 1968
  end-page: 74
  article-title: Net primary productivity of terrestrial environments: predictions from climatological data
  publication-title: American Naturalist
– year: 2007
– volume: 104
  start-page: 12942
  year: 2007
  end-page: 12947
  article-title: Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 158
  start-page: 129
  year: 2008
  end-page: 140
  article-title: Increasing precipitation event size increases aboveground net primary productivity in a semi‐arid grassland
  publication-title: Oecologia
– volume: 160
  start-page: 21
  year: 2003
  end-page: 42
  article-title: Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences
  publication-title: New Phytologist
– volume: 500
  start-page: 287
  year: 2013
  end-page: 295
  article-title: Climate extremes and the carbon cycle
  publication-title: Nature
– volume: 18
  start-page: 2246
  year: 2012
  end-page: 2255
  article-title: Sensitivity of mean annual primary production to precipitation
  publication-title: Global Change Biology
– volume: 531
  start-page: 229
  year: 2016
  end-page: 232
  article-title: Sensitivity of global terrestrial ecosystems to climate variability
  publication-title: Nature
– volume: 429
  start-page: 651
  year: 2004
  end-page: 654
  article-title: Convergence across biomes to a common rain‐use efficiency
  publication-title: Nature
– year: 2012
– volume: 300
  start-page: 1560
  year: 2003
  end-page: 1563
  article-title: Climate‐driven increases in global terrestrial net primary production from 1982 to 1999
  publication-title: Science
– volume: 19
  start-page: 521
  year: 2016
  end-page: 533
  article-title: Drivers of variation in aboveground net primary productivity and plant composition differ across a broad precipitation gradient
  publication-title: Ecosystems
– volume: 59
  start-page: 1239
  year: 1978
  end-page: 1247
  article-title: Primary productivity and water use in native forest, grassland, and desert ecosystems
  publication-title: Ecology
– volume: 336
  start-page: 1515
  year: 2012
  end-page: 1518
  article-title: Biotic multipliers of climate change
  publication-title: Science
– volume: 9
  start-page: 3857
  year: 2012
  end-page: 3874
  article-title: A framework for benchmarking land models
  publication-title: Biogeosciences
– volume: 294
  start-page: 349
  year: 2013
  end-page: 352
  article-title: Ecosystem resilience despite large‐scale altered hydroclimatic conditions
  publication-title: Nature
– volume: 1
  start-page: 206
  year: 1998
  end-page: 215
  article-title: Contrasting climatic controls on the estimated productivity of global terrestrial biomes
  publication-title: Ecosystems
– volume: 90
  start-page: 3279
  year: 2009
  end-page: 3289
  article-title: A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change
  publication-title: Ecology
– volume: 22
  start-page: 1394
  year: 2016
  end-page: 1405
  article-title: A cross‐biome synthesis of soil respiration and its determinants under simulated precipitation changes
  publication-title: Global Change Biology
– volume: 5
  start-page: 58
  year: 2014
  article-title: Anticipating changes in variability of grassland production due to increases in interannual precipitation variability
  publication-title: Ecosphere
– volume: 35
  start-page: 313
  year: 2007
  end-page: 347
  article-title: Balancing the global carbon budget
  publication-title: Annual Review of Earth and Planetary Sciences
– ident: e_1_2_7_14_1
  doi: 10.1007/s00442-008-1116-9
– ident: e_1_2_7_53_1
  doi: 10.1029/2008GL035408
– ident: e_1_2_7_30_1
  doi: 10.1111/gcb.13156
– ident: e_1_2_7_40_1
  doi: 10.1086/282523
– volume: 3
  start-page: 143
  year: 2010
  ident: e_1_2_7_38_1
  article-title: Ecohydrology of a semi‐arid forest: partitioning among water balance components and its implications for predicted precipitation changes
  publication-title: Ecohydrology
  doi: 10.1002/eco.65
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1466-8238.2009.00504.x
– ident: e_1_2_7_17_1
  doi: 10.1146/annurev.earth.35.031306.140057
– ident: e_1_2_7_26_1
  doi: 10.1126/science.291.5503.481
– ident: e_1_2_7_5_1
  doi: 10.1111/gcb.13269
– ident: e_1_2_7_49_1
  doi: 10.2307/1938237
– ident: e_1_2_7_11_1
  doi: 10.1046/j.1469-8137.2003.00866.x
– ident: e_1_2_7_36_1
  doi: 10.1038/srep04364
– ident: e_1_2_7_18_1
  doi: 10.1890/ES13-00210.1
– ident: e_1_2_7_27_1
  doi: 10.1007/s10021-015-9949-7
– ident: e_1_2_7_47_1
  doi: 10.1007/978-3-319-08807-5_14
– ident: e_1_2_7_6_1
  doi: 10.1093/acprof:oso/9780195168662.001.0001
– ident: e_1_2_7_22_1
  doi: 10.1038/nature02561
– ident: e_1_2_7_24_1
  doi: 10.1641/B580908
– ident: e_1_2_7_16_1
  doi: 10.1111/gcb.13161
– ident: e_1_2_7_50_1
  doi: 10.1890/15-1437.1
– ident: e_1_2_7_15_1
  doi: 10.1890/13-2186.1
– ident: e_1_2_7_55_1
  doi: 10.1890/07-0626.1
– ident: e_1_2_7_43_1
  doi: 10.1086/285494
– ident: e_1_2_7_44_1
  doi: 10.1038/nature16986
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-2486.2012.02687.x
– ident: e_1_2_7_57_1
  doi: 10.5194/bg-11-2909-2014
– ident: e_1_2_7_37_1
  doi: 10.1038/nature11836
– ident: e_1_2_7_51_1
  doi: 10.1890/15-1197.1
– ident: e_1_2_7_9_1
  doi: 10.1111/1365-2745.12273
– ident: e_1_2_7_28_1
  doi: 10.1002/grl.50420
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2486.2008.01629.x
– ident: e_1_2_7_39_1
  doi: 10.1038/nature12350
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1082750
– ident: e_1_2_7_29_1
  doi: 10.2307/1941874
– ident: e_1_2_7_8_1
  doi: 10.1111/gcb.13441
– ident: e_1_2_7_41_1
  doi: 10.1098/rstb.2011.0347
– ident: e_1_2_7_42_1
  doi: 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2
– ident: e_1_2_7_33_1
  doi: 10.5194/bg-9-3857-2012
– ident: e_1_2_7_32_1
  doi: 10.1890/09-1275.1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.scitotenv.2016.05.108
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aaa1668
– ident: e_1_2_7_46_1
  doi: 10.1890/08-1815.1
– ident: e_1_2_7_3_1
  doi: 10.1890/07-0992.1
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1365-2745.2011.01833.x
– ident: e_1_2_7_48_1
  doi: 10.1073/pnas.1207068110
– ident: e_1_2_7_25_1
  doi: 10.1111/gcb.12888
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jhydrol.2005.07.003
– ident: e_1_2_7_13_1
  doi: 10.1111/gcb.13412
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1469-8137.2008.02436.x
– ident: e_1_2_7_54_1
  doi: 10.1126/science.1222732
– ident: e_1_2_7_56_1
  doi: 10.1002/2014GB004826
– ident: e_1_2_7_4_1
  doi: 10.1007/s100219900016
– ident: e_1_2_7_7_1
  doi: 10.1002/2013GL058499
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.0704243104
– ident: e_1_2_7_23_1
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365-2486.2010.02302.x
– reference: 28239892 - New Phytol. 2017 Apr;214(1):5-7
SSID ssj0009562
Score 2.65301
SecondaryResourceType review_article
Snippet Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT–ANPP...
Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 Summary Precipitation (PPT) is a primary climatic determinant of plant growth...
Precipitation ( PPT ) is a primary climatic determinant of plant growth and aboveground net primary production ( ANPP ) over much of the globe. Thus, PPT –...
Contents 41 I. 41 II. 42 III. 43 IV. 44 V. 45 Acknowledgements 46 References 46 SUMMARY: Precipitation (PPT) is a primary climatic determinant of plant growth...
41 I. I. Introduction Terrestrial ecosystems cover less than one-third of the Earth's surface, yet account for approximately two-thirds of global net primary...
Precipitation (PPT) is a primary climatic determinant of plant growth and aboveground net primary production (ANPP) over much of the globe. Thus, PPT-ANPP...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Arid zones
Atmosphere
Biogeochemistry
Carbon cycle
Climate Change
climate extremes
Continental interfaces, environment
Data collection
Drought
Ecological function
Ecosystem structure
ecosystems
Environmental impact
Extreme drought
Grasslands
Hydrologic cycle
Models, Theoretical
Moisture content
Nonlinear Dynamics
nonlinear models
Ocean, Atmosphere
Plant biomass
Plant Development
Plant growth
precipitation
Primary production
primary productivity
productivity
Rain
Sciences of the Universe
Semiarid lands
Soil water
Statistical models
Tansley insight
Terrestrial ecosystems
Terrestrial environments
Time Factors
Variability
vegetation
Vegetation patterns
Water use
Subtitle implications for climate change
Title Reconciling inconsistencies in precipitation–productivity relationships
URI https://www.jstor.org/stable/90001550
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14381
https://www.ncbi.nlm.nih.gov/pubmed/28001290
https://www.proquest.com/docview/1884084605
https://www.proquest.com/docview/1851304785
https://www.proquest.com/docview/1877818701
https://www.proquest.com/docview/2000494805
https://hal.science/hal-02904608
Volume 214
WOSCitedRecordID wos000398130300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SNIde-k67bbq4pYdeXCxZtmR6Sh_LFsISSkP3ZmRZZh2C16yTQG_9D_2H_SWdkWyzgaQUevNjzMoazer7rNE3AG-EKpOkkDqMhS5CkVVxqKyxCOSkUVUquS60KzYhFwu1XGYnO_B-2Avj9SHGD24UGe7_mgJcF91WkDft6h3V7ibqw4QLyu9fFluCuykfFJhTkS57VSHK4hmfvDYX7a4oE9InJd4EN6-jVzf9zO7_V8MfwL0edQZHfpg8hB3bPIL9D2tEhj8ewxlx0MbUtDM9ILWGpiPnU9neDs-DlhQw2l7M-_fPX61XiXVlJ4LNkE23qrGFQb2VoR4gIA7MeY2g2AZ-h_ETOJ19_vZxHvY1GEKDTISFMc9kJZgp0W8GSSvXiKeYRVZiU5GpRCMcKUxS6rhSFUs1qe8kFmdALqwsbBYfwF6zbuwzCHTMk6qsIlYiLZPIXq1CvFNFhmUm1SKewNvBG7np34nqZJznA1HBnstdz03g9WjaelWOG43QpeN90tGeHx3ndC3iGS0Iqys0OnAeH82yyNO2CRwOQyDvw7rLmUI-rGgpeQKvxtsYkLTKohu7viSbhNFapvqrjZSIlGTEbrfhvXYP_dZTPwTHRnLlPyBil7mRdnsn5IuTuTt4_u-mL-AuJ_Di8pMOYe9ic2lfwr65uqi7zRR25VJN4c6nr7PT46kLuj_v1iyM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL0a3SR44XtQGGAQD7wExY4TOxIv46MqolQT2qS-RY7jqEFTGrXbJN74D_xDfgn3xknUSRtC4q1pblTHvrc-x74-F-C11EUc58oEkTR5INMyCrSzDoGcsrpMlDC5aYtNqPlcLxbp0Q6868_CeH2IYcGNIqP9v6YApwXprSivm-VbKt6N3GdXohvFI9j9-G1yMtsS3U1Er8KcyGTRKQtRJs_w8KX56MaSsiF9YuJVkPMygm2noMmd_2v8XbjdQU926H3lHuy4-j7svV8hPPzxAL4TEa1tRcfTGUk21BvyAKrdu8Fr1pAMRtMpev_--avxUrFt7Qm27lPqlhU2kVVbaeoMUTGzpxUiY8f8MeOHcDL5dPxhGnSFGAKLdIQHkUhVKbktcPAsMldhEFRxh9TEJTLVsUFMktu4MFGpS54YkuCJHU6DQjqVuzTah1G9qt1jYCYScVmUIS-QmymksE4j6ClDy1ObGBmN4U0_HJnt3omKZZxmPVvBnsvanhvDq8G08dIcVxrhmA73SUx7ejjL6LtQpLQrrC_QaL8d8sEsDT13G8NB7wNZF9ubjGskxZr2k8fwcriNUUlbLaZ2q3OyiTltaOq_2iiFcEmF_Hob0Qn40G898j44NFJov4qIXda62vWdkM2Ppu2HJ_9u-gJuTo-_zrLZ5_mXp3BLEJppE5YOYHS2PnfPYM9enFWb9fMu6v4A4dAvUA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXGNiFe-B4UBhjEAy-ZYseJHYmXwaiKqKoKMalvkePYatCURu02iTf-A_-QX8K9dhJ10oaQeGubW8Wx743Psa_PJeStUFWallJHidBlJHKXRMoaC0BOGuUyyXWpfbEJOZupxSKf75D3_VmYoA8xLLhhZPj3NQa4bSu3FeVNuzzC4t3AffZEmmcQlnsnX8en0y3R3Yz3KsyZyBadshBm8gx_vjIf3VpiNmRITLwOcl5FsH4KGt_7v8bfJ3c76EmPg688IDu2eUj2P6wAHv54RL4jEW1MjcfTKUo2NBv0AKzdu4HvtEUZjLZT9P7981cbpGJ97Qm67lPqljU0kdZbaeoUUDE1ZzUgY0vDMePH5HT86dvHSdQVYogM0BEWJTyXTjBTweAZYK5cA6hiFqiJzUSuUg2YpDRppROnHMs0SvCkFqZBLqwsbZ4ckN1m1dinhOqEp65yMauAm0mgsFYB6HGxYbnJtEhG5F0_HIXpngmLZZwVPVuBnit8z43Im8G0DdIc1xrBmA7XUUx7cjwt8LeY57grrC7B6MAP-WCWx4G7jchh7wNFF9ubgikgxQr3k0fk9XAZohK3WnRjVxdokzLc0FR_tZES4JKM2c02vBPwwXs9CT44NJKrsIoIXeZd7eZOKGbzif_w7N9NX5Hb85NxMf08-_Kc3OEIZny-0iHZPV9f2Bdk31ye15v1yy7o_gAoQS7L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconciling+inconsistencies+in+precipitation-productivity+relationships%3A+implications+for+climate+change&rft.jtitle=The+New+phytologist&rft.au=Knapp%2C+Alan+K&rft.au=Ciais%2C+Philippe&rft.au=Smith%2C+Melinda+D&rft.date=2017-04-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=214&rft.issue=1&rft.spage=41&rft.epage=47&rft_id=info:doi/10.1111%2Fnph.14381&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon