Plasma mitochondrial DNA and metabolomic alterations in severe critical illness
Background Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significa...
Saved in:
| Published in: | Critical care (London, England) Vol. 22; no. 1; pp. 360 - 9 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
29.12.2018
BioMed Central Ltd BMC |
| Subjects: | |
| ISSN: | 1364-8535, 1466-609X, 1364-8535, 1466-609X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA.
Methods
We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted
p
values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels.
Results
Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma relative to those with an ND1 mtDNA level < 3200 copies/μl plasma. Several analytical strategies showed that patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines.
Conclusions
Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively. |
|---|---|
| AbstractList | Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA. We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels. Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels [greater than or equai to] 3200 copies/[mu]l plasma relative to those with an ND1 mtDNA level < 3200 copies/[mu]l plasma. Several analytical strategies showed that patients with ND1 mtDNA levels [greater than or equai to] 3200 copies/[mu]l plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines. Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively. Background Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA. Methods We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels. Results Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma relative to those with an ND1 mtDNA level < 3200 copies/μl plasma. Several analytical strategies showed that patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines. Conclusions Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively. Background Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA. Methods We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels. Results Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels [greater than or equai to] 3200 copies/[mu]l plasma relative to those with an ND1 mtDNA level < 3200 copies/[mu]l plasma. Several analytical strategies showed that patients with ND1 mtDNA levels [greater than or equai to] 3200 copies/[mu]l plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines. Conclusions Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively. Keywords: Mitochondrial DNA, Metabolite, Metabolomics, Homeostasis, Critical illness, Acylcarnitine, Glycerophosphocholine Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA. We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels. Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma relative to those with an ND1 mtDNA level < 3200 copies/μl plasma. Several analytical strategies showed that patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines. Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively. Abstract Background Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA. Methods We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels. Results Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma relative to those with an ND1 mtDNA level < 3200 copies/μl plasma. Several analytical strategies showed that patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines. Conclusions Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively. Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA.BACKGROUNDCell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients relative to their level of plasma mtDNA.We performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels.METHODSWe performed a metabolomic study with biorepository plasma samples collected from 73 adults with systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a 20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to ND1 mtDNA levels.Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma relative to those with an ND1 mtDNA level < 3200 copies/μl plasma. Several analytical strategies showed that patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines.RESULTSMetabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma relative to those with an ND1 mtDNA level < 3200 copies/μl plasma. Several analytical strategies showed that patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma had significant decreases in glycerophosphocholines and increases in short-chain acylcarnitines.Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively.CONCLUSIONSDifferential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation and decreased mitochondrial function, respectively. |
| ArticleNumber | 360 |
| Audience | Academic |
| Author | Nakahira, Kiichi Choi, Augustine M. K. Baron, Rebecca M. Fredenburgh, Laura E. Johansson, Pär I. Rogers, Angela J. McGeachie, Michael J. Harrington, John Christopher, Kenneth B. |
| Author_xml | – sequence: 1 givenname: Pär I. surname: Johansson fullname: Johansson, Pär I. organization: Department of Clinical Immunology, Copenhagen University Hospital – sequence: 2 givenname: Kiichi surname: Nakahira fullname: Nakahira, Kiichi organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine – sequence: 3 givenname: Angela J. surname: Rogers fullname: Rogers, Angela J. organization: Pulmonary & Critical Care Medicine, Stanford University Medical Center – sequence: 4 givenname: Michael J. surname: McGeachie fullname: McGeachie, Michael J. organization: Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital – sequence: 5 givenname: Rebecca M. surname: Baron fullname: Baron, Rebecca M. organization: Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women’s Hospital – sequence: 6 givenname: Laura E. surname: Fredenburgh fullname: Fredenburgh, Laura E. organization: Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women’s Hospital – sequence: 7 givenname: John surname: Harrington fullname: Harrington, John organization: Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York Presbyterian-Weill Cornell Medical Center, Weill Cornell Medicine – sequence: 8 givenname: Augustine M. K. surname: Choi fullname: Choi, Augustine M. K. organization: Department of Medicine, New York-Presbyterian Hospital – sequence: 9 givenname: Kenneth B. orcidid: 0000-0001-6067-972X surname: Christopher fullname: Christopher, Kenneth B. email: kbchristopher@bwh.harvard.edu organization: Renal Division, Department of Medicine, Brigham and Women’s Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30594224$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1rFTEYhQep2A_9AW5kwI2bqfnOZCNcaquFYl3oOmSSd25zySQ1mVvw35vbaaVXpGSRkJzzcMJ7jpuDmCI0zVuMTjHuxceCKeKsQ7jvCJG8ky-aI0wF63pO-cGT82FzXMoGISx7QV81h9WmGCHsqLn-HkyZTDv5OdmbFF32JrSfv61aE107wWyGFNLkbWvCDNnMPsXS-tgWuIMMrc1-9rZafAgRSnndvBxNKPDmYT9pfl6c_zj72l1df7k8W111lks-d9AzBkwZzFTPgDvWCyW4GLDjghOEBRrBCmcH45Cygo8c9UJySdwgGRaEnjSXC9cls9G32U8m_9bJeH1_kfJam1yTBdCutwPBXBFKRiaE69WgKEPUSNYrBKKyPi2s2-0wgbMQ52zCHnT_JfobvU53WlCMlOQV8OEBkNOvLZRZT75YCMFESNuiCRZYUUqorNL3i3RtajQfx1SJdifXKy4U5gIxWlWn_1HV5aCOopZg9PV-z_Du6Rf-Zn8cdBXIRWBzKiXDqK2f76dZyT5ojPSuUnqplK6V0rtK6V1i_I_zEf6chyyeUrVxDVlv0jbHWohnTH8AoDHbEA |
| CitedBy_id | crossref_primary_10_1002_jcp_31331 crossref_primary_10_1038_s41598_021_83602_5 crossref_primary_10_1186_s13054_019_2597_0 crossref_primary_10_1002_acn3_70183 crossref_primary_10_3389_fimmu_2021_737369 crossref_primary_10_3390_jcm11112994 crossref_primary_10_1007_s11306_024_02089_z crossref_primary_10_1111_cts_13088 crossref_primary_10_1002_phar_2448 crossref_primary_10_1097_PSY_0000000000001254 crossref_primary_10_3390_jcm11237161 crossref_primary_10_1096_fj_201901123R crossref_primary_10_3389_fphys_2020_571810 crossref_primary_10_1007_s11239_023_02829_3 crossref_primary_10_1002_jcsm_12597 crossref_primary_10_1016_j_mito_2024_101967 crossref_primary_10_1165_rcmb_2024_0030OC crossref_primary_10_1186_s12891_019_2869_5 crossref_primary_10_1097_CCE_0000000000000881 crossref_primary_10_1186_s40246_020_00291_3 crossref_primary_10_3389_fpubh_2024_1327315 crossref_primary_10_3389_fendo_2020_00161 crossref_primary_10_1111_vox_13600 crossref_primary_10_1002_jcsm_70051 crossref_primary_10_1016_j_accpm_2019_05_003 crossref_primary_10_3390_nu16203523 crossref_primary_10_1016_j_bbadis_2020_165761 crossref_primary_10_2174_0929867328666211117092345 crossref_primary_10_1186_s13054_022_04174_y crossref_primary_10_1016_j_semcancer_2025_01_001 crossref_primary_10_1165_rcmb_2024_0391OC crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_1097_MD_0000000000043555 crossref_primary_10_1055_a_2684_3689 crossref_primary_10_3390_metabo12030207 |
| Cites_doi | 10.1371/journal.pone.0087538 10.2174/092986709787846578 10.1016/j.immuni.2010.11.022 10.1136/bmjresp-2014-000056 10.1164/rccm.201201-0003OC 10.1097/CCM.0b013e31822827f2 10.1126/science.1195491 10.1161/CIRCULATIONAHA.107.721357 10.1021/ac0713510 10.18632/oncotarget.7155 10.1371/journal.pmed.1001577 10.1111/febs.12699 10.1073/pnas.091062498 10.1007/s11306-007-0099-6 10.1016/j.biochi.2013.08.006 10.1371/journal.pone.0021185 10.1161/CIRCULATIONAHA.107.707349 10.1164/rccm.201404-0624OC 10.1093/bioinformatics/btq418 10.1039/C4MB00414K 10.1093/nar/gks1065 10.1038/nature08780 10.1007/978-1-59745-244-1_6 10.1182/blood-2008-12-195354 10.1007/BF00917352 10.1038/nature07762 10.1016/S0140-6736(02)09459-X 10.1164/rccm.200701-161OC 10.1371/journal.pone.0059989 10.1007/978-1-61737-985-7_3 10.2217/14622416.9.4.383 10.1194/jlr.P023309 10.1007/s00134-013-2935-7 10.1016/j.jinf.2015.02.011 10.1196/annals.1320.012 10.1164/rccm.201303-0414ED 10.1093/nar/gkv380 10.1128/IAI.00947-15 10.1182/blood-2014-05-573543 10.1038/nri.2017.21 10.1002/cem.1187 10.1021/acs.jproteome.7b00518 10.1164/rccm.201209-1726OC 10.1097/CCM.0000000000000142 10.1016/j.bbalip.2007.10.001 10.1089/ars.2015.6407 10.1038/7766 10.1097/SHK.0000000000000549 10.1021/ci0501645 10.1164/rccm.201003-0326OC 10.1097/CCM.0000000000001311 10.1006/bbrc.2000.2747 10.1016/j.chroma.2007.04.021 10.1056/NEJMra021333 10.1007/s00134-011-2359-1 10.1038/nrendo.2014.22 10.1007/s11306-009-0191-1 10.12688/f1000research.10397.1 10.1016/j.cmet.2007.10.013 10.1074/jbc.274.20.14170 10.1126/scitranslmed.3005893 10.1096/fj.04-2842fje 10.1096/fj.12-216689 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1186/s13054-018-2275-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1364-8535 1466-609X |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_d8cb2159232f466d89b93403a74890e6 PMC6310975 A569156043 30594224 10_1186_s13054_018_2275_7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | Boston |
| GeographicLocations_xml | – name: Boston |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL112747 – fundername: NHLBI NIH HHS grantid: R01 HL091957 – fundername: NCATS NIH HHS grantid: UL1 TR002384 – fundername: NCATS NIH HHS grantid: KL2 TR002385 – fundername: NHLBI NIH HHS grantid: R01 HL114839 – fundername: NHLBI NIH HHS grantid: K23 HL125663 – fundername: NHLBI NIH HHS grantid: R01 HL079904 – fundername: NIGMS NIH HHS grantid: R01 GM115774 – fundername: NHLBI NIH HHS grantid: P01 HL108801 – fundername: NHLBI NIH HHS grantid: R01 HL139634 |
| GroupedDBID | --- 0R~ 29F 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABUWG ACGFS ACJQM ADBBV ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBD EBLON EBS EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ ROL RPM RSV SJN SMD SOJ SV3 TR2 U2A UKHRP WOQ YOC .6V AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c575t-e844e49a14984e5d4869656b1d56520160fec6dcbad09c65f50867572db741623 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454589100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1364-8535 1466-609X |
| IngestDate | Fri Oct 03 12:45:13 EDT 2025 Tue Nov 04 01:58:00 EST 2025 Fri Sep 05 13:38:59 EDT 2025 Sat Nov 29 13:29:41 EST 2025 Sat Nov 29 10:11:55 EST 2025 Thu Apr 03 07:09:47 EDT 2025 Tue Nov 18 21:52:01 EST 2025 Sat Nov 29 06:01:54 EST 2025 Sat Sep 06 07:25:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Metabolomics Critical illness Metabolite Homeostasis Acylcarnitine Mitochondrial DNA Glycerophosphocholine |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-e844e49a14984e5d4869656b1d56520160fec6dcbad09c65f50867572db741623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6067-972X |
| OpenAccessLink | https://link.springer.com/10.1186/s13054-018-2275-7 |
| PMID | 30594224 |
| PQID | 2161933237 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d8cb2159232f466d89b93403a74890e6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310975 proquest_miscellaneous_2161933237 gale_infotracmisc_A569156043 gale_infotracacademiconefile_A569156043 pubmed_primary_30594224 crossref_citationtrail_10_1186_s13054_018_2275_7 crossref_primary_10_1186_s13054_018_2275_7 springer_journals_10_1186_s13054_018_2275_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-29 |
| PublicationDateYYYYMMDD | 2018-12-29 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Critical care (London, England) |
| PublicationTitleAbbrev | Crit Care |
| PublicationTitleAlternate | Crit Care |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | AK Smilde (2275_CR64) 2010; 6 L Eriksson (2275_CR30) 2008; 22 F Marini (2275_CR31) 2005; 45 CJ Darcy (2275_CR61) 2011; 6 JA Westerhuis (2275_CR29) 2008; 4 DW Haden (2275_CR54) 2007; 176 G Famularo (2275_CR49) 2004; 1033 S Violante (2275_CR57) 2013; 27 K Nakahira (2275_CR3) 2015; 23 KA Lawton (2275_CR22) 2008; 9 B Mickiewicz (2275_CR16) 2014; 42 CW Seymour (2275_CR14) 2013; 39 T Rival (2275_CR48) 2013; 95 M Jaye (2275_CR41) 1999; 21 RS Hotchkiss (2275_CR51) 2003; 348 CT Nguyen (2275_CR36) 2015; 83 DS Millington (2275_CR56) 2011; 708 MN Triba (2275_CR35) 2015; 11 JH Levels (2275_CR46) 2007; 1771 LH Boudreau (2275_CR62) 2014; 124 D Schmerler (2275_CR45) 2012; 53 B Mickiewicz (2275_CR13) 2013; 187 Q Zhang (2275_CR1) 2010; 464 S Holm (2275_CR34) 1979; 6 M Scholz (2275_CR24) 2007; 358 J Xia (2275_CR32) 2010; 26 M Picard (2275_CR10) 2014; 10 T Dolinay (2275_CR19) 2012; 185 JL Izquierdo-García (2275_CR12) 2011; 37 LK Sharma (2275_CR20) 2009; 16 MD Sharma (2275_CR58) 2010; 33 A Sreekumar (2275_CR23) 2009; 457 N Mangalmurti (2275_CR8) 2016; 193 TR Koves (2275_CR55) 2008; 7 D Corda (2275_CR39) 2014; 281 KA Krychtiuk (2275_CR6) 2015; 43 AJ Rogers (2275_CR15) 2014; 9 B McDonald (2275_CR18) 2010; 330 K Hirata (2275_CR42) 1999; 274 K Hirata (2275_CR43) 2000; 272 J Xia (2275_CR26) 2015; 43 VG Tusher (2275_CR27) 2001; 98 K Nakahira (2275_CR5) 2013; 10 K Timmermans (2275_CR7) 2016; 45 RK Boyapati (2275_CR4) 2017; 6 S Sun (2275_CR9) 2013; 8 KK To (2275_CR37) 2015; 70 Y Fan (2275_CR63) 2016; 7 D Brealey (2275_CR52) 2002; 360 L Su (2275_CR38) 2014; 1 RA Claus (2275_CR47) 2005; 19 MD Sharma (2275_CR59) 2009; 113 JA Green (2275_CR40) 1991; 15 DS Wishart (2275_CR33) 2013; 41 PM Ho (2275_CR66) 2008; 118 S Wiklund (2275_CR28) 2008; 80 D Changsirivathanathamrong (2275_CR60) 2011; 39 RJ Langley (2275_CR50) 2014; 190 M Haid (2275_CR65) 2018; 17 2275_CR21 M Kiehntopf (2275_CR11) 2013; 187 JE Carre (2275_CR53) 2010; 182 KO Badellino (2275_CR44) 2008; 117 AP West (2275_CR2) 2017; 17 M Katajamaa (2275_CR25) 2007; 1158 RJ Langley (2275_CR17) 2013; 5 |
| References_xml | – volume: 9 start-page: e87538 year: 2014 ident: 2275_CR15 publication-title: PLoS One doi: 10.1371/journal.pone.0087538 – volume: 16 start-page: 1266 year: 2009 ident: 2275_CR20 publication-title: Curr Med Chem doi: 10.2174/092986709787846578 – volume: 33 start-page: 942 year: 2010 ident: 2275_CR58 publication-title: Immunity doi: 10.1016/j.immuni.2010.11.022 – volume: 1 start-page: e000056 year: 2014 ident: 2275_CR38 publication-title: BMJ Open Respir Res doi: 10.1136/bmjresp-2014-000056 – volume: 185 start-page: 1225 year: 2012 ident: 2275_CR19 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201201-0003OC – volume: 39 start-page: 2678 year: 2011 ident: 2275_CR60 publication-title: Crit Care Med doi: 10.1097/CCM.0b013e31822827f2 – volume: 330 start-page: 362 year: 2010 ident: 2275_CR18 publication-title: Science doi: 10.1126/science.1195491 – volume: 118 start-page: 1675 year: 2008 ident: 2275_CR66 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.721357 – volume: 80 start-page: 115 year: 2008 ident: 2275_CR28 publication-title: Anal Chem doi: 10.1021/ac0713510 – volume: 7 start-page: 9925 year: 2016 ident: 2275_CR63 publication-title: Oncotarget doi: 10.18632/oncotarget.7155 – volume: 10 start-page: e1001577 year: 2013 ident: 2275_CR5 publication-title: PLoS Med doi: 10.1371/journal.pmed.1001577 – volume: 281 start-page: 998 year: 2014 ident: 2275_CR39 publication-title: FEBS J doi: 10.1111/febs.12699 – volume: 98 start-page: 5116 year: 2001 ident: 2275_CR27 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.091062498 – volume: 4 start-page: 81 year: 2008 ident: 2275_CR29 publication-title: Metabolomics doi: 10.1007/s11306-007-0099-6 – volume: 95 start-page: 2177 year: 2013 ident: 2275_CR48 publication-title: Biochimie doi: 10.1016/j.biochi.2013.08.006 – volume: 6 start-page: e21185 year: 2011 ident: 2275_CR61 publication-title: PLoS One doi: 10.1371/journal.pone.0021185 – volume: 117 start-page: 678 year: 2008 ident: 2275_CR44 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.707349 – volume: 190 start-page: 445 year: 2014 ident: 2275_CR50 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201404-0624OC – volume: 26 start-page: 2342 year: 2010 ident: 2275_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq418 – volume: 193 start-page: A4309 year: 2016 ident: 2275_CR8 publication-title: Am J Respir Crit Care Med – volume: 11 start-page: 13 year: 2015 ident: 2275_CR35 publication-title: Mol Biosyst doi: 10.1039/C4MB00414K – volume: 41 start-page: D801 year: 2013 ident: 2275_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1065 – volume: 464 start-page: 104 year: 2010 ident: 2275_CR1 publication-title: Nature. doi: 10.1038/nature08780 – volume: 358 start-page: 87 year: 2007 ident: 2275_CR24 publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-244-1_6 – volume: 113 start-page: 6102 year: 2009 ident: 2275_CR59 publication-title: Blood doi: 10.1182/blood-2008-12-195354 – volume: 15 start-page: 355 year: 1991 ident: 2275_CR40 publication-title: Inflammation doi: 10.1007/BF00917352 – volume: 457 start-page: 910 year: 2009 ident: 2275_CR23 publication-title: Nature doi: 10.1038/nature07762 – volume: 360 start-page: 219 year: 2002 ident: 2275_CR52 publication-title: Lancet doi: 10.1016/S0140-6736(02)09459-X – volume: 176 start-page: 768 year: 2007 ident: 2275_CR54 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200701-161OC – volume: 8 start-page: e59989 year: 2013 ident: 2275_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0059989 – volume: 708 start-page: 55 year: 2011 ident: 2275_CR56 publication-title: Methods Mol Biol doi: 10.1007/978-1-61737-985-7_3 – volume: 9 start-page: 383 year: 2008 ident: 2275_CR22 publication-title: Pharmacogenomics doi: 10.2217/14622416.9.4.383 – volume: 53 start-page: 1369 year: 2012 ident: 2275_CR45 publication-title: J Lipid Res doi: 10.1194/jlr.P023309 – volume: 39 start-page: 1423 year: 2013 ident: 2275_CR14 publication-title: Intensive Care Med doi: 10.1007/s00134-013-2935-7 – ident: 2275_CR21 – volume: 70 start-page: 433 year: 2015 ident: 2275_CR37 publication-title: J Infect doi: 10.1016/j.jinf.2015.02.011 – volume: 1033 start-page: 132 year: 2004 ident: 2275_CR49 publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1320.012 – volume: 187 start-page: 906 year: 2013 ident: 2275_CR11 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201303-0414ED – volume: 43 start-page: W251 year: 2015 ident: 2275_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv380 – volume: 83 start-page: 4811 year: 2015 ident: 2275_CR36 publication-title: Infect Immun doi: 10.1128/IAI.00947-15 – volume: 124 start-page: 2173 year: 2014 ident: 2275_CR62 publication-title: Blood doi: 10.1182/blood-2014-05-573543 – volume: 17 start-page: 363 year: 2017 ident: 2275_CR2 publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.21 – volume: 22 start-page: 594 year: 2008 ident: 2275_CR30 publication-title: J Chemom doi: 10.1002/cem.1187 – volume: 17 start-page: 203 year: 2018 ident: 2275_CR65 publication-title: J Proteome Res doi: 10.1021/acs.jproteome.7b00518 – volume: 187 start-page: 967 year: 2013 ident: 2275_CR13 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201209-1726OC – volume: 42 start-page: 1140 year: 2014 ident: 2275_CR16 publication-title: Crit Care Med doi: 10.1097/CCM.0000000000000142 – volume: 1771 start-page: 1429 year: 2007 ident: 2275_CR46 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbalip.2007.10.001 – volume: 23 start-page: 1329 year: 2015 ident: 2275_CR3 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2015.6407 – volume: 6 start-page: 65 year: 1979 ident: 2275_CR34 publication-title: Scand J Stat – volume: 21 start-page: 424 year: 1999 ident: 2275_CR41 publication-title: Nat Genet doi: 10.1038/7766 – volume: 45 start-page: 607 year: 2016 ident: 2275_CR7 publication-title: Shock doi: 10.1097/SHK.0000000000000549 – volume: 45 start-page: 1507 year: 2005 ident: 2275_CR31 publication-title: J Chem Inf Model doi: 10.1021/ci0501645 – volume: 182 start-page: 745 year: 2010 ident: 2275_CR53 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201003-0326OC – volume: 43 start-page: 2633 year: 2015 ident: 2275_CR6 publication-title: Crit Care Med doi: 10.1097/CCM.0000000000001311 – volume: 272 start-page: 90 year: 2000 ident: 2275_CR43 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2000.2747 – volume: 1158 start-page: 318 year: 2007 ident: 2275_CR25 publication-title: J Chromatogr A doi: 10.1016/j.chroma.2007.04.021 – volume: 348 start-page: 138 year: 2003 ident: 2275_CR51 publication-title: N Engl J Med doi: 10.1056/NEJMra021333 – volume: 37 start-page: 2023 year: 2011 ident: 2275_CR12 publication-title: Intensive Care Med doi: 10.1007/s00134-011-2359-1 – volume: 10 start-page: 303 year: 2014 ident: 2275_CR10 publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2014.22 – volume: 6 start-page: 3 year: 2010 ident: 2275_CR64 publication-title: Metabolomics doi: 10.1007/s11306-009-0191-1 – volume: 6 start-page: 169 year: 2017 ident: 2275_CR4 publication-title: F1000Research doi: 10.12688/f1000research.10397.1 – volume: 7 start-page: 45 year: 2008 ident: 2275_CR55 publication-title: Cell Metab doi: 10.1016/j.cmet.2007.10.013 – volume: 274 start-page: 14170 year: 1999 ident: 2275_CR42 publication-title: J Biol Chem doi: 10.1074/jbc.274.20.14170 – volume: 5 start-page: 195ra195 year: 2013 ident: 2275_CR17 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3005893 – volume: 19 start-page: 1719 year: 2005 ident: 2275_CR47 publication-title: FASEB J doi: 10.1096/fj.04-2842fje – volume: 27 start-page: 2039 year: 2013 ident: 2275_CR57 publication-title: FASEB J doi: 10.1096/fj.12-216689 |
| SSID | ssj0017863 |
| Score | 2.4506886 |
| Snippet | Background
Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A... Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A substantial... Background Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical illness. A... Abstract Background Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and differential outcomes in critical... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 360 |
| SubjectTerms | Acylcarnitine Adult Aged Analysis Boston Critical Care Medicine Critical illness Critical Illness - therapy Critically ill persons Discriminant Analysis DNA, Mitochondrial - adverse effects DNA, Mitochondrial - pharmacology DNA, Mitochondrial - therapeutic use Emergency Medicine Emolument Endothelial Cells - drug effects Endothelium Female Health aspects Homeostasis Humans Intensive Male Medicine Medicine & Public Health Metabolite Metabolomics Metabolomics - methods Middle Aged Mitochondrial DNA Registries - statistics & numerical data |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSEuqOUZKMhISEggq4nt-HFcHhUXlh5A6s2KHxEr7aZod9vfz4zjXTVFwIVr7EjOeB7fZMafCXndYF9iHWoWYmuY7GRkna97FuoQTCMSgAaTL5vQ87m5uLDnN676wp6wkR54FNxpNMFDWAIcwnupVDTWWyFr0SFtSp0y2Tagnl0yVeoH2ihRapiNUacb8NQtdluAVnDdMj2JQpms_3eXfCMm3e6XvFU0zbHo7IjcLyCSzsbFH5M7aXhA7n4pZfKH5Os5YOJVR1dgruDehohaRj_OZ7QbIl2lLez8Eo8j01wsH3_a0cVAIUymdaKh3H9AF8slusJH5PvZp28fPrNycwILAL-2LBkpk7QdpD9GpjZKoywAN99EwG8cSeX6FFQMvou1DartAaZB5qB59IjQuHhMDobLIT0ltIeczPPY9DFZaX2AdMR7G3outfcNbypS7yTpQqEVx9stli6nF0a5UfgOhO9Q-E5X5O3-lZ8jp8bfJr_H7dlPRDrs_ACUxBUlcf9Skoq8wc11aLSwuNCVswfwiUh_5WatsnikXIqKnExmgrGFyfCrnXo4HMIOtSFdXm0cB-hsheACVvxkVJf9mgWS4gBWqoieKNLko6Yjw-JH5vpWyNyq24q826mcK05m82eZPfsfMntO7nE0mIYzbk_IwXZ9lV6Qw3C9XWzWL7O5_QKaYClj priority: 102 providerName: Directory of Open Access Journals |
| Title | Plasma mitochondrial DNA and metabolomic alterations in severe critical illness |
| URI | https://link.springer.com/article/10.1186/s13054-018-2275-7 https://www.ncbi.nlm.nih.gov/pubmed/30594224 https://www.proquest.com/docview/2161933237 https://pubmed.ncbi.nlm.nih.gov/PMC6310975 https://doaj.org/article/d8cb2159232f466d89b93403a74890e6 |
| Volume | 22 |
| WOSCitedRecordID | wos000454589100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral Open Access_ customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: RBZ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1364-8535 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbYXYR44T4CS2UkJCRQtInj-Hjswq7gYUu0HCpPVnwEKrUparv8fmbcpCLLIcFLpMSOZE_m-CZjfybkWY7rEjOXpc6XKuU192ltsyZ1mXMqLwKABhUPm5CTiZpOddXt4173q937kmT01NGslThag7ctccUEfFkmy1TukQOIdgqt8fz9p13pQCpRdOXL3742CECRp_9Xb_xTOLq8VPJSvTSGodOb_zWBW-RGhzrpeKsmt8mV0N4h1866uvpd8q4CEL2o6QLsG_xh61Et6evJmNatp4uwAVWZ4_5lGqvr2798dNZSiKthFajrDkygs_kcfec98vH05MOrN2l31ELqAK9t0qA4D1zXkC8pHkrPldCA9GzuAfAxZKFrghPe2dpn2omyAVwHqYZk3iKkY8V9st8u2_CQ0AaSOMt83vigubYO8hdrtWsYl9bmLE9I1svfuI6HHI_DmJuYjyhhtoIyICiDgjIyIS92r3zbknD8rfMxftRdR-TPjg-Wqy-mM0fjlbMAdgDdsoYL4ZW2uuBZUSMZTxZEQp6jShi0chicq7vNCjBF5Msy41Jo3IPOi4QcDnqCdbpB89NeqQw24ZK2Niwv1oYB1tZFwQoY8YOtku3GXCCLDoCrhMiB-g0mNWxpZ18jObhAqldZJuRlr4Sm80rrP8vs0T_1fkyuM9TinKVMH5L9zeoiPCFX3ffNbL0akT05lfGqRuTg-GRSnY_inw64q96eVZ9H0V5_ACxJNFk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagIOCF-wgUMBISElVEYjuO_bgcVRHtUkFBfbPiI-1Ku1m02fL7mUmcFSmHBK-xI9mTb2a-yYzHhDzPsS4xc1nqfKFSUQmfVjarU5c5p3IegDSo7rKJcjpVx8f6MJ7jbodq9yEl2VnqTq2VfNWCtS2wYgK-LCuLtLxILglwWFjH9-nz103qoFSSx_Tlb18bOaCuT_-v1vgnd3S-VPJcvrRzQ7s3_msDN8n1yDrppIfJLXIhNLfJlYOYV79DPh4CiV5UdAH6Dfaw8QhL-nY6oVXj6SKsASpzPL9Mu-x6_5ePzhoKfjWsAnXxwgQ6m8_Rdt4lX3bfHb3ZS-NVC6kDvrZOgxIiCF1BvKREKLxQUgPTs7kHwsewC10dnPTOVj7TThY18DoINUrmLVI6xu-RrWbZhAeE1hDEWebz2gcttHUQv1irXc1EaW3O8oRkg_yNi33I8TqMueniESVNLygDgjIoKFMm5OXmlW99E46_TX6NH3UzEftndw-WqxMT1dF45SxgB9gtq4WUXmmruch4hc14siAT8gIhYVDLYXGuiocVYIvYL8tMCqnxDLrgCdkezQTtdKPhZwOoDA5hSVsTlmetYcC1NeeMw4rv9yDbrJljFx0gVwkpR_AbbWo80sxOu-bgElu9lkVCdgYQmmiV2j_L7OE_zX5Kru4dHeyb_ffTD4_INYaIzlnK9DbZWq_OwmNy2X1fz9rVk04zfwDXzzEt |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA96yuEX36fVUyMIglKuTdI0-bh6Loq6LvjgvoXmUV3Y7R7bnn-_M212secDxK9NAnnMTH7TmfyGkCc55iVmLkudL1QqKuHTymZ16jLnVM4DgAbVF5soZzN1cqLnsc5pu81234YkhzcNyNLUdEenvh5UXMmjFixvgdkTcMqsLNLyIrkksGYQuusfv-zCCKWSPIYyfztsdBn1nP2_WuafrqbzaZPnYqf9lTS99t-LuU6uRjRKJ4P43CAXQnOT7L-P8fZb5MMcwPWqoivQe7CTjUdxpcezCa0aT1ehAxFa4rtm2kfdh79_dNFQuG_DJlAXCynQxXKJNvU2-Tx99enl6zSWYEgd4LguDUqIIHQFfpQSofBCSQ0I0OYegCBDdro6OOmdrXymnSxqwHvggpTMW4R6jB-QvWbdhLuE1uDcWebz2gcttHXg11irXc1EaW3O8oRk27MwLvKTY5mMpen9FCXNsFEGNsrgRpkyIc92Q04Hco6_dX6BB7zriLza_Yf15quJamq8chZAEKBeVgspvdJWc5HxCkl6siAT8hTFw6D2w-RcFR8xwBKRR8tMCqnxbbrgCTkc9QStdaPmx1sBM9iEqW5NWJ-1hgEG15wzDjO-Mwjcbs4c2XUAdCWkHIniaFHjlmbxrScNl0gBWxYJeb4VSBOtVfvnPbv3T70fkf358dS8ezN7e59cYSjQOUuZPiR73eYsPCCX3fdu0W4e9kr6A6iDOhE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+mitochondrial+DNA+and+metabolomic+alterations+in+severe+critical+illness&rft.jtitle=Critical+care+%28London%2C+England%29&rft.au=Johansson%2C+P%C3%A4r+I.&rft.au=Nakahira%2C+Kiichi&rft.au=Rogers%2C+Angela+J.&rft.au=McGeachie%2C+Michael+J.&rft.date=2018-12-29&rft.pub=BioMed+Central&rft.eissn=1364-8535&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs13054-018-2275-7&rft.externalDocID=10_1186_s13054_018_2275_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8535&client=summon |