Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders
A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outpu...
Saved in:
| Published in: | Advanced modeling and simulation in engineering sciences Vol. 10; no. 1; pp. 7 - 27 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
19.05.2023
Springer Nature B.V Springer SpringerOpen |
| Subjects: | |
| ISSN: | 2213-7467, 2213-7467 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker’s solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems. |
|---|---|
| AbstractList | A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker’s solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems. Abstract A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker’s solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems. A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker's solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems.A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems. The objective is to perform accurate and rapid uncertainty analyses of the flow outputs of interest for which the input parameters are deemed uncertain. The data are constituted from a set of high-fidelity snapshots, collected using an inhouse high-fidelity flow solver, which correspond to a sample of the uncertain input parameters. The method uses a 1D-convolutional autoencoder to reduce the spatial dimension of the unstructured meshes used by the flow solver. Another convolutional autoencoder is used for the time compression. The encoded latent vectors, generated from the two compression levels, are then mapped to the input parameters using a regression-based multilayer perceptron. The proposed model allows for rapid predictions for unseen parameter values, allowing the output statistical moments to be computed efficiently. The accuracy of the proposed approach is compared to that of the linear reduced-order technique based on an artificial neural network through two benchmark tests (the one-dimensional Burgers and Stoker's solutions) and a hypothetical dam break flow problem, with an unstructured mesh and over a complex bathymetry river. The numerical results show that the proposed methods present strong predictive capabilities to accurately approximate the statistical moments of the outputs. In particular, the predicted statistical moments are oscillations-free, unlike those obtained with the traditional proper orthogonal decomposition method. The proposed reduction framework is simple to implement and can be applied to other parametric and time-dependent problems governed by partial differential equations, which are commonly encountered in many engineering and science problems. |
| ArticleNumber | 7 |
| Author | Abdedou, Azzedine Soulaimani, Azzeddine |
| Author_xml | – sequence: 1 givenname: Azzedine surname: Abdedou fullname: Abdedou, Azzedine organization: Department of Mechanical Engineering, Ecole de technologie superieure – sequence: 2 givenname: Azzeddine orcidid: 0000-0003-3082-2155 surname: Soulaimani fullname: Soulaimani, Azzeddine email: azzeddine.soulaimani@etsmtl.ca organization: Department of Mechanical Engineering, Ecole de technologie superieure |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37215229$$D View this record in MEDLINE/PubMed https://hal.science/hal-04513966$$DView record in HAL |
| BookMark | eNp9Ustu1TAQjVARLaU_wAJFYgOLgJ9xskJVBbTSlZAQrC3HHt-bK8cOdnIrPoJ_xmlaaLvoYmR75pwzD8_L4sgHD0XxGqMPGDf1x8QQJbRCiyHCWIWeFSeEYFoJVouje_fj4iylPUII15RhUb8ojqkgmBPSnhR_voOZNZgqRAOxHIIB1_ttaUMs0xT0TqWp16VTcQtV0spBqbwpp36AysAI3oCfSuvCdTnG0DkYUjmnRcEAjGUa1dQrt3JgGEPMDx38Ibh56oNfQvMUwOucOKZXxXOrXIKz2_O0-Pnl84-Ly2rz7evVxfmm0lzwqTKt4JooizVhlIO1qBFEW26bRjRWKwSKcco6pChqGcPQAiCLkVZtyxU19LS4WnVNUHs5xn5Q8bcMqpc3jhC3UsXctwMpOgpCUUXAUmaI6YjuVCO6jhrMuKVZ69OqNc7dAEbneeQmH4g-jPh-J7fhIDHCbZPLywrvV4XdI97l-UYuPsQ4pm1dH3DGvrvNFsOvGdIkhz5pcE55CHOSpMEN4rwRS2FvH0H3YY555Dco3vAaC55Rb-6X_y__3YpkQLMCdAwpRbBS95NaPi9307vchlwWUq4LKdFiy0JKlKnkEfVO_UkSXUkpg_0W4v-yn2D9BcXU9T4 |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2024_108466 |
| Cites_doi | 10.1038/nature14539 10.1016/j.cma.2016.12.033 10.1016/j.cpc.2021.108190 10.1007/s40430-017-0776-y 10.1162/neco.1997.9.8.1735 10.1007/s10915-021-01462-7 10.1137/18M1177846 10.1016/j.jocs.2022.101688 10.1016/j.eswa.2022.117038 10.1002/cjce.23669 10.1016/j.cma.2018.10.029 10.1016/j.camwa.2021.01.015 10.1016/j.camwa.2021.10.006 10.1016/j.apenergy.2020.115563 10.1016/j.jcp.2018.02.037 10.1146/annurev.fl.25.010193.002543 10.1016/j.jcp.2021.110841 10.1016/j.jcp.2020.109854 10.1016/j.jprocont.2020.08.002 10.3390/en13143685 10.1016/j.apm.2013.04.025 10.1016/j.cma.2011.11.012 10.1016/j.engappai.2021.104652 10.1016/j.ress.2019.106733 10.1016/j.jtice.2021.04.062 10.1016/j.cma.2020.113379 10.1016/j.jcp.2019.01.031 10.1063/5.0039986 10.1090/qam/910462 10.1051/m2an/2014054 10.1109/ICCSRE.2019.8807741 10.1002/fld.3741 10.2139/ssrn.4229792 10.2514/6.2022-0081 10.1007/s00158-009-0434-9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1186/s40323-023-00244-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2213-7467 |
| EndPage | 27 |
| ExternalDocumentID | oai_doaj_org_article_7b3e7a3a2ef34d2db2cba87bb3d145f3 PMC10198944 oai:HAL:hal-04513966v1 37215229 10_1186_s40323_023_00244_0 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2-21-02693; RDCPJ 491880-15 funderid: http://dx.doi.org/10.13039/501100000038 – fundername: ; grantid: RGPIN-2-21-02693; RDCPJ 491880-15 |
| GroupedDBID | -A0 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS ASPBG BCNDV BENPR BGLVJ C24 C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S M~E OK1 P62 PIMPY PROAC PTHSS RSV SOJ TUS AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB AHSBF EJD H13 NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c575t-d975c2af1c2435eff0872cf5f8878fca0ea4534b0a309441e9ee0f10ca995a3d3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001044506900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-7467 |
| IngestDate | Fri Oct 03 12:35:04 EDT 2025 Tue Nov 04 02:07:38 EST 2025 Sat Nov 29 15:03:47 EST 2025 Sun Nov 09 11:35:51 EST 2025 Tue Sep 30 18:40:01 EDT 2025 Wed Feb 19 02:02:36 EST 2025 Sat Nov 29 03:47:45 EST 2025 Tue Nov 18 21:41:36 EST 2025 Fri Feb 21 02:44:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Uncertainty propagation Convolutional autoencoders Reduced-order modeling |
| Language | English |
| License | The Author(s) 2023. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-d975c2af1c2435eff0872cf5f8878fca0ea4534b0a309441e9ee0f10ca995a3d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3082-2155 |
| OpenAccessLink | https://www.proquest.com/docview/2815856175?pq-origsite=%requestingapplication% |
| PMID | 37215229 |
| PQID | 2815856175 |
| PQPubID | 2034555 |
| PageCount | 27 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7b3e7a3a2ef34d2db2cba87bb3d145f3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10198944 hal_primary_oai_HAL_hal_04513966v1 proquest_miscellaneous_2818055873 proquest_journals_2815856175 pubmed_primary_37215229 crossref_citationtrail_10_1186_s40323_023_00244_0 crossref_primary_10_1186_s40323_023_00244_0 springer_journals_10_1186_s40323_023_00244_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-19 |
| PublicationDateYYYYMMDD | 2023-05-19 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Netherlands – name: Heidelberg |
| PublicationTitle | Advanced modeling and simulation in engineering sciences |
| PublicationTitleAbbrev | Adv. Model. and Simul. in Eng. Sci |
| PublicationTitleAlternate | Adv Model Simul Eng Sci |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer Nature B.V Springer SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer – name: SpringerOpen |
| References | Zokagoa, Soulaïmani (CR7) 2012; 221 Sun, Choi (CR11) 2021; 87 Berkooz, Holmes, Lumley (CR4) 1993; 25 Xiao, Fang, Pain, Navon (CR8) 2017; 317 LeCun, Bengio, Hinton (CR20) 2015; 521 Theodoridis (CR30) 2015 Walton, Hassan, Morgan (CR9) 2013; 37 Taddei, Perotto, Quarteroni (CR17) 2015; 49 CR18 Kalinina, Spada, Vetsch, Marelli, Whealton, Burgherr, Sudret (CR2) 2020; 13 Jiayang, Duraisamy (CR32) 2020; 372 CR39 Hesthaven, Ubbiali (CR15) 2018; 363 CR38 Westermann, Welzel, Evins (CR37) 2020; 278 He, Shi, Tan, Song, Zhu (CR27) 2021; 122 Seyedashraf, Akhtari (CR44) 2017; 39 Abdedou, Soulaïmani (CR13) 2021; 102 CR35 CR34 Hochreiter, Schmidhuber (CR31) 1997; 9 CR10 Jacquier, Abdedou, Delmas, Soulaïmani (CR14) 2021; 424 Burgers (CR40) 1948 Zhu, Shi, Song, Tao, Tan (CR21) 2020; 94 Maulik, Lusch, Balaprakash (CR36) 2021; 33 Rezaeiravesh, Vinuesa, Schlatter (CR1) 2022; 62 Dutta, Rivera-Casillas, Styles, Farthing (CR33) 2022; 27 Otto, Rowley (CR25) 2019; 18 Stoker (CR42) 1957; 2 Quarteroni, Manzoni, Negri (CR3) 2015 CR28 Zhu, Shi, Song, Tan, Tao (CR22) 2020; 98 Kim, Choi, Widemann, Zohdi (CR24) 2022; 451 CR26 Delmas, Soulaïmani (CR45) 2022; 271 N, Kalogeris, P (CR19) 2022; 109 El Moçayd, Mohamed, Ouazar, Seaid (CR12) 2020; 195 CR43 Chatterjee (CR6) 2000; 78 Eivazi, LeClainche, Hoyas, Vinuesa (CR29) 2022; 202 Wang, Hesthaven, Ray (CR16) 2019; 384 Guo, Hesthaven (CR41) 2019; 345 Fresca, Dede, Manzoni (CR23) 2021; 87 Sirovich (CR5) 1987; 45 S Walton (244_CR9) 2013; 37 X Sun (244_CR11) 2021; 87 Y Kim (244_CR24) 2022; 451 Q Wang (244_CR16) 2019; 384 J Zhu (244_CR22) 2020; 98 Y LeCun (244_CR20) 2015; 521 S Fresca (244_CR23) 2021; 87 Y He (244_CR27) 2021; 122 A Kalinina (244_CR2) 2020; 13 S N (244_CR19) 2022; 109 244_CR43 SE Otto (244_CR25) 2019; 18 244_CR38 244_CR18 244_CR39 S Hochreiter (244_CR31) 1997; 9 P Jacquier (244_CR14) 2021; 424 J-M Zokagoa (244_CR7) 2012; 221 S Dutta (244_CR33) 2022; 27 A Abdedou (244_CR13) 2021; 102 H Eivazi (244_CR29) 2022; 202 O Seyedashraf (244_CR44) 2017; 39 J Zhu (244_CR21) 2020; 94 X Jiayang (244_CR32) 2020; 372 244_CR34 L Sirovich (244_CR5) 1987; 45 D Xiao (244_CR8) 2017; 317 A Quarteroni (244_CR3) 2015 N El Moçayd (244_CR12) 2020; 195 244_CR35 R Maulik (244_CR36) 2021; 33 JM Burgers (244_CR40) 1948 M Guo (244_CR41) 2019; 345 S Theodoridis (244_CR30) 2015 JJ Stoker (244_CR42) 1957; 2 244_CR10 P Westermann (244_CR37) 2020; 278 T Taddei (244_CR17) 2015; 49 JS Hesthaven (244_CR15) 2018; 363 244_CR26 244_CR28 S Rezaeiravesh (244_CR1) 2022; 62 A Chatterjee (244_CR6) 2000; 78 V Delmas (244_CR45) 2022; 271 G Berkooz (244_CR4) 1993; 25 |
| References_xml | – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR20 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR18 – ident: CR43 – volume: 317 start-page: 868 year: 2017 end-page: 889 ident: CR8 article-title: A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2016.12.033 – volume: 271 year: 2022 ident: CR45 article-title: Multi-gpu implementation of a time-explicit finite volume solver using cuda and a cuda-aware version of openmpi with application to shallow water flows publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2021.108190 – volume: 39 start-page: 4393 issue: 11 year: 2017 end-page: 401 ident: CR44 article-title: Two-dimensional numerical modeling of dam-break flow using a new tvd finite-element scheme publication-title: J Brazil Soc Mech Sci Eng. doi: 10.1007/s40430-017-0776-y – year: 2015 ident: CR3 publication-title: Reduced basis methods for partial differential equations: an introduction – year: 2015 ident: CR30 publication-title: Machine learning: a Bayesian and optimization perspective – ident: CR39 – volume: 78 start-page: 808 year: 2000 end-page: 817 ident: CR6 article-title: An introduction to the proper orthogonal decomposition publication-title: Curr Sci. – volume: 27 start-page: 34 issue: 3 year: 2022 ident: CR33 article-title: Reduced order modeling using advection-aware autoencoders publication-title: Math Comput Appl – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 80 ident: CR31 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: CR10 – volume: 87 start-page: 1 year: 2021 end-page: 36 ident: CR23 article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized pdes publication-title: J Sci Comput doi: 10.1007/s10915-021-01462-7 – volume: 18 start-page: 558 issue: 1 year: 2019 end-page: 593 ident: CR25 article-title: Linearly recurrent autoencoder networks for learning dynamics publication-title: SIAM J Appl Dynam Syst doi: 10.1137/18M1177846 – ident: CR35 – volume: 62 year: 2022 ident: CR1 article-title: An uncertainty-quantification framework for assessing accuracy, sensitivity, and robustness in computational fluid dynamics publication-title: J Comput Sci doi: 10.1016/j.jocs.2022.101688 – start-page: 171 year: 1948 end-page: 199 ident: CR40 article-title: A mathematical model illustrating the theory of turbulence publication-title: Advances in applied mechanics – volume: 202 year: 2022 ident: CR29 article-title: Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2022.117038 – volume: 98 start-page: 919 issue: 4 year: 2020 end-page: 933 ident: CR22 article-title: Deep neural network based recursive feature learning for nonlinear dynamic process monitoring publication-title: Can J Chem Eng doi: 10.1002/cjce.23669 – volume: 345 start-page: 75 year: 2019 end-page: 99 ident: CR41 article-title: Data-driven reduced order modeling for time-dependent problems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.10.029 – volume: 87 start-page: 50 year: 2021 end-page: 64 ident: CR11 article-title: Non-intrusive reduced-order modeling for uncertainty quantification of space-time-dependent parameterized problems publication-title: Comput Math Appl doi: 10.1016/j.camwa.2021.01.015 – volume: 102 start-page: 187 year: 2021 end-page: 205 ident: CR13 article-title: A non-intrusive reduced-order modeling for uncertainty propagation of time-dependent problems using a b-splines bézier elements-based method and proper orthogonal decomposition: Application to dam-break flows publication-title: Comput Math Appl doi: 10.1016/j.camwa.2021.10.006 – volume: 278 year: 2020 ident: CR37 article-title: Using a deep temporal convolutional network as a building energy surrogate model that spans multiple climate zones publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115563 – volume: 363 start-page: 55 year: 2018 end-page: 78 ident: CR15 article-title: Non-intrusive reduced order modeling of nonlinear problems using neural networks publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.02.037 – volume: 25 start-page: 539 issue: 1 year: 1993 end-page: 575 ident: CR4 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.25.010193.002543 – volume: 451 year: 2022 ident: CR24 article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110841 – volume: 424 year: 2021 ident: CR14 article-title: Non-intrusive reduced-order modeling using uncertainty-aware deep neural networks and proper orthogonal decomposition: Application to flood modeling publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.109854 – volume: 94 start-page: 12 year: 2020 end-page: 25 ident: CR21 article-title: Information concentrated variational auto-encoder for quality-related nonlinear process monitoring publication-title: J Process Control doi: 10.1016/j.jprocont.2020.08.002 – ident: CR38 – volume: 13 start-page: 3685 issue: 14 year: 2020 ident: CR2 article-title: Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks publication-title: Energies doi: 10.3390/en13143685 – volume: 37 start-page: 8930 issue: 20–21 year: 2013 end-page: 8945 ident: CR9 article-title: Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions publication-title: Appl Math Model doi: 10.1016/j.apm.2013.04.025 – volume: 221 start-page: 1 year: 2012 end-page: 23 ident: CR7 article-title: A pod-based reduced-order model for free surface shallow water flows over real bathymetries for monte-carlo-type applications publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2011.11.012 – volume: 2 start-page: 5 year: 1957 ident: CR42 article-title: Water waves: the mathematical theory with applications publication-title: Interscience, New York. – volume: 109 year: 2022 ident: CR19 article-title: Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104652 – volume: 195 year: 2020 ident: CR12 article-title: Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition publication-title: Reliabil Eng Syst Saf doi: 10.1016/j.ress.2019.106733 – volume: 122 start-page: 78 year: 2021 end-page: 84 ident: CR27 article-title: Multiblock temporal convolution network-based temporal-correlated feature learning for fault diagnosis of multivariate processes publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2021.04.062 – volume: 372 year: 2020 ident: CR32 article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2020.113379 – ident: CR34 – volume: 384 start-page: 289 year: 2019 end-page: 307 ident: CR16 article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.01.031 – ident: CR28 – ident: CR26 – volume: 33 issue: 3 year: 2021 ident: CR36 article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders publication-title: Phys Fluids. doi: 10.1063/5.0039986 – volume: 45 start-page: 561 issue: 3 year: 1987 end-page: 571 ident: CR5 article-title: Turbulence and the dynamics of coherent structures. i. coherent structures publication-title: Quart Appl Math doi: 10.1090/qam/910462 – volume: 49 start-page: 787 issue: 3 year: 2015 end-page: 814 ident: CR17 article-title: Reduced basis techniques for nonlinear conservation laws publication-title: ESAIM Math Modell Numer Anal doi: 10.1051/m2an/2014054 – volume: 372 year: 2020 ident: 244_CR32 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2020.113379 – volume: 18 start-page: 558 issue: 1 year: 2019 ident: 244_CR25 publication-title: SIAM J Appl Dynam Syst doi: 10.1137/18M1177846 – volume: 202 year: 2022 ident: 244_CR29 publication-title: Expert Syst Appl. doi: 10.1016/j.eswa.2022.117038 – ident: 244_CR39 – volume: 221 start-page: 1 year: 2012 ident: 244_CR7 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2011.11.012 – volume-title: Reduced basis methods for partial differential equations: an introduction year: 2015 ident: 244_CR3 – volume: 195 year: 2020 ident: 244_CR12 publication-title: Reliabil Eng Syst Saf doi: 10.1016/j.ress.2019.106733 – volume: 94 start-page: 12 year: 2020 ident: 244_CR21 publication-title: J Process Control doi: 10.1016/j.jprocont.2020.08.002 – ident: 244_CR35 doi: 10.1109/ICCSRE.2019.8807741 – volume: 27 start-page: 34 issue: 3 year: 2022 ident: 244_CR33 publication-title: Math Comput Appl – volume: 345 start-page: 75 year: 2019 ident: 244_CR41 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.10.029 – volume: 62 year: 2022 ident: 244_CR1 publication-title: J Comput Sci doi: 10.1016/j.jocs.2022.101688 – volume: 37 start-page: 8930 issue: 20–21 year: 2013 ident: 244_CR9 publication-title: Appl Math Model doi: 10.1016/j.apm.2013.04.025 – ident: 244_CR43 doi: 10.1002/fld.3741 – volume: 33 issue: 3 year: 2021 ident: 244_CR36 publication-title: Phys Fluids. doi: 10.1063/5.0039986 – volume: 109 year: 2022 ident: 244_CR19 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104652 – volume: 45 start-page: 561 issue: 3 year: 1987 ident: 244_CR5 publication-title: Quart Appl Math doi: 10.1090/qam/910462 – ident: 244_CR34 doi: 10.2139/ssrn.4229792 – volume: 87 start-page: 1 year: 2021 ident: 244_CR23 publication-title: J Sci Comput doi: 10.1007/s10915-021-01462-7 – volume: 122 start-page: 78 year: 2021 ident: 244_CR27 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2021.04.062 – volume: 87 start-page: 50 year: 2021 ident: 244_CR11 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2021.01.015 – start-page: 171 volume-title: Advances in applied mechanics year: 1948 ident: 244_CR40 – volume: 25 start-page: 539 issue: 1 year: 1993 ident: 244_CR4 publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fl.25.010193.002543 – volume: 317 start-page: 868 year: 2017 ident: 244_CR8 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2016.12.033 – ident: 244_CR18 – volume: 271 year: 2022 ident: 244_CR45 publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2021.108190 – volume: 424 year: 2021 ident: 244_CR14 publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.109854 – ident: 244_CR38 – volume: 78 start-page: 808 year: 2000 ident: 244_CR6 publication-title: Curr Sci. – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 244_CR20 publication-title: Nature doi: 10.1038/nature14539 – volume: 49 start-page: 787 issue: 3 year: 2015 ident: 244_CR17 publication-title: ESAIM Math Modell Numer Anal doi: 10.1051/m2an/2014054 – volume: 2 start-page: 5 year: 1957 ident: 244_CR42 publication-title: Interscience, New York. – volume: 13 start-page: 3685 issue: 14 year: 2020 ident: 244_CR2 publication-title: Energies doi: 10.3390/en13143685 – ident: 244_CR28 – volume: 278 year: 2020 ident: 244_CR37 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115563 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 244_CR31 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 363 start-page: 55 year: 2018 ident: 244_CR15 publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.02.037 – volume: 98 start-page: 919 issue: 4 year: 2020 ident: 244_CR22 publication-title: Can J Chem Eng doi: 10.1002/cjce.23669 – volume-title: Machine learning: a Bayesian and optimization perspective year: 2015 ident: 244_CR30 – ident: 244_CR26 doi: 10.2514/6.2022-0081 – volume: 384 start-page: 289 year: 2019 ident: 244_CR16 publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.01.031 – volume: 39 start-page: 4393 issue: 11 year: 2017 ident: 244_CR44 publication-title: J Brazil Soc Mech Sci Eng. doi: 10.1007/s40430-017-0776-y – volume: 451 year: 2022 ident: 244_CR24 publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110841 – ident: 244_CR10 doi: 10.1007/s00158-009-0434-9 – volume: 102 start-page: 187 year: 2021 ident: 244_CR13 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2021.10.006 |
| SSID | ssj0001634176 |
| Score | 2.2410114 |
| Snippet | A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model... Abstract A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7 |
| SubjectTerms | Accuracy Artificial neural networks Classical and Continuum Physics Computational Science and Engineering Convolutional autoencoders Deep learning Engineering Engineering Sciences Finite element method Mathematical models Multilayer perceptrons Parameter uncertainty Partial differential equations Proper Orthogonal Decomposition Reduced order models Reduced-order modeling Research Article Solvers Statistical analysis Theoretical and Applied Mechanics Time compression Time dependence Uncertainty analysis Uncertainty propagation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDehBRnEDaw6fsTOsSCqHlCFEEi9RX6ylVbZqtktv4L_3Bknu-xSARcOucTOxvJ89nwTz35DyJsavHabtWI-csOUMJ55oN1MaRu8qHNQMpdiE-b01J6dtZ-3Sn1hTtgoDzxO3KHxMhknnUhZqiiiF8E7a7yXsVY6F51PbtqtYKp8XWlgdzbN-l8ytjkcFJcCjyzhAr-kGN_xREWwH_zLDNMhb3LNmymTv52bFnd0fJ_cm3gkPRrH_4DcSv1DcndLXfAR-fkFZVlTZEVek5aaN9BAgaZSoHxh5lCjmc4xF5wNYKtEXR8pVptn69q4S5rnix90KjszUEyT_05jShd0wFxsGEJ5ZhS4mlNMYp_AjE2r5QKFMjFZ-jH5dvzx64cTNlVfYAEo3JLF1uggXK6DAEqVcubWiJB1hm3J5uB4ckpL5bmTECKqOrUp8Vzz4NpWOxnlE7LXL_r0jFDXmBCSjej8VNJASUOTuBbOK0wLjRWp15bowiRNjhUy5l0JUWzTjdbrOF5ovY5X5O3mmYtRmOOvvd-jgTc9UVS73ACodRPUun9BrSKvAR47v3Fy9KnDe6jSIyFyvKorcrBGTzdtB0MnbA1hGZBFXZFXm2ZYyHg64_q0WJU-lmttDbzn6Qi2zaukwfLDoq2I3YHhzlh2W_rzWRELhy0XNfZVRd6tEftrXH-esOf_Y8L2yR1RFpxmdXtA9paXq_SC3A5Xy_Ph8mVZsdew7UZt priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVQYQEL3pRAQQaxAws_Y2dZKqouUIUQSN1FtmO3lUaZajJTvoJ_5l5PMjAUkGCRTWxPPM59xsfnEvJKgNdustEsdNwyLW1gAcJupo2LQYoctcql2IQ9PnYnJ83H8VDYMKHdpy3JYqmLWrv67aC5krjnCBc4Fs0gUb9uhGsQyHcwnnEoX1ZqsMy2nk7I_HbolhcqZP3gW84QCnk1zrwKl_xlz7S4osM7__cn7pLbY-hJ99eyco9cS_19cusnQsIH5NsnZHJNHSuMnLSUyYEGCpEthSgxnnmkdaYzhI-zAV5vor7vKBaoZ1M53SXNs_lXOlaqGSgi609pl9IFHRC-DVMoY9acWDOKuPdR_rFptZwjtybiqx-SL4fvPx8csbFgA4sQ9S1Z11gTpc8iSojCUs7cWRmzyWDJXI6eJ6-N0oF7BVmlFqlJiWfBo28a41WnHpGdft6nx4T62saYXIf-UicDUWysEzfSB41I0q4iYnqBbRzZzLGoxqwtWY2r2_VStxwvXOqWV-T1ZszFmsvjr73foVxseiIPd7kxX5y2o1q3NqhkvfIyZaU72QUZg3c2BNUJbbKqyEuQqq3fONr_0OI9JPZRkGxeiorsTULXjhZkaKUTkMlBfGkq8mLTDLqPGzq-T_NV6eO4Mc7Cc3bXMrp5lLJYsVg2FXFb0rs1l-2W_vys8IuDlUZafl2RN5MQ_5jXnxfsyb91f0puyqIHholmj-wsF6v0jNyIl8vzYfG8qPR3YLZIRw priority: 102 providerName: Springer Nature |
| Title | Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders |
| URI | https://link.springer.com/article/10.1186/s40323-023-00244-0 https://www.ncbi.nlm.nih.gov/pubmed/37215229 https://www.proquest.com/docview/2815856175 https://www.proquest.com/docview/2818055873 https://hal.science/hal-04513966 https://pubmed.ncbi.nlm.nih.gov/PMC10198944 https://doaj.org/article/7b3e7a3a2ef34d2db2cba87bb3d145f3 |
| Volume | 10 |
| WOSCitedRecordID | wos001044506900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: P5Z dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: M7S dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: BENPR dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: PIMPY dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2213-7467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001634176 issn: 2213-7467 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXYxgM88D0IjMog3sBa4o_YeULbtGlIUFUDpMFL5Dj2OqlqS9OOX8F_5l43aSkTe-EhlRo7iVNf33ttn55DyJsMonYRlGRVnWomua5YBWk3k8q4imfBSRGi2ITu9835eTFoF9yaFlbZ-cToqOuJwzXyfW4yyGwh3qr30x8MVaNwd7WV0NgiO8iSkEXo3uf1GksOPlrn3X9lTL7fyFRw3LiEA6KTZOlGPIq0_RBlhgiKvJ5xXgdO_rV7GoPSyf3_fZ0H5F6bjtKDpf08JLf8-BG5-wdJ4WPy6wzZXX3NIksnjdI5UEAh26WQObqhRapnOkJIOWugyz2145qiaD3rJHbnNIwmP2mrXtNQRNtf0Nr7KW0Q0g1NiNcsebJGFLHw7ZjAosV8gnybiLl-Qr6eHH85OmWtiANzkAnOWV1o5bgNmeOQmfkQUqO5CyqAdzPB2dRbqYSsUitgpikzX3ifhix1tiiUFbXYJdvjydg_I9Tm2jlvaoyh0ivIbF3uU8VtJRFdWick67qydC3DOQptjMo40zF5uez-MsUDu79ME_J2dc10ye9xY-1DtJBVTeTmjicms4uyHeqlroTXVljug5A1ryvuKmt0VYk6kyqIhLwG-9q4x-nBxxLPIdmPgAnoVZaQvc5uytarNOXaaBLyalUM_gA3eezYTxaxjkmVMhqe83RpratHCY0qxrxIiNmw4422bJaML4eRcxw8N1L1y4S860x-3a5__2DPb36NF-QOj2NRsazYI9vz2cK_JLfd1fyymfXIlj43PbJzeNwfnMG3Iy57cc2kF4c5fA7UdygffPg0-PYbOxVaDw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VFAk4sC-GAgOCE4xqz-LlgFBZqkRNowoVqZzMeDzTRApxiJNW_Aj-Cr-R97wkhIreeuDgi2dsT5y3fON5832EvAggaydOSZblfsQkjzKWAexmUsUm44EzUrhKbCIaDOKjo-Rgg_xq98JgWWUbE6tAnRcGv5Fv8zgAZAv5Vr2dfmeoGoWrq62ERm0We_bHKUzZyje9D_D_vuR89-Ph-y5rVAWYAWgyZ3kSKcO1CwwHqGCd8-OIG6ccuFvsjPatlkrIzNcCpj4ysIm1vgt8o5NEaZELuO8lsinR2Dtk86C3f_Bl9VUnhKwQhe3unDjcLqUvOC6VwgH5UDJ_LQNWQgGQ14ZYhnkW454t1fxrvbZKg7s3_rcXeJNcbwA33ak95BbZsJPb5NofNIx3yM9PyF9rc1bxkNJKHAgaKOB5CtjYDDWSWdMxFs2zEozaUj3J6Xz0zbJWRHhO3bg4pY0-T0lxP8Exza2d0hKL1mEI1TU1E9iYYrV_4_XYtJgXyCiKVeV3yecLeR_3SGdSTOwDQnUYGWPjHFGCtAqwuwmtr7jOJNbP5h4JWtNJTcPhjlIi47Say8VhWptb6uOB5pb6Hnm1vGZaM5ic2_sdWuSyJ7KPVyeK2XHaBLM0yoSNtNDcOiFznmfcZDqOskzkgVROeOQ52PPaPbo7_RTPIZ2RgCn2SeCRrdZO0yZulunKSD3ybNkMEQ-XsfTEFouqT-wrFUfwnPu1dywfJSLUaeaJR-I1v1kby3rLZDSsWNUhN6EYgfTI69bFVuP69wt7eP7PeEqudA_3-2m_N9h7RK7yKg4oFiRbpDOfLexjctmczEfl7EkTSij5etHO9xsF17Jn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZQQQgO7EuggEHcwGriJXGOpTAqohpVCKTeIsdLp9IoM5pkyq_gP_OekwwdCkiIQy5eEsd5a97z9wh5nYHWLoOSrHZpwSQvalaD2c2k0rbmWbBShFhsophO9clJeXzhFH_Mdh9Dkv2ZBkRparq9pQs9i-t8r5Wp4Bh_hAuUjGTgtF_FiBTS-MFw3iH-ZclBShf5eFrmt1O3NFIE7gc9M8O0yMs25-XUyV_ip1EtTW7__wvdIbcGk5Tu9zR0l1zxzT1y8wJQ4X3y_TMivHrHIlInjeVzoIOCxUvBerQzg3DPdI5p5ayFz-6paRzFwvVsLLPb0TBffKNDBZuWYsb9KXXeL2mLad2whDinx8qaU8yHH_gCu9bdAjE3Me_6Afk6-fDl4JANhRyYBWuwY64slOUmZJaDdeZDSHXBbVABJJwO1qTeSCVknRoB3qbMfOl9GrLUmrJURjjxkOw0i8Y_JtTkhbVeO9Sj0iuwbm3uU8VNLTHD1CUkGz9mZQeUcyy2Ma-it6Pzqt_qKsULt7pKE_JmM2fZY3z8dfQ7pJHNSMTnjg2L1Wk1sHtV1MIXRhjug5COu5rb2uiiroXLpAoiIa-Awrbucbh_VGEbAv4IcELPs4TsjgRYDZKlrbjOwMMDu1Ml5OWmG2QCBnpM4xfrOEanSukCnvOop9fNo0SBlYx5mRC9Rclba9nuac5mEXccpDfC9cuEvB0J-ue6_rxhT_5t-Aty_fj9pDr6OP30lNzgkSUUy8pdstOt1v4ZuWbPu7N29Txy-g_yxVQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced-order+modeling+for+stochastic+large-scale+and+time-dependent+flow+problems+using+deep+spatial+and+temporal+convolutional+autoencoders&rft.jtitle=Advanced+modeling+and+simulation+in+engineering+sciences&rft.au=Abdedou%2C+Azzedine&rft.au=Soulaimani%2C+Azzeddine&rft.date=2023-05-19&rft.issn=2213-7467&rft.eissn=2213-7467&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2Fs40323-023-00244-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40323_023_00244_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-7467&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-7467&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-7467&client=summon |