Brain structure-function coupling provides signatures for task decoding and individual fingerprinting
•The relation of brain function with the underlying structural wiring is complex.•We propose new structure-informed graph signal processing (GSP) filtering of functional data.•GSP-derived features allow accurate task decoding and individual fingerprinting.•Functional connectivity from filtered data...
Uloženo v:
| Vydáno v: | NeuroImage (Orlando, Fla.) Ročník 250; s. 118970 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
15.04.2022
Elsevier Limited Elsevier |
| Témata: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The relation of brain function with the underlying structural wiring is complex.•We propose new structure-informed graph signal processing (GSP) filtering of functional data.•GSP-derived features allow accurate task decoding and individual fingerprinting.•Functional connectivity from filtered data is more unique to subject and cognition.•The role of structurally aligned and liberal graph frequencies is elucidated.
Brain signatures of functional activity have shown promising results in both decoding brain states, meaning distinguishing between different tasks, and fingerprinting, that is identifying individuals within a large group. Importantly, these brain signatures do not account for the underlying brain anatomy on which brain function takes place. Structure-function coupling based on graph signal processing (GSP) has recently revealed a meaningful spatial gradient from unimodal to transmodal regions, on average in healthy subjects during resting-state. Here, we explore the specificity of structure-function coupling to distinct brain states (tasks) and to individual subjects. We used multimodal magnetic resonance imaging of 100 unrelated healthy subjects from the Human Connectome Project both during rest and seven different tasks and adopted a support vector machine classification approach for both decoding and fingerprinting, with various cross-validation settings. We found that structure-function coupling measures allow accurate classifications for both task decoding and fingerprinting. In particular, key information for fingerprinting is found in the more liberal portion of functional signals, with contributions strikingly localized to the fronto-parietal network. Moreover, the liberal portion of functional signals showed a strong correlation with cognitive traits, assessed with partial least square analysis, corroborating its relevance for fingerprinting. By introducing a new perspective on GSP-based signal filtering and FC decomposition, these results show that brain structure-function coupling provides a new class of signatures of cognition and individual brain organization at rest and during tasks. Further, they provide insights on clarifying the role of low and high spatial frequencies of the structural connectome, leading to new understanding of where key structure-function information for characterizing individuals can be found across the structural connectome graph spectrum. |
|---|---|
| AbstractList | •The relation of brain function with the underlying structural wiring is complex.•We propose new structure-informed graph signal processing (GSP) filtering of functional data.•GSP-derived features allow accurate task decoding and individual fingerprinting.•Functional connectivity from filtered data is more unique to subject and cognition.•The role of structurally aligned and liberal graph frequencies is elucidated.
Brain signatures of functional activity have shown promising results in both decoding brain states, meaning distinguishing between different tasks, and fingerprinting, that is identifying individuals within a large group. Importantly, these brain signatures do not account for the underlying brain anatomy on which brain function takes place. Structure-function coupling based on graph signal processing (GSP) has recently revealed a meaningful spatial gradient from unimodal to transmodal regions, on average in healthy subjects during resting-state. Here, we explore the specificity of structure-function coupling to distinct brain states (tasks) and to individual subjects. We used multimodal magnetic resonance imaging of 100 unrelated healthy subjects from the Human Connectome Project both during rest and seven different tasks and adopted a support vector machine classification approach for both decoding and fingerprinting, with various cross-validation settings. We found that structure-function coupling measures allow accurate classifications for both task decoding and fingerprinting. In particular, key information for fingerprinting is found in the more liberal portion of functional signals, with contributions strikingly localized to the fronto-parietal network. Moreover, the liberal portion of functional signals showed a strong correlation with cognitive traits, assessed with partial least square analysis, corroborating its relevance for fingerprinting. By introducing a new perspective on GSP-based signal filtering and FC decomposition, these results show that brain structure-function coupling provides a new class of signatures of cognition and individual brain organization at rest and during tasks. Further, they provide insights on clarifying the role of low and high spatial frequencies of the structural connectome, leading to new understanding of where key structure-function information for characterizing individuals can be found across the structural connectome graph spectrum. Brain signatures of functional activity have shown promising results in both decoding brain states, meaning distinguishing between different tasks, and fingerprinting, that is identifying individuals within a large group. Importantly, these brain signatures do not account for the underlying brain anatomy on which brain function takes place. Structure-function coupling based on graph signal processing (GSP) has recently revealed a meaningful spatial gradient from unimodal to transmodal regions, on average in healthy subjects during resting-state. Here, we explore the specificity of structure-function coupling to distinct brain states (tasks) and to individual subjects. We used multimodal magnetic resonance imaging of 100 unrelated healthy subjects from the Human Connectome Project both during rest and seven different tasks and adopted a support vector machine classification approach for both decoding and fingerprinting, with various cross-validation settings. We found that structure-function coupling measures allow accurate classifications for both task decoding and fingerprinting. In particular, key information for fingerprinting is found in the more liberal portion of functional signals, with contributions strikingly localized to the fronto-parietal network. Moreover, the liberal portion of functional signals showed a strong correlation with cognitive traits, assessed with partial least square analysis, corroborating its relevance for fingerprinting. By introducing a new perspective on GSP-based signal filtering and FC decomposition, these results show that brain structure-function coupling provides a new class of signatures of cognition and individual brain organization at rest and during tasks. Further, they provide insights on clarifying the role of low and high spatial frequencies of the structural connectome, leading to new understanding of where key structure-function information for characterizing individuals can be found across the structural connectome graph spectrum. Brain signatures of functional activity have shown promising results in both decoding brain states, meaning distinguishing between different tasks, and fingerprinting, that is identifying individuals within a large group. Importantly, these brain signatures do not account for the underlying brain anatomy on which brain function takes place. Structure-function coupling based on graph signal processing (GSP) has recently revealed a meaningful spatial gradient from unimodal to transmodal regions, on average in healthy subjects during resting-state. Here, we explore the specificity of structure-function coupling to distinct brain states (tasks) and to individual subjects. We used multimodal magnetic resonance imaging of 100 unrelated healthy subjects from the Human Connectome Project both during rest and seven different tasks and adopted a support vector machine classification approach for both decoding and fingerprinting, with various cross-validation settings. We found that structure-function coupling measures allow accurate classifications for both task decoding and fingerprinting. In particular, key information for fingerprinting is found in the more liberal portion of functional signals, with contributions strikingly localized to the fronto-parietal network. Moreover, the liberal portion of functional signals showed a strong correlation with cognitive traits, assessed with partial least square analysis, corroborating its relevance for fingerprinting. By introducing a new perspective on GSP-based signal filtering and FC decomposition, these results show that brain structure-function coupling provides a new class of signatures of cognition and individual brain organization at rest and during tasks. Further, they provide insights on clarifying the role of low and high spatial frequencies of the structural connectome, leading to new understanding of where key structure-function information for characterizing individuals can be found across the structural connectome graph spectrum.Brain signatures of functional activity have shown promising results in both decoding brain states, meaning distinguishing between different tasks, and fingerprinting, that is identifying individuals within a large group. Importantly, these brain signatures do not account for the underlying brain anatomy on which brain function takes place. Structure-function coupling based on graph signal processing (GSP) has recently revealed a meaningful spatial gradient from unimodal to transmodal regions, on average in healthy subjects during resting-state. Here, we explore the specificity of structure-function coupling to distinct brain states (tasks) and to individual subjects. We used multimodal magnetic resonance imaging of 100 unrelated healthy subjects from the Human Connectome Project both during rest and seven different tasks and adopted a support vector machine classification approach for both decoding and fingerprinting, with various cross-validation settings. We found that structure-function coupling measures allow accurate classifications for both task decoding and fingerprinting. In particular, key information for fingerprinting is found in the more liberal portion of functional signals, with contributions strikingly localized to the fronto-parietal network. Moreover, the liberal portion of functional signals showed a strong correlation with cognitive traits, assessed with partial least square analysis, corroborating its relevance for fingerprinting. By introducing a new perspective on GSP-based signal filtering and FC decomposition, these results show that brain structure-function coupling provides a new class of signatures of cognition and individual brain organization at rest and during tasks. Further, they provide insights on clarifying the role of low and high spatial frequencies of the structural connectome, leading to new understanding of where key structure-function information for characterizing individuals can be found across the structural connectome graph spectrum. |
| ArticleNumber | 118970 |
| Author | Van De Ville, Dimitri Preti, Maria Giulia Amico, Enrico Liégeois, Raphaël Griffa, Alessandra |
| Author_xml | – sequence: 1 givenname: Alessandra surname: Griffa fullname: Griffa, Alessandra email: alessandra.griffa@epfl.ch organization: Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland – sequence: 2 givenname: Enrico surname: Amico fullname: Amico, Enrico organization: Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Institute of Bioengineering, Geneva, Switzerland – sequence: 3 givenname: Raphaël surname: Liégeois fullname: Liégeois, Raphaël organization: Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Institute of Bioengineering, Geneva, Switzerland – sequence: 4 givenname: Dimitri surname: Van De Ville fullname: Van De Ville, Dimitri organization: Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Institute of Bioengineering, Geneva, Switzerland – sequence: 5 givenname: Maria Giulia surname: Preti fullname: Preti, Maria Giulia organization: Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Institute of Bioengineering, Geneva, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35124226$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v3CAQhq0qVfPR_oUKqZdevOXD2HCp2kT9iBSpl_aMMAwrNl7YAo6Uf19cp6m0pxUHRqNn3pnh5bI5CzFA0yCCNwST_sNuE2BO0e_1FjYUU7ohRMgBv2guCJa8lXygZ0vMWSsIkefNZc47jLEknXjVnDNOaEdpf9HAddI-oFzSbMqcoHVzMMXHgEycD5MPW3RI8cFbyCj7bdALlJGLCRWd75EFE-1C6WCRD9ZXdNYTcjUH6ZB8KDV63bx0esrw5um-an59_fLz5nt79-Pb7c3nu9bwgZfWMmuB1skclVwQo20dGWAUlMlRM2PISKxkohupxAYLLbQbh37gvCOVHNlVc7vq2qh3qnbf6_SoovbqbyKmrdKpeDOBYjDUDo51nLPOcid7y7GzPTjuRjqKqvV-1ar7_54hF7X32cA06QBxzor29VA-9Lyi747QXZxTqJtWihHBJe_6Sr19ouZxD_Z5vH9mVECsgEkx5wTuGSFYLb6rnfrvu1p8V6vvtfTjUanxRS8-lurvdIrA9SoA1Z4HD0ll4yEYsD6BKfX9_Ckin45ETP1B3ujpHh5Pk_gD_XXm6w |
| CitedBy_id | crossref_primary_10_1002_hbm_26640 crossref_primary_10_1016_j_neuroimage_2024_120651 crossref_primary_10_1038_s44220_023_00151_8 crossref_primary_10_1016_j_neuroimage_2022_119387 crossref_primary_10_1007_s00259_025_07172_8 crossref_primary_10_1162_netn_a_00400 crossref_primary_10_3390_bioengineering11070671 crossref_primary_10_1016_j_cortex_2023_09_020 crossref_primary_10_1038_s41467_024_46651_8 crossref_primary_10_1177_10422587231170217 crossref_primary_10_1038_s42003_024_06669_6 crossref_primary_10_1038_s42003_025_08231_4 crossref_primary_10_1016_j_bspc_2023_105537 crossref_primary_10_1016_j_nicl_2022_103283 crossref_primary_10_3389_fneur_2022_939640 crossref_primary_10_1002_hbm_70299 crossref_primary_10_1016_j_neuroimage_2024_120902 crossref_primary_10_1162_IMAG_a_141 crossref_primary_10_3389_fnhum_2023_1133367 crossref_primary_10_1073_pnas_2412729122 crossref_primary_10_1038_s41467_023_42053_4 crossref_primary_10_1016_j_bpsc_2024_04_001 crossref_primary_10_1002_brb3_70871 crossref_primary_10_1016_j_neuroimage_2024_120563 crossref_primary_10_1093_cercor_bhae068 crossref_primary_10_1002_hbm_26575 crossref_primary_10_1162_netn_a_00456 crossref_primary_10_1007_s11682_025_01036_3 crossref_primary_10_1097_WNR_0000000000001976 crossref_primary_10_1016_j_clinph_2023_05_012 crossref_primary_10_1038_s42003_024_06119_3 crossref_primary_10_1162_netn_a_00393 crossref_primary_10_1038_s41467_023_41686_9 crossref_primary_10_1038_s41583_024_00846_6 crossref_primary_10_1109_TCDS_2023_3314155 crossref_primary_10_1002_hbm_70302 crossref_primary_10_3389_fnins_2025_1608739 crossref_primary_10_1038_s42003_023_05497_4 crossref_primary_10_1162_imag_a_00115 crossref_primary_10_1016_j_dcn_2025_101535 crossref_primary_10_1038_s41467_022_29770_y crossref_primary_10_1038_s41598_024_79817_x crossref_primary_10_1038_s42003_024_06829_8 |
| Cites_doi | 10.1073/pnas.1903403116 10.1016/S0896-6273(02)00569-X 10.1038/nn.4125 10.1038/s41598-018-23696-6 10.1016/j.neuroimage.2015.06.092 10.1371/journal.pbio.3000284 10.1038/nrn1931 10.1038/nrn.2017.149 10.1016/j.neuroimage.2020.117181 10.1037/neu0000093 10.1016/j.neuroimage.2019.116366 10.1016/j.neuroimage.2021.118331 10.1016/j.neuron.2012.12.028 10.1109/JPROC.2018.2798928 10.1007/s00429-017-1539-3 10.1109/JBHI.2019.2940695 10.1152/jn.00338.2011 10.1109/TPAMI.2007.1012 10.1162/netn_a_00161 10.1038/nn.4164 10.1002/hbm.25217 10.1016/j.neuroimage.2010.05.081 10.1371/journal.pcbi.1008347 10.1016/j.neuroimage.2019.116059 10.1016/j.tics.2020.01.008 10.1523/JNEUROSCI.0900-18.2018 10.1109/LSP.2014.2367091 10.1073/pnas.1315529111 10.1016/j.neuroimage.2013.05.041 10.1073/pnas.0811168106 10.1371/journal.pcbi.1005203 10.1162/netn_a_00166 10.1016/j.neuroimage.2017.01.064 10.1038/s41598-018-25089-1 10.1093/cercor/bhw089 10.1016/j.media.2021.101986 10.1016/j.neuroimage.2017.07.016 10.1016/j.neuroimage.2017.03.045 10.1038/s41467-019-12765-7 10.1177/1073858411409051 10.1038/nrn2961 10.1016/j.neuroimage.2015.01.032 10.1016/j.neuron.2015.06.037 10.1016/j.neuroimage.2010.07.034 10.1093/cercor/bhaa063 10.1038/nature18933 10.1016/j.neuroimage.2004.07.020 10.1073/pnas.1912034117 10.1038/s41562-017-0260-9 10.1002/hbm.24891 10.1162/netn_a_00049 10.1073/pnas.1608282113 10.1038/nn.4179 10.1016/j.neuroimage.2020.117137 10.1016/j.neuron.2015.05.035 10.1002/brb3.1647 10.1016/j.tics.2013.09.017 10.1038/nn.4135 10.1016/j.neuroimage.2021.118648 10.1016/j.neuron.2018.03.035 10.3389/fnhum.2017.00047 10.1016/j.neuroimage.2017.08.081 10.1126/sciadv.abj0751 10.1016/j.neuroimage.2017.03.064 10.1126/sciadv.aat7854 10.1093/brain/awr223 10.1016/j.neuroimage.2017.04.015 10.1371/journal.pcbi.1005025 10.1016/j.neuroimage.2013.05.033 10.1016/j.neuroimage.2013.04.127 10.1016/j.neuroimage.2017.06.083 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. 2022. The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2022. The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
| DOI | 10.1016/j.neuroimage.2022.118970 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| ExternalDocumentID | oai_doaj_org_article_3e781cf345534d5f96d50fd6ef5fb2b8 35124226 10_1016_j_neuroimage_2022_118970 S1053811922000994 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G 9DU AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AFFHD AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- SEW WUQ XPP ZMT 0SF ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c575t-d3dde2242f29581cad000eeb8239ba3cc1b1d9384b290c08a8afb7675541000b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766270500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Fri Oct 03 12:53:30 EDT 2025 Sat Sep 27 20:09:46 EDT 2025 Tue Oct 07 07:12:01 EDT 2025 Wed Feb 19 02:25:46 EST 2025 Sat Nov 29 06:52:25 EST 2025 Tue Nov 18 21:03:40 EST 2025 Fri Feb 23 02:41:23 EST 2024 Tue Oct 14 19:35:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Functional connectivity fMRI Task Decoding Fingerprinting Graph signal processing |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-d3dde2242f29581cad000eeb8239ba3cc1b1d9384b290c08a8afb7675541000b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/3e781cf345534d5f96d50fd6ef5fb2b8 |
| PMID | 35124226 |
| PQID | 2631859546 |
| PQPubID | 2031077 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3e781cf345534d5f96d50fd6ef5fb2b8 proquest_miscellaneous_2626225765 proquest_journals_2631859546 pubmed_primary_35124226 crossref_primary_10_1016_j_neuroimage_2022_118970 crossref_citationtrail_10_1016_j_neuroimage_2022_118970 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2022_118970 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2022_118970 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-15 |
| PublicationDateYYYYMMDD | 2022-04-15 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Zhang, Liao, Chen, Mantini, Ding, Xu, Wang, Yuan, Chen, Jiao, Lu (bib0075) 2011; 134 Sareen, Zahar, Ville, Gupta, Griffa, Amico (bib0057) 2021; 240 Gao, Zhang, Cao, Guo, Zhang (bib0020) 2020; 24 Hansen, Shafiei, Markello, Smart, Cox, Wu, Gallezot, Aumont, Servaes, Scala, DuBois, Wainstein, Bezgin, Funck, Schmitz, Spreng, Soucy, Baillet, Guimond, Hietala, Bédard, Leyton, Kobayashi, Rosa-Neto, Palomero-Gallagher, Shine, Carson, Tuominen, Dagher, Misic (bib0028) 2021 Ptak (bib0052) 2012; 18 Smith, Tournier, Calamante, Connelly (bib0059) 2015; 119 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0022) 2013; 80 Suárez, Markello, Betzel, Misic (bib0061) 2020; 24 Buckner, Krienen (bib0010) 2013; 17 Amico, Goñi (bib0005) 2018; 2 Wang, Liang, Jiang, Nguchu, Zhou, Wang, Wang, Li, Zhu, Wu, Gao, Qiu (bib0071) 2020; 41 Mišić, Betzel, Nematzadeh, Goñi, Griffa, Hagmann, Flammini, Ahn, Sporns (bib0047) 2015; 86 Zöller, Schaer, Scariati, Padula, Eliez, Van De Ville (bib0077) 2017; 149 Furnkranz (bib0019) 2002; 2 Huang, Bolton, Medaglia, Bassett, Ribeiro, Ville (bib0031) 2018; 106 Allwein, Schapire, Singer (bib0002) 2000; 1 Baum, Cui, Roalf, Ciric, Betzel, Larsen, Cieslak, Cook, Xia, Moore, Ruparel, Oathes, Alexander-Bloch, Shinohara, Raznahan, Gur, Gur, Bassett, Satterthwaite (bib0008) 2020; 117 Cabral, Kringelbach, Deco (bib0011) 2017; 160 Kumar, Desrosiers, Siddiqi, Colliot, Toews (bib0034) 2017; 158 Finn, Scheinost, Finn, Shen, Papademetris, Constable (bib0014) 2017; 160 Tian, Zalesky (bib0062) 2021; 245 Richiardi, Eryilmaz, Schwartz, Vuilleumier, Van De Ville (bib0054) 2011; 56 McIntosh, Lobaugh (bib0044) 2004; 23 Paquola, Wael, Wagstyl, Bethlehem, Hong, Seidlitz, Bullmore, Evans, Misic, Margulies, Smallwood, Bernhardt (bib0050) 2019; 17 Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib0060) 2015; 18 Loukas, Lordier, Meskaldji, Filippa, Sa de Almeida, Van De Ville, Hüppi (bib0040) 2021 Goñi, Van Den Heuvel, Avena-Koenigsberger, De Mendizabal, Betzel, Griffa, Hagmann, Corominas-Murtra, Thiran, Sporns (bib0024) 2014; 111 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib0065) 2013; 80 Fukushima, Betzel, He, van den Heuvel, Zuo, Sporns (bib0018) 2018; 223 Preti, Van De Ville (bib0051) 2019; 10 Abbas, Amico, Svaldi, Tipnis, Duong-Tran, Liu, Rajapandian, Harezlak, Ances, Goñi (bib0001) 2020; 221 Itani, Thanou (bib0032) 2021; 69 Mueller, Wang, Fox, Yeo, Sepulcre, Sabuncu, Shafee, Lu, Liu (bib0049) 2013; 77 Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen (bib0007) 2013; 80 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni, Fischl, Liu, Buckner (bib0074) 2011; 106 Fraschini, Hillebrand, Demuru, Didaci, Marcialis (bib0017) 2015; 22 Medaglia, Huang, Karuza, Thompson-Schill, Ribeiro, Bassett (bib0045) 2018; 2 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib0016) 2002; 33 Seguin, Tian, Zalesky (bib0058) 2020; 4 Grady, Rieck, Nichol, Rodrigue, Kennedy (bib0025) 2021; 42 Amico, Goñi (bib0004) 2018; 8 Deco, Jirsa, McIntosh (bib0012) 2011; 12 Van De Ville, Farouj, Preti, Liégeois, Amico (bib0064) 2021; 7 Vázquez-Rodríguez, Suárez, Markello, Shafiei, Paquola, Hagmann, Van Den Heuvel, Bernhardt, Spreng, Misic (bib0066) 2019; 116 Wang, Kong, Kong, Liégeois, Orban, Deco, van den Heuvel, Thomas Yeo (bib0070) 2019; 5 Griffa, Ricaud, Benzi, Bresson, Daducci, Vandergheynst, Thiran, Hagmann (bib0027) 2017; 155 Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (bib0030) 2009; 106 Wachinger, Golland, Kremen, Fischl, Reuter (bib0067) 2015; 109 Wang, Buckner, Fox, Holt, Holmes, Stoecklein, Langs, Pan, Qian, Li, Baker, Stufflebeam, Wang, Wang, Hong, Liu (bib0069) 2015; 18 Rasero, Sentis, Yeh, Verstynen (bib0053) 2021; 17 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Van Essen (bib0021) 2016; 536 Marcel, Millan (bib0042) 2007; 29 Wu, Fan, Song, Wang, Chu, Yu, Jiang (bib0072) 2020; 30 Biazoli, Salum, Pan, Zugman, Amaro, Rohde, Miguel, Jackowski, Bressan, Sato (bib0009) 2017; 11 Li, Fan (bib0037) 2019; 202 Avena-Koenigsberger, Misic, Sporns (bib0006) 2018; 19 Yeh, Vettel, Singh, Poczos, Grafton, Erickson, Tseng, Verstynen (bib0073) 2016; 12 Amico, Abbas, Duong-Tran, Tipnis, Rajapandian, Chumin, Ventresca, Harezlak, Goñi (bib0003) 2021 Finger, Bönstrup, Cheng, Messé, Hilgetag, Thomalla, Gerloff, König (bib0013) 2016; 12 Mišić, Betzel, de Reus, van den Heuvel, Berman, McIntosh, Sporns (bib0046) 2016; 26 Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach, Schlaggar, Mumford, Poldrack, Petersen (bib0035) 2015; 87 Lerman-Sinkoff, Sui, Rachakonda, Kandala, Calhoun, Barch (bib0036) 2017; 163 Mansour, Tian, Yeo, Cropley, Zalesky (bib0041) 2021; 229 Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib0055) 2016; 19 Margulies, Ghosh, Goulas, Falkiewicz, Huntenburg, Langs, Bezgin, Eickhoff, Castellanos, Petrides, Jefferies, Smallwood (bib0043) 2016; 113 Zimmermann, Griffiths, McIntosh (bib0076) 2018; 38 Gratton, Laumann, Nielsen, Greene, Gordon, Gilmore, Nelson, Coalson, Snyder, Schlaggar, Dosenbach, Petersen (bib0026) 2018; 98 Moore, Reise, Gur, Hakonarson, Gur (bib0048) 2015; 29 Salehi, Greene, Karbasi, Shen, Scheinost, Constable (bib0056) 2020; 208 Waller, Walter, Kruschwitz, Reuter, Müller, Erk, Veer (bib0068) 2017; 158 Glomb, Rué Queralt, Pascucci, Defferrard, Tourbier, Carboni, Rubega, Vulliémoz, Plomp, Hagmann (bib0023) 2020; 221 Valizadeh, Liem, Mérillat, Hänggi, Jäncke (bib0063) 2018; 8 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib0015) 2015; 18 Krishnan, Williams, McIntosh, Abdi (bib0033) 2011; 56 Haynes, Rees (bib0029) 2006; 7 Liégeois, Santos, Matta, Van De Ville, Sayed (bib0038) 2020; 4 Lin, Baete, Wang, Boada (bib0039) 2020 Biazoli (10.1016/j.neuroimage.2022.118970_bib0009) 2017; 11 Gao (10.1016/j.neuroimage.2022.118970_bib0020) 2020; 24 Griffa (10.1016/j.neuroimage.2022.118970_bib0027) 2017; 155 Cabral (10.1016/j.neuroimage.2022.118970_bib0011) 2017; 160 Wang (10.1016/j.neuroimage.2022.118970_bib0069) 2015; 18 Wang (10.1016/j.neuroimage.2022.118970_bib0070) 2019; 5 Yeo (10.1016/j.neuroimage.2022.118970_bib0074) 2011; 106 Baum (10.1016/j.neuroimage.2022.118970_bib0008) 2020; 117 Mišić (10.1016/j.neuroimage.2022.118970_bib0047) 2015; 86 Amico (10.1016/j.neuroimage.2022.118970_bib0003) 2021 Deco (10.1016/j.neuroimage.2022.118970_bib0012) 2011; 12 Goñi (10.1016/j.neuroimage.2022.118970_bib0024) 2014; 111 Honey (10.1016/j.neuroimage.2022.118970_bib0030) 2009; 106 Waller (10.1016/j.neuroimage.2022.118970_bib0068) 2017; 158 Rosenberg (10.1016/j.neuroimage.2022.118970_bib0055) 2016; 19 Zöller (10.1016/j.neuroimage.2022.118970_bib0077) 2017; 149 Amico (10.1016/j.neuroimage.2022.118970_bib0004) 2018; 8 Kumar (10.1016/j.neuroimage.2022.118970_bib0034) 2017; 158 Krishnan (10.1016/j.neuroimage.2022.118970_bib0033) 2011; 56 Loukas (10.1016/j.neuroimage.2022.118970_bib0040) 2021 Buckner (10.1016/j.neuroimage.2022.118970_bib0010) 2013; 17 Glasser (10.1016/j.neuroimage.2022.118970_bib0021) 2016; 536 Moore (10.1016/j.neuroimage.2022.118970_bib0048) 2015; 29 Zimmermann (10.1016/j.neuroimage.2022.118970_bib0076) 2018; 38 Suárez (10.1016/j.neuroimage.2022.118970_bib0061) 2020; 24 Allwein (10.1016/j.neuroimage.2022.118970_bib0002) 2000; 1 Abbas (10.1016/j.neuroimage.2022.118970_bib0001) 2020; 221 Margulies (10.1016/j.neuroimage.2022.118970_bib0043) 2016; 113 Glasser (10.1016/j.neuroimage.2022.118970_bib0022) 2013; 80 Grady (10.1016/j.neuroimage.2022.118970_bib0025) 2021; 42 Smith (10.1016/j.neuroimage.2022.118970_bib0059) 2015; 119 Smith (10.1016/j.neuroimage.2022.118970_bib0060) 2015; 18 Lin (10.1016/j.neuroimage.2022.118970_bib0039) 2020 Fischl (10.1016/j.neuroimage.2022.118970_bib0016) 2002; 33 Medaglia (10.1016/j.neuroimage.2022.118970_bib0045) 2018; 2 Salehi (10.1016/j.neuroimage.2022.118970_bib0056) 2020; 208 Fukushima (10.1016/j.neuroimage.2022.118970_bib0018) 2018; 223 Hansen (10.1016/j.neuroimage.2022.118970_bib0028) 2021 Lerman-Sinkoff (10.1016/j.neuroimage.2022.118970_bib0036) 2017; 163 Mueller (10.1016/j.neuroimage.2022.118970_bib0049) 2013; 77 Paquola (10.1016/j.neuroimage.2022.118970_bib0050) 2019; 17 Wachinger (10.1016/j.neuroimage.2022.118970_bib0067) 2015; 109 Ptak (10.1016/j.neuroimage.2022.118970_bib0052) 2012; 18 Finger (10.1016/j.neuroimage.2022.118970_bib0013) 2016; 12 Amico (10.1016/j.neuroimage.2022.118970_bib0005) 2018; 2 Avena-Koenigsberger (10.1016/j.neuroimage.2022.118970_bib0006) 2018; 19 Richiardi (10.1016/j.neuroimage.2022.118970_bib0054) 2011; 56 Liégeois (10.1016/j.neuroimage.2022.118970_bib0038) 2020; 4 Gratton (10.1016/j.neuroimage.2022.118970_bib0026) 2018; 98 Glomb (10.1016/j.neuroimage.2022.118970_bib0023) 2020; 221 Wang (10.1016/j.neuroimage.2022.118970_bib0071) 2020; 41 Van Essen (10.1016/j.neuroimage.2022.118970_bib0065) 2013; 80 Li (10.1016/j.neuroimage.2022.118970_bib0037) 2019; 202 Valizadeh (10.1016/j.neuroimage.2022.118970_bib0063) 2018; 8 Tian (10.1016/j.neuroimage.2022.118970_bib0062) 2021; 245 Huang (10.1016/j.neuroimage.2022.118970_bib0031) 2018; 106 Fraschini (10.1016/j.neuroimage.2022.118970_bib0017) 2015; 22 Mansour (10.1016/j.neuroimage.2022.118970_bib0041) 2021; 229 Finn (10.1016/j.neuroimage.2022.118970_bib0014) 2017; 160 Furnkranz (10.1016/j.neuroimage.2022.118970_bib0019) 2002; 2 Preti (10.1016/j.neuroimage.2022.118970_bib0051) 2019; 10 Seguin (10.1016/j.neuroimage.2022.118970_bib0058) 2020; 4 Itani (10.1016/j.neuroimage.2022.118970_bib0032) 2021; 69 Laumann (10.1016/j.neuroimage.2022.118970_bib0035) 2015; 87 Yeh (10.1016/j.neuroimage.2022.118970_bib0073) 2016; 12 Vázquez-Rodríguez (10.1016/j.neuroimage.2022.118970_bib0066) 2019; 116 Mišić (10.1016/j.neuroimage.2022.118970_bib0046) 2016; 26 Finn (10.1016/j.neuroimage.2022.118970_bib0015) 2015; 18 Wu (10.1016/j.neuroimage.2022.118970_bib0072) 2020; 30 Marcel (10.1016/j.neuroimage.2022.118970_bib0042) 2007; 29 McIntosh (10.1016/j.neuroimage.2022.118970_bib0044) 2004; 23 Zhang (10.1016/j.neuroimage.2022.118970_bib0075) 2011; 134 Sareen (10.1016/j.neuroimage.2022.118970_bib0057) 2021; 240 Barch (10.1016/j.neuroimage.2022.118970_bib0007) 2013; 80 Haynes (10.1016/j.neuroimage.2022.118970_bib0029) 2006; 7 Van De Ville (10.1016/j.neuroimage.2022.118970_bib0064) 2021; 7 Rasero (10.1016/j.neuroimage.2022.118970_bib0053) 2021; 17 |
| References_xml | – volume: 245 year: 2021 ident: bib0062 article-title: Machine learning prediction of cognition from functional connectivity: are feature weights reliable? publication-title: Neuroimage – volume: 4 start-page: 980 year: 2020 end-page: 1006 ident: bib0058 article-title: Network communication models improve the behavioral and functional predictive utility of the human structural connectome publication-title: Netw. Neurosci. – volume: 38 start-page: 9658 year: 2018 end-page: 9667 ident: bib0076 article-title: Unique mapping of structural and functional connectivity on cognition publication-title: J. Neurosci. – volume: 106 start-page: 2035 year: 2009 end-page: 2040 ident: bib0030 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. – volume: 69 year: 2021 ident: bib0032 article-title: Combining anatomical and functional networks for neuropathology identification: a case study on autism spectrum disorder publication-title: Med. Image Anal. – volume: 19 start-page: 17 year: 2018 end-page: 33 ident: bib0006 article-title: Communication dynamics in complex brain networks publication-title: Nat. Rev. Neurosci. – volume: 18 start-page: 1853 year: 2015 end-page: 1860 ident: bib0069 article-title: Parcellating cortical functional networks in individuals publication-title: Nat. Neurosci. – volume: 10 start-page: 4747 year: 2019 ident: bib0051 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nat. Commun. – volume: 8 start-page: 5611 year: 2018 ident: bib0063 article-title: Identification of individual subjects on the basis of their brain anatomical features publication-title: Sci. Rep. – volume: 5 start-page: eaat7854 year: 2019 ident: bib0070 article-title: Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain publication-title: Sci. Adv. – volume: 17 year: 2021 ident: bib0053 article-title: Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability publication-title: PLOS Comput. Biol. – volume: 87 start-page: 657 year: 2015 end-page: 670 ident: bib0035 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron – volume: 29 start-page: 235 year: 2015 end-page: 246 ident: bib0048 article-title: Psychometric properties of the Penn computerized neurocognitive battery publication-title: Neuropsychology – volume: 111 start-page: 833 year: 2014 end-page: 838 ident: bib0024 article-title: Resting-brain functional connectivity predicted by analytic measures of network communication publication-title: Proc. Natl. Acad. Sci. – volume: 1 start-page: 113 year: 2000 end-page: 141 ident: bib0002 article-title: Reducing multiclass to binary: a unifying approach for margin classifiers publication-title: J. Mach. Learn. Res. – volume: 17 year: 2019 ident: bib0050 article-title: Microstructural and functional gradients are increasingly dissociated in transmodal cortices publication-title: PLOS Biol. – year: 2021 ident: bib0028 article-title: Mapping neurotransmitter systems to the structural and functional organization of the human neocortex publication-title: Neuroscience – year: 2021 ident: bib0040 article-title: Musical memories in newborns: a resting-state functional connectivity study publication-title: Hum. Brain Mapp. – volume: 4 start-page: 1235 year: 2020 end-page: 1251 ident: bib0038 article-title: Revisiting correlation-based functional connectivity and its relationship with structural connectivity publication-title: Netw. Neurosci. – volume: 19 start-page: 165 year: 2016 end-page: 171 ident: bib0055 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. – volume: 12 start-page: 43 year: 2011 end-page: 56 ident: bib0012 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nat. Rev. Neurosci. – volume: 26 start-page: 3285 year: 2016 end-page: 3296 ident: bib0046 article-title: Network-level structure-function relationships in human neocortex publication-title: Cereb. Cortex – volume: 221 year: 2020 ident: bib0001 article-title: GEFF: graph embedding for functional fingerprinting publication-title: Neuroimage – volume: 2 start-page: 156 year: 2018 end-page: 164 ident: bib0045 article-title: Functional alignment with anatomical networks is associated with cognitive flexibility publication-title: Nat. Hum. Behav. – volume: 98 start-page: 439 year: 2018 end-page: 452 ident: bib0026 article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation publication-title: Neuron – start-page: e01647 year: 2020 ident: bib0039 article-title: Mapping brain–behavior networks using functional and structural connectome fingerprinting in the HCP dataset publication-title: Brain Behav. – volume: 24 start-page: 302 year: 2020 end-page: 315 ident: bib0061 article-title: Linking structure and function in macroscale brain networks publication-title: Trends Cogn. Sci. – volume: 18 start-page: 502 year: 2012 end-page: 515 ident: bib0052 article-title: The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment publication-title: Neuroscientist – volume: 2 start-page: 721 year: 2002 end-page: 747 ident: bib0019 article-title: Round robin classification publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 1 year: 2018 end-page: 14 ident: bib0004 article-title: The quest for identifiability in human functional connectomes publication-title: Sci. Rep. – volume: 119 start-page: 338 year: 2015 end-page: 351 ident: bib0059 article-title: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: Neuroimage – volume: 2 start-page: 306 year: 2018 end-page: 322 ident: bib0005 article-title: Mapping hybrid functional-structural connectivity traits in the human connectome publication-title: Netw. Neurosci. – volume: 208 year: 2020 ident: bib0056 article-title: There is no single functional atlas even for a single individual: functional parcel definitions change with task publication-title: Neuroimage – volume: 22 start-page: 666 year: 2015 end-page: 670 ident: bib0017 article-title: An EEG-based biometric system using eigenvector centrality in resting state brain networks publication-title: IEEE Signal Process. Lett. – volume: 86 start-page: 1518 year: 2015 end-page: 1529 ident: bib0047 article-title: Cooperative and competitive spreading dynamics on the human connectome publication-title: Neuron – volume: 229 year: 2021 ident: bib0041 article-title: High-resolution connectomic fingerprints: mapping neural identity and behavior publication-title: Neuroimage – volume: 56 start-page: 616 year: 2011 end-page: 626 ident: bib0054 article-title: Decoding brain states from fMRI connectivity graphs publication-title: NeuroImage – volume: 160 start-page: 140 year: 2017 end-page: 151 ident: bib0014 article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity? publication-title: NeuroImage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0065 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage – volume: 113 start-page: 12574 year: 2016 end-page: 12579 ident: bib0043 article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization publication-title: Proc. Natl. Acad. Sci. – volume: 7 start-page: 523 year: 2006 end-page: 534 ident: bib0029 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. – volume: 202 year: 2019 ident: bib0037 article-title: Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks publication-title: Neuroimage – volume: 106 start-page: 868 year: 2018 end-page: 885 ident: bib0031 article-title: A graph signal processing perspective on functional brain imaging publication-title: Proc. IEEE – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0022 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 221 year: 2020 ident: bib0023 article-title: Connectome spectral analysis to track EEG task dynamics on a subsecond scale publication-title: Neuroimage – volume: 30 start-page: 4607 year: 2020 end-page: 4616 ident: bib0072 article-title: Hierarchy of connectivity–function relationship of the human cortex revealed through predicting activity across functional domains publication-title: Cereb. Cortex – start-page: 1 year: 2021 end-page: 20 ident: bib0003 article-title: Toward an information theoretical description of communication in brain networks publication-title: Netw. Neurosci. – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: bib0021 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – volume: 163 start-page: 41 year: 2017 end-page: 54 ident: bib0036 article-title: Multimodal neural correlates of cognitive control in the human connectome project publication-title: Neuroimage – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib0015 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bib0016 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 117 start-page: 771 year: 2020 end-page: 778 ident: bib0008 article-title: Development of structure–function coupling in human brain networks during youth publication-title: Proc. Natl. Acad. Sci. – volume: 149 start-page: 85 year: 2017 end-page: 97 ident: bib0077 article-title: Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome publication-title: Neuroimage – volume: 23 start-page: S250 year: 2004 end-page: S263 ident: bib0044 article-title: Partial least squares analysis of neuroimaging data: applications and advances publication-title: NeuroImage – volume: 158 start-page: 242 year: 2017 end-page: 259 ident: bib0034 article-title: Fiberprint: a subject fingerprint based on sparse code pooling for white matter fiber analysis publication-title: Neuroimage – volume: 109 start-page: 232 year: 2015 end-page: 248 ident: bib0067 article-title: BrainPrint: a discriminative characterization of brain morphology publication-title: Neuroimage – volume: 223 start-page: 1091 year: 2018 end-page: 1106 ident: bib0018 article-title: Structure–function relationships during segregated and integrated network states of human brain functional connectivity publication-title: Brain Struct. Funct. – volume: 158 start-page: 371 year: 2017 end-page: 377 ident: bib0068 article-title: Evaluating the replicability, specificity, and generalizability of connectome fingerprints publication-title: Neuroimage – volume: 42 start-page: 204 year: 2021 end-page: 219 ident: bib0025 article-title: Influence of sample size and analytic approach on stability and interpretation of brain-behavior correlations in task-related fMRI data publication-title: Hum. Brain Mapp. – volume: 18 start-page: 1565 year: 2015 end-page: 1567 ident: bib0060 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. – volume: 155 start-page: 490 year: 2017 end-page: 502 ident: bib0027 article-title: Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems publication-title: Neuroimage – volume: 7 year: 2021 ident: bib0064 article-title: When makes you unique: temporality of the human brain fingerprint publication-title: Sci. Adv. – volume: 77 start-page: 586 year: 2013 end-page: 595 ident: bib0049 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron – volume: 134 start-page: 2912 year: 2011 end-page: 2928 ident: bib0075 article-title: Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy publication-title: Brain – volume: 56 start-page: 455 year: 2011 end-page: 475 ident: bib0033 article-title: Partial least squares (PLS) methods for neuroimaging: a tutorial and review publication-title: NeuroImage – volume: 12 year: 2016 ident: bib0073 article-title: Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints publication-title: PLOS Comput. Biol. – volume: 116 start-page: 21219 year: 2019 end-page: 21227 ident: bib0066 article-title: Gradients of structure–function tethering across neocortex publication-title: Proc. Natl. Acad. Sci. – volume: 12 year: 2016 ident: bib0013 article-title: Modeling of large-scale functional brain networks based on structural connectivity from DTI: comparison with EEG derived phase coupling networks and evaluation of alternative methods along the modeling path publication-title: PLOS Comput. Biol. – volume: 29 start-page: 743 year: 2007 end-page: 752 ident: bib0042 article-title: Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 17 start-page: 648 year: 2013 end-page: 665 ident: bib0010 article-title: The evolution of distributed association networks in the human brain publication-title: Trends Cogn. Sci. – volume: 80 start-page: 169 year: 2013 end-page: 189 ident: bib0007 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: NeuroImage – volume: 240 year: 2021 ident: bib0057 article-title: Exploring MEG brain fingerprints: evaluation, pitfalls, and interpretations publication-title: Neuroimage – volume: 11 year: 2017 ident: bib0009 article-title: Commentary: functional connectome fingerprint: identifying individuals using patterns of brain connectivity publication-title: Front. Hum. Neurosci. – volume: 24 start-page: 1677 year: 2020 end-page: 1685 ident: bib0020 article-title: Decoding brain states from fMRI signals by using unsupervised domain adaptation publication-title: IEEE J. Biomed. Health Inform. – volume: 41 start-page: 1505 year: 2020 end-page: 1519 ident: bib0071 article-title: Decoding and mapping task states of the human brain via deep learning publication-title: Hum. Brain Mapp. – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: bib0074 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – volume: 160 start-page: 84 year: 2017 end-page: 96 ident: bib0011 article-title: Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: models and mechanisms publication-title: NeuroImage – volume: 116 start-page: 21219 year: 2019 ident: 10.1016/j.neuroimage.2022.118970_bib0066 article-title: Gradients of structure–function tethering across neocortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1903403116 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.neuroimage.2022.118970_bib0016 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 18 start-page: 1565 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0060 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – volume: 8 start-page: 5611 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0063 article-title: Identification of individual subjects on the basis of their brain anatomical features publication-title: Sci. Rep. doi: 10.1038/s41598-018-23696-6 – volume: 119 start-page: 338 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0059 article-title: SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.092 – volume: 17 year: 2019 ident: 10.1016/j.neuroimage.2022.118970_bib0050 article-title: Microstructural and functional gradients are increasingly dissociated in transmodal cortices publication-title: PLOS Biol. doi: 10.1371/journal.pbio.3000284 – volume: 7 start-page: 523 year: 2006 ident: 10.1016/j.neuroimage.2022.118970_bib0029 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1931 – year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0040 article-title: Musical memories in newborns: a resting-state functional connectivity study publication-title: Hum. Brain Mapp. – volume: 19 start-page: 17 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0006 article-title: Communication dynamics in complex brain networks publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2017.149 – volume: 221 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0001 article-title: GEFF: graph embedding for functional fingerprinting publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117181 – volume: 29 start-page: 235 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0048 article-title: Psychometric properties of the Penn computerized neurocognitive battery publication-title: Neuropsychology doi: 10.1037/neu0000093 – volume: 1 start-page: 113 year: 2000 ident: 10.1016/j.neuroimage.2022.118970_bib0002 article-title: Reducing multiclass to binary: a unifying approach for margin classifiers publication-title: J. Mach. Learn. Res. – volume: 208 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0056 article-title: There is no single functional atlas even for a single individual: functional parcel definitions change with task publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116366 – volume: 240 year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0057 article-title: Exploring MEG brain fingerprints: evaluation, pitfalls, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118331 – volume: 77 start-page: 586 year: 2013 ident: 10.1016/j.neuroimage.2022.118970_bib0049 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.12.028 – volume: 106 start-page: 868 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0031 article-title: A graph signal processing perspective on functional brain imaging publication-title: Proc. IEEE doi: 10.1109/JPROC.2018.2798928 – volume: 223 start-page: 1091 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0018 article-title: Structure–function relationships during segregated and integrated network states of human brain functional connectivity publication-title: Brain Struct. Funct. doi: 10.1007/s00429-017-1539-3 – volume: 24 start-page: 1677 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0020 article-title: Decoding brain states from fMRI signals by using unsupervised domain adaptation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2940695 – volume: 106 start-page: 1125 year: 2011 ident: 10.1016/j.neuroimage.2022.118970_bib0074 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 29 start-page: 743 year: 2007 ident: 10.1016/j.neuroimage.2022.118970_bib0042 article-title: Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1012 – volume: 4 start-page: 980 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0058 article-title: Network communication models improve the behavioral and functional predictive utility of the human structural connectome publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00161 – volume: 18 start-page: 1853 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0069 article-title: Parcellating cortical functional networks in individuals publication-title: Nat. Neurosci. doi: 10.1038/nn.4164 – volume: 42 start-page: 204 year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0025 article-title: Influence of sample size and analytic approach on stability and interpretation of brain-behavior correlations in task-related fMRI data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25217 – volume: 56 start-page: 616 year: 2011 ident: 10.1016/j.neuroimage.2022.118970_bib0054 article-title: Decoding brain states from fMRI connectivity graphs publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.05.081 – volume: 17 year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0053 article-title: Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1008347 – volume: 202 year: 2019 ident: 10.1016/j.neuroimage.2022.118970_bib0037 article-title: Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116059 – volume: 24 start-page: 302 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0061 article-title: Linking structure and function in macroscale brain networks publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2020.01.008 – volume: 229 year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0041 article-title: High-resolution connectomic fingerprints: mapping neural identity and behavior publication-title: Neuroimage – volume: 38 start-page: 9658 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0076 article-title: Unique mapping of structural and functional connectivity on cognition publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0900-18.2018 – volume: 22 start-page: 666 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0017 article-title: An EEG-based biometric system using eigenvector centrality in resting state brain networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2367091 – volume: 111 start-page: 833 year: 2014 ident: 10.1016/j.neuroimage.2022.118970_bib0024 article-title: Resting-brain functional connectivity predicted by analytic measures of network communication publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1315529111 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2022.118970_bib0065 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 106 start-page: 2035 year: 2009 ident: 10.1016/j.neuroimage.2022.118970_bib0030 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0811168106 – volume: 12 year: 2016 ident: 10.1016/j.neuroimage.2022.118970_bib0073 article-title: Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1005203 – volume: 4 start-page: 1235 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0038 article-title: Revisiting correlation-based functional connectivity and its relationship with structural connectivity publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00166 – volume: 149 start-page: 85 year: 2017 ident: 10.1016/j.neuroimage.2022.118970_bib0077 article-title: Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.064 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0004 article-title: The quest for identifiability in human functional connectomes publication-title: Sci. Rep. doi: 10.1038/s41598-018-25089-1 – volume: 26 start-page: 3285 year: 2016 ident: 10.1016/j.neuroimage.2022.118970_bib0046 article-title: Network-level structure-function relationships in human neocortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw089 – volume: 69 year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0032 article-title: Combining anatomical and functional networks for neuropathology identification: a case study on autism spectrum disorder publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.101986 – volume: 158 start-page: 371 year: 2017 ident: 10.1016/j.neuroimage.2022.118970_bib0068 article-title: Evaluating the replicability, specificity, and generalizability of connectome fingerprints publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.016 – volume: 160 start-page: 84 year: 2017 ident: 10.1016/j.neuroimage.2022.118970_bib0011 article-title: Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: models and mechanisms publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.045 – volume: 10 start-page: 4747 year: 2019 ident: 10.1016/j.neuroimage.2022.118970_bib0051 article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans publication-title: Nat. Commun. doi: 10.1038/s41467-019-12765-7 – start-page: 1 year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0003 article-title: Toward an information theoretical description of communication in brain networks publication-title: Netw. Neurosci. – volume: 18 start-page: 502 year: 2012 ident: 10.1016/j.neuroimage.2022.118970_bib0052 article-title: The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment publication-title: Neuroscientist doi: 10.1177/1073858411409051 – volume: 12 start-page: 43 year: 2011 ident: 10.1016/j.neuroimage.2022.118970_bib0012 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2961 – volume: 109 start-page: 232 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0067 article-title: BrainPrint: a discriminative characterization of brain morphology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.032 – volume: 87 start-page: 657 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0035 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 56 start-page: 455 year: 2011 ident: 10.1016/j.neuroimage.2022.118970_bib0033 article-title: Partial least squares (PLS) methods for neuroimaging: a tutorial and review publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.034 – volume: 30 start-page: 4607 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0072 article-title: Hierarchy of connectivity–function relationship of the human cortex revealed through predicting activity across functional domains publication-title: Cereb. Cortex doi: 10.1093/cercor/bhaa063 – volume: 536 start-page: 171 year: 2016 ident: 10.1016/j.neuroimage.2022.118970_bib0021 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 23 start-page: S250 year: 2004 ident: 10.1016/j.neuroimage.2022.118970_bib0044 article-title: Partial least squares analysis of neuroimaging data: applications and advances publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.020 – volume: 117 start-page: 771 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0008 article-title: Development of structure–function coupling in human brain networks during youth publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1912034117 – volume: 2 start-page: 156 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0045 article-title: Functional alignment with anatomical networks is associated with cognitive flexibility publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-017-0260-9 – volume: 41 start-page: 1505 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0071 article-title: Decoding and mapping task states of the human brain via deep learning publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24891 – volume: 2 start-page: 306 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0005 article-title: Mapping hybrid functional-structural connectivity traits in the human connectome publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00049 – volume: 113 start-page: 12574 year: 2016 ident: 10.1016/j.neuroimage.2022.118970_bib0043 article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1608282113 – volume: 19 start-page: 165 year: 2016 ident: 10.1016/j.neuroimage.2022.118970_bib0055 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4179 – year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0028 article-title: Mapping neurotransmitter systems to the structural and functional organization of the human neocortex publication-title: Neuroscience – volume: 221 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0023 article-title: Connectome spectral analysis to track EEG task dynamics on a subsecond scale publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117137 – volume: 86 start-page: 1518 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0047 article-title: Cooperative and competitive spreading dynamics on the human connectome publication-title: Neuron doi: 10.1016/j.neuron.2015.05.035 – volume: 2 start-page: 721 year: 2002 ident: 10.1016/j.neuroimage.2022.118970_bib0019 article-title: Round robin classification publication-title: J. Mach. Learn. Res. – start-page: e01647 year: 2020 ident: 10.1016/j.neuroimage.2022.118970_bib0039 article-title: Mapping brain–behavior networks using functional and structural connectome fingerprinting in the HCP dataset publication-title: Brain Behav. doi: 10.1002/brb3.1647 – volume: 17 start-page: 648 year: 2013 ident: 10.1016/j.neuroimage.2022.118970_bib0010 article-title: The evolution of distributed association networks in the human brain publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.09.017 – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.neuroimage.2022.118970_bib0015 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 245 year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0062 article-title: Machine learning prediction of cognition from functional connectivity: are feature weights reliable? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118648 – volume: 98 start-page: 439 year: 2018 ident: 10.1016/j.neuroimage.2022.118970_bib0026 article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation publication-title: Neuron doi: 10.1016/j.neuron.2018.03.035 – volume: 11 year: 2017 ident: 10.1016/j.neuroimage.2022.118970_bib0009 article-title: Commentary: functional connectome fingerprint: identifying individuals using patterns of brain connectivity publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2017.00047 – volume: 163 start-page: 41 year: 2017 ident: 10.1016/j.neuroimage.2022.118970_bib0036 article-title: Multimodal neural correlates of cognitive control in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.081 – volume: 7 year: 2021 ident: 10.1016/j.neuroimage.2022.118970_bib0064 article-title: When makes you unique: temporality of the human brain fingerprint publication-title: Sci. Adv. doi: 10.1126/sciadv.abj0751 – volume: 160 start-page: 140 year: 2017 ident: 10.1016/j.neuroimage.2022.118970_bib0014 article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.064 – volume: 5 start-page: eaat7854 year: 2019 ident: 10.1016/j.neuroimage.2022.118970_bib0070 article-title: Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain publication-title: Sci. Adv. doi: 10.1126/sciadv.aat7854 – volume: 134 start-page: 2912 year: 2011 ident: 10.1016/j.neuroimage.2022.118970_bib0075 article-title: Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy publication-title: Brain doi: 10.1093/brain/awr223 – volume: 155 start-page: 490 year: 2017 ident: 10.1016/j.neuroimage.2022.118970_bib0027 article-title: Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.015 – volume: 12 year: 2016 ident: 10.1016/j.neuroimage.2022.118970_bib0013 article-title: Modeling of large-scale functional brain networks based on structural connectivity from DTI: comparison with EEG derived phase coupling networks and evaluation of alternative methods along the modeling path publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1005025 – volume: 80 start-page: 169 year: 2013 ident: 10.1016/j.neuroimage.2022.118970_bib0007 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.033 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2022.118970_bib0022 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 158 start-page: 242 year: 2017 ident: 10.1016/j.neuroimage.2022.118970_bib0034 article-title: Fiberprint: a subject fingerprint based on sparse code pooling for white matter fiber analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.083 |
| SSID | ssj0009148 |
| Score | 2.5984352 |
| Snippet | •The relation of brain function with the underlying structural wiring is complex.•We propose new structure-informed graph signal processing (GSP) filtering of... Brain signatures of functional activity have shown promising results in both decoding brain states, meaning distinguishing between different tasks, and... |
| SourceID | doaj proquest pubmed crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118970 |
| SubjectTerms | Adult Brain Brain architecture Classification Cognition & reasoning Cognitive ability Connectome - methods Decoding Female Fingerprinting fMRI Functional anatomy Functional connectivity Graph signal processing Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Nervous System Physiological Phenomena Neuroimaging Pipelines Signal processing Signal Processing, Computer-Assisted Signatures Structure-function relationships Support Vector Machine Task |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9QwDI5gQWgvvB8DCwoS14i2STqJOCAWseLCag8g7S3KczU82mU6s78fO007cACNhHprk6iJHduJ7c-EvKpEVM6KxEC1Kia8csyKKjLNY4XmKSKG5GITy9NTdX6uz8qF21DCKieZmAV16D3ekb9uWszz1VK0by9_Mqwahd7VUkLjOrmBKAk8h-6d7UB3azGmwknOVF3rEskzxndlvMjVD9i1cEpsGpAdSmPJ4t_UU0bx_0NL_c0Kzdro5M7_zuMuuV3sUPpuZJx75Frs7pNbn4qn_QGJx1g7go7wstt1ZKgAkYjU91vM4r2gJYlvoBgDkvFBBwomMN3Y4RsNcKxFtUhtF-hqzvqiKV8j4m0ixls_JF9OPnx-_5GVkgzMg123YYGDOASt36RGS1V7G2CZY3Sq4dpZ7n3t6qC5Eq7Rla-UVTY5xIuRAh0Jjj8iB13fxSeEJtj5XjqVLGhItwyWu5bbJFTldZsquSDLiRLGF7xyLJvx3UyBaV_NjoYGaWhGGi5IPfe8HDE79uhzjMSe2yPqdn7Rry9M2cSGxyXMOXEhJRdBJt0GWaXQxiSTa5xaED2xipkSW0EUw0CrPX7gzdy3GD-jUbNn76OJ20wRQoPZsdqCvJw_g_hAn5DtYr_FNvDgoRPW-_HI0fMacDAGMdH66b8Hf0YO8U_QxVbLI3IAjBmfk5v-arMa1i_yjvwFwA9Aig priority: 102 providerName: ProQuest |
| Title | Brain structure-function coupling provides signatures for task decoding and individual fingerprinting |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811922000994 https://dx.doi.org/10.1016/j.neuroimage.2022.118970 https://www.ncbi.nlm.nih.gov/pubmed/35124226 https://www.proquest.com/docview/2631859546 https://www.proquest.com/docview/2626225765 https://doaj.org/article/3e781cf345534d5f96d50fd6ef5fb2b8 |
| Volume | 250 |
| WOSCitedRecordID | wos000766270500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 1095-9572 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgQWgviDeFpTIS14jEj8QWJ4p2xaVVhUDqzfITFZYUbdr9_cw4D5YDogdUyYcmjqyZseezPfMNIW9KEZWzIhXgWlUhvHKFFWUsNI8lwlNkDMnFJprVSm02en2j1BfGhPX0wL3g3vLYqMonLqTkIsik6yDLFOqYZHLM5TRfQD3jZmqk2wWUP8Tt9NFcmR1y-wPmKOwJGYOVQmksUHzDGWXO_j980t8wZ_Y9Fw_I_QE00vf9YB-SW7F9RO4th2vxxyQusNAD7blgD1exQG-FEqd-d8CU2690yLjrKAZsZDLPjgJepXvbfacB9qDow6htA91OKVo05TM_PPrD4Ogn5MvF-ecPH4uhfkLhAYTti8Bh7QIXzRLTEoRoA0gmRqcY185y7ytXBc2VcEyXvlRW2eSQ3EUKPPV3_Ck5aXdtfE5ogmnqpVPJgjtzTbDc1dwmoUqv61TKGWlGQRo_kItjjYtLM0aRfTO_VWBQBaZXwYxUU8-fPcHGEX0WqKvpfaTIzn-A4ZjBcMy_DGdG9KhpM2ahwroJH9oeMYB3U98BqfQI5MjeZ6NhmWHF6AyrMY9dS1HPyOvpMcx1vMCxbdwd8B344Q4R5P2sN8hJBhyQG2ZFv_gfsnlJTnG8eGtWyTNyAuYbX5G7_nq_7a7m5HazaXKr5uTO4ny1_jTP0w_aJVti26x_AcgfNms |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF92OhgJHgGJH4kbWFEKJA1ardFYci9WZsx662haRsdkH8KX4jM3ktHEB76QHllsRW7Hz-ZsaeByHPUhGUsyImIFpVIrxyiRVpSDQPKaqnmDGkKTYxnk7V0ZH-sEF-9rEw6FbZc2JD1EXlcY_8BcsxzldLkb8--5pg1Sg8Xe1LaLSw2A8_voPJVr_aewf_9zljO-8P3-4mXVWBxINqskgKDisaBBeLTEuVeVsAK4TgFOPaWe595rJCcyUc06lPlVU2Okx5IgXuhTsO_V4gFwVYQlgqYsImqyS_mWhD7yRPVJbpznOo9Sdr8lPOvgBLgFXKGHCV0lgi-Tdx2FQN-EMq_k3rbaTfzvX_bd5ukGudnk3ftAvjJtkI5S1yedJ5EtwmYRtrY9A2fe5yHhIU8AhS6qslRikf0y5Isabo49LkP60pqPh0YetTWoDZjmKf2rKgsyGqjcZmmxR3S9Gf_A75eC6DvEs2y6oM9wmNwGxeOhUtaABuXFjucm6jUKnXeUzliIz7P298l48dy4J8Nr3j3YlZYcYgZkyLmRHJhpZnbU6SNdpsI7iG9zGreHOjmh-bjqQMD2MYc-RCSi4KGXVeyDQWeYgyOubUiOgemqYP3AVRAx3N1viAl0PbTrlrlbY1W2_16DYdydZmBe0ReTo8BnrEMy9bhmqJ78CFRjXM9712BQ1zwEHZxUDyB__u_Am5sns4OTAHe9P9h-QqfhUeJ2Zyi2wCSMMjcsl_W8zq-eOGDSj5dN7L6BccSZy8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQRUb3oWBAkaCZdTEj4wthBCljKgKo1mA1J2xHbsaHkmZzID4Nb6Oe_MaWIBm0wXKbhJbief43GP7Pgh5nIqgnBUxAdOqEuGVS6xIQ6J5SFGeYsaQptjEeDpVJyd6tkV-9rEw6FbZc2JD1EXlcY98n-UY56ulyPdj5xYxO5w8P_uaYAUpPGnty2m0EDkOP77D8q1-dnQI__UTxiav3r18nXQVBhIPMmWZFBxmNxgxFpmWKvO2AIYIwSnGtbPc-8xlheZKOKZTnyqrbHSY_kQK3Bd3HPq9QC6OMWl54zY4Wyf8zUQbhid5orJMd15ErW9Zk6ty_gUYA1aojAFvKY3lkn8zjU0FgT8s5N8UcGMJJ1f_5zG8Rq50-pu-aCfMdbIVyhtk523nYXCThAOsmUHbtLqrRUjQ8CN4qa9WGL18SrvgxZqi70uTF7WmIP3p0tafaAHLeZQD1JYFnQ_RbjQ226e4i4p-5rfI-3P5yF2yXVZluENoBMbz0qloQRm4cWG5y7mNQqVe5zGVIzLuUWB8l6cdy4V8Nr1D3kezxo9B_JgWPyOSDS3P2lwlG7Q5QKANz2O28eaHanFqOvIyPIzhmyMXUnJRyKjzQqaxyEOU0TGnRkT3MDV9QC-YIOhovsELPB3adqKvFXMbtt7rkW468q3NGuYj8mi4DbSJZ2G2DNUKn4ELF9sw3rfb2TSMAQcRjAHmd__d-UOyA7PHvDmaHt8jl_Gl8JQxk3tkGzAa7pNL_ttyXi8eNMRAyYfznkW_AK2LpY0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+structure-function+coupling+provides+signatures+for+task+decoding+and+individual+fingerprinting&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Griffa%2C+Alessandra&rft.au=Amico%2C+Enrico&rft.au=Li%C3%A9geois%2C+Rapha%C3%ABl&rft.au=Van+De+Ville%2C+Dimitri&rft.date=2022-04-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=250&rft_id=info:doi/10.1016%2Fj.neuroimage.2022.118970&rft.externalDocID=S1053811922000994 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |