Electronic transport driven by collective light-matter coupled states in a quantum device
In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental prope...
Uloženo v:
| Vydáno v: | Nature communications Ročník 14; číslo 1; s. 3914 - 8 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
03.07.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.
Here the authors investigate the electronic transport in microcavity-coupled quantum detector with strong collective electronic resonances. Their findings present a way to optimize photodetectors operating in the ultra-strong light-matter coupling regime. |
|---|---|
| AbstractList | Abstract In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light. In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light. In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.Here the authors investigate the electronic transport in microcavity-coupled quantum detector with strong collective electronic resonances. Their findings present a way to optimize photodetectors operating in the ultra-strong light-matter coupling regime. In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light. In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light. Here the authors investigate the electronic transport in microcavity-coupled quantum detector with strong collective electronic resonances. Their findings present a way to optimize photodetectors operating in the ultra-strong light-matter coupling regime. |
| ArticleNumber | 3914 |
| Author | Linfield, Edmund Todorov, Yanko Pisani, Francesco Li, Lianhe Davies, Alexander Giles Gacemi, Djamal Vasanelli, Angela Sirtori, Carlo |
| Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0001-6893-4465 surname: Pisani fullname: Pisani, Francesco email: francesco.pisani@phys.ens.fr organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris – sequence: 2 givenname: Djamal surname: Gacemi fullname: Gacemi, Djamal organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris – sequence: 3 givenname: Angela surname: Vasanelli fullname: Vasanelli, Angela organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris – sequence: 4 givenname: Lianhe orcidid: 0000-0003-4998-7259 surname: Li fullname: Li, Lianhe organization: School of Electronic and Electrical Engineering, University of Leeds – sequence: 5 givenname: Alexander Giles orcidid: 0000-0002-1987-4846 surname: Davies fullname: Davies, Alexander Giles organization: School of Electronic and Electrical Engineering, University of Leeds – sequence: 6 givenname: Edmund orcidid: 0000-0001-6912-0535 surname: Linfield fullname: Linfield, Edmund organization: School of Electronic and Electrical Engineering, University of Leeds – sequence: 7 givenname: Carlo orcidid: 0000-0003-1817-4554 surname: Sirtori fullname: Sirtori, Carlo organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris – sequence: 8 givenname: Yanko orcidid: 0000-0002-2359-1611 surname: Todorov fullname: Todorov, Yanko email: yanko.todorov@phys.ens.fr organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37400430$$D View this record in MEDLINE/PubMed https://hal.science/hal-04157054$$DView record in HAL |
| BookMark | eNp9Uk1v1DAQjVARLaV_gAOKxAUOAX_GzglVVaGVVuICB06W449drxJ7azsrtb8epyml3UN9sT1-78143rytjnzwpqreQ_AFAsy_JgJJyxqAcIM72pHm7lV1ggCBDWQIHz05H1dnKW1BWbiDnJA31TFmBACCwUn153IwKsfgnapzlD7tQsy1jm5vfN3f1ioMM6Bc68GtN7kZZc4mlvi0G4yuU5bZpNr5WtY3k_R5Gmtt9k6Zd9VrK4dkzh720-r398tfF1fN6ueP64vzVaMoo7nRSOmuZ9gg3PG-1ERaAkFnbd93HcctMxxpbFTbW8w47iyy0FIFtMJUcazxaXW96Oogt2IX3SjjrQjSiftAiGshY3ZqMMJaybQm3FrVEqoNp5LzFknV9xK0Ehetb4vWbupHo5XxpSfDM9HnL95txDrsRbEEcsDaovB5Udgc8K7OV2KOFVcoA5TsYcF-esgWw81kUhajS8oMg_QmTEkgjjFAFBFUoB8PoNswRV_6OqNQW0aAzoIfnpb_mP-f3QWAFoCKIaVo7CMEgvkPXCxjJcpYifuxEneFxA9IyhXXXZhb4IaXqXihppLHr038X_YLrL-r_-J8 |
| CitedBy_id | crossref_primary_10_1364_OE_569875 crossref_primary_10_1515_nanoph_2023_0795 crossref_primary_10_1063_5_0258786 crossref_primary_10_1002_adom_202500433 crossref_primary_10_1103_PhysRevB_111_L121407 crossref_primary_10_1515_nanoph_2023_0757 crossref_primary_10_1103_PhysRevResearch_6_033097 crossref_primary_10_1103_PhysRevApplied_21_034002 crossref_primary_10_1088_1367_2630_add496 crossref_primary_10_1103_PhysRevB_111_165304 |
| Cites_doi | 10.1103/PhysRevB.72.115303 10.1088/0034-4885/68/11/R02 10.1038/nature07838 10.1063/5.0004591 10.1103/PhysRevA.74.033811 10.1063/1.5084112 10.1103/PhysRevB.79.201303 10.1103/PhysRevB.82.045322 10.1109/JQE.2009.2017929 10.1063/1.2739308 10.1142/7184 10.1103/PhysRevLett.115.187402 10.1201/9780203912539 10.1103/PhysRevB.85.045304 10.1126/science.1176695 10.1126/science.abl5818 10.1103/PhysRevApplied.17.044021 10.1063/1.4862750 10.1038/nphys1730 10.1103/PhysRevLett.105.196402 10.1038/nature13455 10.1103/PhysRevLett.109.246808 10.1126/science.abd0336 10.1103/PhysRevLett.100.136806 10.1021/acsphotonics.8b01778 10.1109/3.709589 10.1103/PhysRev.93.99 10.1103/PhysRevLett.119.223601 10.1017/CBO9780511754647 10.1016/j.crhy.2016.05.001 10.1103/RevModPhys.54.437 10.1088/1367-2630/16/4/043029 10.1007/978-1-4615-1963-8_40 10.1364/OE.18.013886 10.1103/PhysRevB.68.245320 10.1126/science.aau7742 10.1103/PhysRevLett.116.238301 10.1038/nmat4392 10.1021/acs.nanolett.7b03103 10.1016/B978-0-08-102709-7.00008-5 10.1103/PhysRevB.107.045425 10.1088/0034-4885/77/12/126402 10.1016/S0080-8784(08)60206-9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1038/s41467-023-39594-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Physics |
| EISSN | 2041-1723 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_ffa7dd48ffc645de85a8862acbba06a3 PMC10318076 oai:HAL:hal-04157054v1 37400430 10_1038_s41467_023_39594_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/W02892/1; EP/P021859; EP/W02892/1; EP/P021859; EP/W02892/1 funderid: https://doi.org/10.13039/501100000266 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 863487; 863487 funderid: https://doi.org/10.13039/100010663 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/P021859 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/W02892/1 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 863487 – fundername: ; grantid: 863487; 863487 – fundername: ; grantid: EP/W02892/1; EP/P021859; EP/W02892/1; EP/P021859; EP/W02892/1 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 1XC 4.4 BAPOH CAG COF EJD VOOES 5PM |
| ID | FETCH-LOGICAL-c575t-d2cd9b73e2398b430464109ffbb998367e82d3ec6bf37839f2f1f5c0dc35c83d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001028011500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:46:11 EDT 2025 Tue Nov 04 02:06:40 EST 2025 Tue Oct 14 20:05:47 EDT 2025 Thu Sep 04 16:45:05 EDT 2025 Tue Oct 07 07:12:14 EDT 2025 Mon Jul 21 06:05:02 EDT 2025 Tue Nov 18 21:08:58 EST 2025 Sat Nov 29 02:11:52 EST 2025 Fri Feb 21 02:39:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Attribution: http://creativecommons.org/licenses/by Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-d2cd9b73e2398b430464109ffbb998367e82d3ec6bf37839f2f1f5c0dc35c83d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2359-1611 0000-0003-1817-4554 0000-0001-6912-0535 0000-0001-6893-4465 0000-0003-4998-7259 0000-0002-1987-4846 0000-0003-1945-2261 0000-0003-0334-1815 |
| OpenAccessLink | https://doaj.org/article/ffa7dd48ffc645de85a8862acbba06a3 |
| PMID | 37400430 |
| PQID | 2832639551 |
| PQPubID | 546298 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ffa7dd48ffc645de85a8862acbba06a3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10318076 hal_primary_oai_HAL_hal_04157054v1 proquest_miscellaneous_2833025242 proquest_journals_2832639551 pubmed_primary_37400430 crossref_primary_10_1038_s41467_023_39594_z crossref_citationtrail_10_1038_s41467_023_39594_z springer_journals_10_1038_s41467_023_39594_z |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-03 |
| PublicationDateYYYYMMDD | 2023-07-03 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | OrgiuEConductivity in organic semiconductors hybridized with the vacuum fieldNat. Mater.201514112311292015NatMa..14.1123O1:CAS:528:DC%2BC2MXhsV2ltrvI10.1038/nmat439226366850 ScullyMOSvidzinskyAAThe super of superradianceScience2009325151015111:CAS:528:DC%2BD1MXht1ShurvO10.1126/science.117669519762635 JeanninMUltrastrong light–matter coupling in deeply subwavelength THz LC resonatorsACS photonics20196120712151:CAS:528:DC%2BC1MXmtlKnsbs%3D10.1021/acsphotonics.8b01778 CollinSNanostructure arrays in free-space: optical properties and applicationsRep. Prog. Phys.2014771264022014RPPh...77l6402C10.1088/0034-4885/77/12/12640225427236 AskenaziBUltra-strong light–matter coupling for designer Reststrahlen bandN. J. Phys.2014160430291:CAS:528:DC%2BC2MXivV2mtLo%3D10.1088/1367-2630/16/4/043029 AnapparaAASignatures of the ultrastrong light-matter coupling regimePhys. Rev. B2009792013032009PhRvB..79t1303A10.1103/PhysRevB.79.201303 AppuglieseFBreakdown of topological protection by cavity vacuum fields in the integer quantum Hall effectScience2022375103010342022Sci...375.1030A44742471:CAS:528:DC%2BB38Xmtl2gtbw%3D10.1126/science.abl581835239382 VasanelliATodorovYSirtoriCUltra-strong light–matter coupling and superradiance using dense electron gasesComptes Rendus Phys.2016178618732016CRPhy..17..861V1:CAS:528:DC%2BC28Xos1ajsrk%3D10.1016/j.crhy.2016.05.001 DickeRHCoherence in spontaneous radiation processesPhys. Rev.195493991954PhRv...93...99D1:CAS:528:DyaG2cXjsV2jtA%3D%3D10.1103/PhysRev.93.990055.21702 Weber, E. R., Willardson, R. K., Liu, H. & Capasso, F. Intersubband Transitions in Quantum Wells: Physics and Device Applications. (Academic press, 1999). VigneronPBQuantum well infrared photo-detectors operating in the strong light-matter coupling regimeAppl. Phys. Lett.20191141311042019ApPhL.114m1104V10.1063/1.5084112 BayerATerahertz light–matter interaction beyond unity coupling strengthNano Lett.201717634063442017NanoL..17.6340B1:CAS:528:DC%2BC2sXhsFelsbvK10.1021/acs.nanolett.7b0310328937772 DupontELiuHCSpringThorpeAJLaiWExtavourMVacuum-field Rabi splitting in quantum-well infrared photodetectorsPhys. Rev. B.2003682453202003PhRvB..68x5320D10.1103/PhysRevB.68.245320 HagenmüllerDSchachenmayerJSchützSGenesCPupilloGCavity-enhanced transport of chargePhys. Rev. Lett.20171192236012017PhRvL.119v3601H10.1103/PhysRevLett.119.22360129286774 LaurentTSuperradiant emission from a collective excitation in a semiconductorPhys. Rev. Lett.20151151874022015PhRvL.115r7402L1:STN:280:DC%2BC28vhvFWjug%3D%3D10.1103/PhysRevLett.115.18740226565495 LagréeMDirect polariton-to-electron tunneling in quantum cascade detectors operating in the strong light-matter coupling regimePhys. Rev. Appl.2022170440212022PhRvP..17d4021L10.1103/PhysRevApplied.17.044021 JouyPIntersubband electroluminescent devices operating in the strong-coupling regimePhys. Rev. B2010820453222010PhRvB..82d5322J10.1103/PhysRevB.82.045322 NiemczykTCircuit quantum electrodynamics in the ultrastrong-coupling regimeNat. Phys.201067727761:CAS:528:DC%2BC3cXht1ehtbvM10.1038/nphys1730 ThomasATilting a ground-state reactivity landscape by vibrational strong couplingScience20193636156192019Sci...363..615T1:CAS:528:DC%2BC1MXisFyjsb0%3D10.1126/science.aau774230733414 GiorgettaFRQuantum cascade detectorsIEEE J. Quantum Electron.200945103910522009IJQE...45.1039G1:CAS:528:DC%2BD1MXpsV2ls7Y%3D10.1109/JQE.2009.2017929 Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. D69 839–839 (1995). CiutiCBastardGCarusottoIQuantum vacuum properties of the intersubband cavity polariton fieldPhys. Rev. B2005721153032005PhRvB..72k5303C10.1103/PhysRevB.72.115303 Sutherland, R. L. Handbook of Nonlinear Optics. (CRC press, 2003). Garcia-VidalFJCiutiCEbbesenTWManipulating matter by strong coupling to vacuum fieldsScience2021373eabd03361:CAS:528:DC%2BB3MXhsFaqsb7E10.1126/science.abd033634244383 LeeJGiant nonlinear response from plasmonic metasurfaces coupled to intersubband transitionsNature201451165692014Natur.511...65L1:CAS:528:DC%2BC2cXhtV2qtbzN10.1038/nature1345524990746 Haug, H. & Koch, S. W. Quantum Theory of The Optical and Electronic Properties of Semiconductors. (World Scientific Publishing Company, 2009). Rosencher, E. & Vinter, B. Optoelectronics. (Cambridge University Press, 2002). KazarinovRFPossibility of amplication of electromagnetic waves in a semiconductor with a superlatticeSov. Phys. Semicond.19715707709 Unterrainer, K. Photon-assisted tunneling in semiconductor quantum structures. In Semiconductors and Semimetals vol. 66 127–186 (Elsevier, 1999). SirtoriCResonant tunneling in quantum cascade lasersIEEE J. Quantum Electron.199834172217291998IJQE...34.1722S1:CAS:528:DyaK1cXls1aqtbk%3D10.1109/3.709589 IottiRCRossiFMicroscopic theory of semiconductor-based optoelectronic devicesRep. Prog. Phys.20056825332005RPPh...68.2533I10.1088/0034-4885/68/11/R02 ArwasGCiutiCQuantum electron transport controlled by cavity vacuum fieldsPhys. Rev. B20231070454252023PhRvB.107d5425A1:CAS:528:DC%2BB3sXjvVWntr0%3D10.1103/PhysRevB.107.045425 AndoTFowlerABSternFElectronic properties of two-dimensional systemsRev. Mod. Phys.1982544371982RvMP...54..437A1:CAS:528:DyaL38Xit1OjtrY%3D10.1103/RevModPhys.54.437 SapienzaLElectrically injected cavity polaritonsPhys. Rev. Lett.20081001368062008PhRvL.100m6806S1:STN:280:DC%2BD1czlsVCnsA%3D%3D10.1103/PhysRevLett.100.13680618517986 HerreraFSpanoFCCavity-controlled chemistry in molecular ensemblesPhys. Rev. Lett.20161162383012016PhRvL.116w8301H10.1103/PhysRevLett.116.23830127341263 TodorovYOptical properties of metal-dielectric-metal microcavities in the THz frequency rangeOpt. Express20101813886139072010OExpr..1813886T1:CAS:528:DC%2BC3cXot1enu78%3D10.1364/OE.18.01388620588522 GünterGSub-cycle switch-on of ultrastrong light–matter interactionNature20094581781812009Natur.458..178G10.1038/nature0783819279631 BigioliALong-wavelength infrared photovoltaic heterodyne receivers using patch-antenna quantum cascade detectorsAppl. Phys. Lett.20201161611012020ApPhL.116p1101B1:CAS:528:DC%2BB3cXnslSlsrw%3D10.1063/5.0004591 Nga ChenYAntenna-coupled microcavities for enhanced infrared photo-detectionAppl. Phys. Lett.20141040311132014ApPhL.104c1113N10.1063/1.4862750 SapienzaLPhotovoltaic probe of cavity polaritons in a quantum cascade structureAppl. Phys. Lett.2007902011012007ApPhL..90t1101S10.1063/1.2739308 TodorovYSirtoriCFew-electron ultrastrong light-matter coupling in a quantum LC circuitPhys. Rev. X20144041031 DelgaAQuantum cascade detectors: a reviewInfrared Optoelectron.2020133737710.1016/B978-0-08-102709-7.00008-5 DelteilACharge-induced coherence between intersubband plasmons in a quantum structurePhys. Rev. Lett.20121092468082012PhRvL.109x6808D1:STN:280:DC%2BC3szkt1KrsQ%3D%3D10.1103/PhysRevLett.109.24680823368367 TodorovYUltrastrong light-matter coupling regime with polariton dotsPhys. Rev. Lett.20101051964022010PhRvL.105s6402T1:STN:280:DC%2BC3M7htlClsg%3D%3D10.1103/PhysRevLett.105.19640221231188 TodorovYSirtoriCIntersubband polaritons in the electrical dipole gaugePhys. Rev. B2012850453042012PhRvB..85d5304T10.1103/PhysRevB.85.045304 CiutiCCarusottoIInput-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parametersPhys. Rev. A2006740338112006PhRvA..74c3811C10.1103/PhysRevA.74.033811 A Thomas (39594_CR15) 2019; 363 MO Scully (39594_CR3) 2009; 325 AA Anappara (39594_CR21) 2009; 79 Y Todorov (39594_CR28) 2014; 4 B Askenazi (39594_CR11) 2014; 16 L Sapienza (39594_CR22) 2007; 90 L Sapienza (39594_CR24) 2008; 100 Y Nga Chen (39594_CR41) 2014; 104 RH Dicke (39594_CR2) 1954; 93 FR Giorgetta (39594_CR20) 2009; 45 PB Vigneron (39594_CR42) 2019; 114 J Lee (39594_CR18) 2014; 511 A Delteil (39594_CR4) 2012; 109 A Bigioli (39594_CR33) 2020; 116 G Arwas (39594_CR39) 2023; 107 A Bayer (39594_CR44) 2017; 17 RF Kazarinov (39594_CR35) 1971; 5 T Ando (39594_CR7) 1982; 54 T Laurent (39594_CR5) 2015; 115 FJ Garcia-Vidal (39594_CR19) 2021; 373 G Günter (39594_CR10) 2009; 458 39594_CR31 M Lagrée (39594_CR36) 2022; 17 39594_CR32 S Collin (39594_CR47) 2014; 77 D Hagenmüller (39594_CR14) 2017; 119 A Delga (39594_CR34) 2020; 1 P Jouy (39594_CR25) 2010; 82 39594_CR37 39594_CR38 E Dupont (39594_CR40) 2003; 68 M Jeannin (39594_CR43) 2019; 6 Y Todorov (39594_CR8) 2012; 85 Y Todorov (39594_CR46) 2010; 18 39594_CR6 F Appugliese (39594_CR17) 2022; 375 RC Iotti (39594_CR30) 2005; 68 39594_CR1 A Vasanelli (39594_CR29) 2016; 17 T Niemczyk (39594_CR45) 2010; 6 Y Todorov (39594_CR9) 2010; 105 C Sirtori (39594_CR23) 1998; 34 C Ciuti (39594_CR12) 2005; 72 E Orgiu (39594_CR13) 2015; 14 F Herrera (39594_CR16) 2016; 116 C Ciuti (39594_CR26) 2006; 74 39594_CR27 |
| References_xml | – reference: TodorovYUltrastrong light-matter coupling regime with polariton dotsPhys. Rev. Lett.20101051964022010PhRvL.105s6402T1:STN:280:DC%2BC3M7htlClsg%3D%3D10.1103/PhysRevLett.105.19640221231188 – reference: CiutiCBastardGCarusottoIQuantum vacuum properties of the intersubband cavity polariton fieldPhys. Rev. B2005721153032005PhRvB..72k5303C10.1103/PhysRevB.72.115303 – reference: AppuglieseFBreakdown of topological protection by cavity vacuum fields in the integer quantum Hall effectScience2022375103010342022Sci...375.1030A44742471:CAS:528:DC%2BB38Xmtl2gtbw%3D10.1126/science.abl581835239382 – reference: ScullyMOSvidzinskyAAThe super of superradianceScience2009325151015111:CAS:528:DC%2BD1MXht1ShurvO10.1126/science.117669519762635 – reference: HerreraFSpanoFCCavity-controlled chemistry in molecular ensemblesPhys. Rev. Lett.20161162383012016PhRvL.116w8301H10.1103/PhysRevLett.116.23830127341263 – reference: DelgaAQuantum cascade detectors: a reviewInfrared Optoelectron.2020133737710.1016/B978-0-08-102709-7.00008-5 – reference: AnapparaAASignatures of the ultrastrong light-matter coupling regimePhys. Rev. B2009792013032009PhRvB..79t1303A10.1103/PhysRevB.79.201303 – reference: SirtoriCResonant tunneling in quantum cascade lasersIEEE J. Quantum Electron.199834172217291998IJQE...34.1722S1:CAS:528:DyaK1cXls1aqtbk%3D10.1109/3.709589 – reference: KazarinovRFPossibility of amplication of electromagnetic waves in a semiconductor with a superlatticeSov. Phys. Semicond.19715707709 – reference: NiemczykTCircuit quantum electrodynamics in the ultrastrong-coupling regimeNat. Phys.201067727761:CAS:528:DC%2BC3cXht1ehtbvM10.1038/nphys1730 – reference: ThomasATilting a ground-state reactivity landscape by vibrational strong couplingScience20193636156192019Sci...363..615T1:CAS:528:DC%2BC1MXisFyjsb0%3D10.1126/science.aau774230733414 – reference: SapienzaLElectrically injected cavity polaritonsPhys. Rev. Lett.20081001368062008PhRvL.100m6806S1:STN:280:DC%2BD1czlsVCnsA%3D%3D10.1103/PhysRevLett.100.13680618517986 – reference: Haug, H. & Koch, S. W. Quantum Theory of The Optical and Electronic Properties of Semiconductors. (World Scientific Publishing Company, 2009). – reference: Nga ChenYAntenna-coupled microcavities for enhanced infrared photo-detectionAppl. Phys. Lett.20141040311132014ApPhL.104c1113N10.1063/1.4862750 – reference: OrgiuEConductivity in organic semiconductors hybridized with the vacuum fieldNat. Mater.201514112311292015NatMa..14.1123O1:CAS:528:DC%2BC2MXhsV2ltrvI10.1038/nmat439226366850 – reference: Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. D69 839–839 (1995). – reference: TodorovYSirtoriCFew-electron ultrastrong light-matter coupling in a quantum LC circuitPhys. Rev. X20144041031 – reference: Rosencher, E. & Vinter, B. Optoelectronics. (Cambridge University Press, 2002). – reference: DelteilACharge-induced coherence between intersubband plasmons in a quantum structurePhys. Rev. Lett.20121092468082012PhRvL.109x6808D1:STN:280:DC%2BC3szkt1KrsQ%3D%3D10.1103/PhysRevLett.109.24680823368367 – reference: AskenaziBUltra-strong light–matter coupling for designer Reststrahlen bandN. J. Phys.2014160430291:CAS:528:DC%2BC2MXivV2mtLo%3D10.1088/1367-2630/16/4/043029 – reference: IottiRCRossiFMicroscopic theory of semiconductor-based optoelectronic devicesRep. Prog. Phys.20056825332005RPPh...68.2533I10.1088/0034-4885/68/11/R02 – reference: Unterrainer, K. Photon-assisted tunneling in semiconductor quantum structures. In Semiconductors and Semimetals vol. 66 127–186 (Elsevier, 1999). – reference: Weber, E. R., Willardson, R. K., Liu, H. & Capasso, F. Intersubband Transitions in Quantum Wells: Physics and Device Applications. (Academic press, 1999). – reference: HagenmüllerDSchachenmayerJSchützSGenesCPupilloGCavity-enhanced transport of chargePhys. Rev. Lett.20171192236012017PhRvL.119v3601H10.1103/PhysRevLett.119.22360129286774 – reference: BigioliALong-wavelength infrared photovoltaic heterodyne receivers using patch-antenna quantum cascade detectorsAppl. Phys. Lett.20201161611012020ApPhL.116p1101B1:CAS:528:DC%2BB3cXnslSlsrw%3D10.1063/5.0004591 – reference: LagréeMDirect polariton-to-electron tunneling in quantum cascade detectors operating in the strong light-matter coupling regimePhys. Rev. Appl.2022170440212022PhRvP..17d4021L10.1103/PhysRevApplied.17.044021 – reference: BayerATerahertz light–matter interaction beyond unity coupling strengthNano Lett.201717634063442017NanoL..17.6340B1:CAS:528:DC%2BC2sXhsFelsbvK10.1021/acs.nanolett.7b0310328937772 – reference: LaurentTSuperradiant emission from a collective excitation in a semiconductorPhys. Rev. Lett.20151151874022015PhRvL.115r7402L1:STN:280:DC%2BC28vhvFWjug%3D%3D10.1103/PhysRevLett.115.18740226565495 – reference: TodorovYSirtoriCIntersubband polaritons in the electrical dipole gaugePhys. Rev. B2012850453042012PhRvB..85d5304T10.1103/PhysRevB.85.045304 – reference: LeeJGiant nonlinear response from plasmonic metasurfaces coupled to intersubband transitionsNature201451165692014Natur.511...65L1:CAS:528:DC%2BC2cXhtV2qtbzN10.1038/nature1345524990746 – reference: ArwasGCiutiCQuantum electron transport controlled by cavity vacuum fieldsPhys. Rev. B20231070454252023PhRvB.107d5425A1:CAS:528:DC%2BB3sXjvVWntr0%3D10.1103/PhysRevB.107.045425 – reference: JeanninMUltrastrong light–matter coupling in deeply subwavelength THz LC resonatorsACS photonics20196120712151:CAS:528:DC%2BC1MXmtlKnsbs%3D10.1021/acsphotonics.8b01778 – reference: Garcia-VidalFJCiutiCEbbesenTWManipulating matter by strong coupling to vacuum fieldsScience2021373eabd03361:CAS:528:DC%2BB3MXhsFaqsb7E10.1126/science.abd033634244383 – reference: JouyPIntersubband electroluminescent devices operating in the strong-coupling regimePhys. Rev. B2010820453222010PhRvB..82d5322J10.1103/PhysRevB.82.045322 – reference: CiutiCCarusottoIInput-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parametersPhys. Rev. A2006740338112006PhRvA..74c3811C10.1103/PhysRevA.74.033811 – reference: SapienzaLPhotovoltaic probe of cavity polaritons in a quantum cascade structureAppl. Phys. Lett.2007902011012007ApPhL..90t1101S10.1063/1.2739308 – reference: TodorovYOptical properties of metal-dielectric-metal microcavities in the THz frequency rangeOpt. Express20101813886139072010OExpr..1813886T1:CAS:528:DC%2BC3cXot1enu78%3D10.1364/OE.18.01388620588522 – reference: GiorgettaFRQuantum cascade detectorsIEEE J. Quantum Electron.200945103910522009IJQE...45.1039G1:CAS:528:DC%2BD1MXpsV2ls7Y%3D10.1109/JQE.2009.2017929 – reference: AndoTFowlerABSternFElectronic properties of two-dimensional systemsRev. Mod. Phys.1982544371982RvMP...54..437A1:CAS:528:DyaL38Xit1OjtrY%3D10.1103/RevModPhys.54.437 – reference: GünterGSub-cycle switch-on of ultrastrong light–matter interactionNature20094581781812009Natur.458..178G10.1038/nature0783819279631 – reference: VigneronPBQuantum well infrared photo-detectors operating in the strong light-matter coupling regimeAppl. Phys. Lett.20191141311042019ApPhL.114m1104V10.1063/1.5084112 – reference: Sutherland, R. L. Handbook of Nonlinear Optics. (CRC press, 2003). – reference: DickeRHCoherence in spontaneous radiation processesPhys. Rev.195493991954PhRv...93...99D1:CAS:528:DyaG2cXjsV2jtA%3D%3D10.1103/PhysRev.93.990055.21702 – reference: CollinSNanostructure arrays in free-space: optical properties and applicationsRep. Prog. Phys.2014771264022014RPPh...77l6402C10.1088/0034-4885/77/12/12640225427236 – reference: VasanelliATodorovYSirtoriCUltra-strong light–matter coupling and superradiance using dense electron gasesComptes Rendus Phys.2016178618732016CRPhy..17..861V1:CAS:528:DC%2BC28Xos1ajsrk%3D10.1016/j.crhy.2016.05.001 – reference: DupontELiuHCSpringThorpeAJLaiWExtavourMVacuum-field Rabi splitting in quantum-well infrared photodetectorsPhys. Rev. B.2003682453202003PhRvB..68x5320D10.1103/PhysRevB.68.245320 – volume: 72 start-page: 115303 year: 2005 ident: 39594_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.115303 – volume: 4 start-page: 041031 year: 2014 ident: 39594_CR28 publication-title: Phys. Rev. X – volume: 68 start-page: 2533 year: 2005 ident: 39594_CR30 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/11/R02 – volume: 458 start-page: 178 year: 2009 ident: 39594_CR10 publication-title: Nature doi: 10.1038/nature07838 – volume: 116 start-page: 161101 year: 2020 ident: 39594_CR33 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0004591 – ident: 39594_CR6 – volume: 74 start-page: 033811 year: 2006 ident: 39594_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.033811 – volume: 114 start-page: 131104 year: 2019 ident: 39594_CR42 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5084112 – volume: 79 start-page: 201303 year: 2009 ident: 39594_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.201303 – volume: 5 start-page: 707 year: 1971 ident: 39594_CR35 publication-title: Sov. Phys. Semicond. – volume: 82 start-page: 045322 year: 2010 ident: 39594_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.045322 – volume: 45 start-page: 1039 year: 2009 ident: 39594_CR20 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2009.2017929 – volume: 90 start-page: 201101 year: 2007 ident: 39594_CR22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2739308 – ident: 39594_CR31 doi: 10.1142/7184 – volume: 115 start-page: 187402 year: 2015 ident: 39594_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.187402 – ident: 39594_CR37 doi: 10.1201/9780203912539 – volume: 85 start-page: 045304 year: 2012 ident: 39594_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.045304 – volume: 325 start-page: 1510 year: 2009 ident: 39594_CR3 publication-title: Science doi: 10.1126/science.1176695 – volume: 375 start-page: 1030 year: 2022 ident: 39594_CR17 publication-title: Science doi: 10.1126/science.abl5818 – volume: 17 start-page: 044021 year: 2022 ident: 39594_CR36 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.044021 – volume: 104 start-page: 031113 year: 2014 ident: 39594_CR41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4862750 – volume: 6 start-page: 772 year: 2010 ident: 39594_CR45 publication-title: Nat. Phys. doi: 10.1038/nphys1730 – volume: 105 start-page: 196402 year: 2010 ident: 39594_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.196402 – volume: 511 start-page: 65 year: 2014 ident: 39594_CR18 publication-title: Nature doi: 10.1038/nature13455 – volume: 109 start-page: 246808 year: 2012 ident: 39594_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.246808 – volume: 373 start-page: eabd0336 year: 2021 ident: 39594_CR19 publication-title: Science doi: 10.1126/science.abd0336 – ident: 39594_CR27 – volume: 100 start-page: 136806 year: 2008 ident: 39594_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136806 – volume: 6 start-page: 1207 year: 2019 ident: 39594_CR43 publication-title: ACS photonics doi: 10.1021/acsphotonics.8b01778 – volume: 34 start-page: 1722 year: 1998 ident: 39594_CR23 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.709589 – volume: 93 start-page: 99 year: 1954 ident: 39594_CR2 publication-title: Phys. Rev. doi: 10.1103/PhysRev.93.99 – volume: 119 start-page: 223601 year: 2017 ident: 39594_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.223601 – ident: 39594_CR32 doi: 10.1017/CBO9780511754647 – volume: 17 start-page: 861 year: 2016 ident: 39594_CR29 publication-title: Comptes Rendus Phys. doi: 10.1016/j.crhy.2016.05.001 – volume: 54 start-page: 437 year: 1982 ident: 39594_CR7 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.54.437 – volume: 16 start-page: 043029 year: 2014 ident: 39594_CR11 publication-title: N. J. Phys. doi: 10.1088/1367-2630/16/4/043029 – ident: 39594_CR1 doi: 10.1007/978-1-4615-1963-8_40 – volume: 18 start-page: 13886 year: 2010 ident: 39594_CR46 publication-title: Opt. Express doi: 10.1364/OE.18.013886 – volume: 68 start-page: 245320 year: 2003 ident: 39594_CR40 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.68.245320 – volume: 363 start-page: 615 year: 2019 ident: 39594_CR15 publication-title: Science doi: 10.1126/science.aau7742 – volume: 116 start-page: 238301 year: 2016 ident: 39594_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.238301 – volume: 14 start-page: 1123 year: 2015 ident: 39594_CR13 publication-title: Nat. Mater. doi: 10.1038/nmat4392 – volume: 17 start-page: 6340 year: 2017 ident: 39594_CR44 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03103 – volume: 1 start-page: 337 year: 2020 ident: 39594_CR34 publication-title: Infrared Optoelectron. doi: 10.1016/B978-0-08-102709-7.00008-5 – volume: 107 start-page: 045425 year: 2023 ident: 39594_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.045425 – volume: 77 start-page: 126402 year: 2014 ident: 39594_CR47 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/77/12/126402 – ident: 39594_CR38 doi: 10.1016/S0080-8784(08)60206-9 |
| SSID | ssj0000391844 |
| Score | 2.5359044 |
| Snippet | In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly... Abstract In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3914 |
| SubjectTerms | 142/126 147/135 639/301/1005/1007 639/624/400/2797 639/624/400/482 639/925/927/1021 Chemical reactions Coupling Electrical conductivity Electrical resistivity Electromagnetic absorption Electron transitions Electron transport Electronic properties Humanities and Social Sciences Infrared detectors Light Material properties multidisciplinary Optics Optimization Optoelectronic devices Photons Physics Polaritons Quantum theory Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egIIO4QdQk9sbOCRXUqoeq6gGkcrL8pCtts9t9VGp_PTNONtVS0QtX23k4M56Hx_k-gE-qCk1lXZkrDDYwQREiN4JK7L6RNholhEmsJYfy6EidnDTH_Ybboj9WubaJyVD7qaM98h2i1EFvig7-6-w8J9Yoqq72FBp34R6hJFTp6N7xsMdC6Of4tP5fmYKrnYVIlgEdVY73akR-teGPEmw_eplTOhR5M-K8eXDyr-ppckr7j_93Ok_gUR-Ost1Of57CndA-gwcdQeXlc_i1N7DksOUaBp35OZlIZi8ZaVFnMdkkIZKcJbhObF_NJsGz9LvSgo1bZtj5CoW4OmM-kHF6AT_39358P8h7MobcYUS3zH3lfGMlDwQYaAUVVEVZNDFaixkbr2VQlefB1TZyiVFXrGIZR67wjo-c4p6_hK122obXwArrMeszUZo6CFlL46KzdayjUGURyiKDci0S7XqkciLMmOhUMedKd2LUKEadxKivMvg8XDPrcDpuHf2NJD2MJIzt1DCd_9b9ktUxGum9UDG6Wox8UCOjMP8zzlpT1IZn8BH1ZOMeB7uHmtoI90BiMHxRZrC9lr_urcNCXws_gw9DN65rKtaYNkxXaQzHeBQjqAxedVo3PIpLkbDaMlAb-rjxLps97fg0YYcTq4cqZJ3Bl7XqXr_Xvz_Ym9un8RYeVrSmaNubb8PWcr4K7-C-u1iOF_P3aVH-ARelPzY priority: 102 providerName: ProQuest |
| Title | Electronic transport driven by collective light-matter coupled states in a quantum device |
| URI | https://link.springer.com/article/10.1038/s41467-023-39594-z https://www.ncbi.nlm.nih.gov/pubmed/37400430 https://www.proquest.com/docview/2832639551 https://www.proquest.com/docview/2833025242 https://hal.science/hal-04157054 https://pubmed.ncbi.nlm.nih.gov/PMC10318076 https://doaj.org/article/ffa7dd48ffc645de85a8862acbba06a3 |
| Volume | 14 |
| WOSCitedRecordID | wos001028011500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (Proquest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAYlLxZuUsjKIG0RNYid2ji3aqkhlFSGQtlwsP9WVtmnZR6X21zN2skuXCrhwycF2EmtmPP4m43wD8E4Uri60yVOBYAMDFMZSxUKK3dZceyUYU7FqyTEfjcR4XDc3Sn2FM2EdPXAnuD3vFbeWCe9NxUrrRKkEonBltFZZpSLPZ8brG8FU9MG0xtCF9X_JZFTszVn0CbhFpbQua5Zeb-xEkbAf95fTcBzyNta8fWTyt7xp3I4OH8F2jyPJfjf_x3DHtU_gQVdZ8uopnAzX5W3IYsVfTuws-Dair0hQf-fqyDRSiZxFnk1sX15MnSXxP6M5mbREkR9LlP7yjFgXvMoz-HY4_PrxKO2rKKQGodgitYWxtebUBaY_zUImlOVZ7b3WGGrRijtRWOpMpT3lCJd84XNfmswaWhpBLX0OW-15614CybTFcE15rirHeMWV8UZXvvJM5JnLswTylUSl6SnGQ6WLqYypbipkpwWJWpBRC_I6gffrey46go2_jj4IilqPDOTYsQFNRvYmI_9lMgm8RTVvPONo_1iGtkBYwBHFXuYJ7K6sQPbLei5DXSeEdIgyE3iz7sYFGbIsqnXnyziGIpBE6JPAi85o1q-inEWStQTEhjltzGWzp52cRtLvUI5DZLxK4MPK8n7N688C2_kfAnsFD4uwcMJXbboLW4vZ0r2G--ZyMZnPBnCXj3m8igHcOxiOmi-DuBoH4SBtg9em_I49zafPzclPh4Y6NA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBc2JdAAYPgBFGT2BN7DggVaDWjTkc9FKk9Ga90pGlmOkvR9EfxG7GdpRoqeuuBq-MkdvK9zc_-HsA7lplOJlUaM-dsuACFkFgQn2LXHSqtYISIULWkTwcDdnjY2V-D3_VZGL-tstaJQVHrsfJr5Ju-pI6zps7Af56cxr5qlM-u1iU0SljsmuUvF7LNPvW-uf_7Pst2tg--duOqqkCsnGsyj3WmdEdSbDzznSQ-M0jSpGOtlC70wDk1LNPYqFxaTJ37YDOb2rZKtMJtxbDG7rk3YJ14sLdgfb-3t3_UrOp4vnU3v-p0ToLZ5owEXeRMY-xG3yHx-YoFDIUCnF079tswL_u4l7dq_pWvDWZw597_9gHvw93K4UZbpYQ8gDVTPIRbZQnO5SM42m7qAKF5TfSO9NQbASSXyMtJaRPQKHCunARCUte-mIyMRuFA1gwNCyTQ6cLBdHGCtPHq9zF8v5Z5PYFWMS7MM0CJ1C6uFZaK3BCaU6GskrnNLWFpYtIkgrSGAFcVF7svCTLiYU8AZryEDXew4QE2_DyCD809k5KJ5MreXzyymp6eRTw0jKc_eaWUuLWCak2YtSonbW1YWzAX4QolpUhygSN463C58ozuVp_7Ns_sQJ27f5ZGsFHjjVf6b8YvwBbBm-ay01w-HSUKM16EPth53M5HjOBpifLmVZiSwEYXAVvB_8pYVq8Uw-PAju7rlrCE5hF8rEXlYlz__mDPr57Ga7jdPdjr835vsPsC7mRenv0iP96A1ny6MC_hpjqbD2fTV5VKQPDjuoXoD_cWnbQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKWcSFfQkUMAhOEE0Se2LngFChrVp1NJoDSKUX45WONM1MZyma_jR-Hc_OUg0VvfXA1XEyceZ7m9_z9xB6yzNbZEqnMQdnAwIUSmNJfYrdFEw5ySmVoWtJj_X7_OCgGKyh381ZGF9W2ejEoKjNWPs98o5vqQPWFAx8x9VlEYOtnU-Tk9h3kPKZ1qadRgWRfbv8BeHb7OPeFvzX77JsZ_vrl9247jAQa3BT5rHJtCkUI9az4Cnqs4Q0TQrnlIIwhOTM8swQq3PlCANXwmUudV2dGE26mhND4LnX0HUGMaYvJxx0D9v9Hc-8Diutz-kkhHdmNGglMJIxrKOg8dmKLQwtA8DCHfmCzIve7sWizb8yt8Eg7tz9nz_lPXSndsPxZiU399GaLR-gm1VjzuVD9H277Q6E5w39OzZTbxqwWmIvPZWlwKPAxHIcaEphfDEZWYPDMa0ZHpZY4pMFgHdxjI31SvkR-nYl63qM1stxaZ8inCgD0a50TOaWspxJ7bTKXe4oTxObJhFKGzgIXTO0-0YhIxEqBQgXFYQEQEgECImzCL1v75lU_CSXzv7sUdbO9NziYWA8_SlqVSWck8wYyp3TOe0ay7uSQ9wrtVIyySWJ0BvA6Mozdjd7wo95vgcGQcBpGqGNBnui1oozcQ68CL1uL4M-80kqWdrxIswh4IeD5xihJxXi258ijAaOugjxFVlYeZfVK-XwKHCm-24mPGF5hD40YnP-Xv_-YM8uX8YrdAskR_T2-vvP0e3Mi7bf-ScbaH0-XdgX6IY-nQ9n05dBN2D046ol6A-rIqUX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+transport+driven+by+collective+light-matter+coupled+states+in+a+quantum+device&rft.jtitle=Nature+communications&rft.au=Francesco+Pisani&rft.au=Djamal+Gacemi&rft.au=Angela+Vasanelli&rft.au=Lianhe+Li&rft.date=2023-07-03&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-023-39594-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ffa7dd48ffc645de85a8862acbba06a3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |