Electronic transport driven by collective light-matter coupled states in a quantum device

In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental prope...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 14; číslo 1; s. 3914 - 8
Hlavní autoři: Pisani, Francesco, Gacemi, Djamal, Vasanelli, Angela, Li, Lianhe, Davies, Alexander Giles, Linfield, Edmund, Sirtori, Carlo, Todorov, Yanko
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 03.07.2023
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light. Here the authors investigate the electronic transport in microcavity-coupled quantum detector with strong collective electronic resonances. Their findings present a way to optimize photodetectors operating in the ultra-strong light-matter coupling regime.
AbstractList Abstract In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.
In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.
In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.Here the authors investigate the electronic transport in microcavity-coupled quantum detector with strong collective electronic resonances. Their findings present a way to optimize photodetectors operating in the ultra-strong light-matter coupling regime.
In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light.
In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly non-perturbative interaction, ultra-strong light-matter coupling, has attracted considerable attention, as it has led to changes in the fundamental properties of materials such as electrical conductivity, rate of chemical reactions, topological order, and non-linear susceptibility. Here, we explore a quantum infrared detector operating in the ultra-strong light-matter coupling regime driven by collective electronic excitations, where the renormalized polariton states are strongly detuned from the bare electronic transitions. Our experiments are corroborated by microscopic quantum theory that solves the problem of calculating the fermionic transport in the presence of strong collective electronic effects. These findings open a new way of conceiving optoelectronic devices based on the coherent interaction between electrons and photons allowing, for example, the optimization of quantum cascade detectors operating in the regime of strongly non-perturbative coupling with light. Here the authors investigate the electronic transport in microcavity-coupled quantum detector with strong collective electronic resonances. Their findings present a way to optimize photodetectors operating in the ultra-strong light-matter coupling regime.
ArticleNumber 3914
Author Linfield, Edmund
Todorov, Yanko
Pisani, Francesco
Li, Lianhe
Davies, Alexander Giles
Gacemi, Djamal
Vasanelli, Angela
Sirtori, Carlo
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0001-6893-4465
  surname: Pisani
  fullname: Pisani, Francesco
  email: francesco.pisani@phys.ens.fr
  organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris
– sequence: 2
  givenname: Djamal
  surname: Gacemi
  fullname: Gacemi, Djamal
  organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris
– sequence: 3
  givenname: Angela
  surname: Vasanelli
  fullname: Vasanelli, Angela
  organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris
– sequence: 4
  givenname: Lianhe
  orcidid: 0000-0003-4998-7259
  surname: Li
  fullname: Li, Lianhe
  organization: School of Electronic and Electrical Engineering, University of Leeds
– sequence: 5
  givenname: Alexander Giles
  orcidid: 0000-0002-1987-4846
  surname: Davies
  fullname: Davies, Alexander Giles
  organization: School of Electronic and Electrical Engineering, University of Leeds
– sequence: 6
  givenname: Edmund
  orcidid: 0000-0001-6912-0535
  surname: Linfield
  fullname: Linfield, Edmund
  organization: School of Electronic and Electrical Engineering, University of Leeds
– sequence: 7
  givenname: Carlo
  orcidid: 0000-0003-1817-4554
  surname: Sirtori
  fullname: Sirtori, Carlo
  organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris
– sequence: 8
  givenname: Yanko
  orcidid: 0000-0002-2359-1611
  surname: Todorov
  fullname: Todorov, Yanko
  email: yanko.todorov@phys.ens.fr
  organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Paris Sciences et Lettres, CNRS, Université de Paris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37400430$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04157054$$DView record in HAL
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxAUOAX_GzglVVaGVVuICB06W449drxJ7azsrtb8epyml3UN9sT1-78143rytjnzwpqreQ_AFAsy_JgJJyxqAcIM72pHm7lV1ggCBDWQIHz05H1dnKW1BWbiDnJA31TFmBACCwUn153IwKsfgnapzlD7tQsy1jm5vfN3f1ioMM6Bc68GtN7kZZc4mlvi0G4yuU5bZpNr5WtY3k_R5Gmtt9k6Zd9VrK4dkzh720-r398tfF1fN6ueP64vzVaMoo7nRSOmuZ9gg3PG-1ERaAkFnbd93HcctMxxpbFTbW8w47iyy0FIFtMJUcazxaXW96Oogt2IX3SjjrQjSiftAiGshY3ZqMMJaybQm3FrVEqoNp5LzFknV9xK0Ehetb4vWbupHo5XxpSfDM9HnL95txDrsRbEEcsDaovB5Udgc8K7OV2KOFVcoA5TsYcF-esgWw81kUhajS8oMg_QmTEkgjjFAFBFUoB8PoNswRV_6OqNQW0aAzoIfnpb_mP-f3QWAFoCKIaVo7CMEgvkPXCxjJcpYifuxEneFxA9IyhXXXZhb4IaXqXihppLHr038X_YLrL-r_-J8
CitedBy_id crossref_primary_10_1364_OE_569875
crossref_primary_10_1515_nanoph_2023_0795
crossref_primary_10_1063_5_0258786
crossref_primary_10_1002_adom_202500433
crossref_primary_10_1103_PhysRevB_111_L121407
crossref_primary_10_1515_nanoph_2023_0757
crossref_primary_10_1103_PhysRevResearch_6_033097
crossref_primary_10_1103_PhysRevApplied_21_034002
crossref_primary_10_1088_1367_2630_add496
crossref_primary_10_1103_PhysRevB_111_165304
Cites_doi 10.1103/PhysRevB.72.115303
10.1088/0034-4885/68/11/R02
10.1038/nature07838
10.1063/5.0004591
10.1103/PhysRevA.74.033811
10.1063/1.5084112
10.1103/PhysRevB.79.201303
10.1103/PhysRevB.82.045322
10.1109/JQE.2009.2017929
10.1063/1.2739308
10.1142/7184
10.1103/PhysRevLett.115.187402
10.1201/9780203912539
10.1103/PhysRevB.85.045304
10.1126/science.1176695
10.1126/science.abl5818
10.1103/PhysRevApplied.17.044021
10.1063/1.4862750
10.1038/nphys1730
10.1103/PhysRevLett.105.196402
10.1038/nature13455
10.1103/PhysRevLett.109.246808
10.1126/science.abd0336
10.1103/PhysRevLett.100.136806
10.1021/acsphotonics.8b01778
10.1109/3.709589
10.1103/PhysRev.93.99
10.1103/PhysRevLett.119.223601
10.1017/CBO9780511754647
10.1016/j.crhy.2016.05.001
10.1103/RevModPhys.54.437
10.1088/1367-2630/16/4/043029
10.1007/978-1-4615-1963-8_40
10.1364/OE.18.013886
10.1103/PhysRevB.68.245320
10.1126/science.aau7742
10.1103/PhysRevLett.116.238301
10.1038/nmat4392
10.1021/acs.nanolett.7b03103
10.1016/B978-0-08-102709-7.00008-5
10.1103/PhysRevB.107.045425
10.1088/0034-4885/77/12/126402
10.1016/S0080-8784(08)60206-9
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41467-023-39594-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_ffa7dd48ffc645de85a8862acbba06a3
PMC10318076
oai:HAL:hal-04157054v1
37400430
10_1038_s41467_023_39594_z
Genre Journal Article
GrantInformation_xml – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/W02892/1; EP/P021859; EP/W02892/1; EP/P021859; EP/W02892/1
  funderid: https://doi.org/10.13039/501100000266
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 863487; 863487
  funderid: https://doi.org/10.13039/100010663
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/P021859
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/W02892/1
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 863487
– fundername: ;
  grantid: 863487; 863487
– fundername: ;
  grantid: EP/W02892/1; EP/P021859; EP/W02892/1; EP/P021859; EP/W02892/1
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
1XC
4.4
BAPOH
CAG
COF
EJD
VOOES
5PM
ID FETCH-LOGICAL-c575t-d2cd9b73e2398b430464109ffbb998367e82d3ec6bf37839f2f1f5c0dc35c83d3
IEDL.DBID DOA
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001028011500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:46:11 EDT 2025
Tue Nov 04 02:06:40 EST 2025
Tue Oct 14 20:05:47 EDT 2025
Thu Sep 04 16:45:05 EDT 2025
Tue Oct 07 07:12:14 EDT 2025
Mon Jul 21 06:05:02 EDT 2025
Tue Nov 18 21:08:58 EST 2025
Sat Nov 29 02:11:52 EST 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Attribution: http://creativecommons.org/licenses/by
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-d2cd9b73e2398b430464109ffbb998367e82d3ec6bf37839f2f1f5c0dc35c83d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2359-1611
0000-0003-1817-4554
0000-0001-6912-0535
0000-0001-6893-4465
0000-0003-4998-7259
0000-0002-1987-4846
0000-0003-1945-2261
0000-0003-0334-1815
OpenAccessLink https://doaj.org/article/ffa7dd48ffc645de85a8862acbba06a3
PMID 37400430
PQID 2832639551
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_ffa7dd48ffc645de85a8862acbba06a3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10318076
hal_primary_oai_HAL_hal_04157054v1
proquest_miscellaneous_2833025242
proquest_journals_2832639551
pubmed_primary_37400430
crossref_primary_10_1038_s41467_023_39594_z
crossref_citationtrail_10_1038_s41467_023_39594_z
springer_journals_10_1038_s41467_023_39594_z
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References OrgiuEConductivity in organic semiconductors hybridized with the vacuum fieldNat. Mater.201514112311292015NatMa..14.1123O1:CAS:528:DC%2BC2MXhsV2ltrvI10.1038/nmat439226366850
ScullyMOSvidzinskyAAThe super of superradianceScience2009325151015111:CAS:528:DC%2BD1MXht1ShurvO10.1126/science.117669519762635
JeanninMUltrastrong light–matter coupling in deeply subwavelength THz LC resonatorsACS photonics20196120712151:CAS:528:DC%2BC1MXmtlKnsbs%3D10.1021/acsphotonics.8b01778
CollinSNanostructure arrays in free-space: optical properties and applicationsRep. Prog. Phys.2014771264022014RPPh...77l6402C10.1088/0034-4885/77/12/12640225427236
AskenaziBUltra-strong light–matter coupling for designer Reststrahlen bandN. J. Phys.2014160430291:CAS:528:DC%2BC2MXivV2mtLo%3D10.1088/1367-2630/16/4/043029
AnapparaAASignatures of the ultrastrong light-matter coupling regimePhys. Rev. B2009792013032009PhRvB..79t1303A10.1103/PhysRevB.79.201303
AppuglieseFBreakdown of topological protection by cavity vacuum fields in the integer quantum Hall effectScience2022375103010342022Sci...375.1030A44742471:CAS:528:DC%2BB38Xmtl2gtbw%3D10.1126/science.abl581835239382
VasanelliATodorovYSirtoriCUltra-strong light–matter coupling and superradiance using dense electron gasesComptes Rendus Phys.2016178618732016CRPhy..17..861V1:CAS:528:DC%2BC28Xos1ajsrk%3D10.1016/j.crhy.2016.05.001
DickeRHCoherence in spontaneous radiation processesPhys. Rev.195493991954PhRv...93...99D1:CAS:528:DyaG2cXjsV2jtA%3D%3D10.1103/PhysRev.93.990055.21702
Weber, E. R., Willardson, R. K., Liu, H. & Capasso, F. Intersubband Transitions in Quantum Wells: Physics and Device Applications. (Academic press, 1999).
VigneronPBQuantum well infrared photo-detectors operating in the strong light-matter coupling regimeAppl. Phys. Lett.20191141311042019ApPhL.114m1104V10.1063/1.5084112
BayerATerahertz light–matter interaction beyond unity coupling strengthNano Lett.201717634063442017NanoL..17.6340B1:CAS:528:DC%2BC2sXhsFelsbvK10.1021/acs.nanolett.7b0310328937772
DupontELiuHCSpringThorpeAJLaiWExtavourMVacuum-field Rabi splitting in quantum-well infrared photodetectorsPhys. Rev. B.2003682453202003PhRvB..68x5320D10.1103/PhysRevB.68.245320
HagenmüllerDSchachenmayerJSchützSGenesCPupilloGCavity-enhanced transport of chargePhys. Rev. Lett.20171192236012017PhRvL.119v3601H10.1103/PhysRevLett.119.22360129286774
LaurentTSuperradiant emission from a collective excitation in a semiconductorPhys. Rev. Lett.20151151874022015PhRvL.115r7402L1:STN:280:DC%2BC28vhvFWjug%3D%3D10.1103/PhysRevLett.115.18740226565495
LagréeMDirect polariton-to-electron tunneling in quantum cascade detectors operating in the strong light-matter coupling regimePhys. Rev. Appl.2022170440212022PhRvP..17d4021L10.1103/PhysRevApplied.17.044021
JouyPIntersubband electroluminescent devices operating in the strong-coupling regimePhys. Rev. B2010820453222010PhRvB..82d5322J10.1103/PhysRevB.82.045322
NiemczykTCircuit quantum electrodynamics in the ultrastrong-coupling regimeNat. Phys.201067727761:CAS:528:DC%2BC3cXht1ehtbvM10.1038/nphys1730
ThomasATilting a ground-state reactivity landscape by vibrational strong couplingScience20193636156192019Sci...363..615T1:CAS:528:DC%2BC1MXisFyjsb0%3D10.1126/science.aau774230733414
GiorgettaFRQuantum cascade detectorsIEEE J. Quantum Electron.200945103910522009IJQE...45.1039G1:CAS:528:DC%2BD1MXpsV2ls7Y%3D10.1109/JQE.2009.2017929
Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. D69 839–839 (1995).
CiutiCBastardGCarusottoIQuantum vacuum properties of the intersubband cavity polariton fieldPhys. Rev. B2005721153032005PhRvB..72k5303C10.1103/PhysRevB.72.115303
Sutherland, R. L. Handbook of Nonlinear Optics. (CRC press, 2003).
Garcia-VidalFJCiutiCEbbesenTWManipulating matter by strong coupling to vacuum fieldsScience2021373eabd03361:CAS:528:DC%2BB3MXhsFaqsb7E10.1126/science.abd033634244383
LeeJGiant nonlinear response from plasmonic metasurfaces coupled to intersubband transitionsNature201451165692014Natur.511...65L1:CAS:528:DC%2BC2cXhtV2qtbzN10.1038/nature1345524990746
Haug, H. & Koch, S. W. Quantum Theory of The Optical and Electronic Properties of Semiconductors. (World Scientific Publishing Company, 2009).
Rosencher, E. & Vinter, B. Optoelectronics. (Cambridge University Press, 2002).
KazarinovRFPossibility of amplication of electromagnetic waves in a semiconductor with a superlatticeSov. Phys. Semicond.19715707709
Unterrainer, K. Photon-assisted tunneling in semiconductor quantum structures. In Semiconductors and Semimetals vol. 66 127–186 (Elsevier, 1999).
SirtoriCResonant tunneling in quantum cascade lasersIEEE J. Quantum Electron.199834172217291998IJQE...34.1722S1:CAS:528:DyaK1cXls1aqtbk%3D10.1109/3.709589
IottiRCRossiFMicroscopic theory of semiconductor-based optoelectronic devicesRep. Prog. Phys.20056825332005RPPh...68.2533I10.1088/0034-4885/68/11/R02
ArwasGCiutiCQuantum electron transport controlled by cavity vacuum fieldsPhys. Rev. B20231070454252023PhRvB.107d5425A1:CAS:528:DC%2BB3sXjvVWntr0%3D10.1103/PhysRevB.107.045425
AndoTFowlerABSternFElectronic properties of two-dimensional systemsRev. Mod. Phys.1982544371982RvMP...54..437A1:CAS:528:DyaL38Xit1OjtrY%3D10.1103/RevModPhys.54.437
SapienzaLElectrically injected cavity polaritonsPhys. Rev. Lett.20081001368062008PhRvL.100m6806S1:STN:280:DC%2BD1czlsVCnsA%3D%3D10.1103/PhysRevLett.100.13680618517986
HerreraFSpanoFCCavity-controlled chemistry in molecular ensemblesPhys. Rev. Lett.20161162383012016PhRvL.116w8301H10.1103/PhysRevLett.116.23830127341263
TodorovYOptical properties of metal-dielectric-metal microcavities in the THz frequency rangeOpt. Express20101813886139072010OExpr..1813886T1:CAS:528:DC%2BC3cXot1enu78%3D10.1364/OE.18.01388620588522
GünterGSub-cycle switch-on of ultrastrong light–matter interactionNature20094581781812009Natur.458..178G10.1038/nature0783819279631
BigioliALong-wavelength infrared photovoltaic heterodyne receivers using patch-antenna quantum cascade detectorsAppl. Phys. Lett.20201161611012020ApPhL.116p1101B1:CAS:528:DC%2BB3cXnslSlsrw%3D10.1063/5.0004591
Nga ChenYAntenna-coupled microcavities for enhanced infrared photo-detectionAppl. Phys. Lett.20141040311132014ApPhL.104c1113N10.1063/1.4862750
SapienzaLPhotovoltaic probe of cavity polaritons in a quantum cascade structureAppl. Phys. Lett.2007902011012007ApPhL..90t1101S10.1063/1.2739308
TodorovYSirtoriCFew-electron ultrastrong light-matter coupling in a quantum LC circuitPhys. Rev. X20144041031
DelgaAQuantum cascade detectors: a reviewInfrared Optoelectron.2020133737710.1016/B978-0-08-102709-7.00008-5
DelteilACharge-induced coherence between intersubband plasmons in a quantum structurePhys. Rev. Lett.20121092468082012PhRvL.109x6808D1:STN:280:DC%2BC3szkt1KrsQ%3D%3D10.1103/PhysRevLett.109.24680823368367
TodorovYUltrastrong light-matter coupling regime with polariton dotsPhys. Rev. Lett.20101051964022010PhRvL.105s6402T1:STN:280:DC%2BC3M7htlClsg%3D%3D10.1103/PhysRevLett.105.19640221231188
TodorovYSirtoriCIntersubband polaritons in the electrical dipole gaugePhys. Rev. B2012850453042012PhRvB..85d5304T10.1103/PhysRevB.85.045304
CiutiCCarusottoIInput-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parametersPhys. Rev. A2006740338112006PhRvA..74c3811C10.1103/PhysRevA.74.033811
A Thomas (39594_CR15) 2019; 363
MO Scully (39594_CR3) 2009; 325
AA Anappara (39594_CR21) 2009; 79
Y Todorov (39594_CR28) 2014; 4
B Askenazi (39594_CR11) 2014; 16
L Sapienza (39594_CR22) 2007; 90
L Sapienza (39594_CR24) 2008; 100
Y Nga Chen (39594_CR41) 2014; 104
RH Dicke (39594_CR2) 1954; 93
FR Giorgetta (39594_CR20) 2009; 45
PB Vigneron (39594_CR42) 2019; 114
J Lee (39594_CR18) 2014; 511
A Delteil (39594_CR4) 2012; 109
A Bigioli (39594_CR33) 2020; 116
G Arwas (39594_CR39) 2023; 107
A Bayer (39594_CR44) 2017; 17
RF Kazarinov (39594_CR35) 1971; 5
T Ando (39594_CR7) 1982; 54
T Laurent (39594_CR5) 2015; 115
FJ Garcia-Vidal (39594_CR19) 2021; 373
G Günter (39594_CR10) 2009; 458
39594_CR31
M Lagrée (39594_CR36) 2022; 17
39594_CR32
S Collin (39594_CR47) 2014; 77
D Hagenmüller (39594_CR14) 2017; 119
A Delga (39594_CR34) 2020; 1
P Jouy (39594_CR25) 2010; 82
39594_CR37
39594_CR38
E Dupont (39594_CR40) 2003; 68
M Jeannin (39594_CR43) 2019; 6
Y Todorov (39594_CR8) 2012; 85
Y Todorov (39594_CR46) 2010; 18
39594_CR6
F Appugliese (39594_CR17) 2022; 375
RC Iotti (39594_CR30) 2005; 68
39594_CR1
A Vasanelli (39594_CR29) 2016; 17
T Niemczyk (39594_CR45) 2010; 6
Y Todorov (39594_CR9) 2010; 105
C Sirtori (39594_CR23) 1998; 34
C Ciuti (39594_CR12) 2005; 72
E Orgiu (39594_CR13) 2015; 14
F Herrera (39594_CR16) 2016; 116
C Ciuti (39594_CR26) 2006; 74
39594_CR27
References_xml – reference: TodorovYUltrastrong light-matter coupling regime with polariton dotsPhys. Rev. Lett.20101051964022010PhRvL.105s6402T1:STN:280:DC%2BC3M7htlClsg%3D%3D10.1103/PhysRevLett.105.19640221231188
– reference: CiutiCBastardGCarusottoIQuantum vacuum properties of the intersubband cavity polariton fieldPhys. Rev. B2005721153032005PhRvB..72k5303C10.1103/PhysRevB.72.115303
– reference: AppuglieseFBreakdown of topological protection by cavity vacuum fields in the integer quantum Hall effectScience2022375103010342022Sci...375.1030A44742471:CAS:528:DC%2BB38Xmtl2gtbw%3D10.1126/science.abl581835239382
– reference: ScullyMOSvidzinskyAAThe super of superradianceScience2009325151015111:CAS:528:DC%2BD1MXht1ShurvO10.1126/science.117669519762635
– reference: HerreraFSpanoFCCavity-controlled chemistry in molecular ensemblesPhys. Rev. Lett.20161162383012016PhRvL.116w8301H10.1103/PhysRevLett.116.23830127341263
– reference: DelgaAQuantum cascade detectors: a reviewInfrared Optoelectron.2020133737710.1016/B978-0-08-102709-7.00008-5
– reference: AnapparaAASignatures of the ultrastrong light-matter coupling regimePhys. Rev. B2009792013032009PhRvB..79t1303A10.1103/PhysRevB.79.201303
– reference: SirtoriCResonant tunneling in quantum cascade lasersIEEE J. Quantum Electron.199834172217291998IJQE...34.1722S1:CAS:528:DyaK1cXls1aqtbk%3D10.1109/3.709589
– reference: KazarinovRFPossibility of amplication of electromagnetic waves in a semiconductor with a superlatticeSov. Phys. Semicond.19715707709
– reference: NiemczykTCircuit quantum electrodynamics in the ultrastrong-coupling regimeNat. Phys.201067727761:CAS:528:DC%2BC3cXht1ehtbvM10.1038/nphys1730
– reference: ThomasATilting a ground-state reactivity landscape by vibrational strong couplingScience20193636156192019Sci...363..615T1:CAS:528:DC%2BC1MXisFyjsb0%3D10.1126/science.aau774230733414
– reference: SapienzaLElectrically injected cavity polaritonsPhys. Rev. Lett.20081001368062008PhRvL.100m6806S1:STN:280:DC%2BD1czlsVCnsA%3D%3D10.1103/PhysRevLett.100.13680618517986
– reference: Haug, H. & Koch, S. W. Quantum Theory of The Optical and Electronic Properties of Semiconductors. (World Scientific Publishing Company, 2009).
– reference: Nga ChenYAntenna-coupled microcavities for enhanced infrared photo-detectionAppl. Phys. Lett.20141040311132014ApPhL.104c1113N10.1063/1.4862750
– reference: OrgiuEConductivity in organic semiconductors hybridized with the vacuum fieldNat. Mater.201514112311292015NatMa..14.1123O1:CAS:528:DC%2BC2MXhsV2ltrvI10.1038/nmat439226366850
– reference: Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. D69 839–839 (1995).
– reference: TodorovYSirtoriCFew-electron ultrastrong light-matter coupling in a quantum LC circuitPhys. Rev. X20144041031
– reference: Rosencher, E. & Vinter, B. Optoelectronics. (Cambridge University Press, 2002).
– reference: DelteilACharge-induced coherence between intersubband plasmons in a quantum structurePhys. Rev. Lett.20121092468082012PhRvL.109x6808D1:STN:280:DC%2BC3szkt1KrsQ%3D%3D10.1103/PhysRevLett.109.24680823368367
– reference: AskenaziBUltra-strong light–matter coupling for designer Reststrahlen bandN. J. Phys.2014160430291:CAS:528:DC%2BC2MXivV2mtLo%3D10.1088/1367-2630/16/4/043029
– reference: IottiRCRossiFMicroscopic theory of semiconductor-based optoelectronic devicesRep. Prog. Phys.20056825332005RPPh...68.2533I10.1088/0034-4885/68/11/R02
– reference: Unterrainer, K. Photon-assisted tunneling in semiconductor quantum structures. In Semiconductors and Semimetals vol. 66 127–186 (Elsevier, 1999).
– reference: Weber, E. R., Willardson, R. K., Liu, H. & Capasso, F. Intersubband Transitions in Quantum Wells: Physics and Device Applications. (Academic press, 1999).
– reference: HagenmüllerDSchachenmayerJSchützSGenesCPupilloGCavity-enhanced transport of chargePhys. Rev. Lett.20171192236012017PhRvL.119v3601H10.1103/PhysRevLett.119.22360129286774
– reference: BigioliALong-wavelength infrared photovoltaic heterodyne receivers using patch-antenna quantum cascade detectorsAppl. Phys. Lett.20201161611012020ApPhL.116p1101B1:CAS:528:DC%2BB3cXnslSlsrw%3D10.1063/5.0004591
– reference: LagréeMDirect polariton-to-electron tunneling in quantum cascade detectors operating in the strong light-matter coupling regimePhys. Rev. Appl.2022170440212022PhRvP..17d4021L10.1103/PhysRevApplied.17.044021
– reference: BayerATerahertz light–matter interaction beyond unity coupling strengthNano Lett.201717634063442017NanoL..17.6340B1:CAS:528:DC%2BC2sXhsFelsbvK10.1021/acs.nanolett.7b0310328937772
– reference: LaurentTSuperradiant emission from a collective excitation in a semiconductorPhys. Rev. Lett.20151151874022015PhRvL.115r7402L1:STN:280:DC%2BC28vhvFWjug%3D%3D10.1103/PhysRevLett.115.18740226565495
– reference: TodorovYSirtoriCIntersubband polaritons in the electrical dipole gaugePhys. Rev. B2012850453042012PhRvB..85d5304T10.1103/PhysRevB.85.045304
– reference: LeeJGiant nonlinear response from plasmonic metasurfaces coupled to intersubband transitionsNature201451165692014Natur.511...65L1:CAS:528:DC%2BC2cXhtV2qtbzN10.1038/nature1345524990746
– reference: ArwasGCiutiCQuantum electron transport controlled by cavity vacuum fieldsPhys. Rev. B20231070454252023PhRvB.107d5425A1:CAS:528:DC%2BB3sXjvVWntr0%3D10.1103/PhysRevB.107.045425
– reference: JeanninMUltrastrong light–matter coupling in deeply subwavelength THz LC resonatorsACS photonics20196120712151:CAS:528:DC%2BC1MXmtlKnsbs%3D10.1021/acsphotonics.8b01778
– reference: Garcia-VidalFJCiutiCEbbesenTWManipulating matter by strong coupling to vacuum fieldsScience2021373eabd03361:CAS:528:DC%2BB3MXhsFaqsb7E10.1126/science.abd033634244383
– reference: JouyPIntersubband electroluminescent devices operating in the strong-coupling regimePhys. Rev. B2010820453222010PhRvB..82d5322J10.1103/PhysRevB.82.045322
– reference: CiutiCCarusottoIInput-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity parametersPhys. Rev. A2006740338112006PhRvA..74c3811C10.1103/PhysRevA.74.033811
– reference: SapienzaLPhotovoltaic probe of cavity polaritons in a quantum cascade structureAppl. Phys. Lett.2007902011012007ApPhL..90t1101S10.1063/1.2739308
– reference: TodorovYOptical properties of metal-dielectric-metal microcavities in the THz frequency rangeOpt. Express20101813886139072010OExpr..1813886T1:CAS:528:DC%2BC3cXot1enu78%3D10.1364/OE.18.01388620588522
– reference: GiorgettaFRQuantum cascade detectorsIEEE J. Quantum Electron.200945103910522009IJQE...45.1039G1:CAS:528:DC%2BD1MXpsV2ls7Y%3D10.1109/JQE.2009.2017929
– reference: AndoTFowlerABSternFElectronic properties of two-dimensional systemsRev. Mod. Phys.1982544371982RvMP...54..437A1:CAS:528:DyaL38Xit1OjtrY%3D10.1103/RevModPhys.54.437
– reference: GünterGSub-cycle switch-on of ultrastrong light–matter interactionNature20094581781812009Natur.458..178G10.1038/nature0783819279631
– reference: VigneronPBQuantum well infrared photo-detectors operating in the strong light-matter coupling regimeAppl. Phys. Lett.20191141311042019ApPhL.114m1104V10.1063/1.5084112
– reference: Sutherland, R. L. Handbook of Nonlinear Optics. (CRC press, 2003).
– reference: DickeRHCoherence in spontaneous radiation processesPhys. Rev.195493991954PhRv...93...99D1:CAS:528:DyaG2cXjsV2jtA%3D%3D10.1103/PhysRev.93.990055.21702
– reference: CollinSNanostructure arrays in free-space: optical properties and applicationsRep. Prog. Phys.2014771264022014RPPh...77l6402C10.1088/0034-4885/77/12/12640225427236
– reference: VasanelliATodorovYSirtoriCUltra-strong light–matter coupling and superradiance using dense electron gasesComptes Rendus Phys.2016178618732016CRPhy..17..861V1:CAS:528:DC%2BC28Xos1ajsrk%3D10.1016/j.crhy.2016.05.001
– reference: DupontELiuHCSpringThorpeAJLaiWExtavourMVacuum-field Rabi splitting in quantum-well infrared photodetectorsPhys. Rev. B.2003682453202003PhRvB..68x5320D10.1103/PhysRevB.68.245320
– volume: 72
  start-page: 115303
  year: 2005
  ident: 39594_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.115303
– volume: 4
  start-page: 041031
  year: 2014
  ident: 39594_CR28
  publication-title: Phys. Rev. X
– volume: 68
  start-page: 2533
  year: 2005
  ident: 39594_CR30
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/11/R02
– volume: 458
  start-page: 178
  year: 2009
  ident: 39594_CR10
  publication-title: Nature
  doi: 10.1038/nature07838
– volume: 116
  start-page: 161101
  year: 2020
  ident: 39594_CR33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0004591
– ident: 39594_CR6
– volume: 74
  start-page: 033811
  year: 2006
  ident: 39594_CR26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.033811
– volume: 114
  start-page: 131104
  year: 2019
  ident: 39594_CR42
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5084112
– volume: 79
  start-page: 201303
  year: 2009
  ident: 39594_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.201303
– volume: 5
  start-page: 707
  year: 1971
  ident: 39594_CR35
  publication-title: Sov. Phys. Semicond.
– volume: 82
  start-page: 045322
  year: 2010
  ident: 39594_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.045322
– volume: 45
  start-page: 1039
  year: 2009
  ident: 39594_CR20
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2009.2017929
– volume: 90
  start-page: 201101
  year: 2007
  ident: 39594_CR22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2739308
– ident: 39594_CR31
  doi: 10.1142/7184
– volume: 115
  start-page: 187402
  year: 2015
  ident: 39594_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.187402
– ident: 39594_CR37
  doi: 10.1201/9780203912539
– volume: 85
  start-page: 045304
  year: 2012
  ident: 39594_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.045304
– volume: 325
  start-page: 1510
  year: 2009
  ident: 39594_CR3
  publication-title: Science
  doi: 10.1126/science.1176695
– volume: 375
  start-page: 1030
  year: 2022
  ident: 39594_CR17
  publication-title: Science
  doi: 10.1126/science.abl5818
– volume: 17
  start-page: 044021
  year: 2022
  ident: 39594_CR36
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.044021
– volume: 104
  start-page: 031113
  year: 2014
  ident: 39594_CR41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4862750
– volume: 6
  start-page: 772
  year: 2010
  ident: 39594_CR45
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1730
– volume: 105
  start-page: 196402
  year: 2010
  ident: 39594_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.196402
– volume: 511
  start-page: 65
  year: 2014
  ident: 39594_CR18
  publication-title: Nature
  doi: 10.1038/nature13455
– volume: 109
  start-page: 246808
  year: 2012
  ident: 39594_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.246808
– volume: 373
  start-page: eabd0336
  year: 2021
  ident: 39594_CR19
  publication-title: Science
  doi: 10.1126/science.abd0336
– ident: 39594_CR27
– volume: 100
  start-page: 136806
  year: 2008
  ident: 39594_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136806
– volume: 6
  start-page: 1207
  year: 2019
  ident: 39594_CR43
  publication-title: ACS photonics
  doi: 10.1021/acsphotonics.8b01778
– volume: 34
  start-page: 1722
  year: 1998
  ident: 39594_CR23
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.709589
– volume: 93
  start-page: 99
  year: 1954
  ident: 39594_CR2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.93.99
– volume: 119
  start-page: 223601
  year: 2017
  ident: 39594_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.223601
– ident: 39594_CR32
  doi: 10.1017/CBO9780511754647
– volume: 17
  start-page: 861
  year: 2016
  ident: 39594_CR29
  publication-title: Comptes Rendus Phys.
  doi: 10.1016/j.crhy.2016.05.001
– volume: 54
  start-page: 437
  year: 1982
  ident: 39594_CR7
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.54.437
– volume: 16
  start-page: 043029
  year: 2014
  ident: 39594_CR11
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/16/4/043029
– ident: 39594_CR1
  doi: 10.1007/978-1-4615-1963-8_40
– volume: 18
  start-page: 13886
  year: 2010
  ident: 39594_CR46
  publication-title: Opt. Express
  doi: 10.1364/OE.18.013886
– volume: 68
  start-page: 245320
  year: 2003
  ident: 39594_CR40
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.68.245320
– volume: 363
  start-page: 615
  year: 2019
  ident: 39594_CR15
  publication-title: Science
  doi: 10.1126/science.aau7742
– volume: 116
  start-page: 238301
  year: 2016
  ident: 39594_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.238301
– volume: 14
  start-page: 1123
  year: 2015
  ident: 39594_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4392
– volume: 17
  start-page: 6340
  year: 2017
  ident: 39594_CR44
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03103
– volume: 1
  start-page: 337
  year: 2020
  ident: 39594_CR34
  publication-title: Infrared Optoelectron.
  doi: 10.1016/B978-0-08-102709-7.00008-5
– volume: 107
  start-page: 045425
  year: 2023
  ident: 39594_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.045425
– volume: 77
  start-page: 126402
  year: 2014
  ident: 39594_CR47
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/77/12/126402
– ident: 39594_CR38
  doi: 10.1016/S0080-8784(08)60206-9
SSID ssj0000391844
Score 2.5359044
Snippet In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly...
Abstract In the majority of optoelectronic devices, emission and absorption of light are considered as perturbative phenomena. Recently, a regime of highly...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3914
SubjectTerms 142/126
147/135
639/301/1005/1007
639/624/400/2797
639/624/400/482
639/925/927/1021
Chemical reactions
Coupling
Electrical conductivity
Electrical resistivity
Electromagnetic absorption
Electron transitions
Electron transport
Electronic properties
Humanities and Social Sciences
Infrared detectors
Light
Material properties
multidisciplinary
Optics
Optimization
Optoelectronic devices
Photons
Physics
Polaritons
Quantum theory
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egIIO4QdQk9sbOCRXUqoeq6gGkcrL8pCtts9t9VGp_PTNONtVS0QtX23k4M56Hx_k-gE-qCk1lXZkrDDYwQREiN4JK7L6RNholhEmsJYfy6EidnDTH_Ybboj9WubaJyVD7qaM98h2i1EFvig7-6-w8J9Yoqq72FBp34R6hJFTp6N7xsMdC6Of4tP5fmYKrnYVIlgEdVY73akR-teGPEmw_eplTOhR5M-K8eXDyr-ppckr7j_93Ok_gUR-Ost1Of57CndA-gwcdQeXlc_i1N7DksOUaBp35OZlIZi8ZaVFnMdkkIZKcJbhObF_NJsGz9LvSgo1bZtj5CoW4OmM-kHF6AT_39358P8h7MobcYUS3zH3lfGMlDwQYaAUVVEVZNDFaixkbr2VQlefB1TZyiVFXrGIZR67wjo-c4p6_hK122obXwArrMeszUZo6CFlL46KzdayjUGURyiKDci0S7XqkciLMmOhUMedKd2LUKEadxKivMvg8XDPrcDpuHf2NJD2MJIzt1DCd_9b9ktUxGum9UDG6Wox8UCOjMP8zzlpT1IZn8BH1ZOMeB7uHmtoI90BiMHxRZrC9lr_urcNCXws_gw9DN65rKtaYNkxXaQzHeBQjqAxedVo3PIpLkbDaMlAb-rjxLps97fg0YYcTq4cqZJ3Bl7XqXr_Xvz_Ym9un8RYeVrSmaNubb8PWcr4K7-C-u1iOF_P3aVH-ARelPzY
  priority: 102
  providerName: ProQuest
Title Electronic transport driven by collective light-matter coupled states in a quantum device
URI https://link.springer.com/article/10.1038/s41467-023-39594-z
https://www.ncbi.nlm.nih.gov/pubmed/37400430
https://www.proquest.com/docview/2832639551
https://www.proquest.com/docview/2833025242
https://hal.science/hal-04157054
https://pubmed.ncbi.nlm.nih.gov/PMC10318076
https://doaj.org/article/ffa7dd48ffc645de85a8862acbba06a3
Volume 14
WOSCitedRecordID wos001028011500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (Proquest)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAYlLxZuUsjKIG0RNYid2ji3aqkhlFSGQtlwsP9WVtmnZR6X21zN2skuXCrhwycF2EmtmPP4m43wD8E4Uri60yVOBYAMDFMZSxUKK3dZceyUYU7FqyTEfjcR4XDc3Sn2FM2EdPXAnuD3vFbeWCe9NxUrrRKkEonBltFZZpSLPZ8brG8FU9MG0xtCF9X_JZFTszVn0CbhFpbQua5Zeb-xEkbAf95fTcBzyNta8fWTyt7xp3I4OH8F2jyPJfjf_x3DHtU_gQVdZ8uopnAzX5W3IYsVfTuws-Dair0hQf-fqyDRSiZxFnk1sX15MnSXxP6M5mbREkR9LlP7yjFgXvMoz-HY4_PrxKO2rKKQGodgitYWxtebUBaY_zUImlOVZ7b3WGGrRijtRWOpMpT3lCJd84XNfmswaWhpBLX0OW-15614CybTFcE15rirHeMWV8UZXvvJM5JnLswTylUSl6SnGQ6WLqYypbipkpwWJWpBRC_I6gffrey46go2_jj4IilqPDOTYsQFNRvYmI_9lMgm8RTVvPONo_1iGtkBYwBHFXuYJ7K6sQPbLei5DXSeEdIgyE3iz7sYFGbIsqnXnyziGIpBE6JPAi85o1q-inEWStQTEhjltzGWzp52cRtLvUI5DZLxK4MPK8n7N688C2_kfAnsFD4uwcMJXbboLW4vZ0r2G--ZyMZnPBnCXj3m8igHcOxiOmi-DuBoH4SBtg9em_I49zafPzclPh4Y6NA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBc2JdAAYPgBFGT2BN7DggVaDWjTkc9FKk9Ga90pGlmOkvR9EfxG7GdpRoqeuuBq-MkdvK9zc_-HsA7lplOJlUaM-dsuACFkFgQn2LXHSqtYISIULWkTwcDdnjY2V-D3_VZGL-tstaJQVHrsfJr5Ju-pI6zps7Af56cxr5qlM-u1iU0SljsmuUvF7LNPvW-uf_7Pst2tg--duOqqkCsnGsyj3WmdEdSbDzznSQ-M0jSpGOtlC70wDk1LNPYqFxaTJ37YDOb2rZKtMJtxbDG7rk3YJ14sLdgfb-3t3_UrOp4vnU3v-p0ToLZ5owEXeRMY-xG3yHx-YoFDIUCnF079tswL_u4l7dq_pWvDWZw597_9gHvw93K4UZbpYQ8gDVTPIRbZQnO5SM42m7qAKF5TfSO9NQbASSXyMtJaRPQKHCunARCUte-mIyMRuFA1gwNCyTQ6cLBdHGCtPHq9zF8v5Z5PYFWMS7MM0CJ1C6uFZaK3BCaU6GskrnNLWFpYtIkgrSGAFcVF7svCTLiYU8AZryEDXew4QE2_DyCD809k5KJ5MreXzyymp6eRTw0jKc_eaWUuLWCak2YtSonbW1YWzAX4QolpUhygSN463C58ozuVp_7Ns_sQJ27f5ZGsFHjjVf6b8YvwBbBm-ay01w-HSUKM16EPth53M5HjOBpifLmVZiSwEYXAVvB_8pYVq8Uw-PAju7rlrCE5hF8rEXlYlz__mDPr57Ga7jdPdjr835vsPsC7mRenv0iP96A1ny6MC_hpjqbD2fTV5VKQPDjuoXoD_cWnbQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKWcSFfQkUMAhOEE0Se2LngFChrVp1NJoDSKUX45WONM1MZyma_jR-Hc_OUg0VvfXA1XEyceZ7m9_z9xB6yzNbZEqnMQdnAwIUSmNJfYrdFEw5ySmVoWtJj_X7_OCgGKyh381ZGF9W2ejEoKjNWPs98o5vqQPWFAx8x9VlEYOtnU-Tk9h3kPKZ1qadRgWRfbv8BeHb7OPeFvzX77JsZ_vrl9247jAQa3BT5rHJtCkUI9az4Cnqs4Q0TQrnlIIwhOTM8swQq3PlCANXwmUudV2dGE26mhND4LnX0HUGMaYvJxx0D9v9Hc-8Diutz-kkhHdmNGglMJIxrKOg8dmKLQwtA8DCHfmCzIve7sWizb8yt8Eg7tz9nz_lPXSndsPxZiU399GaLR-gm1VjzuVD9H277Q6E5w39OzZTbxqwWmIvPZWlwKPAxHIcaEphfDEZWYPDMa0ZHpZY4pMFgHdxjI31SvkR-nYl63qM1stxaZ8inCgD0a50TOaWspxJ7bTKXe4oTxObJhFKGzgIXTO0-0YhIxEqBQgXFYQEQEgECImzCL1v75lU_CSXzv7sUdbO9NziYWA8_SlqVSWck8wYyp3TOe0ay7uSQ9wrtVIyySWJ0BvA6Mozdjd7wo95vgcGQcBpGqGNBnui1oozcQ68CL1uL4M-80kqWdrxIswh4IeD5xihJxXi258ijAaOugjxFVlYeZfVK-XwKHCm-24mPGF5hD40YnP-Xv_-YM8uX8YrdAskR_T2-vvP0e3Mi7bf-ScbaH0-XdgX6IY-nQ9n05dBN2D046ol6A-rIqUX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+transport+driven+by+collective+light-matter+coupled+states+in+a+quantum+device&rft.jtitle=Nature+communications&rft.au=Francesco+Pisani&rft.au=Djamal+Gacemi&rft.au=Angela+Vasanelli&rft.au=Lianhe+Li&rft.date=2023-07-03&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-023-39594-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ffa7dd48ffc645de85a8862acbba06a3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon