Image Processing Techniques for Improving Quality of 3D Profile in Digital Holographic Microscopy Using Deep Learning Algorithm

Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filt...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 24; no. 6; p. 1950
Main Authors: Kim, Hyun-Woo, Cho, Myungjin, Lee, Min-Chul
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 19.03.2024
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm.
AbstractList Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm.
Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm.Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated during the 3D imaging process can affect the accuracy of medical diagnoses. To solve this problem, we proposed several frequency domain filtering algorithms. However, the filtering algorithms we proposed have a limitation in that they can only be applied when the distance between the direct current (DC) spectrum and sidebands are sufficiently far. To address these limitations, among the proposed filtering algorithms, the HiVA algorithm and deep learning algorithm, which effectively filter by distinguishing between noise and detailed information of the object, are used to enable filtering regardless of the distance between the DC spectrum and sidebands. In this paper, a combination of deep learning technology and traditional image processing methods is proposed, aiming to reduce noise in 3D profile imaging using the Improved Denoising Diffusion Probabilistic Models (IDDPM) algorithm.
Audience Academic
Author Cho, Myungjin
Kim, Hyun-Woo
Lee, Min-Chul
AuthorAffiliation 1 Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi 820-8502, Fukuoka, Japan; kim.hyunwoo547@mail.kyutech.jp
2 School of ICT, Robotics, and Mechanical Engineering, Hankyong National University, Institute of Information and Telecommunication Convergence, 327 Chungang-ro, Anseong 17579, Kyonggi-do, Republic of Korea
AuthorAffiliation_xml – name: 1 Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi 820-8502, Fukuoka, Japan; kim.hyunwoo547@mail.kyutech.jp
– name: 2 School of ICT, Robotics, and Mechanical Engineering, Hankyong National University, Institute of Information and Telecommunication Convergence, 327 Chungang-ro, Anseong 17579, Kyonggi-do, Republic of Korea
Author_xml – sequence: 1
  givenname: Hyun-Woo
  orcidid: 0000-0003-1381-6116
  surname: Kim
  fullname: Kim, Hyun-Woo
– sequence: 2
  givenname: Myungjin
  orcidid: 0000-0003-2896-770X
  surname: Cho
  fullname: Cho, Myungjin
– sequence: 3
  givenname: Min-Chul
  orcidid: 0000-0001-8469-0288
  surname: Lee
  fullname: Lee, Min-Chul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38544214$$D View this record in MEDLINE/PubMed
BookMark eNptkl1v2yAUhq2p0_qxXewPTEi76S7SggEbX01Rs62RMm2T2mtE4NihwuCBUylX--vDTRe11YQQX8954XDe0-LIBw9F8Z7gC0obfJlKhivScPyqOCGsZDNRlvjoyfy4OE3pDuOSUireFMdUcMZKwk6KP8tedYB-xqAhJes7dAN64-3vLSTUhoiW_RDD_XTwa6ucHXcotIgupojWOkDWo4Xt7Kgcug4udFENG6vRd6tjSDoMO3T7ILsAGNAKVPTTau66EO246d8Wr1vlErx7HM-K269fbq6uZ6sf35ZX89VM85qPM60AK8KwYRVhlTEV5bRRlaCqgaY1jSmBcozXVUVIi-uaMYExMTR3XHKj6Vmx3OuaoO7kEG2v4k4GZeXDRoidVHG02oFseF2vGRVQCcwoJ4oy3nKooSUaC4Oz1ue91rBd92A0-DEq90z0-Ym3G9mFe0lwU2fFJiucPyrEMP30KHubNDinPIRtkvndLFdLsAn9-AK9C9vo819lClNWVg0WmbrYU53KGVjfhnyxzs1Ab3V2y1QrOa-FKDkVguWAD09zODz-nzMy8GkPTHVMEdoDQrCcXCcPrsvs5QtWZ0OMNkzpW_efiL8gutcT
CitedBy_id crossref_primary_10_3390_s25175402
crossref_primary_10_3390_s24185928
crossref_primary_10_3390_electronics14020338
crossref_primary_10_7498_aps_74_20241629
crossref_primary_10_1016_j_optcom_2024_131314
crossref_primary_10_1016_j_measurement_2025_117121
crossref_primary_10_3390_electronics14050879
crossref_primary_10_1038_s41598_025_99483_x
Cites_doi 10.3938/jkps.72.863
10.1117/12.946709
10.3390/cells12050762
10.1038/s41596-022-00769-5
10.3390/biomimetics8080563
10.1038/s41598-020-76573-6
10.1088/2040-8986/aa6ccb
10.1016/j.media.2023.102918
10.1109/JSTQE.2009.2036741
10.3390/s22134844
10.3390/s22103793
10.1029/RS023i004p00713
10.1117/1.OE.60.5.051207
10.1007/s10278-022-00721-9
10.1186/s12986-021-00589-6
10.1016/j.media.2022.102688
10.1109/TIP.2003.819861
10.1364/BOE.10.001613
10.1002/sdtp.16843
10.1016/j.optcom.2016.08.056
10.1016/j.precisioneng.2024.01.014
10.4218/etrij.2021-0311
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24061950
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9577b438e6804351a345f5e7ef1c08d0
PMC10974359
A788253884
38544214
10_3390_s24061950
Genre Journal Article
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 23K19964
– fundername: National Research Foundation of Korea
  grantid: NRF-2022K2A9A2A08000152
– fundername: National Research Foundation of Korea
  grantid: NRF-2022K2A9A2A08000152; FY2022
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c575t-cae0a140d46146dd63539a683a9e9fd9d2e3500b6611f077448001d301d025dc3
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001193059800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:41:13 EDT 2025
Tue Nov 04 02:05:42 EST 2025
Sun Nov 09 14:32:15 EST 2025
Tue Oct 07 07:23:13 EDT 2025
Tue Nov 04 18:25:35 EST 2025
Wed Feb 19 02:03:47 EST 2025
Sat Nov 29 07:18:48 EST 2025
Tue Nov 18 22:14:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Improved Denoising Diffusion Probabilistic Models (IDDPM)
Digital Holographic Microscopy (DHM)
noise filtering
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-cae0a140d46146dd63539a683a9e9fd9d2e3500b6611f077448001d301d025dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-8469-0288
0000-0003-1381-6116
0000-0003-2896-770X
OpenAccessLink https://doaj.org/article/9577b438e6804351a345f5e7ef1c08d0
PMID 38544214
PQID 3003426908
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9577b438e6804351a345f5e7ef1c08d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10974359
proquest_miscellaneous_3014002849
proquest_journals_3003426908
gale_infotracacademiconefile_A788253884
pubmed_primary_38544214
crossref_primary_10_3390_s24061950
crossref_citationtrail_10_3390_s24061950
PublicationCentury 2000
PublicationDate 20240319
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 3
  year: 2024
  text: 20240319
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_20) 2021; 60
Joo (ref_16) 2023; 54
Kumari (ref_18) 2024; 87
ref_14
ref_11
Mazurowski (ref_29) 2023; 89
Tu (ref_21) 2017; 19
ref_17
Zeng (ref_2) 2015; 64
Amirrajab (ref_5) 2023; 84
Chen (ref_4) 2023; 36
Moore (ref_3) 2023; 18
Rekola (ref_10) 2020; 10
Zhou (ref_7) 2021; 18
ref_25
ref_24
Wang (ref_27) 2004; 13
Situ (ref_1) 2022; 3
Kim (ref_13) 2023; 45
Ho (ref_23) 2020; 33
Goldstein (ref_26) 1988; 23
Shin (ref_15) 2018; 72
Xiao (ref_22) 2019; 10
ref_28
ref_8
Gioffre (ref_9) 2010; 16
Kim (ref_12) 2023; 21
Hong (ref_19) 2017; 382
ref_6
References_xml – ident: ref_28
– volume: 72
  start-page: 863
  year: 2018
  ident: ref_15
  article-title: Fine metal mask 3-dimensional measurement by using scanning digital holographic microscope
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.72.863
– ident: ref_6
  doi: 10.1117/12.946709
– ident: ref_17
  doi: 10.3390/cells12050762
– volume: 33
  start-page: 6840
  year: 2020
  ident: ref_23
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_24
– volume: 18
  start-page: 990
  year: 2023
  ident: ref_3
  article-title: Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-022-00769-5
– ident: ref_11
  doi: 10.3390/biomimetics8080563
– volume: 10
  start-page: 19642
  year: 2020
  ident: ref_10
  article-title: Digital holographic microscopy for real-time observation of surface-relief grating formation on azobenzene-containing films
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76573-6
– volume: 19
  start-page: 065604
  year: 2017
  ident: ref_21
  article-title: Synthetic aperture common-path digital holographic microscopy with spiral phase filter
  publication-title: J. Opt.
  doi: 10.1088/2040-8986/aa6ccb
– volume: 89
  start-page: 102918
  year: 2023
  ident: ref_29
  article-title: Segment anything model for medical image analysis: An experimental study
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.102918
– volume: 16
  start-page: 833
  year: 2010
  ident: ref_9
  article-title: Quantitative label-free animal sperm imaging by means of digital holographic microscopy
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2009.2036741
– ident: ref_14
  doi: 10.3390/s22134844
– ident: ref_8
  doi: 10.3390/s22103793
– volume: 23
  start-page: 713
  year: 1988
  ident: ref_26
  article-title: Satellite radar interferometry: Two-dimensional phase un-wrapping
  publication-title: Radio Sci.
  doi: 10.1029/RS023i004p00713
– volume: 21
  start-page: 90
  year: 2023
  ident: ref_12
  article-title: Phase Differences Averaging (PDA) Method for Reducing the Phase Error in Digital Holographic Microscopy (DHM)
  publication-title: J. Korea Inst. Inf. Commun. Eng.
– volume: 60
  start-page: 051207
  year: 2021
  ident: ref_20
  article-title: Adaptive spatial filtering based on fuzzy C-means and phase in off-axis digital holographic microscopy
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.60.5.051207
– ident: ref_25
– volume: 36
  start-page: 204
  year: 2023
  ident: ref_4
  article-title: Deep learning for image enhancement and correction in magnetic resonance imaging—State-of-the-art and challenges
  publication-title: J. Digital Imaging
  doi: 10.1007/s10278-022-00721-9
– volume: 18
  start-page: 64
  year: 2021
  ident: ref_7
  article-title: Dihydromyricetin ameliorates liver fibrosis via inhibition of hepatic stellate cells by inducing autophagy and natural killer cell-mediated killing effect
  publication-title: Nutr. Metab.
  doi: 10.1186/s12986-021-00589-6
– volume: 64
  start-page: 47
  year: 2015
  ident: ref_2
  article-title: Latest development of dynamic holographic 3d display
  publication-title: Acta Phys. Sin.
– volume: 84
  start-page: 102688
  year: 2023
  ident: ref_5
  article-title: On the usability of synthetic data for improving the robustness of deep learning-based segmentation of cardiac magnetic resonance images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102688
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_27
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 10
  start-page: 1613
  year: 2019
  ident: ref_22
  article-title: Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.001613
– volume: 54
  start-page: 1388
  year: 2023
  ident: ref_16
  article-title: P-89: Digital Holography Microscope with liquid crystal phase modulator
  publication-title: SID Symp. Dig. Tech. Pap.
  doi: 10.1002/sdtp.16843
– volume: 382
  start-page: 624
  year: 2017
  ident: ref_19
  article-title: Weighted adaptive spatial filtering in digital holographic microscopy
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2016.08.056
– volume: 3
  start-page: 278
  year: 2022
  ident: ref_1
  article-title: Deep holography
  publication-title: Light Adv. Manuf.
– volume: 87
  start-page: 23
  year: 2024
  ident: ref_18
  article-title: Telecentric phase imaging at extended depth of focus using digital holographic microscopy
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2024.01.014
– volume: 45
  start-page: 131
  year: 2023
  ident: ref_13
  article-title: Noise reduction method using a variance map of the phase differences in digital holographic microscopy
  publication-title: ETRI J.
  doi: 10.4218/etrij.2021-0311
SSID ssj0023338
Score 2.4862564
Snippet Digital Holographic Microscopy (DHM) is a 3D imaging technology widely applied in biology, microelectronics, and medical research. However, the noise generated...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1950
SubjectTerms Algorithms
Data mining
Deep learning
Digital Holographic Microscopy (DHM)
Fourier transforms
Image processing
Imaging systems
Improved Denoising Diffusion Probabilistic Models (IDDPM)
Methods
Microscope and microscopy
Microscopy
Noise control
noise filtering
Technology application
Three dimensional imaging
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5QAHWj4KoS0yCAkuUZPY2dgntO22KhKsKlRQb5ZjO9tIbbJstkg98deZSZywqyIuXG0nGsfjmTfO-A0h77RxFvyaCFPt8pBrnoS5EVEonE4SEwshWyLt75-z6VRcXMgzf-DW-LTK3ia2htrWBs_ID1hLVgexnPg4_xFi1Sj8u-pLaNwnm8hUBnq-eXg8Pfs6hFwMIrCOT4hBcH_QtP5L4iX7FS_UkvXfNckrPmk9X3LFAZ1s_a_o2-Sxh5503OnKE3LPVU_JoxVCwmfk16drsC_U3x6AJnrec7w2FOAtHc4gaEe-cUvrgrIJPoEMT7Ss6KScYSESetrTYZeGfsG0P7wAc0vbHAU6cW5OPbfrjI6vZiDv8vL6Ofl2cnx-dBr6Eg2hAZy3DI12kYYYzXJw8yNrAb4wqUeCaelkYaVNHEujKAcUEBcRQE0OADW2YFUsgC1r2A7ZqOrKvSSU84LzPOM6Yo7z1ObaGCdijQFbYWwUkA_9kinj-cuxjMaVgjgGV1cNqxuQt8PQeUfa8bdBh7juwwDk2W4b6sVM-W2rZJplOWfCjUQEwDLWjKdF6jJXxCYSKNR71BqF1gCEMdpfaoAp4VdX4wwiGPApggdkr1cO5c1Eo_5oRkDeDN2wwfGvja5cfYNj4PsCCuQyIC86PRxkZiLlPInh5WJNQ9cmtd5TlZctiThmHsCM5Kt_y7VLHiYA4zDrLpZ7ZGO5uHH75IH5uSybxWu_3X4D7YI16w
  priority: 102
  providerName: ProQuest
Title Image Processing Techniques for Improving Quality of 3D Profile in Digital Holographic Microscopy Using Deep Learning Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/38544214
https://www.proquest.com/docview/3003426908
https://www.proquest.com/docview/3014002849
https://pubmed.ncbi.nlm.nih.gov/PMC10974359
https://doaj.org/article/9577b438e6804351a345f5e7ef1c08d0
Volume 24
WOSCitedRecordID wos001193059800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CwQEOEz9HYFQGIcElmhM7jX3saKdNolWFBiqnyLGdLtKWTm2HtMv413l2figVSFy45OA4kf387O97yfNngA9KW4O4JsJE2TzkisdhrgUNhVVxrCMhpBfS_v4lnc3EYiHnvaO-XE5YLQ9cG-5IJmmacybsUFCE9kgxnhSJTW0RaSqMj9ZpKttgqgm1GEZetY4Qw6D-aONxS7rN9T308SL9fy7FPSzazZPsAc_JE9hvGCMZ1S19Cvds9Qwe93QEn8OvsytcFkiT9I9F5LyVZt0QZKWk-3RAas2MW7IqCBu7J5wwEykrMi6X7vwQctqqWJeaTF22ntu3ckt8agEZW3tNGknWJRldLlfrcntx9QK-nUzOP5-GzckKoUZ6tg21slRhaGU4ovPQGGQdTKqhYEpaWRhpYssSSnME76igyBA58srI4GJgkCMZzV7CXrWq7CsgnBec5ylXlFnOE5Mrra2IlIuzCm1oAJ9ai2e6kR13p19cZhh-uMHJusEJ4H1X9brW2vhbpWM3bF0FJ4_tC9BpssZpsn85TQAf3aBnbhJjY7Rq9iJgl5zVs1GKgQdCgeABHLZ-kTWze5MxL5w4lFQE8K67jfPS_WxRlV3duDpoXyRvXAZwULtR12YmEs7jCF8udhxsp1O7d6rywmt_u4QB7JF8_T_M8AYexcjRXEpdJA9hb7u-sW_hof65LTfrAdxPF6m_igE8OJ7M5l8HfpbhdXo3wbL52XT-4zfWtiv5
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLhLLgTdLYQGDQHCJ1omdxj4gVCirVttWPRS0nIJjO91Ku2lpu6Ce-Ef8RmbyohWI2x64Jm5kT2fmm0lmviHkhTbOAq5JL9Qu8YQWgZcYyTzpdBAYX0qVE2l_6kfDoTw5UaMd8rPqhcGyyson5o7azgy-Iz_kOVkd5HLy7fyrh1Oj8OtqNUKjUItjt_4OKdvyTa8D_-_LIDj6MH7f9cqpAp6B0GTlGe2YhrTCCkCmlrWAuFzpluRaOZVaZQPHQ8YSAC4_ZRAdCYipfAuGYCE-sIbDc6-QXQHKzhpkd9QbjD7XKR6HjK_gL-JcscNljpcKm_o3UC8fDvAnBGxg4HZ95gbgHd3830R1i9woQ2vaLmzhNtlx2R1yfYNw8S750TsH_0nL7gi4RMcVh-2SQvhO63cstCAXWdNZSnkHf4EMVnSa0c50goNWaLei-54aOsCyRmzwWdO8BoN2nJvTkrt2QttnE5DP6vT8Hvl4KRK4TxrZLHMPCBUiFSKJhGbcCRHaRBvjpK8xIU2NZU3yulKR2JT87Dgm5CyGPA21Ka61qUme10vnBSnJ3xa9Qz2rFyCPeH5htpjEpVuKVRhFieDStSSDwNnXXIRp6CKX-oZJ3NQr1NIYvR1sxuiyaQOOhFKP2xFkaICZUjTJQaWMcekGl_FvTWySZ_VtcGD4VUpnbnaBa0C-EOUK1ST7hd7Xe-YyBDvz4eFyyyK2DrV9J5ue5iTpWFkBJ1IP_72vp-Radzzox_3e8PgR2QsgZMUKQ18dkMZqceEek6vm22q6XDwpTZ2SL5dtMr8AP_CQLg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceNMGCiwIBBcrtncd7x4QCoSoUUvUQ0G5mfXuOo3UOiFJQTnxv_h1zPjVRCBuPXC1N9buZGa-GXvmG4CX2jiLuCa9SLvUE1qEXmqk70mnw9AEUqqCSPvLYTwcytFIHW3Br7oXhsoqa59YOGo7NfSOvM0LsjrM5WQ7q8oijnr9d7NvHk2Qoi-t9TiNUkUO3OoHpm-Lt4Me_tevwrD_8fjDvldNGPAMhilLz2jna0wxrECU6liL6MuV7kiulVOZVTZ0PPL9FEEsyHyMlATGV4FFo7AYK1jD8blX4CpRCpJTiEcXyR7H3K9kMuJc-e1FgZyK2vvX8K8YE_AnGKyh4Wal5hr09W__z0K7A7eqgJt1Swu5C1suvwc312gY78PPwRl6VVb1TOAldlwz2y4YBvWsefPCSsqRFZtmjPfoF8RrxSY5603GNH6F7dck4BPDPlGxI7X9rFhRmcF6zs1YxWg7Zt3TMcpneXL2AD5figQewnY-zd0uMCEyIdJYaJ87ISKbamOcDDSlqZmxfgve1OqSmIq1nYaHnCaYvZFmJY1mteBFs3RWUpX8bdF70rlmAbGLFxem83FSOatERXGcCi5dR_oYTgeaiyiLXOyywPiSNvWaNDYhH4ibMbpq5cAjkdSTbox5GyKpFC3YqxUzqZzjIrnQyhY8b26jW6NvVTp303Nag_LF2FeoFuyUNtDsmctIiDDAh8sN69g41OadfHJSUKdTvQWeSD36976ewXW0k-RwMDx4DDdCjGOp7DBQe7C9nJ-7J3DNfF9OFvOnhc0z-HrZ9vIbZB2XWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Processing+Techniques+for+Improving+Quality+of+3D+Profile+in+Digital+Holographic+Microscopy+Using+Deep+Learning+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kim%2C+Hyun-Woo&rft.au=Cho%2C+Myungjin&rft.au=Lee%2C+Min-Chul&rft.date=2024-03-19&rft.eissn=1424-8220&rft.volume=24&rft.issue=6&rft_id=info:doi/10.3390%2Fs24061950&rft_id=info%3Apmid%2F38544214&rft.externalDocID=38544214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon