Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability

•High inter-subject variability for brain fingerprinting and cognitive behavior predicting.•Conditional deep generative network for extracting shared information of inter-subject.•Embed the state information into the conditional deep generative network.•High accuracy based on a large number of subje...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 295; s. 120651
Hlavní autoři: Lu, Jiayu, Yan, Tianyi, Yang, Lan, Zhang, Xi, Li, Jiaxin, Li, Dandan, Xiang, Jie, Wang, Bin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 15.07.2024
Elsevier Limited
Elsevier
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •High inter-subject variability for brain fingerprinting and cognitive behavior predicting.•Conditional deep generative network for extracting shared information of inter-subject.•Embed the state information into the conditional deep generative network.•High accuracy based on a large number of subjects and numerous states.•Higher fingerprinting is useful for resulting in higher behavioral associations. The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations. In summary, our proposed framework provides a promising approach to use functional connectivity networks for studying cognition and behavior, promoting a deeper understanding of brain functions.
AbstractList The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations. In summary, our proposed framework provides a promising approach to use functional connectivity networks for studying cognition and behavior, promoting a deeper understanding of brain functions.
The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations. In summary, our proposed framework provides a promising approach to use functional connectivity networks for studying cognition and behavior, promoting a deeper understanding of brain functions.The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations. In summary, our proposed framework provides a promising approach to use functional connectivity networks for studying cognition and behavior, promoting a deeper understanding of brain functions.
•High inter-subject variability for brain fingerprinting and cognitive behavior predicting.•Conditional deep generative network for extracting shared information of inter-subject.•Embed the state information into the conditional deep generative network.•High accuracy based on a large number of subjects and numerous states.•Higher fingerprinting is useful for resulting in higher behavioral associations. The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations. In summary, our proposed framework provides a promising approach to use functional connectivity networks for studying cognition and behavior, promoting a deeper understanding of brain functions.
ArticleNumber 120651
Author Xiang, Jie
Yan, Tianyi
Lu, Jiayu
Li, Jiaxin
Zhang, Xi
Yang, Lan
Li, Dandan
Wang, Bin
Author_xml – sequence: 1
  givenname: Jiayu
  surname: Lu
  fullname: Lu, Jiayu
  organization: College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 2
  givenname: Tianyi
  surname: Yan
  fullname: Yan, Tianyi
  organization: School of Life Science, Beijing Institute of Technology, 100081, China
– sequence: 3
  givenname: Lan
  surname: Yang
  fullname: Yang, Lan
  organization: College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 4
  givenname: Xi
  surname: Zhang
  fullname: Zhang, Xi
  organization: College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 5
  givenname: Jiaxin
  surname: Li
  fullname: Li, Jiaxin
  organization: College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 6
  givenname: Dandan
  surname: Li
  fullname: Li, Dandan
  organization: College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 7
  givenname: Jie
  surname: Xiang
  fullname: Xiang, Jie
  organization: College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
– sequence: 8
  givenname: Bin
  orcidid: 0000-0001-7771-5360
  surname: Wang
  fullname: Wang, Bin
  email: wangbin01@tyut.edu.cn
  organization: College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38788914$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuP0zAURiM0iHnAX0CR2LBpsetnNghmxGOkkdjA2rpxrluH1C52Uqn_HqcdBqmr2TjXyblHjr97XV2EGLCqakqWlFD5oV8GnFL0W1jjckVWfElXRAr6orqipBGLRqjVxVwLttCUNpfVdc49IaShXL-qLplWWpf6qhpvE_hQOx_WmHbJh7FUNYSutnEd_Oj3WLe4gb2Pqd4l7Lw9ElOeVzeFso0BhoKHgHaMW6yjqzd-vamLDNMiT21fPtR7SB5aP_jx8Lp66WDI-ObxeVP9-vrl5933xcOPb_d3nx8WVigxzquS4LiDDi0XrgVoaIey1byVzkkBRGmiGyWUU0Iw5AyEkrYBKRuuFLup7k_eLkJvyt9tIR1MBG-OL2JaG0ijtwOaVjjgWnOt0HFA1jBQpGOSCcEd6XRxvT-5din-mTCPZuuzxWGAgHHKhhFJmGJEyIK-O0P7OKVySUdKMsq5ooV6-0hN7Ra7p-P9y6YA-gTYFHNO6J4QSsw8BqY3_8fAzGNgTmNQWj-etVo_wpzUWOIeniO4PQmwxLP3mEy2HoMt-acSZrk__xzJpzOJHXzwFobfeHie4i92Zew1
CitedBy_id crossref_primary_10_1007_s13534_025_00487_3
crossref_primary_10_1016_j_media_2025_103761
crossref_primary_10_3758_s13428_025_02635_0
crossref_primary_10_1038_s41598_024_71295_5
Cites_doi 10.1016/j.neuroimage.2021.118423
10.1126/sciadv.abq8566
10.1007/s10334-013-0420-5
10.1093/cercor/bhac396
10.1089/brain.2011.0007
10.1016/j.neuroimage.2017.03.064
10.1101/2022.02.04.479112
10.1016/j.neuroimage.2017.07.016
10.1073/pnas.0601417103
10.1016/j.tics.2018.08.009
10.1002/mrm.1910340409
10.1126/scitranslmed.3008601
10.1523/JNEUROSCI.4638-14.2015
10.1038/nrn.2016.167
10.1126/science.1127647
10.1038/nn.3470
10.1016/j.neuron.2011.09.006
10.1016/j.engappai.2023.105859
10.1109/LRA.2020.3043163
10.1109/TSP.2006.881199
10.1016/j.neuron.2016.10.046
10.1109/ACCESS.2022.3233110
10.1016/j.neuron.2016.10.050
10.1016/j.neuroimage.2013.04.127
10.1016/j.cam.2023.115532
10.3390/s19112528
10.1016/j.neuroimage.2013.05.039
10.1038/nn.4393
10.1016/j.neuroimage.2022.118970
10.1002/hbm.25379
10.1038/s41598-018-25089-1
10.1016/j.neuron.2018.03.035
10.1002/hbm.25394
10.1093/cercor/bhx170
10.1093/cercor/bhx230
10.1101/2023.02.03.23285441
10.1089/brain.2017.0561
10.1016/j.neuroimage.2013.05.041
10.1002/hbm.26423
10.1016/j.neuroimage.2018.10.006
10.3389/fnins.2022.813293
10.1002/hbm.24741
10.1002/hbm.460020107
10.1073/pnas.1902932116
10.1038/nn.4135
10.1016/j.neuroimage.2011.09.015
10.1007/s11548-018-1898-0
10.1073/pnas.0135058100
10.1038/s42003-022-03185-3
10.1002/hbm.21265
10.1098/rstb.2014.0310
10.1016/j.isci.2019.100801
10.1016/j.procs.2018.10.129
10.1016/j.neuroimage.2012.02.018
10.1016/j.neuroimage.2013.11.046
10.1016/j.neuroimage.2020.117181
10.1038/nature18933
10.1002/hbm.26561
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
2024. The Authors
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2024. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2024.120651
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_b5fa488487ef4ae393a70d363554f0d8
38788914
10_1016_j_neuroimage_2024_120651
S1053811924001460
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
0SF
6I.
AACTN
AAFTH
AAIAV
AFKWA
AJOXV
ALIPV
AMFUW
C45
HMQ
NCXOZ
RIG
SEW
SNS
ZA5
29N
53G
9DU
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFFHD
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
WUQ
XPP
ZMT
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c575t-c5776af4fadec45fbaa91de6b84b6ff65a078089757f7553e43a576c9a6694773
IEDL.DBID M7P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247179900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:53:33 EDT 2025
Thu Oct 02 09:14:31 EDT 2025
Tue Oct 07 07:00:27 EDT 2025
Mon Jul 21 06:02:08 EDT 2025
Sat Nov 29 04:32:17 EST 2025
Tue Nov 18 21:55:30 EST 2025
Thu Jul 04 08:40:17 EDT 2024
Tue Oct 14 19:35:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
Cognitive behavior predicting
Fingerprint
Individual identification
Conditional variational autoencoder network
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-c5776af4fadec45fbaa91de6b84b6ff65a078089757f7553e43a576c9a6694773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7771-5360
OpenAccessLink https://doaj.org/article/b5fa488487ef4ae393a70d363554f0d8
PMID 38788914
PQID 3066314471
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_b5fa488487ef4ae393a70d363554f0d8
proquest_miscellaneous_3060373056
proquest_journals_3066314471
pubmed_primary_38788914
crossref_primary_10_1016_j_neuroimage_2024_120651
crossref_citationtrail_10_1016_j_neuroimage_2024_120651
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120651
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120651
PublicationCentury 2000
PublicationDate 2024-07-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2024
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Da K. A method for stochastic optimization. arXiv preprint
Yang, Zheng, Wu (bib0070) 2019; 19
Gratton, Laumann, Nielsen (bib0025) 2018; 98
Zhang, Yang, Mou (bib0072) 2023
Ren, Zhou, Zhang (bib0055) 2022; 16
Finn, Shen, Scheinost (bib0020) 2015; 18
Li, Wisner, Atluri (bib0042) 2021; 42
Poldrack, Baker, Durnez (bib0052) 2017; 18
2017, 565: 2.
Sohn, Lee, Yan (bib0060) 2015; 28
Kingma, Welling (bib0036) 2014; 1050
Van Essen, Ugurbil, Auerbach (bib0065) 2012; 62
Cole, Reynolds, Power (bib0013) 2013; 16
Krizhevsky A., Hinton G. Convolutional deep belief networks on cifar-10. Unpublished manuscript, 2010, 40(7): 1–9.
Mantwill, Gell, Krohn (bib0045) 2022; 5
Khalili-Mahani, Zoethout, Beckmann (bib0034) 2012; 33
Anderson, Ferguson, Lopez-Larson (bib0006) 2011; 1
Demeter, Engelhardt, Mallett (bib0018) 2020; 23
Stampacchia S., Asadi S., Tomczyk S., et al. Fingerprints of brain disease: connectome identifiability in cognitive decline and Alzheimer's disease. bioRxiv, 2022: 2022.02. 04.479112.
Amunts, Ebell, Muller (bib0005) 2016; 92
Glasser, Coalson, Robinson (bib0024) 2016; 536
Ivanovic, Leung, Schmerling (bib0031) 2020; 6
Griffa, Amico, Liégeois (bib0027) 2022; 250
Cai, Zhang, Hu (bib0009) 2019; 40
Jenkinson, Beckmann, Behrens (bib0032) 2012; 62
Mars, Passingham, Jbabdi (bib0046) 2018; 22
Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib0048) 2017; 27
Wu-Minn H.C.P. 1200 subjects data release reference manual. URL
Allen, Sudlow, Peakman (bib0003) 2014; 6
2014.
Da Silva Castanheira J., Wiesman A.I., Hansen J.Y., et al. The neurophysiological brain-fingerprint of Parkinson's disease. medRxiv, 2023.
Seitzman, Gratton, Laumann (bib0057) 2019; 116
Salimi-Khorshidi, Douaud, Beckmann (bib0056) 2014; 90
Amico, Goñi (bib0004) 2018; 8
Ji, Spronk, Kulkarni (bib0033) 2019; 185
Kim, Zhang, Han (bib0035) 2021; 241
Kingma, Mohamed, Rezende, Welling (bib0037) 2014
Waller, Walter, Kruschwitz (bib0067) 2017; 158
Friston (bib0022) 1994; 2
Uzunova, Schultz, Handels (bib0064) 2019; 14
Greicius, Krasnow, Reiss (bib0026) 2003; 100
Hutchison, Morton (bib0030) 2015; 35
Shojaee, Li, Atluri (bib0058) 2019
Okano, Miyawaki, Kasai (bib0049) 2015; 370
Ansari, Chandrasekar, Singh (bib0007) 2022; 11
Power, Cohen, Nelson (bib0054) 2011; 72
Hinton, Salakhutdinov (bib0029) 2006; 313
Miller, Alfaro-Almagro, Bangerter (bib0047) 2016; 19
Peng, Liu, Hubbard (bib0051) 2023; 9
Weber, Soreni, Noseworthy (bib0068) 2014; 27
Van Essen, Smith, Barch (bib0066) 2013; 80
Corriveau, Yoo, Kwon (bib0014) 2023; 33
Glasser, Sotiropoulos, Wilson (bib0023) 2013; 80
Chen, Hu (bib0012) 2018; 8
Smith, Beckmann, Andersson (bib0059) 2013; 80
Zemouri, Ibrahim, Tahan (bib0071) 2023; 120
Zhang, Jiang (bib0073) 2024; 438
Lori, Ramalhosa, Marques (bib0044) 2018; 141
Abbas, Amico, Svaldi (bib0001) 2020; 221
Biswal, Zerrin Yetkin, Haughton (bib0008) 1995; 34
Lee, Lee (bib0041) 2024; 45
Aharon, Elad, Bruckstein (bib0002) 2006; 54
Cai, Zhang, Zhang (bib0010) 2021; 42
Poo, Du, Ip (bib0053) 2016; 92
Tian, Yeo, Cropley (bib0063) 2021; 229
Damoiseaux, Rombouts, Barkhof (bib0017) 2006; 103
Finn, Scheinost, Finn (bib0021) 2017; 160
Hannum, Lopez, Blanco (bib0028) 2023; 44
Peña-Gómez, Avena-Koenigsberger, Sepulcre (bib0050) 2018; 28
Peña-Gómez (10.1016/j.neuroimage.2024.120651_bib0050) 2018; 28
Khalili-Mahani (10.1016/j.neuroimage.2024.120651_bib0034) 2012; 33
10.1016/j.neuroimage.2024.120651_bib0069
Abbas (10.1016/j.neuroimage.2024.120651_bib0001) 2020; 221
Shojaee (10.1016/j.neuroimage.2024.120651_bib0058) 2019
Corriveau (10.1016/j.neuroimage.2024.120651_bib0014) 2023; 33
Ansari (10.1016/j.neuroimage.2024.120651_bib0007) 2022; 11
Kingma (10.1016/j.neuroimage.2024.120651_bib0037) 2014
Glasser (10.1016/j.neuroimage.2024.120651_bib0024) 2016; 536
Cole (10.1016/j.neuroimage.2024.120651_bib0013) 2013; 16
Poo (10.1016/j.neuroimage.2024.120651_bib0053) 2016; 92
Mantwill (10.1016/j.neuroimage.2024.120651_bib0045) 2022; 5
Cai (10.1016/j.neuroimage.2024.120651_bib0009) 2019; 40
Griffa (10.1016/j.neuroimage.2024.120651_bib0027) 2022; 250
Gratton (10.1016/j.neuroimage.2024.120651_bib0025) 2018; 98
Demeter (10.1016/j.neuroimage.2024.120651_bib0018) 2020; 23
Hinton (10.1016/j.neuroimage.2024.120651_bib0029) 2006; 313
Ivanovic (10.1016/j.neuroimage.2024.120651_bib0031) 2020; 6
Finn (10.1016/j.neuroimage.2024.120651_bib0020) 2015; 18
Zemouri (10.1016/j.neuroimage.2024.120651_bib0071) 2023; 120
Lee (10.1016/j.neuroimage.2024.120651_bib0041) 2024; 45
Seitzman (10.1016/j.neuroimage.2024.120651_bib0057) 2019; 116
Poldrack (10.1016/j.neuroimage.2024.120651_bib0052) 2017; 18
Uzunova (10.1016/j.neuroimage.2024.120651_bib0064) 2019; 14
Friston (10.1016/j.neuroimage.2024.120651_bib0022) 1994; 2
Tian (10.1016/j.neuroimage.2024.120651_bib0063) 2021; 229
Amunts (10.1016/j.neuroimage.2024.120651_bib0005) 2016; 92
Peng (10.1016/j.neuroimage.2024.120651_bib0051) 2023; 9
10.1016/j.neuroimage.2024.120651_bib0040
Weber (10.1016/j.neuroimage.2024.120651_bib0068) 2014; 27
Damoiseaux (10.1016/j.neuroimage.2024.120651_bib0017) 2006; 103
Hannum (10.1016/j.neuroimage.2024.120651_bib0028) 2023; 44
Power (10.1016/j.neuroimage.2024.120651_bib0054) 2011; 72
Van Essen (10.1016/j.neuroimage.2024.120651_bib0066) 2013; 80
Zhang (10.1016/j.neuroimage.2024.120651_bib0073) 2024; 438
Finn (10.1016/j.neuroimage.2024.120651_bib0021) 2017; 160
Yang (10.1016/j.neuroimage.2024.120651_bib0070) 2019; 19
Sohn (10.1016/j.neuroimage.2024.120651_bib0060) 2015; 28
Aharon (10.1016/j.neuroimage.2024.120651_bib0002) 2006; 54
Glasser (10.1016/j.neuroimage.2024.120651_bib0023) 2013; 80
Van Essen (10.1016/j.neuroimage.2024.120651_bib0065) 2012; 62
Waller (10.1016/j.neuroimage.2024.120651_bib0067) 2017; 158
Okano (10.1016/j.neuroimage.2024.120651_bib0049) 2015; 370
Jenkinson (10.1016/j.neuroimage.2024.120651_bib0032) 2012; 62
Kim (10.1016/j.neuroimage.2024.120651_bib0035) 2021; 241
10.1016/j.neuroimage.2024.120651_bib0016
Noble (10.1016/j.neuroimage.2024.120651_bib0048) 2017; 27
Cai (10.1016/j.neuroimage.2024.120651_bib0010) 2021; 42
Chen (10.1016/j.neuroimage.2024.120651_bib0012) 2018; 8
10.1016/j.neuroimage.2024.120651_bib0015
Salimi-Khorshidi (10.1016/j.neuroimage.2024.120651_bib0056) 2014; 90
Allen (10.1016/j.neuroimage.2024.120651_bib0003) 2014; 6
Kingma (10.1016/j.neuroimage.2024.120651_bib0036) 2014; 1050
Ji (10.1016/j.neuroimage.2024.120651_bib0033) 2019; 185
Hutchison (10.1016/j.neuroimage.2024.120651_bib0030) 2015; 35
Li (10.1016/j.neuroimage.2024.120651_bib0042) 2021; 42
Amico (10.1016/j.neuroimage.2024.120651_bib0004) 2018; 8
Zhang (10.1016/j.neuroimage.2024.120651_bib0072) 2023
Lori (10.1016/j.neuroimage.2024.120651_bib0044) 2018; 141
Biswal (10.1016/j.neuroimage.2024.120651_bib0008) 1995; 34
Smith (10.1016/j.neuroimage.2024.120651_bib0059) 2013; 80
Miller (10.1016/j.neuroimage.2024.120651_bib0047) 2016; 19
Mars (10.1016/j.neuroimage.2024.120651_bib0046) 2018; 22
Ren (10.1016/j.neuroimage.2024.120651_bib0055) 2022; 16
10.1016/j.neuroimage.2024.120651_bib0062
Greicius (10.1016/j.neuroimage.2024.120651_bib0026) 2003; 100
Anderson (10.1016/j.neuroimage.2024.120651_bib0006) 2011; 1
References_xml – volume: 40
  start-page: 4843
  year: 2019
  end-page: 4858
  ident: bib0009
  article-title: Refined measure of functional connectomes for improved identifiability and prediction
  publication-title: Hum. Brain Mapp.
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bib0026
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci.
– volume: 8
  start-page: 8254
  year: 2018
  ident: bib0004
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci. Rep.
– year: 2023
  ident: bib0072
  article-title: An overview of brain fingerprint identification based on various neuroimaging technologies
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 35
  start-page: 6849
  year: 2015
  end-page: 6859
  ident: bib0030
  article-title: Tracking the brain's functional coupling dynamics over development
  publication-title: J. Neurosci.
– volume: 158
  start-page: 371
  year: 2017
  end-page: 377
  ident: bib0067
  article-title: Evaluating the replicability, specificity, and generalizability of connectome fingerprints
  publication-title: Neuroimage
– volume: 98
  start-page: 439
  year: 2018
  end-page: 452
  ident: bib0025
  article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation
  publication-title: Neuron
– volume: 8
  start-page: 197
  year: 2018
  end-page: 204
  ident: bib0012
  article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network
  publication-title: Brain Connect
– volume: 2
  start-page: 56
  year: 1994
  end-page: 78
  ident: bib0022
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum. Brain Mapp.
– volume: 27
  start-page: 291
  year: 2014
  end-page: 301
  ident: bib0068
  article-title: A preliminary study on the effects of acute ethanol ingestion on default mode network and temporal fractal properties of the brain
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
– volume: 120
  year: 2023
  ident: bib0071
  article-title: Hydrogenerator early fault detection: sparse dictionary learning jointly with the variational autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– volume: 185
  start-page: 35
  year: 2019
  end-page: 57
  ident: bib0033
  article-title: Mapping the human brain's cortical-subcortical functional network organization
  publication-title: Neuroimage
– start-page: 3581
  year: 2014
  end-page: 3589
  ident: bib0037
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December
– volume: 42
  start-page: 3717
  year: 2021
  end-page: 3732
  ident: bib0042
  article-title: Feature selection framework for functional connectome fingerprinting
  publication-title: Hum. Brain Mapp.
– volume: 116
  start-page: 22851
  year: 2019
  end-page: 22861
  ident: bib0057
  article-title: Trait-like variants in human functional brain networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 92
  start-page: 591
  year: 2016
  end-page: 596
  ident: bib0053
  article-title: China brain project: basic neuroscience, brain diseases, and brain-inspired computing
  publication-title: Neuron
– volume: 28
  start-page: 2922
  year: 2018
  end-page: 2934
  ident: bib0050
  article-title: Spatiotemporal network markers of individual variability in the human functional connectome
  publication-title: Cereb. Cortex
– volume: 33
  start-page: 1003
  year: 2012
  end-page: 1018
  ident: bib0034
  article-title: Effects of morphine and alcohol on functional brain connectivity during “resting state”: a placebo-controlled crossover study in healthy young men
  publication-title: Hum. Brain Mapp.
– volume: 42
  start-page: 2691
  year: 2021
  end-page: 2705
  ident: bib0010
  article-title: Functional connectome fingerprinting: identifying individuals and predicting cognitive functions via autoencoder
  publication-title: Hum. Brain Mapp.
– volume: 9
  start-page: eabq8566
  year: 2023
  ident: bib0051
  article-title: Robust dynamic brain coactivation states estimated in individuals
  publication-title: Sci. Adv.
– volume: 141
  start-page: 539
  year: 2018
  end-page: 544
  ident: bib0044
  article-title: Deep learning based pipeline for fingerprinting using brain functional MRI connectivity data
  publication-title: Procedia Comput. Sci.
– volume: 16
  start-page: 1348
  year: 2013
  end-page: 1355
  ident: bib0013
  article-title: Multi-task connectivity reveals flexible hubs for adaptive task control
  publication-title: Nat. Neurosci.
– volume: 92
  start-page: 574
  year: 2016
  end-page: 581
  ident: bib0005
  article-title: The human brain project: creating a European research infrastructure to decode the human brain
  publication-title: Neuron
– reference: , 2017, 565: 2.
– volume: 241
  year: 2021
  ident: bib0035
  article-title: Representation learning of resting state fMRI with variational autoencoder
  publication-title: Neuroimage
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib0020
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 45
  start-page: e26561
  year: 2024
  ident: bib0041
  article-title: Discovering individual fingerprints in resting-state functional connectivity using deep neural networks
  publication-title: Hum. Brain Mapp.
– volume: 14
  start-page: 451
  year: 2019
  end-page: 461
  ident: bib0064
  article-title: Unsupervised pathology detection in medical images using conditional variational autoencoders
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 11
  start-page: 9890
  year: 2022
  end-page: 9906
  ident: bib0007
  article-title: Re-routing drugs to blood brain barrier: a comprehensive analysis of machine learning approaches with fingerprint amalgamation and data balancing
  publication-title: IEEE Access
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  ident: bib0047
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
– volume: 250
  year: 2022
  ident: bib0027
  article-title: Brain structure-function coupling provides signatures for task decoding and individual fingerprinting
  publication-title: Neuroimage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0066
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 438
  year: 2024
  ident: bib0073
  article-title: Conditional variational autoencoder with Gaussian process regression recognition for parametric models
  publication-title: J. Comput. Appl. Math.
– volume: 16
  year: 2022
  ident: bib0055
  article-title: Identifying individuals by fNIRS-based brain functional network fingerprints
  publication-title: Front. Neurosci.
– volume: 1
  start-page: 147
  year: 2011
  end-page: 157
  ident: bib0006
  article-title: Connectivity gradients between the default mode and attention control networks
  publication-title: Brain Connect
– volume: 22
  start-page: 1026
  year: 2018
  end-page: 1037
  ident: bib0046
  article-title: Connectivity fingerprints: from areal descriptions to abstract spaces
  publication-title: Trends Cogn. Sci.
– volume: 19
  start-page: 2528
  year: 2019
  ident: bib0070
  article-title: Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network
  publication-title: Sensors
– volume: 6
  start-page: 224ed4
  year: 2014
  ident: bib0003
  article-title: UK biobank data: come and get it
  publication-title: Sci. Transl. Med.
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib0065
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0024
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib0008
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
– volume: 44
  start-page: 5294
  year: 2023
  end-page: 5308
  ident: bib0028
  article-title: High-accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding
  publication-title: Hum. Brain Mapp.
– reference: , 2014.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0023
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: bib0054
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– reference: Stampacchia S., Asadi S., Tomczyk S., et al. Fingerprints of brain disease: connectome identifiability in cognitive decline and Alzheimer's disease. bioRxiv, 2022: 2022.02. 04.479112.
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0032
  article-title: Fsl
  publication-title: Neuroimage
– reference: Da K. A method for stochastic optimization. arXiv preprint
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0029
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 27
  start-page: 5415
  year: 2017
  end-page: 5429
  ident: bib0048
  article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cereb. Cortex
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: bib0059
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
– volume: 1050
  start-page: 1
  year: 2014
  ident: bib0036
  article-title: Auto-Encoding Variational Bayes[J]
  publication-title: Statistics
– volume: 5
  start-page: 261
  year: 2022
  ident: bib0045
  article-title: Brain connectivity fingerprinting and behavioural prediction rest on distinct functional systems of the human connectome
  publication-title: Commun. Biol.
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  ident: bib0017
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci.
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: bib0002
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– start-page: 83
  year: 2019
  end-page: 94
  ident: bib0058
  article-title: A machine learning framework for accurate functional connectome fingerprinting and an application of a siamese network
  publication-title: International Workshop on Connectomics in Neuroimaging
– reference: Krizhevsky A., Hinton G. Convolutional deep belief networks on cifar-10. Unpublished manuscript, 2010, 40(7): 1–9.
– volume: 160
  start-page: 140
  year: 2017
  end-page: 151
  ident: bib0021
  article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity?
  publication-title: Neuroimage
– volume: 221
  year: 2020
  ident: bib0001
  article-title: GEFF: graph embedding for functional fingerprinting
  publication-title: Neuroimage
– volume: 28
  start-page: 3483
  year: 2015
  end-page: 3491
  ident: bib0060
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 23
  year: 2020
  ident: bib0018
  article-title: Functional connectivity fingerprints at rest are similar across youths and adults and vary with genetic similarity
  publication-title: iScience
– reference: Wu-Minn H.C.P. 1200 subjects data release reference manual. URL
– volume: 18
  start-page: 115
  year: 2017
  end-page: 126
  ident: bib0052
  article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research
  publication-title: Nat. Rev. Neurosc.
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib0056
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 229
  year: 2021
  ident: bib0063
  article-title: High-resolution connectomic fingerprints: mapping neural identity and behavior
  publication-title: Neuroimage
– reference: Da Silva Castanheira J., Wiesman A.I., Hansen J.Y., et al. The neurophysiological brain-fingerprint of Parkinson's disease. medRxiv, 2023.
– volume: 6
  start-page: 295
  year: 2020
  end-page: 302
  ident: bib0031
  article-title: Multimodal deep generative models for trajectory prediction: a conditional variational autoencoder approach
  publication-title: IEEE Robot. Autom. Lett.
– volume: 370
  year: 2015
  ident: bib0049
  article-title: Brain/MINDS: brain-mapping project in Japan
  publication-title: Philos. Trans. R. Soc. B
– volume: 33
  start-page: 5025
  year: 2023
  end-page: 5041
  ident: bib0014
  article-title: Functional connectome stability and optimality are markers of cognitive performance
  publication-title: Cereb. Cortex
– volume: 241
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120651_bib0035
  article-title: Representation learning of resting state fMRI with variational autoencoder
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118423
– volume: 9
  start-page: eabq8566
  issue: 3
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120651_bib0051
  article-title: Robust dynamic brain coactivation states estimated in individuals
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abq8566
– volume: 27
  start-page: 291
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120651_bib0068
  article-title: A preliminary study on the effects of acute ethanol ingestion on default mode network and temporal fractal properties of the brain
  publication-title: Magn. Reson. Mater. Phys., Biol. Med.
  doi: 10.1007/s10334-013-0420-5
– volume: 33
  start-page: 5025
  issue: 8
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120651_bib0014
  article-title: Functional connectome stability and optimality are markers of cognitive performance
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhac396
– volume: 1
  start-page: 147
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120651_bib0006
  article-title: Connectivity gradients between the default mode and attention control networks
  publication-title: Brain Connect
  doi: 10.1089/brain.2011.0007
– volume: 160
  start-page: 140
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120651_bib0021
  article-title: Can brain state be manipulated to emphasize individual differences in functional connectivity?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.064
– ident: 10.1016/j.neuroimage.2024.120651_bib0062
  doi: 10.1101/2022.02.04.479112
– volume: 158
  start-page: 371
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120651_bib0067
  article-title: Evaluating the replicability, specificity, and generalizability of connectome fingerprints
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.016
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  ident: 10.1016/j.neuroimage.2024.120651_bib0017
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0601417103
– ident: 10.1016/j.neuroimage.2024.120651_bib0015
– volume: 22
  start-page: 1026
  issue: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120651_bib0046
  article-title: Connectivity fingerprints: from areal descriptions to abstract spaces
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2018.08.009
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 10.1016/j.neuroimage.2024.120651_bib0008
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340409
– volume: 6
  start-page: 224ed4
  issue: 224
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120651_bib0003
  article-title: UK biobank data: come and get it
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3008601
– volume: 35
  start-page: 6849
  issue: 17
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120651_bib0030
  article-title: Tracking the brain's functional coupling dynamics over development
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4638-14.2015
– volume: 18
  start-page: 115
  issue: 2
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120651_bib0052
  article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research
  publication-title: Nat. Rev. Neurosc.
  doi: 10.1038/nrn.2016.167
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.neuroimage.2024.120651_bib0029
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 16
  start-page: 1348
  issue: 9
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120651_bib0013
  article-title: Multi-task connectivity reveals flexible hubs for adaptive task control
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3470
– volume: 72
  start-page: 665
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120651_bib0054
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 120
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120651_bib0071
  article-title: Hydrogenerator early fault detection: sparse dictionary learning jointly with the variational autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105859
– ident: 10.1016/j.neuroimage.2024.120651_bib0040
– volume: 6
  start-page: 295
  issue: 2
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120651_bib0031
  article-title: Multimodal deep generative models for trajectory prediction: a conditional variational autoencoder approach
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3043163
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 10.1016/j.neuroimage.2024.120651_bib0002
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– start-page: 83
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120651_bib0058
  article-title: A machine learning framework for accurate functional connectome fingerprinting and an application of a siamese network
– volume: 92
  start-page: 574
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120651_bib0005
  article-title: The human brain project: creating a European research infrastructure to decode the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.046
– year: 2023
  ident: 10.1016/j.neuroimage.2024.120651_bib0072
  article-title: An overview of brain fingerprint identification based on various neuroimaging technologies
– volume: 11
  start-page: 9890
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120651_bib0007
  article-title: Re-routing drugs to blood brain barrier: a comprehensive analysis of machine learning approaches with fingerprint amalgamation and data balancing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3233110
– volume: 92
  start-page: 591
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120651_bib0053
  article-title: China brain project: basic neuroscience, brain diseases, and brain-inspired computing
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.050
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120651_bib0023
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– start-page: 3581
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120651_bib0037
  article-title: Semi-supervised learning with deep generative models
– volume: 438
  year: 2024
  ident: 10.1016/j.neuroimage.2024.120651_bib0073
  article-title: Conditional variational autoencoder with Gaussian process regression recognition for parametric models
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2023.115532
– volume: 19
  start-page: 2528
  issue: 11
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120651_bib0070
  article-title: Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network
  publication-title: Sensors
  doi: 10.3390/s19112528
– volume: 80
  start-page: 144
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120651_bib0059
  article-title: Resting-state fMRI in the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 19
  start-page: 1523
  issue: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120651_bib0047
  article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4393
– volume: 250
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120651_bib0027
  article-title: Brain structure-function coupling provides signatures for task decoding and individual fingerprinting
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.118970
– volume: 42
  start-page: 3717
  issue: 12
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120651_bib0042
  article-title: Feature selection framework for functional connectome fingerprinting
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25379
– volume: 8
  start-page: 8254
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120651_bib0004
  article-title: The quest for identifiability in human functional connectomes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25089-1
– volume: 28
  start-page: 3483
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120651_bib0060
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 98
  start-page: 439
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120651_bib0025
  article-title: Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.03.035
– volume: 42
  start-page: 2691
  issue: 9
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120651_bib0010
  article-title: Functional connectome fingerprinting: identifying individuals and predicting cognitive functions via autoencoder
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25394
– volume: 1050
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120651_bib0036
  article-title: Auto-Encoding Variational Bayes[J]
  publication-title: Statistics
– volume: 28
  start-page: 2922
  issue: 8
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120651_bib0050
  article-title: Spatiotemporal network markers of individual variability in the human functional connectome
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx170
– volume: 229
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120651_bib0063
  article-title: High-resolution connectomic fingerprints: mapping neural identity and behavior
  publication-title: Neuroimage
– volume: 27
  start-page: 5415
  issue: 11
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120651_bib0048
  article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx230
– ident: 10.1016/j.neuroimage.2024.120651_bib0016
  doi: 10.1101/2023.02.03.23285441
– volume: 8
  start-page: 197
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120651_bib0012
  article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network
  publication-title: Brain Connect
  doi: 10.1089/brain.2017.0561
– ident: 10.1016/j.neuroimage.2024.120651_bib0069
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120651_bib0066
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 44
  start-page: 5294
  issue: 16
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120651_bib0028
  article-title: High-accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26423
– volume: 185
  start-page: 35
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120651_bib0033
  article-title: Mapping the human brain's cortical-subcortical functional network organization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.006
– volume: 16
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120651_bib0055
  article-title: Identifying individuals by fNIRS-based brain functional network fingerprints
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.813293
– volume: 40
  start-page: 4843
  issue: 16
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120651_bib0009
  article-title: Refined measure of functional connectomes for improved identifiability and prediction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24741
– volume: 2
  start-page: 56
  issue: 1–2
  year: 1994
  ident: 10.1016/j.neuroimage.2024.120651_bib0022
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020107
– volume: 116
  start-page: 22851
  issue: 45
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120651_bib0057
  article-title: Trait-like variants in human functional brain networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1902932116
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120651_bib0020
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2024.120651_bib0032
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 14
  start-page: 451
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120651_bib0064
  article-title: Unsupervised pathology detection in medical images using conditional variational autoencoders
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1898-0
– volume: 100
  start-page: 253
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2024.120651_bib0026
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0135058100
– volume: 5
  start-page: 261
  issue: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120651_bib0045
  article-title: Brain connectivity fingerprinting and behavioural prediction rest on distinct functional systems of the human connectome
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-022-03185-3
– volume: 33
  start-page: 1003
  issue: 5
  year: 2012
  ident: 10.1016/j.neuroimage.2024.120651_bib0034
  article-title: Effects of morphine and alcohol on functional brain connectivity during “resting state”: a placebo-controlled crossover study in healthy young men
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21265
– volume: 370
  issue: 1668
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120651_bib0049
  article-title: Brain/MINDS: brain-mapping project in Japan
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2014.0310
– volume: 23
  issue: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120651_bib0018
  article-title: Functional connectivity fingerprints at rest are similar across youths and adults and vary with genetic similarity
  publication-title: iScience
  doi: 10.1016/j.isci.2019.100801
– volume: 141
  start-page: 539
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120651_bib0044
  article-title: Deep learning based pipeline for fingerprinting using brain functional MRI connectivity data
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.10.129
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2024.120651_bib0065
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120651_bib0056
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 221
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120651_bib0001
  article-title: GEFF: graph embedding for functional fingerprinting
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117181
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120651_bib0024
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 45
  start-page: e26561
  issue: 1
  year: 2024
  ident: 10.1016/j.neuroimage.2024.120651_bib0041
  article-title: Discovering individual fingerprints in resting-state functional connectivity using deep neural networks
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26561
SSID ssj0009148
Score 2.4837744
Snippet •High inter-subject variability for brain fingerprinting and cognitive behavior predicting.•Conditional deep generative network for extracting shared...
The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120651
SubjectTerms Accuracy
Adult
Biomarkers
Brain
Brain - diagnostic imaging
Brain - physiology
Cognition & reasoning
Cognition - physiology
Cognitive behavior predicting
Conditional variational autoencoder network
Connectome - methods
Datasets
Embedding
Female
Fingerprint
Fingerprinting
Functional connectivity
Functional magnetic resonance imaging
Humans
Individual identification
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Nerve Net - diagnostic imaging
Nerve Net - physiology
Neural networks
Neuroimaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqhBCXipZHt0DlSr2mTdaOH-JUEKiXoh5aiZtlxzbaqmTRbhap_54ZOwlwQOyBSw6xJ7I8M55vJuMZQr4AZo86alfAaFNwF0WhXAWKpzyfRqWsZjY1m5CXl-rqSv961OoLc8JyeeC8cd9cHS0IGeDqELkNDGhl6Vmyk7H06ZovoJ7BmRrK7QLK7_N2cjZXqg45uwEdBZ9wyr9WU7C91RNjlGr2P7FJz2HOZHsudsjbHjTS73mx78ib0L4nWz_73-K7pDvFRg80phAdRuowl5na1tMxO4gO9_Hp7QLp0gxMer-maNpyRBCmw7HbdPObQOeRYiljivUkFsVy5TBgQ-_Atc6Vvf_vkT8X57_PfhR9O4WiAUzW4VMKG3m0PjS8js5aXfkgnOJOxChqC3ChVFrWMsq6ZoEzC95Io60QmkvJ9slGO2_DB0LB7lmw694J7wBPcR301Hnu66CEsqKcEDnsq2n6WuPY8uKfGZLK_poHjhjkiMkcmZBqpLzN9TbWoDlF1o3zsWJ2egFyZHo5Mi_J0YTogfFmuJQKxyh8aLbGAk5G2h64ZECyJvXRIGemP0CWhiEUBGdXwvDncRhUH__n2DbMV2lOyST6gBNykOVz3AOmpFKgBR9fY28OyTauF0PaVX1ENrrFKhyTzeaumy0Xn5Lm3QOggTYd
  priority: 102
  providerName: Directory of Open Access Journals
Title Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924001460
https://dx.doi.org/10.1016/j.neuroimage.2024.120651
https://www.ncbi.nlm.nih.gov/pubmed/38788914
https://www.proquest.com/docview/3066314471
https://www.proquest.com/docview/3060373056
https://doaj.org/article/b5fa488487ef4ae393a70d363554f0d8
Volume 295
WOSCitedRecordID wos001247179900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhtBe-IYVRmUkXgNN7MS2eEAUbeKlVYVA6ltkx_bUiSUlbSfx33PnOKn2AKrEix8SX5TE9_G78_mOkHeA2b3yyiRwt0q48UUiTQqCJy3PvJRaMR2aTYj5XC6XahEDbpuYVtnrxKCobVNhjPwDQ9sI6F-kn9a_EuwahbursYXGETnBKgkspO4t9kV3U94dhctZItNUxUyeLr8r1Itc3YDUgpeY8fdpBtY4vWOeQhX_O1bqbyg0WKPLR__7HY_Jw4hD6eeOcZ6Qe65-Sh7M4k77M7KdYu8I6kPUD4N_mB5NdW3pkHBE-yP-dN0iXZiBefRXFK1lF2SE6aDJq21z42jjKVZHpliiok02O4MxIHoL3npXLPz3c_Lj8uL7l69J7NCQVADztjiKQnvutXUVz73RWqXWFUZyU3hf5BoQyEQqkQsv8pw5zjQ4OJXSRaG4EOwFOa6b2p0RCqZUA1SwprAGIBpXTmXGcps7WUhdTEZE9AtTVrF8OXbR-Fn2eWrX5X5JS1zSslvSEUkHynVXwuMAmimu_TAfi3CHC017VUaZLk3uNeg_cPmc59oxYGsxsSxAOD-xckRUzzllf84VNDM8aHXAC3wcaCMW6jDOgdTnPfOVUSdtyj3njcjb4TZoE9wi0rVrdmHOhAl0K0fkZcfgwz9gUkgJIvXq3w9_TU7xTTD-nebn5Hjb7twbcr-63a427ZgciaUIoxyTk-nFfPFtHOIgMM6y2TgI8B9KIEtu
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF9yNQwEhwDGwSJ7aFEKJA1ardFYci9ebasV0topslmy3qn-I3MuM8Vj2A9tIDlz1sPFY2-83MN5PxDCGvgLN76aWJ4WoZM-OLWJgEFE9YlnohtMx0GDbBJxNxdCS_bpDf_VkYLKvsbWIw1LYqMUf-NkPfCOyfJx_mP2OcGoVvV_sRGi0s9t35LwjZFu_3PsP_-zpNd74cftqNu6kCcQnUpMFPXmjPvLauZLk3WsvEusIIZgrvi1yD1xwJyXPueZ5njmUaSHkpdVFIxnkG-14hVxlEQjgqYpyOV01-E9YevcuzWCSJ7CqH2nqy0J9yegpWAqLSlL1JUvD-yQV3GKYGXPCKf2O9wfvt3P7fntsdcqvj2fRjqxh3yYab3SPXx10lwX3SbONsDOpDVhOTm1j-TfXM0qGgivYtDOi8RrmwAs8JnFBkA20SFZaDpyqb6tTRylPs_kyxBUcdL5YGc1z0TIOOhxLk8wfk26X85odkc1bN3GNCgSpooELWFNYABWXSydRYZnMnCqGLUUR4DwRVdu3ZcUrID9XX4X1XKwgphJBqIRSRZJCcty1K1pDZRqwN67HJePiiqk9UZ7OUyb0G-w4hrfNMuwzUlo9sFiiqH1kREdkjVfXneMHzwEbTNW7g3SDbcb2Ww60pvdWDXXU2d6FWSI_Iy-EyWEt8BaZnrlqGNaOMY9gckUetQg3PIBNcCFDhJ__e_AW5sXs4PlAHe5P9p-Qm3hXm-pN8i2w29dI9I9fKs2a6qJ8H40DJ8WVr1R9ViKNL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQRUX3o-FAkaCY2geTmwLIUQpK6rCag8g9Wbs2K4W0c2SzRb1r_HrmHEeqx5Ae-mBSw6Jx8pm5_F5_HmGkBeA2b300kTwtIyY8UUkTAKGJyxLvRBaZjo0m-CTiTg-ltMt8rs_C4O0yt4nBkdtqxJz5HsZxkZA_zzZ8x0tYnowfrv4GWEHKdxp7dtptCpy5M5_wfJt-ebwAP7rl2k6_vDl_ceo6zAQlQBTGrzyQnvmtXUly73RWibWFUYwU3hf5BoiaCwkz7nneZ45lmkA6KXURSEZ5xnMe4Vc5Vi0PNAGp-uCvwlrj-HlWSSSRHYsopZbFmpVzk7BY8AKNWWvkhSQQHIhNIYOAhci5N8QcIiE45v_8ze8RW50-Ju-aw3mNtly8ztk53PHMLhLmn3smUF9yHZi0hNp4VTPLR2IVrQvbUAXNcqFEXh-4IQiSmiTqzAcIljZVKeOVp5iVWiKpTnqaLkymPuiZxpsP1CTz--Rr5fym--T7Xk1dw8JBQihASJZU1gD0JRJJ1Njmc2dKIQu4hHhvVKosivbjt1Dfqien_ddrdVJoTqpVp1GJBkkF23pkg1k9lHvhvFYfDzcqOoT1fkyZXKvwe_DUtd5pl0G5sxjmwXo6mMrRkT2Wqv6870QkWCi2QYv8HqQ7TBgi-02lN7tFV91vnip1lo_Is-Hx-BFcWtMz121CmPijONyekQetMY1fINMcCHAnB_9e_JnZAeMSX06nBw9JtfxpXALIMl3yXZTr9wTcq08a2bL-mnwE5R8u2yj-gOCUKwc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+fingerprinting+and+cognitive+behavior+predicting+using+functional+connectome+of+high+inter-subject+variability&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Lu%2C+Jiayu&rft.au=Yan%2C+Tianyi&rft.au=Yang%2C+Lan&rft.au=Zhang%2C+Xi&rft.date=2024-07-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=295&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120651&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon