Image Preprocessing in Classification and Identification of Diabetic Eye Diseases
Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in earl...
Saved in:
| Published in: | Data Science and Engineering Vol. 6; no. 4; pp. 455 - 471 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Singapore
01.12.2021
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 2364-1185, 2364-1541, 2364-1541 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model’s development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity. |
|---|---|
| AbstractList | Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model's development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model's development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity. Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model’s development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity. |
| Audience | Academic |
| Author | Ahmed, Khandakar Ma, Jiangang Wang, Kate Wang, Hua Sarki, Rubina Zhang, Yanchun |
| Author_xml | – sequence: 1 givenname: Rubina surname: Sarki fullname: Sarki, Rubina organization: Victoria University – sequence: 2 givenname: Khandakar surname: Ahmed fullname: Ahmed, Khandakar organization: Victoria University – sequence: 3 givenname: Hua surname: Wang fullname: Wang, Hua organization: Victoria University – sequence: 4 givenname: Yanchun surname: Zhang fullname: Zhang, Yanchun organization: Victoria University – sequence: 5 givenname: Jiangang orcidid: 0000-0002-8449-7610 surname: Ma fullname: Ma, Jiangang email: j.ma@federation.edu.au organization: Federation University – sequence: 6 givenname: Kate surname: Wang fullname: Wang, Kate organization: RMIT University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34423109$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1UREvpH-CAInGBQ4odfyUXpGopsFIlvs-W44yDq8Te2gmi_fV4u12WrVDlg-3x8762Z-YpOvDBA0LPCT4lGMs3iRFMmhJXpMSYCFnePEJHFRWsJJyRg-2a1PwQnaR0iXFGSc2YeIIOKWMVJbg5Ql-Wo-6h-BxhFYOBlJzvC-eLxaDz2jqjJxd8oX1XLDvw0y4UbPHO6RYmZ4rza8ibBDpBeoYeWz0kOLmbj9GP9-ffFx_Li08flouzi9JwyafSEMJpU1tsmWmoxgwYbiWVnag703JN2kYzjYmhFPNOgGibttLMUit5Yxmlx-jtxnc1tyN0Jj8u6kGtoht1vFZBO7V_4t1P1YdfqqYSC8Gzwas7gxiuZkiTGl0yMAzaQ5iTqrigkpCmWqMv76GXYY4-fy9TtRBScCJ3VK8HUM7bkO81a1N1JmrMZJNLlqnT_1B5dDA6k4tsXY7vCV7vCTIzwe-p13NKavnt6z774t-k_M3GtuAZqDeAiSGlCFYZN90WNL_CDYpgtW4vtWkvlXtG3baXusnS6p506_6giG5EKcO-h7jL3AOqP6yX35k |
| CitedBy_id | crossref_primary_10_1007_s42979_023_02178_1 crossref_primary_10_3390_sym17071046 crossref_primary_10_1007_s00778_023_00807_y crossref_primary_10_3390_min12101286 crossref_primary_10_1007_s13755_023_00221_2 crossref_primary_10_1016_j_procs_2023_11_100 crossref_primary_10_4018_IJeC_387649 crossref_primary_10_1007_s11042_022_14165_4 crossref_primary_10_3389_fpls_2023_1079366 crossref_primary_10_3390_bioengineering10010025 crossref_primary_10_1038_s41598_025_09889_w crossref_primary_10_3390_electronics11172740 crossref_primary_10_1007_s11831_025_10335_3 crossref_primary_10_1016_j_eswa_2023_122209 crossref_primary_10_1038_s41598_025_99849_1 crossref_primary_10_1088_2057_1976_ad7267 crossref_primary_10_1002_ima_70112 crossref_primary_10_3390_app122110760 crossref_primary_10_1002_cem_3593 crossref_primary_10_1007_s13755_022_00180_0 crossref_primary_10_1007_s10278_024_01219_2 crossref_primary_10_1063_5_0264083 crossref_primary_10_1515_bmt_2024_0299 crossref_primary_10_33889_IJMEMS_2022_7_5_041 crossref_primary_10_1016_j_eswa_2025_128910 crossref_primary_10_3233_JIFS_221112 crossref_primary_10_1007_s11517_024_03105_z crossref_primary_10_1016_j_health_2023_100174 crossref_primary_10_4108_eetpht_10_5183 crossref_primary_10_3390_app13053108 crossref_primary_10_3233_HIS_220004 crossref_primary_10_3390_diagnostics15050624 crossref_primary_10_3390_info15050243 crossref_primary_10_1016_j_bspc_2023_104883 crossref_primary_10_1109_ACCESS_2023_3339574 crossref_primary_10_1007_s13755_022_00176_w crossref_primary_10_1007_s44163_022_00035_3 crossref_primary_10_1016_j_imu_2025_101655 crossref_primary_10_7717_peerj_cs_2135 crossref_primary_10_1109_TAI_2023_3336612 crossref_primary_10_1016_j_procs_2024_10_319 crossref_primary_10_1007_s10792_024_03377_2 crossref_primary_10_1007_s13755_022_00208_5 |
| Cites_doi | 10.1016/j.compbiomed.2013.10.007 10.1007/s13755-020-00125-5 10.1007/11892960_117 10.1046/j.1464-5491.2000.00250.x 10.1016/j.ipm.2009.03.002 10.1007/s11280-018-0639-1 10.1243/09544119JEIM486 10.1016/j.media.2017.07.005 10.1109/42.34715 10.1038/nature14236 10.1007/s13755-020-00129-1 10.1109/TKDE.2009.191 10.1016/j.ophtha.2017.02.008 10.1136/bjo.80.11.940 10.1136/bjo.87.10.1220 10.1016/j.procs.2016.07.014 10.1007/s11280-017-0456-y 10.1007/s11280-017-0449-x 10.1016/j.eswa.2020.113305 10.1145/3173044 10.1109/ACCESS.2020.3015258 10.1586/erd.09.76 10.1038/nature16961 10.1016/j.knosys.2019.03.016 10.1007/s13755-019-0084-2 10.1007/s11280-019-00776-9 10.1007/s41019-020-00133-1 10.1001/jama.2016.17216 10.1002/9780470689776 10.1016/B978-0-12-336156-1.50061-6 10.1007/s10115-018-1314-7 10.1109/TENCON.2006.343793 10.1007/b106267 10.1016/j.cviu.2016.12.005 10.1109/CVPR.2017.195 10.1007/s11042-019-7460-4 10.1109/ICIP.2017.8296985 10.1002/9780470590416 10.1109/ISBI.2014.6867807 10.1109/CVPR.2017.243 10.1007/978-3-030-62008-0_18 10.1109/ACSSC.2004.1399432 10.1002/0470028858 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. COPYRIGHT 2021 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM ISR 7SC 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
| DOI | 10.1007/s41019-021-00167-z |
| DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed Gale In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Computer Science |
| EISSN | 2364-1541 |
| EndPage | 471 |
| ExternalDocumentID | PMC8370665 A680479101 34423109 10_1007_s41019_021_00167_z |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX ABJCF AFFHD ARAPS BGLVJ CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS NPM ADMLS ARCSS 7SC 8FD 8FE 8FG ABUWG AZQEC COVID DWQXO FR3 GNUQQ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c575t-c115398f0f4c93a04e40b737d68dcb5a1b9a4a01c3305d6e6b9b2a4f3f759f433 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685817800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2364-1185 2364-1541 |
| IngestDate | Tue Nov 04 02:00:01 EST 2025 Wed Oct 01 13:40:20 EDT 2025 Wed Oct 08 14:21:16 EDT 2025 Tue Feb 18 23:13:14 EST 2025 Wed Feb 12 06:58:24 EST 2025 Fri Feb 14 03:32:43 EST 2025 Thu Apr 03 07:01:58 EDT 2025 Sat Nov 29 06:46:06 EST 2025 Tue Nov 18 21:25:27 EST 2025 Fri Feb 21 02:47:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Image processing Convolution neural network Diabetic eye disease |
| Language | English |
| License | The Author(s) 2021. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-c115398f0f4c93a04e40b737d68dcb5a1b9a4a01c3305d6e6b9b2a4f3f759f433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8449-7610 |
| OpenAccessLink | https://www.proquest.com/docview/2586676517?pq-origsite=%requestingapplication% |
| PMID | 34423109 |
| PQID | 2586676517 |
| PQPubID | 4402891 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8370665 proquest_miscellaneous_2563711925 proquest_journals_2586676517 gale_infotracmisc_A680479101 gale_infotracacademiconefile_A680479101 gale_incontextgauss_ISR_A680479101 pubmed_primary_34423109 crossref_citationtrail_10_1007_s41019_021_00167_z crossref_primary_10_1007_s41019_021_00167_z springer_journals_10_1007_s41019_021_00167_z |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Germany – name: Berlin |
| PublicationTitle | Data Science and Engineering |
| PublicationTitleAbbrev | Data Sci. Eng |
| PublicationTitleAlternate | Data Sci Eng |
| PublicationYear | 2021 |
| Publisher | Springer Singapore Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer – name: Springer Nature B.V |
| References | Karegowda, Nasiha, Jayaram, Manjunath (CR24) 2011; 25 Mookiah, Acharya, Chua, Lim, Ng, Laude (CR31) 2013; 43 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (CR29) 2017; 42 He, Rong, Sun, Wang, Zhang, Ma (CR18) 2020; 23 CR35 CR32 Association (CR3) 1997 Kaur, Kaur (CR25) 2015; 5 Abramoff, Niemeijer, Russell (CR1) 2010; 7 Gardner, Keating, Williamson, Elliott (CR14) 1996; 80 Du, Zheng, He, Rong, Wang, Zhang (CR12) 2020; 5 Li, Wang, Wang, Zhou (CR28) 2017; 20 CR6 CR5 Du, Michalska, Subramani, Wang, Zhang (CR11) 2019; 7 CR7 CR9 Hu, Li, Wang, Daggard (CR19) 2006 CR49 CR47 CR46 CR44 CR43 Gargeya, Leng (CR15) 2017; 124 CR41 Osareh, Mirmehdi, Thomas, Markham (CR33) 2003; 87 Pratt, Coenen, Broadbent, Harding, Zheng (CR38) 2016; 90 Pan, Yang (CR34) 2009; 22 Zhang, Zhong, Yang, Gao, Hu, Chen, Yi (CR55) 2019; 175 Peng, Zeng, Sun, Huang, Wang, Tian (CR36) 2018; 21 Jiang, Zhou, Zhang, Wang, Zhang (CR22) 2019; 22 Supriya, Siuly, Wang, Zhang (CR48) 2020; 8 Sarki, Ahmed, Wang, Zhang (CR40) 2020; 8 CR13 CR56 CR10 CR54 CR53 CR52 CR51 Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (CR42) 2016; 529 CR50 Sokolova, Lapalme (CR45) 2009; 45 Hutchinson, McIntosh, Peters, Okeeffe, Khunti, Baker, Booth (CR21) 2000; 17 Peng, Zhu, Wang, Li, Zhang, Zhang, Tian (CR37) 2018; 12 Gharaibeh (CR16) 2017; 10 Bargshady, Zhou, Deo, Soar, Whittaker, Wang (CR4) 2020; 149 Acharya, Lim, Ng, Chee, Tamura (CR2) 2009; 223 Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros (CR17) 2016; 316 Lam, Yi, Guo, Lindsey (CR27) 2018; 2018 CR26 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (CR30) 2015; 518 CR23 CR20 Sarki, Ahmed, Wang, Zhang (CR39) 2020; 8 Chaudhuri, Chatterjee, Katz, Nelson, Goldbaum (CR8) 1989; 8 167_CR23 167_CR20 H Jiang (167_CR22) 2019; 22 M Peng (167_CR37) 2018; 12 S Chaudhuri (167_CR8) 1989; 8 G Bargshady (167_CR4) 2020; 149 R Sarki (167_CR39) 2020; 8 S Supriya (167_CR48) 2020; 8 C Lam (167_CR27) 2018; 2018 V Mnih (167_CR30) 2015; 518 J He (167_CR18) 2020; 23 A Hutchinson (167_CR21) 2000; 17 A Osareh (167_CR33) 2003; 87 MD Abramoff (167_CR1) 2010; 7 167_CR35 GG Gardner (167_CR14) 1996; 80 167_CR32 UR Acharya (167_CR2) 2009; 223 M Kaur (167_CR25) 2015; 5 H Pratt (167_CR38) 2016; 90 M Peng (167_CR36) 2018; 21 167_CR26 167_CR47 167_CR46 167_CR44 167_CR43 167_CR41 SJ Pan (167_CR34) 2009; 22 D Silver (167_CR42) 2016; 529 J Du (167_CR12) 2020; 5 J Du (167_CR11) 2019; 7 NY Gharaibeh (167_CR16) 2017; 10 V Gulshan (167_CR17) 2016; 316 R Gargeya (167_CR15) 2017; 124 MRK Mookiah (167_CR31) 2013; 43 M Sokolova (167_CR45) 2009; 45 H Hu (167_CR19) 2006 W Zhang (167_CR55) 2019; 175 167_CR13 167_CR56 167_CR10 167_CR54 167_CR53 167_CR52 167_CR51 167_CR50 167_CR6 BD Association (167_CR3) 1997 167_CR7 R Sarki (167_CR40) 2020; 8 167_CR5 AG Karegowda (167_CR24) 2011; 25 167_CR9 H Li (167_CR28) 2017; 20 G Litjens (167_CR29) 2017; 42 167_CR49 |
| References_xml | – volume: 43 start-page: 2136 issue: 12 year: 2013 end-page: 2155 ident: CR31 article-title: Computer-aided diagnosis of diabetic retinopathy: a review publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2013.10.007 – ident: CR49 – volume: 25 start-page: 25 issue: 3 year: 2011 end-page: 31 ident: CR24 article-title: Exudates detection in retinal images using back propagation neural network publication-title: Int J Comput Appl – ident: CR51 – volume: 8 start-page: 1 issue: 1 year: 2020 end-page: 9 ident: CR39 article-title: Automated detection of mild and multi-class diabetic eye diseases using deep learning publication-title: Health Inf Sci Syst doi: 10.1007/s13755-020-00125-5 – start-page: 976 year: 2006 end-page: 983 ident: CR19 article-title: Combined gene selection methods for microarray data analysis publication-title: Knowledge-based intelligent information and engineering systems doi: 10.1007/11892960_117 – volume: 17 start-page: 495 issue: 7 year: 2000 end-page: 506 ident: CR21 article-title: Effectiveness of screening and monitoring tests for diabetic retinopathy—a systematic review publication-title: Diabet Med doi: 10.1046/j.1464-5491.2000.00250.x – ident: CR35 – ident: CR54 – volume: 45 start-page: 427 issue: 4 year: 2009 end-page: 437 ident: CR45 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf Process Manag doi: 10.1016/j.ipm.2009.03.002 – volume: 5 start-page: 411 issue: 6 year: 2015 end-page: 417 ident: CR25 article-title: A hybrid approach for automatic exudates detection in eye fundus image publication-title: Int J – ident: CR46 – volume: 22 start-page: 2545 year: 2019 end-page: 2560 ident: CR22 article-title: Sentence level topic models for associated topics extraction publication-title: World Wide Web doi: 10.1007/s11280-018-0639-1 – volume: 223 start-page: 545 issue: 5 year: 2009 end-page: 553 ident: CR2 article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images publication-title: Proc Inst Mech Eng Part H J Eng Med doi: 10.1243/09544119JEIM486 – ident: CR50 – ident: CR9 – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: CR29 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – ident: CR32 – volume: 8 start-page: 263 issue: 3 year: 1989 end-page: 269 ident: CR8 article-title: Detection of blood vessels in retinal images using two-dimensional matched filters publication-title: IEEE Trans Med Imaging doi: 10.1109/42.34715 – ident: CR5 – volume: 518 start-page: 529 issue: 7540 year: 2015 end-page: 533 ident: CR30 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 8 start-page: 1 issue: 1 year: 2020 end-page: 15 ident: CR48 article-title: Automated epilepsy detection techniques from electroencephalogram signals: a review study publication-title: Health Inf Sci Syst doi: 10.1007/s13755-020-00129-1 – ident: CR26 – volume: 22 start-page: 1345 issue: 10 year: 2009 end-page: 1359 ident: CR34 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – year: 1997 ident: CR3 publication-title: Retinal photography screening for diabetic eye disease – volume: 124 start-page: 962 issue: 7 year: 2017 end-page: 969 ident: CR15 article-title: Automated identification of diabetic retinopathy using deep learning publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.02.008 – volume: 80 start-page: 940 issue: 11 year: 1996 end-page: 944 ident: CR14 article-title: Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool publication-title: Br J Ophthalmol doi: 10.1136/bjo.80.11.940 – volume: 87 start-page: 1220 issue: 10 year: 2003 end-page: 1223 ident: CR33 article-title: Automated identification of diabetic retinal exudates in digital colour images publication-title: Br J Ophthalmol doi: 10.1136/bjo.87.10.1220 – ident: CR43 – ident: CR47 – ident: CR53 – ident: CR10 – volume: 90 start-page: 200 year: 2016 end-page: 205 ident: CR38 article-title: Convolutional neural networks for diabetic retinopathy publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.07.014 – volume: 21 start-page: 1 year: 2018 end-page: 16 ident: CR36 article-title: Personalized app recommendation based on app permissions publication-title: World Wide Web doi: 10.1007/s11280-017-0456-y – ident: CR6 – ident: CR56 – volume: 20 start-page: 1 year: 2017 end-page: 19 ident: CR28 article-title: Multi-window based ensemble learning for classification of imbalanced streaming data publication-title: World Wide Web doi: 10.1007/s11280-017-0449-x – ident: CR23 – volume: 149 start-page: 113305 year: 2020 ident: CR4 article-title: Enhanced deep learning algorithm development to detect pain intensity from facial expression images publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113305 – ident: CR44 – volume: 12 start-page: 1 year: 2018 end-page: 26 ident: CR37 article-title: Mining event-oriented topics in microblog stream with unsupervised multi-view hierarchical embedding publication-title: ACM Trans Knowl Discov Data doi: 10.1145/3173044 – volume: 8 start-page: 151133 year: 2020 end-page: 151149 ident: CR40 article-title: Automatic detection of diabetic eye disease through deep learning using fundus images: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015258 – ident: CR52 – volume: 7 start-page: 287 issue: 2 year: 2010 end-page: 296 ident: CR1 article-title: Automated detection of diabetic retinopathy: barriers to translation into clinical practice publication-title: Expert Rev Med Devices doi: 10.1586/erd.09.76 – volume: 10 start-page: 1 issue: 1 year: 2017 end-page: 15 ident: CR16 article-title: A novel approach for detection of microaneurysms in diabetic retinopathy disease from retinal fundus images publication-title: Comput Inf Sci – ident: CR13 – volume: 2018 start-page: 147 year: 2018 ident: CR27 article-title: Automated detection of diabetic retinopathy using deep learning publication-title: AMIA Summit Translat Sci Proc – volume: 529 start-page: 484 issue: 7587 year: 2016 end-page: 489 ident: CR42 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 175 start-page: 12 year: 2019 end-page: 25 ident: CR55 article-title: Automated identification and grading system of diabetic retinopathy using deep neural networks publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.03.016 – ident: CR7 – volume: 7 start-page: 1 issue: 1 year: 2019 end-page: 7 ident: CR11 article-title: Neural attention with character embeddings for hay fever detection from twitter publication-title: Health Inf Sci Syst doi: 10.1007/s13755-019-0084-2 – ident: CR41 – volume: 23 start-page: 2835 year: 2020 end-page: 2850 ident: CR18 article-title: A framework for cardiac arrhythmia detection from iot-based ecgs publication-title: World Wide Web doi: 10.1007/s11280-019-00776-9 – volume: 5 start-page: 261 issue: 3 year: 2020 end-page: 279 ident: CR12 article-title: An interactive network for end-to-end review helpfulness modeling publication-title: Data Sci Eng doi: 10.1007/s41019-020-00133-1 – volume: 316 start-page: 2402 issue: 22 year: 2016 end-page: 2410 ident: CR17 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: Jama doi: 10.1001/jama.2016.17216 – ident: CR20 – ident: 167_CR46 doi: 10.1002/9780470689776 – ident: 167_CR56 doi: 10.1016/B978-0-12-336156-1.50061-6 – ident: 167_CR13 doi: 10.1007/s10115-018-1314-7 – ident: 167_CR32 doi: 10.1109/TENCON.2006.343793 – volume: 12 start-page: 1 year: 2018 ident: 167_CR37 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/3173044 – volume: 17 start-page: 495 issue: 7 year: 2000 ident: 167_CR21 publication-title: Diabet Med doi: 10.1046/j.1464-5491.2000.00250.x – volume: 10 start-page: 1 issue: 1 year: 2017 ident: 167_CR16 publication-title: Comput Inf Sci – volume: 87 start-page: 1220 issue: 10 year: 2003 ident: 167_CR33 publication-title: Br J Ophthalmol doi: 10.1136/bjo.87.10.1220 – ident: 167_CR54 – volume: 175 start-page: 12 year: 2019 ident: 167_CR55 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.03.016 – ident: 167_CR5 doi: 10.1007/b106267 – ident: 167_CR26 – volume: 25 start-page: 25 issue: 3 year: 2011 ident: 167_CR24 publication-title: Int J Comput Appl – volume: 20 start-page: 1 year: 2017 ident: 167_CR28 publication-title: World Wide Web doi: 10.1007/s11280-017-0449-x – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: 167_CR34 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 167_CR30 publication-title: Nature doi: 10.1038/nature14236 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: 167_CR39 publication-title: Health Inf Sci Syst doi: 10.1007/s13755-020-00125-5 – volume: 2018 start-page: 147 year: 2018 ident: 167_CR27 publication-title: AMIA Summit Translat Sci Proc – volume: 8 start-page: 151133 year: 2020 ident: 167_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015258 – ident: 167_CR35 doi: 10.1016/j.cviu.2016.12.005 – volume: 149 start-page: 113305 year: 2020 ident: 167_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113305 – volume: 43 start-page: 2136 issue: 12 year: 2013 ident: 167_CR31 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2013.10.007 – ident: 167_CR53 – ident: 167_CR9 doi: 10.1109/CVPR.2017.195 – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 167_CR17 publication-title: Jama doi: 10.1001/jama.2016.17216 – ident: 167_CR6 – ident: 167_CR23 doi: 10.1007/s11042-019-7460-4 – ident: 167_CR49 doi: 10.1109/ICIP.2017.8296985 – volume: 7 start-page: 1 issue: 1 year: 2019 ident: 167_CR11 publication-title: Health Inf Sci Syst doi: 10.1007/s13755-019-0084-2 – volume: 90 start-page: 200 year: 2016 ident: 167_CR38 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.07.014 – ident: 167_CR43 – ident: 167_CR41 doi: 10.1002/9780470590416 – volume: 223 start-page: 545 issue: 5 year: 2009 ident: 167_CR2 publication-title: Proc Inst Mech Eng Part H J Eng Med doi: 10.1243/09544119JEIM486 – volume: 42 start-page: 60 year: 2017 ident: 167_CR29 publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – ident: 167_CR44 doi: 10.1109/ISBI.2014.6867807 – volume: 80 start-page: 940 issue: 11 year: 1996 ident: 167_CR14 publication-title: Br J Ophthalmol doi: 10.1136/bjo.80.11.940 – start-page: 976 volume-title: Knowledge-based intelligent information and engineering systems year: 2006 ident: 167_CR19 doi: 10.1007/11892960_117 – ident: 167_CR47 – volume: 7 start-page: 287 issue: 2 year: 2010 ident: 167_CR1 publication-title: Expert Rev Med Devices doi: 10.1586/erd.09.76 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 167_CR45 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2009.03.002 – ident: 167_CR10 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 167_CR42 publication-title: Nature doi: 10.1038/nature16961 – ident: 167_CR7 – ident: 167_CR20 doi: 10.1109/CVPR.2017.243 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: 167_CR48 publication-title: Health Inf Sci Syst doi: 10.1007/s13755-020-00129-1 – volume: 124 start-page: 962 issue: 7 year: 2017 ident: 167_CR15 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.02.008 – volume: 23 start-page: 2835 year: 2020 ident: 167_CR18 publication-title: World Wide Web doi: 10.1007/s11280-019-00776-9 – volume: 8 start-page: 263 issue: 3 year: 1989 ident: 167_CR8 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.34715 – volume: 22 start-page: 2545 year: 2019 ident: 167_CR22 publication-title: World Wide Web doi: 10.1007/s11280-018-0639-1 – ident: 167_CR52 doi: 10.1007/978-3-030-62008-0_18 – volume: 21 start-page: 1 year: 2018 ident: 167_CR36 publication-title: World Wide Web doi: 10.1007/s11280-017-0456-y – volume-title: Retinal photography screening for diabetic eye disease year: 1997 ident: 167_CR3 – volume: 5 start-page: 261 issue: 3 year: 2020 ident: 167_CR12 publication-title: Data Sci Eng doi: 10.1007/s41019-020-00133-1 – ident: 167_CR51 doi: 10.1109/ACSSC.2004.1399432 – volume: 5 start-page: 411 issue: 6 year: 2015 ident: 167_CR25 publication-title: Int J – ident: 167_CR50 doi: 10.1002/0470028858 |
| SSID | ssj0002118446 ssib044734210 ssib048876940 |
| Score | 2.5120704 |
| Snippet | Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 455 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Artificial Intelligence Artificial neural networks Cable television broadcasting industry Chemistry and Earth Sciences Classification Computer Science Data Mining and Knowledge Discovery Database Management Diabetes Diabetics Diagnosis Eye diseases Geometric transformation Image classification Image enhancement Image processing Image quality Image segmentation Medical imaging Medical imaging equipment Neural networks Physics Statistics for Engineering Systems and Data Security |
| SummonAdditionalLinks | – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BAYkLpctXoCCDkACVSEk8TuxjVbWil6p8Sb1Zju3ASm0WNbtI9NdjO06WrAAJjonH67XzMp7Ib94AvGSc5nVtWIomUym6LSTlNRcpZ6iYoEbkqi82UZ2c8LMzcRqTwrqB7T4cSQZPPSa7oUOPSD2lIHDn06vrcIPlXHhcH6w1xxErisV6U3MIrcpBJM77Z_fJwxH7qnMlpu6KxWya3w8z2bE2_fYvG9cmqXLjZDVsWEfb_zfVu3AnBqhkv0fUDlyz7Qy2h-IPJPqCGdwK3FHdzWAn3uvI6yhi_eYevD--cJ6KnHrRzJCK4MYn85aEIpyenhQQQVRrSJ8rPN5aNKSn6cw1Ofxh3UU4Quruw-ejw08H79JYviHVLgZcptoFm1TwJmtQC6oytJjVFa1MyY2umcproVBluabO55jSlrWoC4UNbSomGqT0AWy1i9Y-AsJsURgjGKsaRFuiamr3oWOdvykybZhKIB8ekdRR29yX2DiXoypzWFLpllSGJZVXCeyNfb71yh5_tX7hn7z0khmt5-R8Uauuk8cfP8j9knudftcjgVfRqFm44bWKKQ5uEl5la2K5O7F077SeNg8Ak9GndLJg3BOSWV4l8Hxs9j09T661i5W3KWmVu6idJfCwx-M4OYrog3mRQDVB6mjglcanLe38a1Ac9wpJZel-8-2A1_Xf-vOaPf438ydwu_CQD1yhXdhaXq7sU7ipvy_n3eWz8I7_BP4iRMU priority: 102 providerName: Springer Nature |
| Title | Image Preprocessing in Classification and Identification of Diabetic Eye Diseases |
| URI | https://link.springer.com/article/10.1007/s41019-021-00167-z https://www.ncbi.nlm.nih.gov/pubmed/34423109 https://www.proquest.com/docview/2586676517 https://www.proquest.com/docview/2563711925 https://pubmed.ncbi.nlm.nih.gov/PMC8370665 |
| Volume | 6 |
| WOSCitedRecordID | wos000685817800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734210 issn: 2364-1185 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: K7- dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: M7S dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: C24 dateStart: 20160301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjQdegPEzMKqAkAAxiyS2E_sJjakTFaIqG0jlKXLsBCpBMpYWiT3wt-Nz3IxUYi-8VEp9TuLc-Xy2P38H8JQLGheF4YSZSBFmhxAiCiGJ4ExxSY2MVZdsIptOxXwuZ37BrfWwyrVPdI7aNBrXyF8lXCAck8fZ69MfBLNG4e6qT6GxBTtxksRo5-8y0q-x2MmNsNMdf1bGnZhj1gQlQVyCA-CT88F4tOmV_xqWNiGTG_umbjg6uvG_DbkJ130gGh50lrMLV8r6Fuz6rt6Gzz0f9Yvb8GHy3TqdcIb8l-5UgX2hcFGHLp8mIo2cckNVm7A79tv_1VRhh7hZ6HD8q7QXbjeovQOfjsYfD98Sn4mBaBvOLYm2cSOVoooqpiVVEStZVGQ0M6kwuuAqLqRiKoo1te7DpGVayCJRrKJVxmXFKL0L23VTl_ch5GWSGCM5zyrGypSpqrBzltK6jiTShqsA4rU-cu1pyjFbxre8J1h2OsytDnOnw_w8gJd9ndOOpONS6Seo5hzZL2qE13xRq7bNJyfH-UEqkHLf1gjgmReqGvt4rfxpBdsIJMwaSO4NJG331MPitRnk3j20-YUNBPC4L8aaCHmry2aFMinNYhuA8wDudcbXN44yhnG5DCAbmGUvgKThw5J68dWRhyPZUZrae-6vDfjitf79zR5c3oqHcC3BPuVgPnuwvTxblY_gqv65XLRnI9jK5mIEO2_G09mxvTpM2MitfYxcdx0h3vYEf3-PrdRs8n72-Q9nUURO |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXoDwDBQwCAQKLPOzEPiBUQauutqwKFKk34zgOrATZ0uyC2h_Fb2TGeZSsRG89cNz1eDd2vhl77JlvCHkkZBLleSEYL0LDOCwhTOZSMSm4ESopVGSaYhPZZCL399XuCvnd5cJgWGVnE72hLmYWz8hfxkJiOKaIstcHPxhWjcLb1a6ERgOLsTv6BS5b_Wr0Ft7v4zje2tx7s83aqgLMwtZkzizsgRIly7DkViUm5I6HeZZkRSoLmwsT5cpwE0YWPH1RpC7NVR4bXiZlJlTJ8QAUTP45nsgMufrHGevPdMCZkuBetbk5PkOPA-QVwzgIH_DPjgfr3_Iq8NcyuByiuXRP65e_rcv_28RdIZfajTbdaDRjjay46ipZa01ZTZ-2fNvPrpH3o-9gVOku8nv6rAmYADqtqK8XipFUHrzUVAVt0pr7r2YlbSKKppZuHjn44G-76uvk05kM7QZZrWaVu0WocHFcFEqIrOTcpdyUOfhkDkxjHNpCmIBE3fvXtqVhx2og33RPIO0xowEz2mNGHwfked_noCEhOVX6IcJKI7tHheFDX8yirvXo4we9kUosKQA9AvKkFSpn8PfWtNkYMAgkBBtIrg8kwfzYYXMHO92av1qfYC4gD_pm7IkhfZWbLVAmTbIIHAwRkJsN2PvBJZyj36ECkg3UoBdAUvRhSzX96snRkcwpTeE3X3QKc_JY_56z26eP4j65sL33bkfvjCbjO-RijPrsQ5rWyer8cOHukvP253xaH97zBoGSz2etSH8AWZWYyg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7B-CFeGCsMAgMMQgLEoiXxOYkfp7GKClSVX9LeLMdOoBKk09Iisb8e23HSpQIkxGPicxO7X85n-bvvAJ6xnMZFoVmIOpIhmiUkzIuchzlDyTjVPJZtsYlsOs1PTvjsQha_Y7t3R5JtToNVaaqXB6e6OugT39AgiYeWXuB49OH5ZbhiT6Ts9utorT-OmFFM1gucQWuWdoJx1leb7U-O2FagSzE0V8xn1vz-MYPVa9OHX1jENgmWG6esbvEab___sG_BTR-4ksMWaTtwqaxHsN0VhSDeR4zgmuOUqmYEO_5eQ154ceuXt-H95LvxYGRmxTRdioJ5FzKviSvOaWlLDilE1pq0OcT9rUVFWvrOXJHjn6W5cEdLzR34PD7-dPQm9GUdQmViw2WoTBBKeV5FFSpOZYQlRkVGM53mWhVMxgWXKKNYUeOLdFqmBS8SiRWtMsYrpHQXtupFXd4Dwsok0ZozllWIZYqyKswGqDR-KImUZjKAuPu7hPKa57b0xjfRqzW7KRVmSoWbUnEewKu-z2mr-PFX66cWBcJKadSWq_NFrppGTD5-EIdpbvX7TY8AnnujamEer6RPfTCDsOpbA8u9gaX51tWwuQOb8L6mEQnLLVGZxVkAT_pm29Py5-pysbI2Kc1iE82zAO622OwHRxFtkM8DyAao7Q2sAvmwpZ5_dUrkVjkpTc1v7nfYXb_Wn-fs_r-ZP4brs9dj8W4yffsAbiQW_Y5OtAdby7NV-RCuqh_LeXP2yH36vwC3clCO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Preprocessing+in+Classification+and+Identification+of+Diabetic+Eye+Diseases&rft.jtitle=Data+science+and+engineering&rft.au=Sarki%2C+Rubina&rft.au=Ahmed%2C+Khandakar&rft.au=Wang%2C+Hua&rft.au=Zhang%2C+Yanchun&rft.date=2021-12-01&rft.pub=Springer+Singapore&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=6&rft.issue=4&rft.spage=455&rft.epage=471&rft_id=info:doi/10.1007%2Fs41019-021-00167-z&rft_id=info%3Apmid%2F34423109&rft.externalDocID=PMC8370665 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |