Image Preprocessing in Classification and Identification of Diabetic Eye Diseases

Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in earl...

Full description

Saved in:
Bibliographic Details
Published in:Data Science and Engineering Vol. 6; no. 4; pp. 455 - 471
Main Authors: Sarki, Rubina, Ahmed, Khandakar, Wang, Hua, Zhang, Yanchun, Ma, Jiangang, Wang, Kate
Format: Journal Article
Language:English
Published: Singapore Springer Singapore 01.12.2021
Springer
Springer Nature B.V
Subjects:
ISSN:2364-1185, 2364-1541, 2364-1541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model’s development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.
AbstractList Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model's development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model's development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.
Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model’s development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.
Audience Academic
Author Ahmed, Khandakar
Ma, Jiangang
Wang, Kate
Wang, Hua
Sarki, Rubina
Zhang, Yanchun
Author_xml – sequence: 1
  givenname: Rubina
  surname: Sarki
  fullname: Sarki, Rubina
  organization: Victoria University
– sequence: 2
  givenname: Khandakar
  surname: Ahmed
  fullname: Ahmed, Khandakar
  organization: Victoria University
– sequence: 3
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Victoria University
– sequence: 4
  givenname: Yanchun
  surname: Zhang
  fullname: Zhang, Yanchun
  organization: Victoria University
– sequence: 5
  givenname: Jiangang
  orcidid: 0000-0002-8449-7610
  surname: Ma
  fullname: Ma, Jiangang
  email: j.ma@federation.edu.au
  organization: Federation University
– sequence: 6
  givenname: Kate
  surname: Wang
  fullname: Wang, Kate
  organization: RMIT University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34423109$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInGBQ4odfyUXpGopsFIlvs-W44yDq8Te2gmi_fV4u12WrVDlg-3x8762Z-YpOvDBA0LPCT4lGMs3iRFMmhJXpMSYCFnePEJHFRWsJJyRg-2a1PwQnaR0iXFGSc2YeIIOKWMVJbg5Ql-Wo-6h-BxhFYOBlJzvC-eLxaDz2jqjJxd8oX1XLDvw0y4UbPHO6RYmZ4rza8ibBDpBeoYeWz0kOLmbj9GP9-ffFx_Li08flouzi9JwyafSEMJpU1tsmWmoxgwYbiWVnag703JN2kYzjYmhFPNOgGibttLMUit5Yxmlx-jtxnc1tyN0Jj8u6kGtoht1vFZBO7V_4t1P1YdfqqYSC8Gzwas7gxiuZkiTGl0yMAzaQ5iTqrigkpCmWqMv76GXYY4-fy9TtRBScCJ3VK8HUM7bkO81a1N1JmrMZJNLlqnT_1B5dDA6k4tsXY7vCV7vCTIzwe-p13NKavnt6z774t-k_M3GtuAZqDeAiSGlCFYZN90WNL_CDYpgtW4vtWkvlXtG3baXusnS6p506_6giG5EKcO-h7jL3AOqP6yX35k
CitedBy_id crossref_primary_10_1007_s42979_023_02178_1
crossref_primary_10_3390_sym17071046
crossref_primary_10_1007_s00778_023_00807_y
crossref_primary_10_3390_min12101286
crossref_primary_10_1007_s13755_023_00221_2
crossref_primary_10_1016_j_procs_2023_11_100
crossref_primary_10_4018_IJeC_387649
crossref_primary_10_1007_s11042_022_14165_4
crossref_primary_10_3389_fpls_2023_1079366
crossref_primary_10_3390_bioengineering10010025
crossref_primary_10_1038_s41598_025_09889_w
crossref_primary_10_3390_electronics11172740
crossref_primary_10_1007_s11831_025_10335_3
crossref_primary_10_1016_j_eswa_2023_122209
crossref_primary_10_1038_s41598_025_99849_1
crossref_primary_10_1088_2057_1976_ad7267
crossref_primary_10_1002_ima_70112
crossref_primary_10_3390_app122110760
crossref_primary_10_1002_cem_3593
crossref_primary_10_1007_s13755_022_00180_0
crossref_primary_10_1007_s10278_024_01219_2
crossref_primary_10_1063_5_0264083
crossref_primary_10_1515_bmt_2024_0299
crossref_primary_10_33889_IJMEMS_2022_7_5_041
crossref_primary_10_1016_j_eswa_2025_128910
crossref_primary_10_3233_JIFS_221112
crossref_primary_10_1007_s11517_024_03105_z
crossref_primary_10_1016_j_health_2023_100174
crossref_primary_10_4108_eetpht_10_5183
crossref_primary_10_3390_app13053108
crossref_primary_10_3233_HIS_220004
crossref_primary_10_3390_diagnostics15050624
crossref_primary_10_3390_info15050243
crossref_primary_10_1016_j_bspc_2023_104883
crossref_primary_10_1109_ACCESS_2023_3339574
crossref_primary_10_1007_s13755_022_00176_w
crossref_primary_10_1007_s44163_022_00035_3
crossref_primary_10_1016_j_imu_2025_101655
crossref_primary_10_7717_peerj_cs_2135
crossref_primary_10_1109_TAI_2023_3336612
crossref_primary_10_1016_j_procs_2024_10_319
crossref_primary_10_1007_s10792_024_03377_2
crossref_primary_10_1007_s13755_022_00208_5
Cites_doi 10.1016/j.compbiomed.2013.10.007
10.1007/s13755-020-00125-5
10.1007/11892960_117
10.1046/j.1464-5491.2000.00250.x
10.1016/j.ipm.2009.03.002
10.1007/s11280-018-0639-1
10.1243/09544119JEIM486
10.1016/j.media.2017.07.005
10.1109/42.34715
10.1038/nature14236
10.1007/s13755-020-00129-1
10.1109/TKDE.2009.191
10.1016/j.ophtha.2017.02.008
10.1136/bjo.80.11.940
10.1136/bjo.87.10.1220
10.1016/j.procs.2016.07.014
10.1007/s11280-017-0456-y
10.1007/s11280-017-0449-x
10.1016/j.eswa.2020.113305
10.1145/3173044
10.1109/ACCESS.2020.3015258
10.1586/erd.09.76
10.1038/nature16961
10.1016/j.knosys.2019.03.016
10.1007/s13755-019-0084-2
10.1007/s11280-019-00776-9
10.1007/s41019-020-00133-1
10.1001/jama.2016.17216
10.1002/9780470689776
10.1016/B978-0-12-336156-1.50061-6
10.1007/s10115-018-1314-7
10.1109/TENCON.2006.343793
10.1007/b106267
10.1016/j.cviu.2016.12.005
10.1109/CVPR.2017.195
10.1007/s11042-019-7460-4
10.1109/ICIP.2017.8296985
10.1002/9780470590416
10.1109/ISBI.2014.6867807
10.1109/CVPR.2017.243
10.1007/978-3-030-62008-0_18
10.1109/ACSSC.2004.1399432
10.1002/0470028858
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021.
COPYRIGHT 2021 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021.
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
7SC
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1007/s41019-021-00167-z
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
Gale In Context: Science
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 2364-1541
EndPage 471
ExternalDocumentID PMC8370665
A680479101
34423109
10_1007_s41019_021_00167_z
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
IAO
ISR
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
ABJCF
AFFHD
ARAPS
BGLVJ
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
NPM
ADMLS
ARCSS
7SC
8FD
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
FR3
GNUQQ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c575t-c115398f0f4c93a04e40b737d68dcb5a1b9a4a01c3305d6e6b9b2a4f3f759f433
IEDL.DBID C24
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685817800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2364-1185
2364-1541
IngestDate Tue Nov 04 02:00:01 EST 2025
Wed Oct 01 13:40:20 EDT 2025
Wed Oct 08 14:21:16 EDT 2025
Tue Feb 18 23:13:14 EST 2025
Wed Feb 12 06:58:24 EST 2025
Fri Feb 14 03:32:43 EST 2025
Thu Apr 03 07:01:58 EDT 2025
Sat Nov 29 06:46:06 EST 2025
Tue Nov 18 21:25:27 EST 2025
Fri Feb 21 02:47:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Image processing
Convolution neural network
Diabetic eye disease
Language English
License The Author(s) 2021.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-c115398f0f4c93a04e40b737d68dcb5a1b9a4a01c3305d6e6b9b2a4f3f759f433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8449-7610
OpenAccessLink https://link.springer.com/10.1007/s41019-021-00167-z
PMID 34423109
PQID 2586676517
PQPubID 4402891
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8370665
proquest_miscellaneous_2563711925
proquest_journals_2586676517
gale_infotracmisc_A680479101
gale_infotracacademiconefile_A680479101
gale_incontextgauss_ISR_A680479101
pubmed_primary_34423109
crossref_citationtrail_10_1007_s41019_021_00167_z
crossref_primary_10_1007_s41019_021_00167_z
springer_journals_10_1007_s41019_021_00167_z
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Berlin
PublicationTitle Data Science and Engineering
PublicationTitleAbbrev Data Sci. Eng
PublicationTitleAlternate Data Sci Eng
PublicationYear 2021
Publisher Springer Singapore
Springer
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer
– name: Springer Nature B.V
References Karegowda, Nasiha, Jayaram, Manjunath (CR24) 2011; 25
Mookiah, Acharya, Chua, Lim, Ng, Laude (CR31) 2013; 43
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (CR29) 2017; 42
He, Rong, Sun, Wang, Zhang, Ma (CR18) 2020; 23
CR35
CR32
Association (CR3) 1997
Kaur, Kaur (CR25) 2015; 5
Abramoff, Niemeijer, Russell (CR1) 2010; 7
Gardner, Keating, Williamson, Elliott (CR14) 1996; 80
Du, Zheng, He, Rong, Wang, Zhang (CR12) 2020; 5
Li, Wang, Wang, Zhou (CR28) 2017; 20
CR6
CR5
Du, Michalska, Subramani, Wang, Zhang (CR11) 2019; 7
CR7
CR9
Hu, Li, Wang, Daggard (CR19) 2006
CR49
CR47
CR46
CR44
CR43
Gargeya, Leng (CR15) 2017; 124
CR41
Osareh, Mirmehdi, Thomas, Markham (CR33) 2003; 87
Pratt, Coenen, Broadbent, Harding, Zheng (CR38) 2016; 90
Pan, Yang (CR34) 2009; 22
Zhang, Zhong, Yang, Gao, Hu, Chen, Yi (CR55) 2019; 175
Peng, Zeng, Sun, Huang, Wang, Tian (CR36) 2018; 21
Jiang, Zhou, Zhang, Wang, Zhang (CR22) 2019; 22
Supriya, Siuly, Wang, Zhang (CR48) 2020; 8
Sarki, Ahmed, Wang, Zhang (CR40) 2020; 8
CR13
CR56
CR10
CR54
CR53
CR52
CR51
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (CR42) 2016; 529
CR50
Sokolova, Lapalme (CR45) 2009; 45
Hutchinson, McIntosh, Peters, Okeeffe, Khunti, Baker, Booth (CR21) 2000; 17
Peng, Zhu, Wang, Li, Zhang, Zhang, Tian (CR37) 2018; 12
Gharaibeh (CR16) 2017; 10
Bargshady, Zhou, Deo, Soar, Whittaker, Wang (CR4) 2020; 149
Acharya, Lim, Ng, Chee, Tamura (CR2) 2009; 223
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros (CR17) 2016; 316
Lam, Yi, Guo, Lindsey (CR27) 2018; 2018
CR26
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (CR30) 2015; 518
CR23
CR20
Sarki, Ahmed, Wang, Zhang (CR39) 2020; 8
Chaudhuri, Chatterjee, Katz, Nelson, Goldbaum (CR8) 1989; 8
167_CR23
167_CR20
H Jiang (167_CR22) 2019; 22
M Peng (167_CR37) 2018; 12
S Chaudhuri (167_CR8) 1989; 8
G Bargshady (167_CR4) 2020; 149
R Sarki (167_CR39) 2020; 8
S Supriya (167_CR48) 2020; 8
C Lam (167_CR27) 2018; 2018
V Mnih (167_CR30) 2015; 518
J He (167_CR18) 2020; 23
A Hutchinson (167_CR21) 2000; 17
A Osareh (167_CR33) 2003; 87
MD Abramoff (167_CR1) 2010; 7
167_CR35
GG Gardner (167_CR14) 1996; 80
167_CR32
UR Acharya (167_CR2) 2009; 223
M Kaur (167_CR25) 2015; 5
H Pratt (167_CR38) 2016; 90
M Peng (167_CR36) 2018; 21
167_CR26
167_CR47
167_CR46
167_CR44
167_CR43
167_CR41
SJ Pan (167_CR34) 2009; 22
D Silver (167_CR42) 2016; 529
J Du (167_CR12) 2020; 5
J Du (167_CR11) 2019; 7
NY Gharaibeh (167_CR16) 2017; 10
V Gulshan (167_CR17) 2016; 316
R Gargeya (167_CR15) 2017; 124
MRK Mookiah (167_CR31) 2013; 43
M Sokolova (167_CR45) 2009; 45
H Hu (167_CR19) 2006
W Zhang (167_CR55) 2019; 175
167_CR13
167_CR56
167_CR10
167_CR54
167_CR53
167_CR52
167_CR51
167_CR50
167_CR6
BD Association (167_CR3) 1997
167_CR7
R Sarki (167_CR40) 2020; 8
167_CR5
AG Karegowda (167_CR24) 2011; 25
167_CR9
H Li (167_CR28) 2017; 20
G Litjens (167_CR29) 2017; 42
167_CR49
References_xml – volume: 43
  start-page: 2136
  issue: 12
  year: 2013
  end-page: 2155
  ident: CR31
  article-title: Computer-aided diagnosis of diabetic retinopathy: a review
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.10.007
– ident: CR49
– volume: 25
  start-page: 25
  issue: 3
  year: 2011
  end-page: 31
  ident: CR24
  article-title: Exudates detection in retinal images using back propagation neural network
  publication-title: Int J Comput Appl
– ident: CR51
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  ident: CR39
  article-title: Automated detection of mild and multi-class diabetic eye diseases using deep learning
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-020-00125-5
– start-page: 976
  year: 2006
  end-page: 983
  ident: CR19
  article-title: Combined gene selection methods for microarray data analysis
  publication-title: Knowledge-based intelligent information and engineering systems
  doi: 10.1007/11892960_117
– volume: 17
  start-page: 495
  issue: 7
  year: 2000
  end-page: 506
  ident: CR21
  article-title: Effectiveness of screening and monitoring tests for diabetic retinopathy—a systematic review
  publication-title: Diabet Med
  doi: 10.1046/j.1464-5491.2000.00250.x
– ident: CR35
– ident: CR54
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  end-page: 437
  ident: CR45
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2009.03.002
– volume: 5
  start-page: 411
  issue: 6
  year: 2015
  end-page: 417
  ident: CR25
  article-title: A hybrid approach for automatic exudates detection in eye fundus image
  publication-title: Int J
– ident: CR46
– volume: 22
  start-page: 2545
  year: 2019
  end-page: 2560
  ident: CR22
  article-title: Sentence level topic models for associated topics extraction
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0639-1
– volume: 223
  start-page: 545
  issue: 5
  year: 2009
  end-page: 553
  ident: CR2
  article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images
  publication-title: Proc Inst Mech Eng Part H J Eng Med
  doi: 10.1243/09544119JEIM486
– ident: CR50
– ident: CR9
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR29
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– ident: CR32
– volume: 8
  start-page: 263
  issue: 3
  year: 1989
  end-page: 269
  ident: CR8
  article-title: Detection of blood vessels in retinal images using two-dimensional matched filters
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.34715
– ident: CR5
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  end-page: 533
  ident: CR30
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  end-page: 15
  ident: CR48
  article-title: Automated epilepsy detection techniques from electroencephalogram signals: a review study
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-020-00129-1
– ident: CR26
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  end-page: 1359
  ident: CR34
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– year: 1997
  ident: CR3
  publication-title: Retinal photography screening for diabetic eye disease
– volume: 124
  start-page: 962
  issue: 7
  year: 2017
  end-page: 969
  ident: CR15
  article-title: Automated identification of diabetic retinopathy using deep learning
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– volume: 80
  start-page: 940
  issue: 11
  year: 1996
  end-page: 944
  ident: CR14
  article-title: Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.80.11.940
– volume: 87
  start-page: 1220
  issue: 10
  year: 2003
  end-page: 1223
  ident: CR33
  article-title: Automated identification of diabetic retinal exudates in digital colour images
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.87.10.1220
– ident: CR43
– ident: CR47
– ident: CR53
– ident: CR10
– volume: 90
  start-page: 200
  year: 2016
  end-page: 205
  ident: CR38
  article-title: Convolutional neural networks for diabetic retinopathy
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.07.014
– volume: 21
  start-page: 1
  year: 2018
  end-page: 16
  ident: CR36
  article-title: Personalized app recommendation based on app permissions
  publication-title: World Wide Web
  doi: 10.1007/s11280-017-0456-y
– ident: CR6
– ident: CR56
– volume: 20
  start-page: 1
  year: 2017
  end-page: 19
  ident: CR28
  article-title: Multi-window based ensemble learning for classification of imbalanced streaming data
  publication-title: World Wide Web
  doi: 10.1007/s11280-017-0449-x
– ident: CR23
– volume: 149
  start-page: 113305
  year: 2020
  ident: CR4
  article-title: Enhanced deep learning algorithm development to detect pain intensity from facial expression images
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113305
– ident: CR44
– volume: 12
  start-page: 1
  year: 2018
  end-page: 26
  ident: CR37
  article-title: Mining event-oriented topics in microblog stream with unsupervised multi-view hierarchical embedding
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3173044
– volume: 8
  start-page: 151133
  year: 2020
  end-page: 151149
  ident: CR40
  article-title: Automatic detection of diabetic eye disease through deep learning using fundus images: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015258
– ident: CR52
– volume: 7
  start-page: 287
  issue: 2
  year: 2010
  end-page: 296
  ident: CR1
  article-title: Automated detection of diabetic retinopathy: barriers to translation into clinical practice
  publication-title: Expert Rev Med Devices
  doi: 10.1586/erd.09.76
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  end-page: 15
  ident: CR16
  article-title: A novel approach for detection of microaneurysms in diabetic retinopathy disease from retinal fundus images
  publication-title: Comput Inf Sci
– ident: CR13
– volume: 2018
  start-page: 147
  year: 2018
  ident: CR27
  article-title: Automated detection of diabetic retinopathy using deep learning
  publication-title: AMIA Summit Translat Sci Proc
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  end-page: 489
  ident: CR42
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 175
  start-page: 12
  year: 2019
  end-page: 25
  ident: CR55
  article-title: Automated identification and grading system of diabetic retinopathy using deep neural networks
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.03.016
– ident: CR7
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  end-page: 7
  ident: CR11
  article-title: Neural attention with character embeddings for hay fever detection from twitter
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-019-0084-2
– ident: CR41
– volume: 23
  start-page: 2835
  year: 2020
  end-page: 2850
  ident: CR18
  article-title: A framework for cardiac arrhythmia detection from iot-based ecgs
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00776-9
– volume: 5
  start-page: 261
  issue: 3
  year: 2020
  end-page: 279
  ident: CR12
  article-title: An interactive network for end-to-end review helpfulness modeling
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-020-00133-1
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  end-page: 2410
  ident: CR17
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Jama
  doi: 10.1001/jama.2016.17216
– ident: CR20
– ident: 167_CR46
  doi: 10.1002/9780470689776
– ident: 167_CR56
  doi: 10.1016/B978-0-12-336156-1.50061-6
– ident: 167_CR13
  doi: 10.1007/s10115-018-1314-7
– ident: 167_CR32
  doi: 10.1109/TENCON.2006.343793
– volume: 12
  start-page: 1
  year: 2018
  ident: 167_CR37
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/3173044
– volume: 17
  start-page: 495
  issue: 7
  year: 2000
  ident: 167_CR21
  publication-title: Diabet Med
  doi: 10.1046/j.1464-5491.2000.00250.x
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  ident: 167_CR16
  publication-title: Comput Inf Sci
– volume: 87
  start-page: 1220
  issue: 10
  year: 2003
  ident: 167_CR33
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.87.10.1220
– ident: 167_CR54
– volume: 175
  start-page: 12
  year: 2019
  ident: 167_CR55
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.03.016
– ident: 167_CR5
  doi: 10.1007/b106267
– ident: 167_CR26
– volume: 25
  start-page: 25
  issue: 3
  year: 2011
  ident: 167_CR24
  publication-title: Int J Comput Appl
– volume: 20
  start-page: 1
  year: 2017
  ident: 167_CR28
  publication-title: World Wide Web
  doi: 10.1007/s11280-017-0449-x
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 167_CR34
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 167_CR30
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 167_CR39
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-020-00125-5
– volume: 2018
  start-page: 147
  year: 2018
  ident: 167_CR27
  publication-title: AMIA Summit Translat Sci Proc
– volume: 8
  start-page: 151133
  year: 2020
  ident: 167_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015258
– ident: 167_CR35
  doi: 10.1016/j.cviu.2016.12.005
– volume: 149
  start-page: 113305
  year: 2020
  ident: 167_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113305
– volume: 43
  start-page: 2136
  issue: 12
  year: 2013
  ident: 167_CR31
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.10.007
– ident: 167_CR53
– ident: 167_CR9
  doi: 10.1109/CVPR.2017.195
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 167_CR17
  publication-title: Jama
  doi: 10.1001/jama.2016.17216
– ident: 167_CR6
– ident: 167_CR23
  doi: 10.1007/s11042-019-7460-4
– ident: 167_CR49
  doi: 10.1109/ICIP.2017.8296985
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  ident: 167_CR11
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-019-0084-2
– volume: 90
  start-page: 200
  year: 2016
  ident: 167_CR38
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.07.014
– ident: 167_CR43
– ident: 167_CR41
  doi: 10.1002/9780470590416
– volume: 223
  start-page: 545
  issue: 5
  year: 2009
  ident: 167_CR2
  publication-title: Proc Inst Mech Eng Part H J Eng Med
  doi: 10.1243/09544119JEIM486
– volume: 42
  start-page: 60
  year: 2017
  ident: 167_CR29
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– ident: 167_CR44
  doi: 10.1109/ISBI.2014.6867807
– volume: 80
  start-page: 940
  issue: 11
  year: 1996
  ident: 167_CR14
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.80.11.940
– start-page: 976
  volume-title: Knowledge-based intelligent information and engineering systems
  year: 2006
  ident: 167_CR19
  doi: 10.1007/11892960_117
– ident: 167_CR47
– volume: 7
  start-page: 287
  issue: 2
  year: 2010
  ident: 167_CR1
  publication-title: Expert Rev Med Devices
  doi: 10.1586/erd.09.76
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 167_CR45
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2009.03.002
– ident: 167_CR10
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 167_CR42
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: 167_CR7
– ident: 167_CR20
  doi: 10.1109/CVPR.2017.243
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: 167_CR48
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-020-00129-1
– volume: 124
  start-page: 962
  issue: 7
  year: 2017
  ident: 167_CR15
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– volume: 23
  start-page: 2835
  year: 2020
  ident: 167_CR18
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00776-9
– volume: 8
  start-page: 263
  issue: 3
  year: 1989
  ident: 167_CR8
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.34715
– volume: 22
  start-page: 2545
  year: 2019
  ident: 167_CR22
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0639-1
– ident: 167_CR52
  doi: 10.1007/978-3-030-62008-0_18
– volume: 21
  start-page: 1
  year: 2018
  ident: 167_CR36
  publication-title: World Wide Web
  doi: 10.1007/s11280-017-0456-y
– volume-title: Retinal photography screening for diabetic eye disease
  year: 1997
  ident: 167_CR3
– volume: 5
  start-page: 261
  issue: 3
  year: 2020
  ident: 167_CR12
  publication-title: Data Sci Eng
  doi: 10.1007/s41019-020-00133-1
– ident: 167_CR51
  doi: 10.1109/ACSSC.2004.1399432
– volume: 5
  start-page: 411
  issue: 6
  year: 2015
  ident: 167_CR25
  publication-title: Int J
– ident: 167_CR50
  doi: 10.1002/0470028858
SSID ssj0002118446
ssib044734210
ssib048876940
Score 2.5120704
Snippet Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 455
SubjectTerms Algorithm Analysis and Problem Complexity
Artificial Intelligence
Artificial neural networks
Cable television broadcasting industry
Chemistry and Earth Sciences
Classification
Computer Science
Data Mining and Knowledge Discovery
Database Management
Diabetes
Diabetics
Diagnosis
Eye diseases
Geometric transformation
Image classification
Image enhancement
Image processing
Image quality
Image segmentation
Medical imaging
Medical imaging equipment
Neural networks
Physics
Statistics for Engineering
Systems and Data Security
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCKa8GWhQQEiBqET8S26eqQq2okKryknqzHMeGlUpSmt1K9NfjcbwpWYleOG48zsaZ8Xhif_MNQi-pKLj3RuFaNQxzqxyWvmTYCOkNE4w6OhSbEEdH8uREHacNtz7BKpc-MTrqprOwR_6OlhLgmCURu2e_MFSNgtPVVELjJrpFKCVg5x8FHvdYwseNDJ87KVcmZszxYIIKAy4hAvDx5WQ9WvXKfy1Lq5DJlXPTuBwdrP_vQO6huykQzfcGy9lAN1x7H22kqd7nrxMf9ZsH6NPhz-B08mPgv4xZBeGB8lmbx3qagDSKys1N2-RD2u94qfP5gLiZ2Xz_tws_4mlQ_xB9O9j_-v4DTpUYsA3h3BzbEDcyJX3hgzaZKbjjRS2YaCrZ2Lo0pFaGm4JYFtxHU7mqVjU13DMvSuU5Y4_QWtu1bhOgVAzO7nghHecu9Gqo477kpLauIYZliCz1oW2iKYdqGad6JFiOOtRBhzrqUF9m6O3Y52wg6bhW-gWoWQP7RQvwmu9m0ff68MtnvVdJoNwPPTL0Kgn5Lvy9NSlbIQwCCLMmklsTyTA97bR5aQY6uYdeX9lAhp6PzdATIG-t6xYgUzFBQgBeZujxYHzj4BjnEJerDImJWY4CQBo-bWlnPyJ5OJAdVVW4587SgK8e69_v7Mn1o3iK7lCYUxHms4XW5ucLt41u24v5rD9_FiflHxVnPLM
  priority: 102
  providerName: ProQuest
Title Image Preprocessing in Classification and Identification of Diabetic Eye Diseases
URI https://link.springer.com/article/10.1007/s41019-021-00167-z
https://www.ncbi.nlm.nih.gov/pubmed/34423109
https://www.proquest.com/docview/2586676517
https://www.proquest.com/docview/2563711925
https://pubmed.ncbi.nlm.nih.gov/PMC8370665
Volume 6
WOSCitedRecordID wos000685817800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734210
  issn: 2364-1185
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: K7-
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: M7S
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: C24
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXYBhIvjJWvwIgCQgI0LCWxE9uPY-pEhajKBlJ5ihzHhkqQoqVFYg_8dnwdJyUVIMFLpMTXceycXLv1ueci9CRlMTVGClyKimCqhMbcZARLxo0kjKQ6bZNNsOmUz-di5oPCmo7t3m1JOk_dB7tRix6BgVLguPP4cgftZQkXgOuTjeY4pYzQdDOpWYSyvBOJA_9sf_JwStuscznF9izz0TS_b2YwY2377V8mrm1S5dbOqpuwTvf_r6s30Q2_QI2OW0QdoCu6HqH9LvlD5H3BCF1z3FHVjNCBv9ZEz7yI9fNb6O3ki_VU0QxEM10ogm0_WtSRS8IJ9CSHiEjWVdTGCveXliZqaToLFY2_a3vitpCa2-j96fjdySvs0zdgZdeAK6zsYpMIbmJjIUBkTDWNS0ZYlfNKlZlMSiGpjBNFrM-pcp2XokwlNcSwTBhKyB20Wy9rfQ_4VwQ2_GjMNaXa1qpSTU1Gk1LpKpEkQEn3igrltc0hxcbnoldldkNa2CEt3JAWlwE66ut8bZU9_mr9GN58AZIZNXByPsp10xST87PiOOeg029rBOipNzJL27ySPsTBdgJUtgaWhwNL-02rYXEHsML7lKZIMw6E5CxhAXrUF0NN4MnVerkGm5ywxK7aswDdbfHYd45QCot5ESA2QGpvAErjw5J68ckpjoNCUp7be77o8Lp5rD-P2f1_M3-ArqcAeccVOkS7q4u1foiuqm-rRXMRoh025yHaezmezs5C98WH7g8Ue3zNcAik3XM4_hhbq9nkzezDT33STWg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXoDwDBQICAQKLJHbi-IBQBa262rIqUKTejOPYsBJkS7MLan8Uv5EZ51GyEr31wHHX493YmRl77G--IeRRIiLunJa0kCWj3EhLc5cyqkXuNBMssUlTbEJMJvn-vtxdIb-7XBiEVXY-0TvqcmbwjPxlkuYIx0xj8frgB8WqUXi72pXQaNRibI9-QchWvxq9hff7OEm2NvfebNO2qgA1sDWZUwN7ICZzFzl4MqYjbnlUCCbKLC9Nkeq4kJrrKDYQ6adlZrNCFonmjjmRSsfxABRc_jnOcoFc_WNB-zMdCKZyCK_a3ByfocdB5SVFHIQH_NPjwfq3vAr8tQwuQzSX7mn98rd1-X-buCvkUrvRDjcay1gjK7a6StZaV1aHT1u-7WfXyPvRd3Cq4S7ye_qsCZiAcFqFvl4oIqm88oa6KsMmrbn_aubCBlE0NeHmkYUP_rarvk4-ncnQbpDValbZWwgVY3g3yaPccm6hV5lY7lIeF8aWsWYBibv3r0xLw47VQL6pnkDa64wCnVFeZ9RxQJ73fQ4aEpJTpR-iWilk96gQPvRFL-pajT5-UBtZjiUFoEdAnrRCbgZ_b3SbjQGDQEKwgeT6QBLcjxk2d2qnWvdXqxOdC8iDvhl7IqSvsrMFymRMxBBgpAG52Sh7PzjGOcYdMiBiYAa9AJKiD1uq6VdPjo5kTlkGv_miM5iTx_r3nN0-fRT3yYXtvXc7amc0Gd8hFxO0Zw9pWier88OFvUvOm5_zaX14zzuEkHw-a0P6A0nDmUs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BuYgXShcKgQIBIQGiUZN4EiePVemKFWi13KS-WY5jw0qQrZpdJPr1eJzLNitAQjwmHiexczKeyGfOADyLeYjGyDwo8pIFqHIdZCZhgeSZkYyzWMdNsQk-nWYnJ_nsQha_Y7t3W5JNTgOpNFXLg9PSHPSJb2iRlAdEL3A8-uD8MlyhHSn6_Tpa648jcobxeoGzaOVpJxhHvtr-_mSITQW6FAN7lLSZNb-_zWD12vThFxaxTYLlxi6rW7zG2_8_7Ftwsw1c_cMGaTtwSVcj2O6KQvitjxjBNccpVfUIdtpztf-iFbd-eRveT75bD-bPSEzTpSjYZ_Hnle-KcxJtySHFl1XpNznE_amF8Rv6zlz5xz-1PXBbS_Ud-Dw-_nT0JmjLOgTKxobLQNkglOWZCY2FBpMhagwLzniZZqUqEhkVuUQZRopZX1SmOi3yIpZomOFJbpCxXdiqFpW-R7wsRhuBGGYaUdteZazRJBgVSpeRZB5E3esSqtU8p9Ib30Sv1uymVNgpFW5KxbkHr_o-p43ix1-tnxIKBElpVMTV-SJXdS0mHz-IwzQj_X7bw4PnrZFZ2Nsr2aY-2EGQ-tbAcm9gab91NWzuwCZaX1OLOMmIqJxE3IMnfTP1JP5cpRcrskkZj2w0n3hwt8FmPziGSEF-7gEfoLY3IAXyYUs1_-qUyEk5KU3tNfc77K4f689zdv_fzB_D9dnrsXg3mb59ADdiQr-jE-3B1vJspR_CVfVjOa_PHrlP_xck3lEP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Preprocessing+in+Classification+and+Identification+of+Diabetic+Eye+Diseases&rft.jtitle=Data+science+and+engineering&rft.au=Sarki%2C+Rubina&rft.au=Ahmed%2C+Khandakar&rft.au=Wang%2C+Hua&rft.au=Zhang%2C+Yanchun&rft.date=2021-12-01&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=6&rft.issue=4&rft.spage=455&rft.epage=471&rft_id=info:doi/10.1007%2Fs41019-021-00167-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41019_021_00167_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon