MC-RVAE: Multi-channel recurrent variational autoencoder for multimodal Alzheimer’s disease progression modelling

•A multi-channel model based on recurrent variational autoencoders was proposed to capture spatial and temporal evolution of AD using multimodal data.•Proposed model was evaluated on synthetic and real datasets.•Model outperforms a set of baselines for missing data reconstruction across modalities....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Jg. 268; S. 119892
Hauptverfasser: Martí-Juan, Gerard, Lorenzi, Marco, Piella, Gemma
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.03.2023
Elsevier Limited
Elsevier
Schlagworte:
ISSN:1053-8119, 1095-9572, 1095-9572
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A multi-channel model based on recurrent variational autoencoders was proposed to capture spatial and temporal evolution of AD using multimodal data.•Proposed model was evaluated on synthetic and real datasets.•Model outperforms a set of baselines for missing data reconstruction across modalities. [Display omitted] The progression of neurodegenerative diseases, such as Alzheimer’s Disease, is the result of complex mechanisms interacting across multiple spatial and temporal scales. Understanding and predicting the longitudinal course of the disease requires harnessing the variability across different data modalities and time, which is extremely challenging. In this paper, we propose a model based on recurrent variational autoencoders that is able to capture cross-channel interactions between different modalities and model temporal information. These are achieved thanks to its multi-channel architecture and its shared latent variational space, parametrized with a recurrent neural network. We evaluate our model on both synthetic and real longitudinal datasets, the latter including imaging and non-imaging data, with N=897 subjects. Results show that our multi-channel recurrent variational autoencoder outperforms a set of baselines (KNN, random forest, and group factor analysis) for the task of reconstructing missing modalities, reducing the mean absolute error by 5% (w.r.t. the best baseline) for both subcortical volumes and cortical thickness. Our model is robust to missing features within each modality and is able to generate realistic synthetic imaging biomarkers trajectories from cognitive scores.
AbstractList The progression of neurodegenerative diseases, such as Alzheimer’s Disease, is the result of complex mechanisms interacting across multiple spatial and temporal scales. Understanding and predicting the longitudinal course of the disease requires harnessing the variability across different data modalities and time, which is extremely challenging. In this paper, we propose a model based on recurrent variational autoencoders that is able to capture cross-channel interactions between different modalities and model temporal information. These are achieved thanks to its multi-channel architecture and its shared latent variational space, parametrized with a recurrent neural network. We evaluate our model on both synthetic and real longitudinal datasets, the latter including imaging and non-imaging data, with N=897 subjects. Results show that our multi-channel recurrent variational autoencoder outperforms a set of baselines (KNN, random forest, and group factor analysis) for the task of reconstructing missing modalities, reducing the mean absolute error by 5% (w.r.t. the best baseline) for both subcortical volumes and cortical thickness. Our model is robust to missing features within each modality and is able to generate realistic synthetic imaging biomarkers trajectories from cognitive scores.
•A multi-channel model based on recurrent variational autoencoders was proposed to capture spatial and temporal evolution of AD using multimodal data.•Proposed model was evaluated on synthetic and real datasets.•Model outperforms a set of baselines for missing data reconstruction across modalities. [Display omitted] The progression of neurodegenerative diseases, such as Alzheimer’s Disease, is the result of complex mechanisms interacting across multiple spatial and temporal scales. Understanding and predicting the longitudinal course of the disease requires harnessing the variability across different data modalities and time, which is extremely challenging. In this paper, we propose a model based on recurrent variational autoencoders that is able to capture cross-channel interactions between different modalities and model temporal information. These are achieved thanks to its multi-channel architecture and its shared latent variational space, parametrized with a recurrent neural network. We evaluate our model on both synthetic and real longitudinal datasets, the latter including imaging and non-imaging data, with N=897 subjects. Results show that our multi-channel recurrent variational autoencoder outperforms a set of baselines (KNN, random forest, and group factor analysis) for the task of reconstructing missing modalities, reducing the mean absolute error by 5% (w.r.t. the best baseline) for both subcortical volumes and cortical thickness. Our model is robust to missing features within each modality and is able to generate realistic synthetic imaging biomarkers trajectories from cognitive scores.
The progression of neurodegenerative diseases, such as Alzheimer's Disease, is the result of complex mechanisms interacting across multiple spatial and temporal scales. Understanding and predicting the longitudinal course of the disease requires harnessing the variability across different data modalities and time, which is extremely challenging. In this paper, we propose a model based on recurrent variational autoencoders that is able to capture cross-channel interactions between different modalities and model temporal information. These are achieved thanks to its multi-channel architecture and its shared latent variational space, parametrized with a recurrent neural network. We evaluate our model on both synthetic and real longitudinal datasets, the latter including imaging and non-imaging data, with N=897 subjects. Results show that our multi-channel recurrent variational autoencoder outperforms a set of baselines (KNN, random forest, and group factor analysis) for the task of reconstructing missing modalities, reducing the mean absolute error by 5% (w.r.t. the best baseline) for both subcortical volumes and cortical thickness. Our model is robust to missing features within each modality and is able to generate realistic synthetic imaging biomarkers trajectories from cognitive scores.The progression of neurodegenerative diseases, such as Alzheimer's Disease, is the result of complex mechanisms interacting across multiple spatial and temporal scales. Understanding and predicting the longitudinal course of the disease requires harnessing the variability across different data modalities and time, which is extremely challenging. In this paper, we propose a model based on recurrent variational autoencoders that is able to capture cross-channel interactions between different modalities and model temporal information. These are achieved thanks to its multi-channel architecture and its shared latent variational space, parametrized with a recurrent neural network. We evaluate our model on both synthetic and real longitudinal datasets, the latter including imaging and non-imaging data, with N=897 subjects. Results show that our multi-channel recurrent variational autoencoder outperforms a set of baselines (KNN, random forest, and group factor analysis) for the task of reconstructing missing modalities, reducing the mean absolute error by 5% (w.r.t. the best baseline) for both subcortical volumes and cortical thickness. Our model is robust to missing features within each modality and is able to generate realistic synthetic imaging biomarkers trajectories from cognitive scores.
ArticleNumber 119892
Author Martí-Juan, Gerard
Piella, Gemma
Lorenzi, Marco
Author_xml – sequence: 1
  givenname: Gerard
  orcidid: 0000-0003-4729-7182
  surname: Martí-Juan
  fullname: Martí-Juan, Gerard
  email: gerard.marti@upf.edu
  organization: BCN MedTech, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 2
  givenname: Marco
  surname: Lorenzi
  fullname: Lorenzi, Marco
  organization: Université Côte d’Azur, Inria Sophia Antipolis, Epione Research Project, France
– sequence: 3
  givenname: Gemma
  surname: Piella
  fullname: Piella, Gemma
  organization: BCN MedTech, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36682509$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSPUiv7AK6BIbNhk8E-cxCwQw6jQSq2QELC1buybqUMSFzupVFa8Bq_Hk-A0LUizGilKrPi759r3nJPkYHADJklKyYoSWrxuVwNO3tketrhihPEVpbKS7ElyTIkUmRQlO5jXgmdV3DpKTkJoCSGS5tXT5IgXRcUEkcdJuNpkn7-tz96kV1M32kxfwzBgl3rUk_c4jOkteAujdQN0KUyjw0E7gz5tnE_7uaZ3Jm6tu5_XaHv0f379DqmxASFgeuPd1mMIsTyNHHadHbbPksMGuoDPH76nydcPZ18259nlp48Xm_VlpkUpxqyW2BQEJcg8r8ucsIaWgA0HBlLmRtZGCFNwWgPhDSE1ZZHXOD8FLXTJT5OLRdc4aNWNj-Pyd8qBVfc_nN8q8KPVHSrMBeWEowDW5ACsrg2H2FggbQw2ddR6tWjFG_2YMIyqt0HH-8CAbgqKlUVV0fkV0Zc7aOsmH8c3UyUvCaEVidSLB2qqezT_jvdoTQTeLoD2LgSPjdJ2vDdi9GA7RYmas6Ba9T8Las6CWrIQBaodgccee5S-X0ox2nNr0augbTQejY3BGOP87D4i73ZEdHTfaui-491-En8B0pztpA
CitedBy_id crossref_primary_10_1145_3659575
crossref_primary_10_1016_j_apsb_2025_07_030
crossref_primary_10_2196_59792
crossref_primary_10_3390_bioengineering10101120
crossref_primary_10_1016_j_neuroimage_2023_120485
crossref_primary_10_1016_j_cosrev_2024_100720
crossref_primary_10_1038_s41583_023_00779_6
crossref_primary_10_70401_ec_2025_0010
crossref_primary_10_1016_j_cmpb_2024_108259
crossref_primary_10_1016_j_eswa_2025_128580
crossref_primary_10_1002_hsr2_70802
crossref_primary_10_1016_j_neuroimage_2024_120737
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1109_JBHI_2024_3472462
crossref_primary_10_1016_j_knosys_2025_114197
crossref_primary_10_1109_TNSRE_2025_3549730
crossref_primary_10_1177_25424823241290694
crossref_primary_10_3348_kjr_2025_0073
Cites_doi 10.1097/WCO.0000000000000460
10.1093/brain/awu176
10.1016/j.neuroimage.2013.02.059
10.1016/j.patcog.2020.107247
10.1136/jnnp.71.4.441
10.1109/TNNLS.2014.2376974
10.1016/S1474-4422(09)70299-6
10.1002/hbm.24682
10.1016/j.neuroimage.2012.01.062
10.1038/s41598-019-49656-2
10.1016/j.neuroimage.2012.06.061
10.1109/TNNLS.2016.2520964
10.1038/s41467-018-05892-0
10.1016/j.neuroimage.2017.08.059
10.1093/brain/awx194
10.1016/j.neucom.2020.05.087
10.1177/0962280212445834
10.1016/j.neuroimage.2010.07.020
10.1162/0899766042321814
10.1016/j.neuroimage.2012.02.084
10.1002/ana.21610
10.1016/j.matcom.2009.01.023
10.1038/s41598-021-82098-3
10.1016/j.neuroimage.2010.07.002
10.1111/ene.13439
10.1371/journal.pone.0211558
10.1016/j.nic.2005.09.008
10.1038/s41598-018-27337-w
10.1016/j.media.2019.01.004
10.1162/neco.1997.9.8.1735
10.1016/j.neuroimage.2016.04.023
10.1016/j.cmpb.2020.105348
10.1136/jnnp-2014-309105
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
Copyright Elsevier Limited Mar 2023
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Mar 2023
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2023.119892
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_e451303e5a2f4aa2bbd3aa945e1fdefb
36682509
10_1016_j_neuroimage_2023_119892
S1053811923000411
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c575t-b9ef60e9a944b7402f17aef3a2a994d9bd55d631ba03f00b12ef6ce6ce6616c73
IEDL.DBID M7P
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000934066200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:39:03 EDT 2025
Thu Oct 02 10:14:35 EDT 2025
Tue Oct 07 07:25:22 EDT 2025
Mon Jul 21 06:01:19 EDT 2025
Tue Nov 18 20:40:26 EST 2025
Sat Nov 29 07:09:21 EST 2025
Fri Feb 23 02:38:38 EST 2024
Tue Oct 14 19:35:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Variational autoencoder
Longitudinal
Alzheimer’s disease
Multimodal
Recurrent neural network
Disease progression modelling
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-b9ef60e9a944b7402f17aef3a2a994d9bd55d631ba03f00b12ef6ce6ce6616c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4729-7182
OpenAccessLink https://doaj.org/article/e451303e5a2f4aa2bbd3aa945e1fdefb
PMID 36682509
PQID 2773700180
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_e451303e5a2f4aa2bbd3aa945e1fdefb
proquest_miscellaneous_2768817688
proquest_journals_2773700180
pubmed_primary_36682509
crossref_citationtrail_10_1016_j_neuroimage_2023_119892
crossref_primary_10_1016_j_neuroimage_2023_119892
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2023_119892
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2023_119892
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2023
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Jack, Knopman, Jagust, Shaw, Aisen, Weiner, Petersen, Trojanowski (bib0018) 2010; 9
Cao, Ke, Sandstede, Luo (bib0005) 2019
Young, Oxtoby, Huang, Marinescu, Daga, Cash, Fox, Ourselin, Schott, Alexander (bib0052) 2015
Alzheimer’s Association., 2018. Alzheimer’s Dement.: Global Resources.
Moore, Lyons, Gallacher (bib0033) 2019; 14
Hochreiter, Schmidhuber (bib0016) 1997; 9
Hardoon, D. R., Szedmak, S., Shawe-Taylor, J., 2004. Canonical correlation analysis: an overview with application to learning methods. 10.1162/0899766042321814
Vounou, Nichols, Montana (bib0046) 2010; 53
Fonteijn, Modat, Clarkson, Barnes, Lehmann, Hobbs, Scahill, Tabrizi, Ourselin, Fox, Alexander (bib0012) 2012; 60
El-Sappagh, Abuhmed, Riazul Islam, Kwak (bib0008) 2020; 412
Antelmi, Ayache, Robert, Lorenzi (bib0003) 2019
Shaw, Vanderstichele, Knapik-Czajka, Clark, Aisen, Petersen, Blennow, Soares, Simon, Lewczuk, Dean, Siemers, Potter, Lee, Trojanowski (bib0041) 2009; 65
Verbeke, Fieuws, Molenberghs, Davidian (bib0045) 2014; 23
Édith Le Floch, Guillemot, Frouin, Pinel, Lalanne, Trinchera, Tenenhaus, Moreno, Zilbovicius, Bourgeron, Dehaene, Thirion, Poline, Édouard Duchesnay (bib0023) 2012; 63
Martí-Juan, Sanroma-Guell, Piella (bib0029) 2020; 189
El-Sappagh, Alonso, Islam, Sultan, Kwak (bib0009) 2021; 11
Sobol, Kucherenko (bib0043) 2009; 79
Shi, Siddharth, Paige, Torr (bib0042) 2019
Young, Marinescu, Oxtoby, Bocchetta, Yong, Firth, Cash, Thomas, Dick, Cardoso, van Swieten, Borroni, Galimberti, Masellis, Tartaglia, Rowe, Graff, Tagliavini, Frisoni, Laforce, Finger, de Mendonça, Sorbi, Warren, Crutch, Fox, Ourselin, Schott, Rohrer, and (bib0050) 2018; 9
.
Lorenzi, Ziegler, Alexander, Ourselin (bib0027) 2015; 24
Goldberg (bib0013) 2017; 10
Molamohammadi, Rezaei-Shoshtari, Quitoriano (bib0031) 2020; Vol. 2020
Reuter, Rosas, Fischl (bib0039) 2010; 53
Reuter, Schmansky, Rosas, Fischl (bib0040) 2012; 61
Hyun, Li, Huang, Styner, Lin, Zhu (bib0017) 2016; 134
Gregor, Danihelka, Graves, Rezende, Wierstra (bib0014) 2015
Bakkour, Morris, Wolk, Dickerson (bib0004) 2013; 76
Nguyen, Sun, Alexander, Feng, Thomas Yeo (bib0036) 2018
Jacobs, Hopkins, Mayrhofer, Bruner, van Leeuwen, Raaijmakers, Schmahmann (bib0019) 2017; 141
Ngiam, Khosla, Kim, Nam, Lee, Ng (bib0035) 2011
Marinescu, Eshaghi, Alexander, Golland (bib0028) 2019
Chung, Kastner, Dinh, Goel, Courville, Bengio (bib0006) 2015
Klami, Virtanen, Leppaaho, Kaski (bib0021) 2015; 26
Molchanov, Ashukha, Vetrov (bib0032) 2017; Vol. 5
Oxtoby, Alexander (bib0038) 2017; 30
Wang, Qiu, Yu (bib0047) 2018; 8
Fabius, van Amersfoort (bib0010) 2015
Lane, Hardy, Schott (bib0022) 2018; 25
Lee, Nho, Kang, Sohn, Kim, Weiner, Aisen, Petersen, Jack (bib0024) 2019; 9
Du, Schuff, Amend, Laakso, Hsu, Jagust, Yaffe, Kramer, Reed, Norman, Chui, Weiner (bib0007) 2001; 71
Fisher, Smith, Walsh, Simon, Edgar, Jack, Holtzman, Russell, Hill, Grosset, Wood, Vanderstichele, Morris, Blennow, Marek, Shaw, Albert, Weiner, Fox, Aisen, Cole, Petersen, Sherer, Kubick (bib0011) 2019; 9
Kingma, Ba (bib0020) 2015
Yi, Möller, Dieleman, Bouwman, Barkhof, Scheltens, van der Flier, Vrenken (bib0049) 2016; 87
Lorenzi, Filippone, Frisoni, Alexander, Ourselin (bib0026) 2019; 190
Young, Oxtoby, Daga, Cash, Fox, Ourselin, Schott, Alexander (bib0051) 2014; 137
Young, Vogel, Aksman, Wijeratne, Eshaghi, Oxtoby, Williams, Alexander (bib0053) 2021; 4
Lei, Yang, Yang, Zhou, Hou, Zou, Li, Wang, Xiao, Wang (bib0025) 2020; 102
Nie, Zhang, Meng, Song, Chang, Li (bib0037) 2017; 28
Wu, Goodman (bib0048) 2018
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib0034) 2005; 15
Aksman, Scelsi, Marquand, Alexander, Ourselin, Altmann (bib0001) 2019; 40
Mehdipour Ghazi, Nielsen, Pai, Cardoso, Modat, Ourselin, Sørensen (bib0030) 2019; 53
Tsai, Liang, Zadeh, Morency, Salakhutdinov (bib0044) 2019
Hochreiter (10.1016/j.neuroimage.2023.119892_bib0016) 1997; 9
Molamohammadi (10.1016/j.neuroimage.2023.119892_bib0031) 2020; Vol. 2020
Reuter (10.1016/j.neuroimage.2023.119892_bib0039) 2010; 53
Jack (10.1016/j.neuroimage.2023.119892_bib0018) 2010; 9
Fabius (10.1016/j.neuroimage.2023.119892_bib0010) 2015
Mueller (10.1016/j.neuroimage.2023.119892_bib0034) 2005; 15
Reuter (10.1016/j.neuroimage.2023.119892_bib0040) 2012; 61
Shi (10.1016/j.neuroimage.2023.119892_bib0042) 2019
Shaw (10.1016/j.neuroimage.2023.119892_bib0041) 2009; 65
Marinescu (10.1016/j.neuroimage.2023.119892_bib0028) 2019
Chung (10.1016/j.neuroimage.2023.119892_bib0006) 2015
Antelmi (10.1016/j.neuroimage.2023.119892_bib0003) 2019
Kingma (10.1016/j.neuroimage.2023.119892_bib0020) 2015
Du (10.1016/j.neuroimage.2023.119892_bib0007) 2001; 71
El-Sappagh (10.1016/j.neuroimage.2023.119892_bib0009) 2021; 11
Gregor (10.1016/j.neuroimage.2023.119892_bib0014) 2015
Molchanov (10.1016/j.neuroimage.2023.119892_bib0032) 2017; Vol. 5
Aksman (10.1016/j.neuroimage.2023.119892_bib0001) 2019; 40
Young (10.1016/j.neuroimage.2023.119892_bib0050) 2018; 9
Tsai (10.1016/j.neuroimage.2023.119892_bib0044) 2019
Vounou (10.1016/j.neuroimage.2023.119892_bib0046) 2010; 53
Fonteijn (10.1016/j.neuroimage.2023.119892_bib0012) 2012; 60
Lee (10.1016/j.neuroimage.2023.119892_bib0024) 2019; 9
10.1016/j.neuroimage.2023.119892_bib0015
Nie (10.1016/j.neuroimage.2023.119892_bib0037) 2017; 28
Klami (10.1016/j.neuroimage.2023.119892_bib0021) 2015; 26
Lorenzi (10.1016/j.neuroimage.2023.119892_bib0027) 2015; 24
Moore (10.1016/j.neuroimage.2023.119892_bib0033) 2019; 14
Hyun (10.1016/j.neuroimage.2023.119892_bib0017) 2016; 134
Goldberg (10.1016/j.neuroimage.2023.119892_bib0013) 2017; 10
Lorenzi (10.1016/j.neuroimage.2023.119892_bib0026) 2019; 190
Fisher (10.1016/j.neuroimage.2023.119892_bib0011) 2019; 9
Lei (10.1016/j.neuroimage.2023.119892_bib0025) 2020; 102
Sobol (10.1016/j.neuroimage.2023.119892_bib0043) 2009; 79
El-Sappagh (10.1016/j.neuroimage.2023.119892_bib0008) 2020; 412
10.1016/j.neuroimage.2023.119892_bib0002
Édith Le Floch (10.1016/j.neuroimage.2023.119892_bib0023) 2012; 63
Verbeke (10.1016/j.neuroimage.2023.119892_bib0045) 2014; 23
Bakkour (10.1016/j.neuroimage.2023.119892_bib0004) 2013; 76
Mehdipour Ghazi (10.1016/j.neuroimage.2023.119892_bib0030) 2019; 53
Ngiam (10.1016/j.neuroimage.2023.119892_bib0035) 2011
Cao (10.1016/j.neuroimage.2023.119892_bib0005) 2019
Nguyen (10.1016/j.neuroimage.2023.119892_bib0036) 2018
Young (10.1016/j.neuroimage.2023.119892_bib0052) 2015
Oxtoby (10.1016/j.neuroimage.2023.119892_bib0038) 2017; 30
Young (10.1016/j.neuroimage.2023.119892_bib0053) 2021; 4
Yi (10.1016/j.neuroimage.2023.119892_bib0049) 2016; 87
Wang (10.1016/j.neuroimage.2023.119892_bib0047) 2018; 8
Lane (10.1016/j.neuroimage.2023.119892_bib0022) 2018; 25
Wu (10.1016/j.neuroimage.2023.119892_bib0048) 2018
Martí-Juan (10.1016/j.neuroimage.2023.119892_bib0029) 2020; 189
Jacobs (10.1016/j.neuroimage.2023.119892_bib0019) 2017; 141
Young (10.1016/j.neuroimage.2023.119892_bib0051) 2014; 137
References_xml – volume: 65
  start-page: 403
  year: 2009
  end-page: 413
  ident: bib0041
  article-title: Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects
  publication-title: Ann. Neurol.
– volume: 79
  start-page: 3009
  year: 2009
  end-page: 3017
  ident: bib0043
  article-title: Derivative based global sensitivity measures and their link with global sensitivity indices
  publication-title: Math. Comput. Simul.
– volume: 24
  start-page: 626
  year: 2015
  end-page: 637
  ident: bib0027
  article-title: Efficient Gaussian process-based modelling and prediction of image time series
  publication-title: Inf. Process. Med. Imaging
– start-page: 453
  year: 2019
  end-page: 464
  ident: bib0003
  article-title: Sparse multi-channel variational autoencoder for the joint analysis of heterogeneous data
  publication-title: 36th Int. Conf. Mach. Learn., ICML 2019
– reference: Alzheimer’s Association., 2018. Alzheimer’s Dement.: Global Resources.
– volume: 10
  start-page: 1
  year: 2017
  end-page: 311
  ident: bib0013
  article-title: Neural network methods for natural language processing
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 61
  start-page: 1402
  year: 2012
  end-page: 1418
  ident: bib0040
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
– volume: 87
  start-page: 425
  year: 2016
  end-page: 432
  ident: bib0049
  article-title: Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to alzheimer’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
– start-page: 112
  year: 2019
  end-page: 120
  ident: bib0028
  article-title: BrainPainter: a software for the visualisation of brain structures, biomarkers and associated pathological processes
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– start-page: 2980
  year: 2015
  end-page: 2988
  ident: bib0006
  article-title: A recurrent latent variable model for sequential data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 53
  start-page: 1147
  year: 2010
  end-page: 1159
  ident: bib0046
  article-title: Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach
  publication-title: Neuroimage
– volume: 30
  start-page: 371
  year: 2017
  end-page: 379
  ident: bib0038
  article-title: Imaging plus X: multimodal models of neurodegenerative disease
  publication-title: Curr. Opin. Neurol.
– year: 2019
  ident: bib0044
  article-title: Learning factorized multimodal representations
  publication-title: Int. Conf. Learn. Represent. ICLR 2019 - Conf. Track Proc.
– volume: 8
  start-page: 9161
  year: 2018
  ident: bib0047
  article-title: Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks
  publication-title: Sci. Rep.
– volume: 71
  start-page: 441
  year: 2001
  end-page: 447
  ident: bib0007
  article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and alzheimer’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 26
  start-page: 2136
  year: 2015
  end-page: 2147
  ident: bib0021
  article-title: Group factor analysis
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 60
  start-page: 1880
  year: 2012
  end-page: 1889
  ident: bib0012
  article-title: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease
  publication-title: Neuroimage
– volume: Vol. 5
  start-page: 3854
  year: 2017
  end-page: 3863
  ident: bib0032
  article-title: Variational dropout sparsifies deep neural networks
  publication-title: 34th Int. Conf. Mach. Learn., ICML 2017
– volume: 137
  start-page: 2564
  year: 2014
  end-page: 2577
  ident: bib0051
  article-title: A data-driven model of biomarker changes in sporadic Alzheimer’s disease
  publication-title: Brain
– year: 2018
  ident: bib0048
  article-title: Multimodal generative models for scalable weakly-supervised learning
  publication-title: NeurIPS
– volume: 28
  start-page: 1508
  year: 2017
  end-page: 1519
  ident: bib0037
  article-title: Modeling disease progression via multisource multitask learners: a case study with Alzheimer’s disease
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 190
  start-page: 56
  year: 2019
  end-page: 68
  ident: bib0026
  article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease
  publication-title: Neuroimage
– volume: 141
  start-page: 37
  year: 2017
  end-page: 47
  ident: bib0019
  article-title: The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline
  publication-title: Brain
– volume: 412
  start-page: 197
  year: 2020
  end-page: 215
  ident: bib0008
  article-title: Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data
  publication-title: Neurocomputing
– volume: 14
  start-page: e0211558
  year: 2019
  ident: bib0033
  article-title: Random forest prediction of Alzheimer’s disease using pairwise selection from time series data
  publication-title: PLoS ONE
– volume: 76
  start-page: 332
  year: 2013
  end-page: 344
  ident: bib0004
  article-title: The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: specificity and differential relationships with cognition
  publication-title: Neuroimage
– start-page: 689
  year: 2011
  end-page: 696
  ident: bib0035
  article-title: Multimodal deep learning
  publication-title: Proc. 28th Int. Conf. Mach. Learn., ICML 2011
– start-page: 711
  year: 2015
  end-page: 722
  ident: bib0052
  article-title: Multiple orderings of events in disease progression
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– year: 2019
  ident: bib0005
  article-title: Time-dependent canonical correlation analysis for multilevel time series
  publication-title: bioRxiv
– volume: 134
  start-page: 550
  year: 2016
  end-page: 562
  ident: bib0017
  article-title: STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data
  publication-title: Neuroimage
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  ident: bib0034
  article-title: The Alzheimer’s disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
– volume: 53
  start-page: 1181
  year: 2010
  end-page: 1196
  ident: bib0039
  article-title: Highly accurate inverse consistent registration: arobust approach
  publication-title: Neuroimage
– year: 2015
  ident: bib0020
  article-title: Adam: a method for stochastic optimization
  publication-title: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc.
– year: 2019
  ident: bib0042
  article-title: Variational mixture-of-experts autoencoders for multi-modal deep generative models
  publication-title: NeurIPS
– volume: 9
  year: 2019
  ident: bib0011
  article-title: Machine learning for comprehensive forecasting of Alzheimer’s disease progression
  publication-title: Sci. Rep.
– volume: 40
  start-page: 3982
  year: 2019
  end-page: 4000
  ident: bib0001
  article-title: Modeling longitudinal imaging biomarkers with parametric Bayesian multi-task learning
  publication-title: Hum. Brain Mapp.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 26
  ident: bib0009
  article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease
  publication-title: Sci. Rep.
– year: 2018
  ident: bib0036
  article-title: Modeling Alzheimer’s disease progression using deep recurrent neural networks
  publication-title: 2018 Int. Work. Pattern Recognit. Neuroimaging, PRNI 2018
– volume: 189
  start-page: 105348
  year: 2020
  ident: bib0029
  article-title: A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in Alzheimer’s disease
  publication-title: Comput. Methods Programs Biomed.
– volume: 9
  year: 2018
  ident: bib0050
  article-title: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference
  publication-title: Nat. Commun.
– volume: 63
  start-page: 11
  year: 2012
  end-page: 24
  ident: bib0023
  article-title: Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse partial least squares
  publication-title: Neuroimage
– volume: 23
  start-page: 42
  year: 2014
  end-page: 49
  ident: bib0045
  article-title: The analysis of multivariate longitudinal data: areview
  publication-title: Stat. Methods Med. Res.
– volume: 4
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0053
  article-title: Ordinal SuStaIn: subtype and stage inference for clinical scores, visual ratings, and other ordinal data
  publication-title: Front. Artif. Intell.
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  ident: bib0018
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade
  publication-title: Lancet Neurol.
– reference: .
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0024
  article-title: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Sci. Rep.
– reference: Hardoon, D. R., Szedmak, S., Shawe-Taylor, J., 2004. Canonical correlation analysis: an overview with application to learning methods. 10.1162/0899766042321814
– year: 2015
  ident: bib0010
  article-title: Variational recurrent auto-encoders
  publication-title: 3rd Int. Conf. Learn. Represent. ICLR 2015 - Work. Track Proc.
– volume: 25
  start-page: 59
  year: 2018
  end-page: 70
  ident: bib0022
  article-title: Alzheimer’s disease
  publication-title: Eur. J. Neurol.
– volume: 53
  start-page: 39
  year: 2019
  end-page: 46
  ident: bib0030
  article-title: Training recurrent neural networks robust to incomplete data: application to Alzheimer’s disease progression modeling
  publication-title: Med. Image Anal.
– volume: Vol. 2020
  year: 2020
  ident: bib0031
  article-title: Jacobian of generative models for sensitivity analysis of photovoltaic device processes
  publication-title: Machine Learning for Engineering Workshop at NeurIPS
– volume: 102
  year: 2020
  ident: bib0025
  article-title: Deep and joint learning of longitudinal data for Alzheimer’s disease prediction
  publication-title: Pattern Recognit.
– start-page: 1462
  year: 2015
  end-page: 1471
  ident: bib0014
  article-title: DRAW: a recurrent neural network for image generation
  publication-title: 32nd Int. Conf. Mach. Learn. ICML 2015
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0016
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 30
  start-page: 371
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119892_bib0038
  article-title: Imaging plus X: multimodal models of neurodegenerative disease
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000460
– volume: 137
  start-page: 2564
  issue: Pt 9
  year: 2014
  ident: 10.1016/j.neuroimage.2023.119892_bib0051
  article-title: A data-driven model of biomarker changes in sporadic Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awu176
– start-page: 112
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0028
  article-title: BrainPainter: a software for the visualisation of brain structures, biomarkers and associated pathological processes
– volume: 76
  start-page: 332
  year: 2013
  ident: 10.1016/j.neuroimage.2023.119892_bib0004
  article-title: The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: specificity and differential relationships with cognition
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.059
– year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0005
  article-title: Time-dependent canonical correlation analysis for multilevel time series
  publication-title: bioRxiv
– start-page: 1462
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119892_bib0014
  article-title: DRAW: a recurrent neural network for image generation
– volume: 102
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119892_bib0025
  article-title: Deep and joint learning of longitudinal data for Alzheimer’s disease prediction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107247
– year: 2018
  ident: 10.1016/j.neuroimage.2023.119892_bib0036
  article-title: Modeling Alzheimer’s disease progression using deep recurrent neural networks
– volume: 71
  start-page: 441
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2023.119892_bib0007
  article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and alzheimer’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.71.4.441
– volume: 26
  start-page: 2136
  issue: 9
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119892_bib0021
  article-title: Group factor analysis
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2376974
– volume: 4
  start-page: 1
  issue: August
  year: 2021
  ident: 10.1016/j.neuroimage.2023.119892_bib0053
  article-title: Ordinal SuStaIn: subtype and stage inference for clinical scores, visual ratings, and other ordinal data
  publication-title: Front. Artif. Intell.
– volume: 9
  start-page: 119
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119892_bib0018
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 40
  start-page: 3982
  issue: 13
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0001
  article-title: Modeling longitudinal imaging biomarkers with parametric Bayesian multi-task learning
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24682
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119892_bib0013
  article-title: Neural network methods for natural language processing
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 60
  start-page: 1880
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2023.119892_bib0012
  article-title: An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.062
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0011
  article-title: Machine learning for comprehensive forecasting of Alzheimer’s disease progression
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49656-2
– volume: 63
  start-page: 11
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2023.119892_bib0023
  article-title: Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse partial least squares
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.061
– volume: 28
  start-page: 1508
  issue: 7
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119892_bib0037
  article-title: Modeling disease progression via multisource multitask learners: a case study with Alzheimer’s disease
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2520964
– volume: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119892_bib0050
  article-title: Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05892-0
– volume: 190
  start-page: 56
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0026
  article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.059
– volume: 141
  start-page: 37
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119892_bib0019
  article-title: The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline
  publication-title: Brain
  doi: 10.1093/brain/awx194
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0024
  article-title: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Sci. Rep.
– year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0044
  article-title: Learning factorized multimodal representations
– volume: 412
  start-page: 197
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119892_bib0008
  article-title: Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.087
– volume: 23
  start-page: 42
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2023.119892_bib0045
  article-title: The analysis of multivariate longitudinal data: areview
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280212445834
– volume: 53
  start-page: 1181
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119892_bib0039
  article-title: Highly accurate inverse consistent registration: arobust approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.020
– ident: 10.1016/j.neuroimage.2023.119892_bib0015
  doi: 10.1162/0899766042321814
– volume: 61
  start-page: 1402
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2023.119892_bib0040
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 65
  start-page: 403
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2023.119892_bib0041
  article-title: Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21610
– year: 2015
  ident: 10.1016/j.neuroimage.2023.119892_bib0010
  article-title: Variational recurrent auto-encoders
– start-page: 689
  year: 2011
  ident: 10.1016/j.neuroimage.2023.119892_bib0035
  article-title: Multimodal deep learning
– volume: 79
  start-page: 3009
  issue: 10
  year: 2009
  ident: 10.1016/j.neuroimage.2023.119892_bib0043
  article-title: Derivative based global sensitivity measures and their link with global sensitivity indices
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2009.01.023
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2023.119892_bib0009
  article-title: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82098-3
– volume: 53
  start-page: 1147
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2023.119892_bib0046
  article-title: Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.002
– ident: 10.1016/j.neuroimage.2023.119892_bib0002
– volume: 25
  start-page: 59
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119892_bib0022
  article-title: Alzheimer’s disease
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.13439
– volume: 24
  start-page: 626
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119892_bib0027
  article-title: Efficient Gaussian process-based modelling and prediction of image time series
  publication-title: Inf. Process. Med. Imaging
– volume: 14
  start-page: e0211558
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0033
  article-title: Random forest prediction of Alzheimer’s disease using pairwise selection from time series data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0211558
– volume: 15
  start-page: 869
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2023.119892_bib0034
  article-title: The Alzheimer’s disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2005.09.008
– volume: Vol. 5
  start-page: 3854
  year: 2017
  ident: 10.1016/j.neuroimage.2023.119892_bib0032
  article-title: Variational dropout sparsifies deep neural networks
– year: 2018
  ident: 10.1016/j.neuroimage.2023.119892_bib0048
  article-title: Multimodal generative models for scalable weakly-supervised learning
– volume: 8
  start-page: 9161
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2023.119892_bib0047
  article-title: Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27337-w
– year: 2015
  ident: 10.1016/j.neuroimage.2023.119892_bib0020
  article-title: Adam: a method for stochastic optimization
– volume: 53
  start-page: 39
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0030
  article-title: Training recurrent neural networks robust to incomplete data: application to Alzheimer’s disease progression modeling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.004
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.neuroimage.2023.119892_bib0016
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 134
  start-page: 550
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119892_bib0017
  article-title: STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.023
– volume: Vol. 2020
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119892_bib0031
  article-title: Jacobian of generative models for sensitivity analysis of photovoltaic device processes
– start-page: 2980
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119892_bib0006
  article-title: A recurrent latent variable model for sequential data
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 711
  year: 2015
  ident: 10.1016/j.neuroimage.2023.119892_bib0052
  article-title: Multiple orderings of events in disease progression
– start-page: 453
  year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0003
  article-title: Sparse multi-channel variational autoencoder for the joint analysis of heterogeneous data
– volume: 189
  start-page: 105348
  year: 2020
  ident: 10.1016/j.neuroimage.2023.119892_bib0029
  article-title: A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in Alzheimer’s disease
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105348
– volume: 87
  start-page: 425
  issue: 4
  year: 2016
  ident: 10.1016/j.neuroimage.2023.119892_bib0049
  article-title: Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to alzheimer’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2014-309105
– year: 2019
  ident: 10.1016/j.neuroimage.2023.119892_bib0042
  article-title: Variational mixture-of-experts autoencoders for multi-modal deep generative models
SSID ssj0009148
Score 2.5142014
Snippet •A multi-channel model based on recurrent variational autoencoders was proposed to capture spatial and temporal evolution of AD using multimodal data.•Proposed...
The progression of neurodegenerative diseases, such as Alzheimer's Disease, is the result of complex mechanisms interacting across multiple spatial and...
The progression of neurodegenerative diseases, such as Alzheimer’s Disease, is the result of complex mechanisms interacting across multiple spatial and...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119892
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Biomarkers
Cognitive ability
Disease Progression
Disease progression modelling
Factor analysis
Humans
Longitudinal
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical research
Multimodal
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Neuroimaging - methods
Positron-Emission Tomography - methods
Recurrent neural network
Variables
Variational autoencoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQhRAXxD-BgozENZAfJ47hVKpWHGiFEFS9WXY8FlvtZlF2twdOvAavx5MwYzsLPSD2gBTlkNiJNTMef7bH3zD2QlVQeekgR-Mxuahkn9uisblswTocz0UTtgvO3svT0-78XH34I9UXxYRFeuAouFcgGnKz0JjKC2Mqa11tjBINlN6Bt-R9EfVMk6mJbhdRforbidFcgR1ytsA--pIShqOnUJ2qrgxGgbP_ypj0N8wZxp7j2-xWAo38IDb2DrsGw1124yRti99jq5PD_OPZwdFrHs7T5nSad4A5H2kxneiX-CVOidOyHzeb9ZLoKx2MHCErDzGFi6WjP8y_fYHZAsaf33-seNq84SGGK_J38JA5h46w32efj48-Hb7LUzaFvEdIts6tAt8WoFB2wkqcNvpSGvC1qYxSwinrmsa1dWlNUfuisGWF5Xugqy3bXtYP2N6wHOAR461rpDe2RN8khPFgbS0Q2eBnvZfKdRmTk1h1n6jGKePFXE8xZRf6t0I0KURHhWSs3Nb8Guk2dqjzljS3LU-E2eEBmpFOZqT_ZUYZU5Pe9XQmFb0ofmi2QwPebOsm3BLxyI619ycz08l_rHQlZU0RAV2Rsefb19jzaTvHDLDcUJm260q6ZexhNM-tDOq2xal_oR7_D9k8YTepvTHybp_trccNPGXX-8v1bDU-Cx3vF9DxOVI
  priority: 102
  providerName: Directory of Open Access Journals
Title MC-RVAE: Multi-channel recurrent variational autoencoder for multimodal Alzheimer’s disease progression modelling
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811923000411
https://dx.doi.org/10.1016/j.neuroimage.2023.119892
https://www.ncbi.nlm.nih.gov/pubmed/36682509
https://www.proquest.com/docview/2773700180
https://www.proquest.com/docview/2768817688
https://doaj.org/article/e451303e5a2f4aa2bbd3aa945e1fdefb
Volume 268
WOSCitedRecordID wos000934066200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYhhAXvmGBURmJqyFOnDiGA9qmThxoVU0w9RbZsQ1FbbOl7Q6c-Df49_hL8HOcVDuAKiFFPiS28_Gen1_ex-8h9FokJrFcG-KYRxKW8IqoOFOE50Zpt5-zzLsLLj7x8biYTsUkGNxWIayyk4leUOu6Ahv524TzFHykRfzh8opA1SjwroYSGnvoAFASUh-6N9mC7lLWpsJlKSkoFSGSp43v8niRs4VbtW-ghLiTHaIQyY3tyaP439il_qaF-t3o7P7_vscDdC_oofi4ZZyH6JZZPkJ3RsHT_hitRqfk_OJ4-A77FF0CCcJLM8cN2OcB0Qlfu7_sYEnEcrOuARFTmwY7LRj7MMVFreEO8x_fzGxhmt8_f61w8AdhHxbWQoJgX4wHsuKfoC9nw8-nH0ko0EAqp-WtiRLG5rERUjCmuPsTtZRLY1OZSCGYFkpnmc5TqmSc2jhWNHH9KwNHTvOKp0_R_rJemkOEc51xKxV14o4xaY1SKXPKkpvWWi50ESHe0aWsAno5FNGYl12Y2vdyS9ESKFq2FI0Q7UdetggeO4w5AdL3_QGD25-om69lWNKlYRkoACaTiWVSJkrpVLpPkRlqtbEqQqJjnLJLc3WC2U002-EB3vdjgyrUqjg7jj7qeK8MImlVbhkvQq_6y06YgIdILk29gT55UVBoIvSs5e_-G6R5Xjh9WTz_9-Qv0F14kjZM7wjtr5uNeYluV9fr2aoZoD0-5b4tBujgZDienA-8GcS1o2Q08Ov3D4ndTK0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKQZQN70eggJFg6TL2eMZjEEKltGrVJEKoVN0Ze2yXoCRTJkkRrPgNfoKP4kvwnUeiLkDZdIE0ymJieybO8bnXvi-EnkrmmBfWkQAeTTgTOTFRYohInbFBnvOkMhccdkW_nx0dyXcr6FcbCwNulS0nVkRtixzOyJ8zIWKwkWbR65MvBKpGgXW1LaFRw2LfffsatmyTV3tvw__7jLGd7YOtXdJUFSB5UE2mxEjn08hJLTk3ImyfPBXa-VgzLSW30tgksWlMjY5iH0WGstA-d3ClNM1FHMa9gC7ysBOCUhE91lsk-aW8Dr1LYpJRKhvPodqfrMpPORgFltiAkuWBq2Qm2RlxWFUNOCMV_6b1VtJv59r_Nm_X0dVGz8ab9cK4gVbc-Ca63Gs8CW6hSW-LvD_c3H6BqxBkAgHQYzfEJdgfIGMVPtXloDkpxXo2LSDjp3UlDlo-rtwwR4WFJwy_f3KDkSt___g5wY29C1dub3XKE1wVG4Ko_9vow7n85DtodVyM3T2EU5sIrw0NdM659s6YmAdlMAzrvZA26yDR4kDlTXZ2KBIyVK0b3me1QJACBKkaQR1E5z1P6gwlS_R5A1Cbt4cc49WNojxWDWUpxxNQcFyimedaM2NsrMNUJI5667zpINkCVbVhvEHwhIEGS7zAy3nfRtWrVbgle6-3WFcN5U7UAugd9GT-dSBLsIDpsStm0CbNMgofHXS3Xk_zOYjTNAv7AXn_34M_Rmu7B72u6u719x-gK_BWtUviOlqdljP3EF3KT6eDSfmo4gaMPp73ovoD33OlpA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLbGQBM3_P8UBhgJLsNix4ljEEJjW8W0raoQTLszdmxvRW0z0nYIrngNXoXH4UnwcZJWuwD1ZhdIVS9a20ndz-cc53z-DkLPBLXUcWMjDx4VMcqLSMepjnhmtfH-nKUhXXC4z3u9_OhI9FfQr_YsDNAqW5sYDLUpC3hGvkE5TyBHmscbrqFF9Le7b06_RFBBCjKtbTmNGiJ79ttXv32bvN7d9v_1c0q7Ox-23kVNhYGo8GHKNNLCuiy2QgnGNPdbKUe4si5RVAnBjNAmTU2WEK3ixMWxJtS3Lyy8MpIVPPHjXkKXOYiWB9pgfyH4S1h9DC9NopwQ0bCIam5Z0KocjLzFeAHly73dErmg51xjqCBwzkP-LQIOnrB7_X-ewxvoWhN_4816wdxEK3Z8C60dNAyD22hysBW9P9zceYnD0eQIDkaP7RBXkJcAJSt8pqpB8wQVq9m0BCVQYyvso38c6Jmj0sAVht9P7GBkq98_fk5wkwfDgQ5XS6HgUIQI1ADuoI8X8pPvotVxObb3Ec5Myp3SxJt5xpSzWifMB4l-WOe4MHkH8RYTsmhU26F4yFC29LzPcoEmCWiSNZo6iMx7ntbKJUv0eQuwm7cH7fHwQVkdy8aUSctSCHxsqqhjSlGtTaL8VKSWOGOd7iDRgla2x3u9Q_IDDZa4gVfzvk0IWId2S_Zeb3EvG1M8kQvQd9DT-dfeiEJmTI1tOYM2WZ4TeOuge_Xams9BkmW53yeIB_8e_Ala82tJ7u_29h6iq3BTNVNxHa1Oq5l9hK4UZ9PBpHoczARGny56Tf0B9wmudQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MC-RVAE%3A+Multi-channel+recurrent+variational+autoencoder+for+multimodal+Alzheimer%E2%80%99s+disease+progression+modelling&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Mart%C3%AD-Juan%2C+Gerard&rft.au=Lorenzi%2C+Marco&rft.au=Piella%2C+Gemma&rft.date=2023-03-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=268&rft_id=info:doi/10.1016%2Fj.neuroimage.2023.119892&rft.externalDocID=S1053811923000411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon