Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining

XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filament...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:eLife Ročník 6
Hlavní autoři: Normanno, Davide, Négrel, Aurélie, de Melo, Abinadabe J, Betzi, Stéphane, Meek, Katheryn, Modesti, Mauro
Médium: Journal Article
Jazyk:angličtina
Vydáno: England eLife Sciences Publications Ltd 13.05.2017
eLife Sciences Publication
eLife Sciences Publications, Ltd
Témata:
ISSN:2050-084X, 2050-084X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments. DNA in human and other animal cells is organised into structures called chromosomes. One of the most dangerous types of DNA damage is a double-strand break, where both strands of the DNA helix are broken in the same place. If this damage is not repaired it can be serious enough to kill the cell. If the DNA is repaired badly, part of one chromosome can become attached to another – a defect known as a chromosome translocation. Fortunately, cells are equipped with machineries that can recognise and fix these breaks. One of these processes is known as “non-homologous end joining” and it involves a set of proteins including two known as XRCC4 and XLF. These proteins work like a bandage, holding together the broken DNA until it is repaired. Both proteins have long tails, but the role of these structures was not clear. During DNA repair, the cell chemically modifies the tails of these proteins by a process called phosphorylation. However, previous studies have found that it is possible to prevent the modification of the tail of one of the proteins, or even remove the tail entirely, without affecting the repair process. Here, Normanno et al. investigated the effect of blocking the modification of the tails of both proteins at the same time. For the experiments, the tails were both altered in various places to either block or mimic the phosphorylation that normally occurs during DNA repair. Mimicking the phosphorylation of both tails affected the ability of XRCC4 and XLF to stay attached to the DNA, suggesting that the phosphorylation helps these proteins to detach from the DNA once the repair is complete. Furthermore, in human embryonic kidney cells the altered proteins were less able to repair DNA damage in response to a drug that causes double-strand breaks. These findings improve our understanding of how cells repair their DNA to maintain a complete set of genetic information. Defects in DNA repair are linked to conditions where the brain does not develop properly, whilst some cancer therapies deliberately inflict double-strand breaks to kill cancer cells. In the future, these findings may lead to improvements in radiotherapy and other treatments for human diseases.
AbstractList XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments. DNA in human and other animal cells is organised into structures called chromosomes. One of the most dangerous types of DNA damage is a double-strand break, where both strands of the DNA helix are broken in the same place. If this damage is not repaired it can be serious enough to kill the cell. If the DNA is repaired badly, part of one chromosome can become attached to another – a defect known as a chromosome translocation. Fortunately, cells are equipped with machineries that can recognise and fix these breaks. One of these processes is known as “non-homologous end joining” and it involves a set of proteins including two known as XRCC4 and XLF. These proteins work like a bandage, holding together the broken DNA until it is repaired. Both proteins have long tails, but the role of these structures was not clear. During DNA repair, the cell chemically modifies the tails of these proteins by a process called phosphorylation. However, previous studies have found that it is possible to prevent the modification of the tail of one of the proteins, or even remove the tail entirely, without affecting the repair process. Here, Normanno et al. investigated the effect of blocking the modification of the tails of both proteins at the same time. For the experiments, the tails were both altered in various places to either block or mimic the phosphorylation that normally occurs during DNA repair. Mimicking the phosphorylation of both tails affected the ability of XRCC4 and XLF to stay attached to the DNA, suggesting that the phosphorylation helps these proteins to detach from the DNA once the repair is complete. Furthermore, in human embryonic kidney cells the altered proteins were less able to repair DNA damage in response to a drug that causes double-strand breaks. These findings improve our understanding of how cells repair their DNA to maintain a complete set of genetic information. Defects in DNA repair are linked to conditions where the brain does not develop properly, whilst some cancer therapies deliberately inflict double-strand breaks to kill cancer cells. In the future, these findings may lead to improvements in radiotherapy and other treatments for human diseases.
XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.
XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments. DOI: http://dx.doi.org/10.7554/eLife.22900.001 DNA in human and other animal cells is organised into structures called chromosomes. One of the most dangerous types of DNA damage is a double-strand break, where both strands of the DNA helix are broken in the same place. If this damage is not repaired it can be serious enough to kill the cell. If the DNA is repaired badly, part of one chromosome can become attached to another – a defect known as a chromosome translocation. Fortunately, cells are equipped with machineries that can recognise and fix these breaks. One of these processes is known as “non-homologous end joining” and it involves a set of proteins including two known as XRCC4 and XLF. These proteins work like a bandage, holding together the broken DNA until it is repaired. Both proteins have long tails, but the role of these structures was not clear. During DNA repair, the cell chemically modifies the tails of these proteins by a process called phosphorylation. However, previous studies have found that it is possible to prevent the modification of the tail of one of the proteins, or even remove the tail entirely, without affecting the repair process. Here, Normanno et al. investigated the effect of blocking the modification of the tails of both proteins at the same time. For the experiments, the tails were both altered in various places to either block or mimic the phosphorylation that normally occurs during DNA repair. Mimicking the phosphorylation of both tails affected the ability of XRCC4 and XLF to stay attached to the DNA, suggesting that the phosphorylation helps these proteins to detach from the DNA once the repair is complete. Furthermore, in human embryonic kidney cells the altered proteins were less able to repair DNA damage in response to a drug that causes double-strand breaks. These findings improve our understanding of how cells repair their DNA to maintain a complete set of genetic information. Defects in DNA repair are linked to conditions where the brain does not develop properly, whilst some cancer therapies deliberately inflict double-strand breaks to kill cancer cells. In the future, these findings may lead to improvements in radiotherapy and other treatments for human diseases. DOI: http://dx.doi.org/10.7554/eLife.22900.002
XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.DOI: http://dx.doi.org/10.7554/eLife.22900.001
XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.
Author Betzi, Stéphane
de Melo, Abinadabe J
Normanno, Davide
Négrel, Aurélie
Modesti, Mauro
Meek, Katheryn
Author_xml – sequence: 1
  givenname: Davide
  orcidid: 0000-0003-4740-5542
  surname: Normanno
  fullname: Normanno, Davide
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
– sequence: 2
  givenname: Aurélie
  surname: Négrel
  fullname: Négrel, Aurélie
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
– sequence: 3
  givenname: Abinadabe J
  surname: de Melo
  fullname: de Melo, Abinadabe J
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
– sequence: 4
  givenname: Stéphane
  surname: Betzi
  fullname: Betzi, Stéphane
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
– sequence: 5
  givenname: Katheryn
  surname: Meek
  fullname: Meek, Katheryn
  organization: Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, United States
– sequence: 6
  givenname: Mauro
  orcidid: 0000-0002-4964-331X
  surname: Modesti
  fullname: Modesti, Mauro
  organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28500754$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01788018$$DView record in HAL
BookMark eNptku9r1DAcxotM3Jx75XsJ-EaRzqRN2uSNcFTnBqeCKNy7kKbf9nKkzS1pD_bv-Jea3s2xHQZKkm8-z5MffV4mJ4MbIEleE3xZMkY_wtK0cJllAuNnyVmGGU4xp6uTR-PT5CKEDY6tpJwT8SI5zTiLM0bPkj_fplGNxg3Kou3ahfilvemN9nfIww6UDUjFUTdZNbq56Cyg1nk0rgGtflYVRWpo0Gp5hap0BN-b2WpUJgrNgHrXzEozdOjz9wWqvWm6edJMfu60VSEYHRXxXuna9c66zk0BQfTcODNE6FXyvI3HgIv7_jz5ffXlV3WdLn98vakWy1Szko2pgpo2GRWY1FzznJEMeF1SQjXTmNYtaWpakkarus0VhpYXZa6IKuOLiAZ0nZ8nNwffxqmN3HrTK38nnTJyX3C-k8qPRluQGeMFywVrW5VTYEwUlJeiIS3NNBUKR69PB6_tVPfQaBhGr-wT06crg1nLzu0kowXHYjZ4fzBYH8muF0s51zApOceE70hk391v5t3tBGGUvQkarFUDxLeUhAtBiMiKIqJvj9CNm3z8Y5ESLCsppkRE6s3j0z_s_y82EfhwALR3IXhoHxCC5ZxLuc-l3Ocy0uSI1uYQunh1Y_-r-QvMqud2
CitedBy_id crossref_primary_10_1002_pro_4133
crossref_primary_10_3390_cancers12092356
crossref_primary_10_1093_nar_gkaa723
crossref_primary_10_3390_biom11101487
crossref_primary_10_1083_jcb_201905221
crossref_primary_10_1038_s41594_018_0120_y
crossref_primary_10_1016_j_dnarep_2019_102738
crossref_primary_10_1146_annurev_biochem_080320_110356
crossref_primary_10_1016_j_cell_2021_04_035
crossref_primary_10_1016_j_pbiomolbio_2023_05_001
crossref_primary_10_1074_jbc_RA119_010421
crossref_primary_10_1016_j_dnarep_2023_103553
crossref_primary_10_1038_s41586_021_03458_7
crossref_primary_10_1093_jrr_rrab016
crossref_primary_10_1002_2211_5463_13363
crossref_primary_10_3390_genes12081143
crossref_primary_10_1038_s41594_024_01339_x
crossref_primary_10_1093_nar_gkac913
crossref_primary_10_1093_nar_gkac237
crossref_primary_10_1016_j_pbiomolbio_2020_11_008
crossref_primary_10_7554_eLife_61920
crossref_primary_10_1038_s41467_024_45553_z
crossref_primary_10_1016_j_dnarep_2024_103716
crossref_primary_10_1080_09553002_2023_2214210
crossref_primary_10_1007_s12104_021_10035_6
crossref_primary_10_1038_s41467_022_31365_6
crossref_primary_10_1002_2211_5463_12589
crossref_primary_10_1074_jbc_RA119_007421
crossref_primary_10_1093_jrr_rry072
crossref_primary_10_1093_nar_gkac564
Cites_doi 10.1128/MCB.02269-06
10.1093/emboj/18.7.2008
10.1093/nar/26.19.4413
10.1146/annurev-genet-110711-155540
10.1074/jbc.M109.058719
10.1016/j.molcel.2007.10.024
10.1016/j.dnarep.2013.12.006
10.1093/nar/gks022
10.5402/2012/345805
10.1038/sj.emboj.7600375
10.1038/nature18643
10.1016/j.jmb.2003.09.031
10.1016/j.molcel.2015.01.005
10.1016/j.dnarep.2003.11.005
10.1126/science.1232033
10.1016/j.molcel.2008.07.017
10.1073/pnas.0702620104
10.1016/j.dnarep.2008.06.015
10.1042/BST0391387
10.1016/j.molcel.2016.08.037
10.4049/jimmunol.1501654
10.1074/jbc.M608727200
10.1016/j.dnarep.2014.04.002
10.1074/jbc.M609904200
10.1016/j.cell.2005.12.030
10.1073/pnas.1420115112
10.1016/j.dnarep.2015.10.002
10.1016/j.febslet.2011.05.046
10.1093/nar/gkw1221
10.1128/MCB.01503-14
10.1016/j.celrep.2015.03.058
10.1128/MCB.25.24.10842-10852.2005
10.1093/nar/gkr1315
10.1128/MCB.23.16.5836-5848.2003
10.1016/j.dnarep.2004.06.017
10.1146/annurev.biochem.052308.093131
10.1016/S1568-7864(03)00143-5
10.1016/j.dnarep.2007.10.008
10.1074/jbc.M110.138156
10.1073/pnas.1100758108
10.1074/jbc.M111.272641
10.1083/jcb.201203128
10.1083/jcb.200802146
10.1371/journal.pone.0037120
10.1128/MCB.01554-13
ContentType Journal Article
Copyright 2017, Normanno et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
2017, Normanno et al 2017 Normanno et al
Copyright_xml – notice: 2017, Normanno et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: 2017, Normanno et al 2017 Normanno et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.7554/eLife.22900
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_25865395ffa34e55964879d1f42c49a0
PMC5468090
oai:HAL:hal-01788018v1
28500754
10_7554_eLife_22900
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI048758
– fundername: ;
  grantid: AI048758
– fundername: ;
  grantid: PLBIO13-099
– fundername: ;
  grantid: SFI20121205867
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
ALIPV
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RHF
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
VOOES
5PM
ID FETCH-LOGICAL-c575t-aeb4d24901b8c83512e8b7414c5c04bf1db471dcabf3a0ef8673a1a78199decb3
IEDL.DBID DOA
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403161500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:51:08 EDT 2025
Tue Nov 04 02:00:40 EST 2025
Tue Oct 14 20:21:25 EDT 2025
Fri Sep 05 05:56:07 EDT 2025
Tue Oct 07 07:06:16 EDT 2025
Thu Jan 02 23:11:34 EST 2025
Sat Nov 29 01:39:20 EST 2025
Tue Nov 18 21:02:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords XLF
XRCC4
genes
biochemistry
chromosomes
NHEJ
human
Language English
License http://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-aeb4d24901b8c83512e8b7414c5c04bf1db471dcabf3a0ef8673a1a78199decb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC5468090
Sigma Aldrich, Saint Quentin Fallavier, France.
ORCID 0000-0002-4964-331X
0000-0003-4740-5542
0000-0001-5935-5058
0000-0002-0454-4414
OpenAccessLink https://doaj.org/article/25865395ffa34e55964879d1f42c49a0
PMID 28500754
PQID 1952740419
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_25865395ffa34e55964879d1f42c49a0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5468090
hal_primary_oai_HAL_hal_01788018v1
proquest_miscellaneous_1899119266
proquest_journals_1952740419
pubmed_primary_28500754
crossref_primary_10_7554_eLife_22900
crossref_citationtrail_10_7554_eLife_22900
PublicationCentury 2000
PublicationDate 2017-05-13
PublicationDateYYYYMMDD 2017-05-13
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2017
Publisher eLife Sciences Publications Ltd
eLife Sciences Publication
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publication
– name: eLife Sciences Publications, Ltd
References Cottarel (bib9) 2013; 200
Fattah (bib13) 2014; 15
Mani (bib27) 2010; 285
Cui (bib10) 2005; 25
Iles (bib17) 2007; 27
Lu (bib23) 2007; 282
Modesti (bib28) 1999; 18
Reid (bib36) 2015; 112
Li (bib20) 2008; 31
Lieber (bib21) 2010; 79
Roy (bib39) 2015; 35
Povirk (bib34) 2012; 2012
Fonfría-Subirós (bib14) 2012; 7
Malivert (bib26) 2010; 285
Postow (bib33) 2011; 585
Ding (bib12) 2003; 23
Woodbine (bib42) 2014; 17
Neal (bib31) 2016; 196
Wu (bib43) 2011; 39
Hammel (bib15) 2011; 286
Koch (bib18) 2004; 23
Yu (bib45) 2003; 2
Brouwer (bib4) 2016; 535
Tsai (bib40) 2007; 104
Andres (bib1) 2007; 28
Brown (bib5) 2015; 11
Aravind (bib3) 1998; 26
Hentges (bib16) 2006; 281
Mali (bib25) 2013; 339
Yu (bib44) 2008; 7
Postow (bib32) 2008; 182
Reid (bib35) 2017; 45
Neal (bib30) 2014; 34
Ropars (bib37) 2011; 108
Clements (bib8) 2004; 3
Liu (bib22) 2015; 57
Lee (bib19) 2004; 3
Macrae (bib24) 2008; 7
Deriano (bib11) 2013; 47
Modesti (bib29) 2003; 334
Buck (bib6) 2006; 124
Andres (bib2) 2012; 40
Roy (bib38) 2012; 40
Cherry (bib7) 2015; 35
van den Boom (bib41) 2016; 64
17317666 - J Biol Chem. 2007 Apr 13;282(15):11155-62
17038309 - J Biol Chem. 2006 Dec 8;281(49):37517-26
22228831 - Nucleic Acids Res. 2012 Feb;40(4):1684-94
24461734 - DNA Repair (Amst). 2014 Mar;15:39-53
12897153 - Mol Cell Biol. 2003 Aug;23 (16):5836-48
9742243 - Nucleic Acids Res. 1998 Oct 1;26(19):4413-21
16439204 - Cell. 2006 Jan 27;124(2):287-99
23337116 - J Cell Biol. 2013 Jan 21;200(2):173-86
16314509 - Mol Cell Biol. 2005 Dec;25(24):10842-52
15380105 - DNA Repair (Amst). 2004 Nov 2;3(11):1493-502
20558749 - J Biol Chem. 2010 Aug 20;285(34):26475-83
20192759 - Annu Rev Biochem. 2010;79:181-211
20852255 - J Biol Chem. 2010 Nov 26;285(48):37619-29
14599745 - DNA Repair (Amst). 2003 Nov 21;2(11):1239-52
18077224 - DNA Repair (Amst). 2008 Feb 1;7(2):292-302
23287722 - Science. 2013 Feb 15;339(6121):823-6
15385968 - EMBO J. 2004 Oct 1;23 (19):3874-85
10202163 - EMBO J. 1999 Apr 1;18(7):2008-18
25941401 - Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2575-84
27437582 - Nature. 2016 Jul 28;535(7613):566-9
15177042 - DNA Repair (Amst). 2004 Mar 4;3(3):267-76
21768349 - Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12663-8
22615915 - PLoS One. 2012;7(5):e37120
24050180 - Annu Rev Genet. 2013;47:433-55
18678709 - J Cell Biol. 2008 Aug 11;182(3):467-79
21775435 - J Biol Chem. 2011 Sep 16;286(37):32638-50
21640108 - FEBS Lett. 2011 Sep 16;585(18):2876-82
26519825 - DNA Repair (Amst). 2015 Nov;35:116-25
17353262 - Mol Cell Biol. 2007 May;27(10 ):3793-803
21936820 - Biochem Soc Trans. 2011 Oct;39(5):1387-92, suppl 2 p following 1392
25921528 - Cell Rep. 2015 May 5;11(5):704-14
17470781 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7851-6
27716483 - Mol Cell. 2016 Oct 6;64(1):189-198
14607114 - J Mol Biol. 2003 Nov 21;334(2):215-28
22287571 - Nucleic Acids Res. 2012 Feb;40(4):1868-78
27924007 - Nucleic Acids Res. 2017 Feb 28;45(4):1872-1878
24687855 - Mol Cell Biol. 2014 Jun;34(12):2162-75
18158905 - Mol Cell. 2007 Dec 28;28(6):1093-101
24236237 - ISRN Mol Biol. 2012;2012:null
18644470 - DNA Repair (Amst). 2008 Oct 1;7(10):1680-92
24780557 - DNA Repair (Amst). 2014 May;17:9-20
26100018 - Mol Cell Biol. 2015 Sep 1;35(17 ):3017-28
18775323 - Mol Cell. 2008 Sep 5;31(5):631-40
26921311 - J Immunol. 2016 Apr 1;196 (7):3032-42
25661488 - Mol Cell. 2015 Feb 19;57(4):648-61
References_xml – volume: 27
  start-page: 3793
  year: 2007
  ident: bib17
  article-title: APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.02269-06
– volume: 18
  start-page: 2008
  year: 1999
  ident: bib28
  article-title: DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity
  publication-title: The EMBO Journal
  doi: 10.1093/emboj/18.7.2008
– volume: 26
  start-page: 4413
  year: 1998
  ident: bib3
  article-title: AT-hook motifs identified in a wide variety of DNA-binding proteins
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/26.19.4413
– volume: 47
  start-page: 433
  year: 2013
  ident: bib11
  article-title: Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage
  publication-title: Annual Review of Genetics
  doi: 10.1146/annurev-genet-110711-155540
– volume: 285
  start-page: 37619
  year: 2010
  ident: bib27
  article-title: Dual modes of interaction between XRCC4 and polynucleotide kinase/phosphatase: implications for nonhomologous end joining
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M109.058719
– volume: 28
  start-page: 1093
  year: 2007
  ident: bib1
  article-title: Crystal structure of human XLF: a twist in nonhomologous DNA end-joining
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2007.10.024
– volume: 15
  start-page: 39
  year: 2014
  ident: bib13
  article-title: A role for XLF in DNA repair and recombination in human somatic cells
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2013.12.006
– volume: 40
  start-page: 1868
  year: 2012
  ident: bib2
  article-title: A human XRCC4-XLF complex bridges DNA
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gks022
– volume: 2012
  start-page: 1
  year: 2012
  ident: bib34
  article-title: Processing of damaged DNA ends for double-strand break repair in mammalian cells
  publication-title: ISRN Molecular Biology
  doi: 10.5402/2012/345805
– volume: 23
  start-page: 3874
  year: 2004
  ident: bib18
  article-title: Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV
  publication-title: The EMBO Journal
  doi: 10.1038/sj.emboj.7600375
– volume: 535
  start-page: 566
  year: 2016
  ident: bib4
  article-title: Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA
  publication-title: Nature
  doi: 10.1038/nature18643
– volume: 334
  start-page: 215
  year: 2003
  ident: bib29
  article-title: Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2003.09.031
– volume: 57
  start-page: 648
  year: 2015
  ident: bib22
  article-title: Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.01.005
– volume: 3
  start-page: 267
  year: 2004
  ident: bib19
  article-title: Identification of DNA-PKcs phosphorylation sites in XRCC4 and effects of mutations at these sites on DNA end joining in a cell-free system
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2003.11.005
– volume: 339
  start-page: 823
  year: 2013
  ident: bib25
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 31
  start-page: 631
  year: 2008
  ident: bib20
  article-title: Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2008.07.017
– volume: 104
  start-page: 7851
  year: 2007
  ident: bib40
  article-title: Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends
  publication-title: PNAS
  doi: 10.1073/pnas.0702620104
– volume: 7
  start-page: 1680
  year: 2008
  ident: bib44
  article-title: DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2008.06.015
– volume: 39
  start-page: 1387
  year: 2011
  ident: bib43
  article-title: Non-homologous end-joining partners in a helical dance: structural studies of XLF-XRCC4 interactions
  publication-title: Biochemical Society Transactions
  doi: 10.1042/BST0391387
– volume: 64
  start-page: 189
  year: 2016
  ident: bib41
  article-title: VCP/p97 extracts Sterically Trapped Ku70/80 rings from DNA in Double-Strand Break Repair
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2016.08.037
– volume: 196
  start-page: 3032
  year: 2016
  ident: bib31
  article-title: Restoration of ATM expression in DNA-PKcs-Deficient cells inhibits signal end joining
  publication-title: The Journal of Immunology
  doi: 10.4049/jimmunol.1501654
– volume: 281
  start-page: 37517
  year: 2006
  ident: bib16
  article-title: Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M608727200
– volume: 17
  start-page: 9
  year: 2014
  ident: bib42
  article-title: Reprint of "The clinical impact of deficiency in DNA non-homologous end-joining"
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2014.04.002
– volume: 282
  start-page: 11155
  year: 2007
  ident: bib23
  article-title: Length-dependent binding of human XLF to DNA and stimulation of XRCC4.DNA ligase IV activity
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M609904200
– volume: 124
  start-page: 287
  year: 2006
  ident: bib6
  article-title: Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly
  publication-title: Cell
  doi: 10.1016/j.cell.2005.12.030
– volume: 112
  start-page: E2575
  year: 2015
  ident: bib36
  article-title: Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair
  publication-title: PNAS
  doi: 10.1073/pnas.1420115112
– volume: 35
  start-page: 116
  year: 2015
  ident: bib7
  article-title: Versatility in phospho-dependent molecular recognition of the XRCC1 and XRCC4 DNA-damage scaffolds by aprataxin-family FHA domains
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2015.10.002
– volume: 585
  start-page: 2876
  year: 2011
  ident: bib33
  article-title: Destroying the ring: freeing DNA from Ku with ubiquitin
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2011.05.046
– volume: 45
  start-page: 1872
  year: 2017
  ident: bib35
  article-title: Bridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw1221
– volume: 35
  start-page: 3017
  year: 2015
  ident: bib39
  article-title: XRCC4/XLF interaction is variably required for DNA repair and is not required for Ligase IV stimulation
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.01503-14
– volume: 11
  start-page: 704
  year: 2015
  ident: bib5
  article-title: Neddylation promotes ubiquitylation and release of Ku from DNA-damage sites
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2015.03.058
– volume: 25
  start-page: 10842
  year: 2005
  ident: bib10
  article-title: Autophosphorylation of DNA-dependent protein kinase regulates DNA end processing and may also alter double-strand break repair pathway choice
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.25.24.10842-10852.2005
– volume: 40
  start-page: 1684
  year: 2012
  ident: bib38
  article-title: XRCC4's interaction with XLF is required for coding (but not signal) end joining
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkr1315
– volume: 23
  start-page: 5836
  year: 2003
  ident: bib12
  article-title: Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.23.16.5836-5848.2003
– volume: 3
  start-page: 1493
  year: 2004
  ident: bib8
  article-title: The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2004.06.017
– volume: 79
  start-page: 181
  year: 2010
  ident: bib21
  article-title: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.biochem.052308.093131
– volume: 2
  start-page: 1239
  year: 2003
  ident: bib45
  article-title: DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination
  publication-title: DNA Repair
  doi: 10.1016/S1568-7864(03)00143-5
– volume: 7
  start-page: 292
  year: 2008
  ident: bib24
  article-title: APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2007.10.008
– volume: 285
  start-page: 26475
  year: 2010
  ident: bib26
  article-title: Delineation of the Xrcc4-interacting region in the globular head domain of cernunnos/XLF
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M110.138156
– volume: 108
  start-page: 12663
  year: 2011
  ident: bib37
  article-title: Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining
  publication-title: PNAS
  doi: 10.1073/pnas.1100758108
– volume: 286
  start-page: 32638
  year: 2011
  ident: bib15
  article-title: XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M111.272641
– volume: 200
  start-page: 173
  year: 2013
  ident: bib9
  article-title: A noncatalytic function of the ligation complex during nonhomologous end joining
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201203128
– volume: 182
  start-page: 467
  year: 2008
  ident: bib32
  article-title: Ku80 removal from DNA through double strand break-induced ubiquitylation
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200802146
– volume: 7
  start-page: e37120
  year: 2012
  ident: bib14
  article-title: Crystal structure of a complex of DNA with one AT-hook of HMGA1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037120
– volume: 34
  start-page: 2162
  year: 2014
  ident: bib30
  article-title: Unraveling the complexities of DNA-dependent protein kinase autophosphorylation
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.01554-13
– reference: 27924007 - Nucleic Acids Res. 2017 Feb 28;45(4):1872-1878
– reference: 18678709 - J Cell Biol. 2008 Aug 11;182(3):467-79
– reference: 17317666 - J Biol Chem. 2007 Apr 13;282(15):11155-62
– reference: 15385968 - EMBO J. 2004 Oct 1;23 (19):3874-85
– reference: 18644470 - DNA Repair (Amst). 2008 Oct 1;7(10):1680-92
– reference: 24236237 - ISRN Mol Biol. 2012;2012:null
– reference: 17353262 - Mol Cell Biol. 2007 May;27(10 ):3793-803
– reference: 27716483 - Mol Cell. 2016 Oct 6;64(1):189-198
– reference: 21936820 - Biochem Soc Trans. 2011 Oct;39(5):1387-92, suppl 2 p following 1392
– reference: 25921528 - Cell Rep. 2015 May 5;11(5):704-14
– reference: 18158905 - Mol Cell. 2007 Dec 28;28(6):1093-101
– reference: 15177042 - DNA Repair (Amst). 2004 Mar 4;3(3):267-76
– reference: 16314509 - Mol Cell Biol. 2005 Dec;25(24):10842-52
– reference: 26921311 - J Immunol. 2016 Apr 1;196 (7):3032-42
– reference: 20192759 - Annu Rev Biochem. 2010;79:181-211
– reference: 25941401 - Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2575-84
– reference: 16439204 - Cell. 2006 Jan 27;124(2):287-99
– reference: 21775435 - J Biol Chem. 2011 Sep 16;286(37):32638-50
– reference: 18775323 - Mol Cell. 2008 Sep 5;31(5):631-40
– reference: 20852255 - J Biol Chem. 2010 Nov 26;285(48):37619-29
– reference: 23287722 - Science. 2013 Feb 15;339(6121):823-6
– reference: 22287571 - Nucleic Acids Res. 2012 Feb;40(4):1868-78
– reference: 12897153 - Mol Cell Biol. 2003 Aug;23 (16):5836-48
– reference: 14599745 - DNA Repair (Amst). 2003 Nov 21;2(11):1239-52
– reference: 22228831 - Nucleic Acids Res. 2012 Feb;40(4):1684-94
– reference: 9742243 - Nucleic Acids Res. 1998 Oct 1;26(19):4413-21
– reference: 14607114 - J Mol Biol. 2003 Nov 21;334(2):215-28
– reference: 26100018 - Mol Cell Biol. 2015 Sep 1;35(17 ):3017-28
– reference: 21640108 - FEBS Lett. 2011 Sep 16;585(18):2876-82
– reference: 23337116 - J Cell Biol. 2013 Jan 21;200(2):173-86
– reference: 27437582 - Nature. 2016 Jul 28;535(7613):566-9
– reference: 10202163 - EMBO J. 1999 Apr 1;18(7):2008-18
– reference: 24461734 - DNA Repair (Amst). 2014 Mar;15:39-53
– reference: 26519825 - DNA Repair (Amst). 2015 Nov;35:116-25
– reference: 25661488 - Mol Cell. 2015 Feb 19;57(4):648-61
– reference: 17470781 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7851-6
– reference: 17038309 - J Biol Chem. 2006 Dec 8;281(49):37517-26
– reference: 21768349 - Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12663-8
– reference: 15380105 - DNA Repair (Amst). 2004 Nov 2;3(11):1493-502
– reference: 18077224 - DNA Repair (Amst). 2008 Feb 1;7(2):292-302
– reference: 24780557 - DNA Repair (Amst). 2014 May;17:9-20
– reference: 20558749 - J Biol Chem. 2010 Aug 20;285(34):26475-83
– reference: 24687855 - Mol Cell Biol. 2014 Jun;34(12):2162-75
– reference: 24050180 - Annu Rev Genet. 2013;47:433-55
– reference: 22615915 - PLoS One. 2012;7(5):e37120
SSID ssj0000748819
Score 2.3165405
Snippet XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Alanine
Amino Acid Substitution
Biochemistry
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA damage
DNA End-Joining Repair
DNA Mutational Analysis
DNA repair
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-dependent protein kinase
Double-strand break repair
Filaments
Genes and Chromosomes
Humans
Kinases
Life Sciences
LIG4 protein
Mimicry
Mutation
NHEJ
Non-homologous end joining
Phosphorylation
Plasmids
Protein Binding
Protein Processing, Post-Translational
XLF
XRCC4
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgCxIXvmEDCzKIE1LYOHG-TqhbttpDqVYrkHqLHNvZBrVxt2lX2r_DL2XGcQsBxIVDpdSxHEvzMvPGsd8Q8k6mUZhDmPDDKlKYoCR-mejcV5wr4ANKl526_iSdTrPZLD93C26t21a584nWUSsjcY38mOUxJFABZ_nH1ZWPVaPw66oroXGbHKBSGR-Qg5PT6fnFfpUFAmQGMa87mJdC6DzWk7rSH1DlPOiFIqvYDwFmjvsh_ySbv--Z_CUIjR_87_QfkvuOftJhh5dH5JZuHpO7XUHKmyfk--ftxq0O0tXctPDzl_WylusbilpPgFUq4MrWrzfYaBaaAu-lwCPp7GI04lQ0is4mYzry3UabBcVdqi2tG7o0ypYLay7pp-mQ2tNi-Kc7LEklUnlEDW1M48_NEqdlti3VMOY3Y2tZPCVfx6dfRme-q-LgS6CCG1_okitI8gJWZhL4Hgt1VgKP4TKWAS8rpkoIkEqKsopEoKssSSPBRApmy5WWZfSMDOCh-pBQDt2qXGWlZhFXSSpSFDWNIxmlVQJe2yPvdwYtpJM4x0obiwJSHbR-Ya1fWOt7ANRd51Wn7PH3bieIjH0XlOO2DWZ9Wbi3uwjjDCV-46oSEdeQpCWQB-aKVTyUPBcwyFvAVW-Ms-GkwDbwiOBCWXYNsz_aQadwjqQtfuLGI2_2t8EF4Hcd0WiwQcEgZwb0A9XyyPMOpftHhVmMrJB7JO3htzeX_p2mnluZ8ZgnWZAHL_49rZfkXohMBwVtoyMy2Ky3-hW5I683dbt-7d7HH2kZQu8
  priority: 102
  providerName: ProQuest
Title Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining
URI https://www.ncbi.nlm.nih.gov/pubmed/28500754
https://www.proquest.com/docview/1952740419
https://www.proquest.com/docview/1899119266
https://hal.science/hal-01788018
https://pubmed.ncbi.nlm.nih.gov/PMC5468090
https://doaj.org/article/25865395ffa34e55964879d1f42c49a0
Volume 6
WOSCitedRecordID wos000403161500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgA2kviG8yRmUQT0hhceLE8WNXVg2praoJpPIUObZDg9pkatpJ-zv8Uu510qoFJF54qNU6VmL5Hvuem9rnEvJeiyiU4Cb8sIgMBiiJnydW-oZzA3zA2LxV1x-JySSdzeR0L9UX7glr5YHbgTsP4xTVU-OiUBG3wH8ToNjSsIKHmkvlonVgPXvBlFuDBQCTyfZAngCXeW5HZWE_orp5cOCCnFI_OJY57oP8k2T-vldyz_kMH5NHHWuk_ba3T8g9Wz0lD9s8knfPyM_xZt291KM387qBj78sl6Ve3VGUaAKIUQXfXNr5GivrhaVAVynQPzq7Hgw4VZWhs9GQDvxuf8yC4ubShpYVXdbGZfmqvtNPkz51h7zwR3vGkWpk4GhsWtWVP6-X2K1601AL9_xRuxQUz8nX4eWXwZXfJV_wNTC4ta9szg3EZgHLUw00jYU2zYF-cB3rgOcFMzn4NaNVXkQqsEWaiEgxJWDUpbE6j16QI3iofUUoh2aFNGluWcRNIpRALdI40pEoElhsPfJha49Md8rkmCBjkUGEgsbLnPEyZzwP8LVtfNMKcvy92QUadtcEVbRdBWAr67CV_QtbHnkHsDi4x1V_lGEdLGSw8rH0Fnp_tkVN1s3_JmMyhnA_4Ex65O3uMsxc_DtGVRZskDEIdRkQ7CTxyMsWZLtHhWmMZI57RBzA76Avh1eqcu7UwWOepIEMTv_HALwmJyHSGFSrjc7I0Xq1sW_IA327LptVj9wXM-HKtEeOLy4n0-uem4ZQjsMplgLK4-nn8fTbL-g5OVE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMELd0ZhgEHwghSWixM7DwiVjqrTsgqhIfXNJLbTZmqT0rRD_Tv8AH4j5-RSKCDe9sBDpMSxHCs5t885_g4hLxT33BDchOWmnkaAElhJYEJLM6YhHtAmqdn1Iz4citEo_LBDvrd7YTCtsrWJlaHWhcI18gMn9AFA2cwJ386_WFg1Cv-utiU0arE4NuuvANnKN0eH8H1fum7__WlvYDVVBSwFocnSik3CNIAO20mEgvjDcY1IwK8y5SubJamjEzDYWsVJ6sW2SUXAvdiJObjOUBuVeDDuJXIZ7DjHFDI-4ps1HXDHArrV2wA5OOoDE2WpeY2c6vaW46vqA4A7m2D25Z-h7e8Zmr-4vP7N_-1l3SI3muCadmttuE12TH6HXK3Lba7vkm8nq2Wz9knnk6KEw5pls0wt1hSZrEATaQxnYyxpVmBjMTUUonoKUTIdfez1GI1zTUdRn_asJo1oSjEHt6RZTmeFroqh5WN6OOzSai8cXtRbQalCoII6QfMitybFDKdVrEpqYMyzoqrUcY98upAXdJ_swkPNA0IZdEtDLRLjeEwHPOZI2ep7yuNpAD6pQ161AiRVQ-COdUSmEoAcSpuspE1W0tYBNWw7z2vekr93e4eSuOmCZONVQ7EYy8Z2SdcXSGDsp2nsMQMQNACUG2onZa5iYQyDPAc53hpj0I0ktoG9BwfhiHOY_X4rqrIxk6X8Kacd8mxzGwwc_rWKcwPfQDoCIAzgkCDokL1aKzaPcoWPMS_rEL6lL1tz2b6TZ5OKRN1ngbBD--G_p_WUXBucnkQyOhoePyLXXYzpkLrX2ye7y8XKPCZX1PkyKxdPKktAyeeL1qYfQGagSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaW5SEuvFkKCxgEF6TQPJzXAaHSUu1qu1WFQOrNOH60WbVJadpF_Tv8DH4dM3kUCojbHjhEShzLsZKZ-Wac8TeEvJCh58YAE5ZrPIUBSmAlgY4txZgCf0DppGLXH4TDYTQex6M98r3ZC4NplY1NLA21yiWukbed2IcAymZO3DZ1WsSo13-7-GJhBSn809qU06hE5ERvvkL4Vrw57sG3fum6_fcfu0dWXWHAkuCmrCyhE6YgALGdJJLgiziujhLAWCZ9abPEOCoB462kSIwnbG2iIPSEI0KA0VhpmXgw7iVyOWS-j9p16o626zsAzRF0q7YEhgDabT1IjX6N_Or2DgiWtQIA2qaYifmnm_t7tuYv8Ne_-T-_uFvkRu10006lJbfJns7ukKtVGc7NXfLtdL2q10TpYpoXcFjzdJ7K5YYiwxVoKBVwNsFSZzk25jNNwdun4D3T8Ydul1GRKToe9GnXqtOLZhRzcwuaZnSeq7JIWjahvWGHlnvk8KLaIkolBjCoKzTLM2uaz3Fa-bqgGsY8y8sKHvfIpwt5QffJPjxUPyCUQTcTqyjRjsdUEIoQqVx9T3qhCQCrWuRVI0xc1sTuWF9kxiHAQ8njpeTxUvJaoJ5N50XFZ_L3bu9QKrddkIS8bMiXE17bNO76ERIb-8YIj2kITQOIfmPlGOZKFgsY5DnI9M4YR50BxzbAAQAOJzqH2R82Ystr81nwnzLbIs-2t8Hw4d8skWn4BtyJILSB-CQIWuSg0pDto9zIR1-YtUi4ozs7c9m9k6XTklzdZ0Fkx_bDf0_rKbkGSsQHx8OTR-S6i64eMvp6h2R_tVzrx-SKPF-lxfJJaRQo-XzRyvQDvLCpFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutational+phospho-mimicry+reveals+a+regulatory+role+for+the+XRCC4+and+XLF+C-terminal+tails+in+modulating+DNA+bridging+during+classical+non-homologous+end+joining&rft.jtitle=eLife&rft.au=Normanno%2C+Davide&rft.au=N%C3%A9grel%2C+Aur%C3%A9lie&rft.au=de+Melo%2C+Abinadabe+J&rft.au=Betzi%2C+St%C3%A9phane&rft.date=2017-05-13&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=6&rft_id=info:doi/10.7554%2FeLife.22900&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon