Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining
XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filament...
Uložené v:
| Vydané v: | eLife Ročník 6 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
eLife Sciences Publications Ltd
13.05.2017
eLife Sciences Publication eLife Sciences Publications, Ltd |
| Predmet: | |
| ISSN: | 2050-084X, 2050-084X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.
DNA in human and other animal cells is organised into structures called chromosomes. One of the most dangerous types of DNA damage is a double-strand break, where both strands of the DNA helix are broken in the same place. If this damage is not repaired it can be serious enough to kill the cell. If the DNA is repaired badly, part of one chromosome can become attached to another – a defect known as a chromosome translocation.
Fortunately, cells are equipped with machineries that can recognise and fix these breaks. One of these processes is known as “non-homologous end joining” and it involves a set of proteins including two known as XRCC4 and XLF. These proteins work like a bandage, holding together the broken DNA until it is repaired. Both proteins have long tails, but the role of these structures was not clear.
During DNA repair, the cell chemically modifies the tails of these proteins by a process called phosphorylation. However, previous studies have found that it is possible to prevent the modification of the tail of one of the proteins, or even remove the tail entirely, without affecting the repair process. Here, Normanno et al. investigated the effect of blocking the modification of the tails of both proteins at the same time.
For the experiments, the tails were both altered in various places to either block or mimic the phosphorylation that normally occurs during DNA repair. Mimicking the phosphorylation of both tails affected the ability of XRCC4 and XLF to stay attached to the DNA, suggesting that the phosphorylation helps these proteins to detach from the DNA once the repair is complete. Furthermore, in human embryonic kidney cells the altered proteins were less able to repair DNA damage in response to a drug that causes double-strand breaks.
These findings improve our understanding of how cells repair their DNA to maintain a complete set of genetic information. Defects in DNA repair are linked to conditions where the brain does not develop properly, whilst some cancer therapies deliberately inflict double-strand breaks to kill cancer cells. In the future, these findings may lead to improvements in radiotherapy and other treatments for human diseases. |
|---|---|
| AbstractList | XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.
DNA in human and other animal cells is organised into structures called chromosomes. One of the most dangerous types of DNA damage is a double-strand break, where both strands of the DNA helix are broken in the same place. If this damage is not repaired it can be serious enough to kill the cell. If the DNA is repaired badly, part of one chromosome can become attached to another – a defect known as a chromosome translocation.
Fortunately, cells are equipped with machineries that can recognise and fix these breaks. One of these processes is known as “non-homologous end joining” and it involves a set of proteins including two known as XRCC4 and XLF. These proteins work like a bandage, holding together the broken DNA until it is repaired. Both proteins have long tails, but the role of these structures was not clear.
During DNA repair, the cell chemically modifies the tails of these proteins by a process called phosphorylation. However, previous studies have found that it is possible to prevent the modification of the tail of one of the proteins, or even remove the tail entirely, without affecting the repair process. Here, Normanno et al. investigated the effect of blocking the modification of the tails of both proteins at the same time.
For the experiments, the tails were both altered in various places to either block or mimic the phosphorylation that normally occurs during DNA repair. Mimicking the phosphorylation of both tails affected the ability of XRCC4 and XLF to stay attached to the DNA, suggesting that the phosphorylation helps these proteins to detach from the DNA once the repair is complete. Furthermore, in human embryonic kidney cells the altered proteins were less able to repair DNA damage in response to a drug that causes double-strand breaks.
These findings improve our understanding of how cells repair their DNA to maintain a complete set of genetic information. Defects in DNA repair are linked to conditions where the brain does not develop properly, whilst some cancer therapies deliberately inflict double-strand breaks to kill cancer cells. In the future, these findings may lead to improvements in radiotherapy and other treatments for human diseases. XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments. XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments. DOI: http://dx.doi.org/10.7554/eLife.22900.001 DNA in human and other animal cells is organised into structures called chromosomes. One of the most dangerous types of DNA damage is a double-strand break, where both strands of the DNA helix are broken in the same place. If this damage is not repaired it can be serious enough to kill the cell. If the DNA is repaired badly, part of one chromosome can become attached to another – a defect known as a chromosome translocation. Fortunately, cells are equipped with machineries that can recognise and fix these breaks. One of these processes is known as “non-homologous end joining” and it involves a set of proteins including two known as XRCC4 and XLF. These proteins work like a bandage, holding together the broken DNA until it is repaired. Both proteins have long tails, but the role of these structures was not clear. During DNA repair, the cell chemically modifies the tails of these proteins by a process called phosphorylation. However, previous studies have found that it is possible to prevent the modification of the tail of one of the proteins, or even remove the tail entirely, without affecting the repair process. Here, Normanno et al. investigated the effect of blocking the modification of the tails of both proteins at the same time. For the experiments, the tails were both altered in various places to either block or mimic the phosphorylation that normally occurs during DNA repair. Mimicking the phosphorylation of both tails affected the ability of XRCC4 and XLF to stay attached to the DNA, suggesting that the phosphorylation helps these proteins to detach from the DNA once the repair is complete. Furthermore, in human embryonic kidney cells the altered proteins were less able to repair DNA damage in response to a drug that causes double-strand breaks. These findings improve our understanding of how cells repair their DNA to maintain a complete set of genetic information. Defects in DNA repair are linked to conditions where the brain does not develop properly, whilst some cancer therapies deliberately inflict double-strand breaks to kill cancer cells. In the future, these findings may lead to improvements in radiotherapy and other treatments for human diseases. DOI: http://dx.doi.org/10.7554/eLife.22900.002 XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.DOI: http://dx.doi.org/10.7554/eLife.22900.001 XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments.XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA double-strand break repair pathway in higher eukaryotes) and is stimulated by XLF. Independently of LIG4, XLF also associates with XRCC4 to form filaments that bridge DNA. These XRCC4/XLF complexes rapidly load and connect broken DNA, thereby stimulating intermolecular ligation. XRCC4 and XLF both include disordered C-terminal tails that are functionally dispensable in isolation but are phosphorylated in response to DNA damage by DNA-PK and/or ATM. Here we concomitantly modify the tails of XRCC4 and XLF by substituting fourteen previously identified phosphorylation sites with either alanine or aspartate residues. These phospho-blocking and -mimicking mutations impact both the stability and DNA bridging capacity of XRCC4/XLF complexes, but without affecting their ability to stimulate LIG4 activity. Implicit in this finding is that phosphorylation may regulate DNA bridging by XRCC4/XLF filaments. |
| Author | Betzi, Stéphane de Melo, Abinadabe J Normanno, Davide Négrel, Aurélie Modesti, Mauro Meek, Katheryn |
| Author_xml | – sequence: 1 givenname: Davide orcidid: 0000-0003-4740-5542 surname: Normanno fullname: Normanno, Davide organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France – sequence: 2 givenname: Aurélie surname: Négrel fullname: Négrel, Aurélie organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France – sequence: 3 givenname: Abinadabe J surname: de Melo fullname: de Melo, Abinadabe J organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France – sequence: 4 givenname: Stéphane surname: Betzi fullname: Betzi, Stéphane organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France – sequence: 5 givenname: Katheryn surname: Meek fullname: Meek, Katheryn organization: Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, United States – sequence: 6 givenname: Mauro orcidid: 0000-0002-4964-331X surname: Modesti fullname: Modesti, Mauro organization: Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28500754$$D View this record in MEDLINE/PubMed https://hal.science/hal-01788018$$DView record in HAL |
| BookMark | eNptku9r1DAcxotM3Jx75XsJ-EaRzqRN2uSNcFTnBqeCKNy7kKbf9nKkzS1pD_bv-Jea3s2xHQZKkm8-z5MffV4mJ4MbIEleE3xZMkY_wtK0cJllAuNnyVmGGU4xp6uTR-PT5CKEDY6tpJwT8SI5zTiLM0bPkj_fplGNxg3Kou3ahfilvemN9nfIww6UDUjFUTdZNbq56Cyg1nk0rgGtflYVRWpo0Gp5hap0BN-b2WpUJgrNgHrXzEozdOjz9wWqvWm6edJMfu60VSEYHRXxXuna9c66zk0BQfTcODNE6FXyvI3HgIv7_jz5ffXlV3WdLn98vakWy1Szko2pgpo2GRWY1FzznJEMeF1SQjXTmNYtaWpakkarus0VhpYXZa6IKuOLiAZ0nZ8nNwffxqmN3HrTK38nnTJyX3C-k8qPRluQGeMFywVrW5VTYEwUlJeiIS3NNBUKR69PB6_tVPfQaBhGr-wT06crg1nLzu0kowXHYjZ4fzBYH8muF0s51zApOceE70hk391v5t3tBGGUvQkarFUDxLeUhAtBiMiKIqJvj9CNm3z8Y5ESLCsppkRE6s3j0z_s_y82EfhwALR3IXhoHxCC5ZxLuc-l3Ocy0uSI1uYQunh1Y_-r-QvMqud2 |
| CitedBy_id | crossref_primary_10_1002_pro_4133 crossref_primary_10_3390_cancers12092356 crossref_primary_10_1093_nar_gkaa723 crossref_primary_10_3390_biom11101487 crossref_primary_10_1083_jcb_201905221 crossref_primary_10_1038_s41594_018_0120_y crossref_primary_10_1016_j_dnarep_2019_102738 crossref_primary_10_1146_annurev_biochem_080320_110356 crossref_primary_10_1016_j_cell_2021_04_035 crossref_primary_10_1016_j_pbiomolbio_2023_05_001 crossref_primary_10_1074_jbc_RA119_010421 crossref_primary_10_1016_j_dnarep_2023_103553 crossref_primary_10_1038_s41586_021_03458_7 crossref_primary_10_1093_jrr_rrab016 crossref_primary_10_1002_2211_5463_13363 crossref_primary_10_3390_genes12081143 crossref_primary_10_1038_s41594_024_01339_x crossref_primary_10_1093_nar_gkac913 crossref_primary_10_1093_nar_gkac237 crossref_primary_10_1016_j_pbiomolbio_2020_11_008 crossref_primary_10_7554_eLife_61920 crossref_primary_10_1038_s41467_024_45553_z crossref_primary_10_1016_j_dnarep_2024_103716 crossref_primary_10_1080_09553002_2023_2214210 crossref_primary_10_1007_s12104_021_10035_6 crossref_primary_10_1038_s41467_022_31365_6 crossref_primary_10_1002_2211_5463_12589 crossref_primary_10_1074_jbc_RA119_007421 crossref_primary_10_1093_jrr_rry072 crossref_primary_10_1093_nar_gkac564 |
| Cites_doi | 10.1128/MCB.02269-06 10.1093/emboj/18.7.2008 10.1093/nar/26.19.4413 10.1146/annurev-genet-110711-155540 10.1074/jbc.M109.058719 10.1016/j.molcel.2007.10.024 10.1016/j.dnarep.2013.12.006 10.1093/nar/gks022 10.5402/2012/345805 10.1038/sj.emboj.7600375 10.1038/nature18643 10.1016/j.jmb.2003.09.031 10.1016/j.molcel.2015.01.005 10.1016/j.dnarep.2003.11.005 10.1126/science.1232033 10.1016/j.molcel.2008.07.017 10.1073/pnas.0702620104 10.1016/j.dnarep.2008.06.015 10.1042/BST0391387 10.1016/j.molcel.2016.08.037 10.4049/jimmunol.1501654 10.1074/jbc.M608727200 10.1016/j.dnarep.2014.04.002 10.1074/jbc.M609904200 10.1016/j.cell.2005.12.030 10.1073/pnas.1420115112 10.1016/j.dnarep.2015.10.002 10.1016/j.febslet.2011.05.046 10.1093/nar/gkw1221 10.1128/MCB.01503-14 10.1016/j.celrep.2015.03.058 10.1128/MCB.25.24.10842-10852.2005 10.1093/nar/gkr1315 10.1128/MCB.23.16.5836-5848.2003 10.1016/j.dnarep.2004.06.017 10.1146/annurev.biochem.052308.093131 10.1016/S1568-7864(03)00143-5 10.1016/j.dnarep.2007.10.008 10.1074/jbc.M110.138156 10.1073/pnas.1100758108 10.1074/jbc.M111.272641 10.1083/jcb.201203128 10.1083/jcb.200802146 10.1371/journal.pone.0037120 10.1128/MCB.01554-13 |
| ContentType | Journal Article |
| Copyright | 2017, Normanno et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution 2017, Normanno et al 2017 Normanno et al |
| Copyright_xml | – notice: 2017, Normanno et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: 2017, Normanno et al 2017 Normanno et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
| DOI | 10.7554/eLife.22900 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_25865395ffa34e55964879d1f42c49a0 PMC5468090 oai:HAL:hal-01788018v1 28500754 10_7554_eLife_22900 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI048758 – fundername: ; grantid: AI048758 – fundername: ; grantid: PLBIO13-099 – fundername: ; grantid: SFI20121205867 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. ALIPV CGR CUY CVF ECM EIF FRP NPM RHF 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c575t-aeb4d24901b8c83512e8b7414c5c04bf1db471dcabf3a0ef8673a1a78199decb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403161500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:51:08 EDT 2025 Tue Nov 04 02:00:40 EST 2025 Tue Oct 14 20:21:25 EDT 2025 Fri Sep 05 05:56:07 EDT 2025 Tue Oct 07 07:06:16 EDT 2025 Thu Jan 02 23:11:34 EST 2025 Sat Nov 29 01:39:20 EST 2025 Tue Nov 18 21:02:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | XLF XRCC4 genes biochemistry chromosomes NHEJ human |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-aeb4d24901b8c83512e8b7414c5c04bf1db471dcabf3a0ef8673a1a78199decb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC5468090 Sigma Aldrich, Saint Quentin Fallavier, France. |
| ORCID | 0000-0002-4964-331X 0000-0003-4740-5542 0000-0001-5935-5058 0000-0002-0454-4414 |
| OpenAccessLink | https://doaj.org/article/25865395ffa34e55964879d1f42c49a0 |
| PMID | 28500754 |
| PQID | 1952740419 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_25865395ffa34e55964879d1f42c49a0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5468090 hal_primary_oai_HAL_hal_01788018v1 proquest_miscellaneous_1899119266 proquest_journals_1952740419 pubmed_primary_28500754 crossref_primary_10_7554_eLife_22900 crossref_citationtrail_10_7554_eLife_22900 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-13 |
| PublicationDateYYYYMMDD | 2017-05-13 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2017 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publication eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publication – name: eLife Sciences Publications, Ltd |
| References | Cottarel (bib9) 2013; 200 Fattah (bib13) 2014; 15 Mani (bib27) 2010; 285 Cui (bib10) 2005; 25 Iles (bib17) 2007; 27 Lu (bib23) 2007; 282 Modesti (bib28) 1999; 18 Reid (bib36) 2015; 112 Li (bib20) 2008; 31 Lieber (bib21) 2010; 79 Roy (bib39) 2015; 35 Povirk (bib34) 2012; 2012 Fonfría-Subirós (bib14) 2012; 7 Malivert (bib26) 2010; 285 Postow (bib33) 2011; 585 Ding (bib12) 2003; 23 Woodbine (bib42) 2014; 17 Neal (bib31) 2016; 196 Wu (bib43) 2011; 39 Hammel (bib15) 2011; 286 Koch (bib18) 2004; 23 Yu (bib45) 2003; 2 Brouwer (bib4) 2016; 535 Tsai (bib40) 2007; 104 Andres (bib1) 2007; 28 Brown (bib5) 2015; 11 Aravind (bib3) 1998; 26 Hentges (bib16) 2006; 281 Mali (bib25) 2013; 339 Yu (bib44) 2008; 7 Postow (bib32) 2008; 182 Reid (bib35) 2017; 45 Neal (bib30) 2014; 34 Ropars (bib37) 2011; 108 Clements (bib8) 2004; 3 Liu (bib22) 2015; 57 Lee (bib19) 2004; 3 Macrae (bib24) 2008; 7 Deriano (bib11) 2013; 47 Modesti (bib29) 2003; 334 Buck (bib6) 2006; 124 Andres (bib2) 2012; 40 Roy (bib38) 2012; 40 Cherry (bib7) 2015; 35 van den Boom (bib41) 2016; 64 17317666 - J Biol Chem. 2007 Apr 13;282(15):11155-62 17038309 - J Biol Chem. 2006 Dec 8;281(49):37517-26 22228831 - Nucleic Acids Res. 2012 Feb;40(4):1684-94 24461734 - DNA Repair (Amst). 2014 Mar;15:39-53 12897153 - Mol Cell Biol. 2003 Aug;23 (16):5836-48 9742243 - Nucleic Acids Res. 1998 Oct 1;26(19):4413-21 16439204 - Cell. 2006 Jan 27;124(2):287-99 23337116 - J Cell Biol. 2013 Jan 21;200(2):173-86 16314509 - Mol Cell Biol. 2005 Dec;25(24):10842-52 15380105 - DNA Repair (Amst). 2004 Nov 2;3(11):1493-502 20558749 - J Biol Chem. 2010 Aug 20;285(34):26475-83 20192759 - Annu Rev Biochem. 2010;79:181-211 20852255 - J Biol Chem. 2010 Nov 26;285(48):37619-29 14599745 - DNA Repair (Amst). 2003 Nov 21;2(11):1239-52 18077224 - DNA Repair (Amst). 2008 Feb 1;7(2):292-302 23287722 - Science. 2013 Feb 15;339(6121):823-6 15385968 - EMBO J. 2004 Oct 1;23 (19):3874-85 10202163 - EMBO J. 1999 Apr 1;18(7):2008-18 25941401 - Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2575-84 27437582 - Nature. 2016 Jul 28;535(7613):566-9 15177042 - DNA Repair (Amst). 2004 Mar 4;3(3):267-76 21768349 - Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12663-8 22615915 - PLoS One. 2012;7(5):e37120 24050180 - Annu Rev Genet. 2013;47:433-55 18678709 - J Cell Biol. 2008 Aug 11;182(3):467-79 21775435 - J Biol Chem. 2011 Sep 16;286(37):32638-50 21640108 - FEBS Lett. 2011 Sep 16;585(18):2876-82 26519825 - DNA Repair (Amst). 2015 Nov;35:116-25 17353262 - Mol Cell Biol. 2007 May;27(10 ):3793-803 21936820 - Biochem Soc Trans. 2011 Oct;39(5):1387-92, suppl 2 p following 1392 25921528 - Cell Rep. 2015 May 5;11(5):704-14 17470781 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7851-6 27716483 - Mol Cell. 2016 Oct 6;64(1):189-198 14607114 - J Mol Biol. 2003 Nov 21;334(2):215-28 22287571 - Nucleic Acids Res. 2012 Feb;40(4):1868-78 27924007 - Nucleic Acids Res. 2017 Feb 28;45(4):1872-1878 24687855 - Mol Cell Biol. 2014 Jun;34(12):2162-75 18158905 - Mol Cell. 2007 Dec 28;28(6):1093-101 24236237 - ISRN Mol Biol. 2012;2012:null 18644470 - DNA Repair (Amst). 2008 Oct 1;7(10):1680-92 24780557 - DNA Repair (Amst). 2014 May;17:9-20 26100018 - Mol Cell Biol. 2015 Sep 1;35(17 ):3017-28 18775323 - Mol Cell. 2008 Sep 5;31(5):631-40 26921311 - J Immunol. 2016 Apr 1;196 (7):3032-42 25661488 - Mol Cell. 2015 Feb 19;57(4):648-61 |
| References_xml | – volume: 27 start-page: 3793 year: 2007 ident: bib17 article-title: APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.02269-06 – volume: 18 start-page: 2008 year: 1999 ident: bib28 article-title: DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity publication-title: The EMBO Journal doi: 10.1093/emboj/18.7.2008 – volume: 26 start-page: 4413 year: 1998 ident: bib3 article-title: AT-hook motifs identified in a wide variety of DNA-binding proteins publication-title: Nucleic Acids Research doi: 10.1093/nar/26.19.4413 – volume: 47 start-page: 433 year: 2013 ident: bib11 article-title: Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage publication-title: Annual Review of Genetics doi: 10.1146/annurev-genet-110711-155540 – volume: 285 start-page: 37619 year: 2010 ident: bib27 article-title: Dual modes of interaction between XRCC4 and polynucleotide kinase/phosphatase: implications for nonhomologous end joining publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M109.058719 – volume: 28 start-page: 1093 year: 2007 ident: bib1 article-title: Crystal structure of human XLF: a twist in nonhomologous DNA end-joining publication-title: Molecular Cell doi: 10.1016/j.molcel.2007.10.024 – volume: 15 start-page: 39 year: 2014 ident: bib13 article-title: A role for XLF in DNA repair and recombination in human somatic cells publication-title: DNA Repair doi: 10.1016/j.dnarep.2013.12.006 – volume: 40 start-page: 1868 year: 2012 ident: bib2 article-title: A human XRCC4-XLF complex bridges DNA publication-title: Nucleic Acids Research doi: 10.1093/nar/gks022 – volume: 2012 start-page: 1 year: 2012 ident: bib34 article-title: Processing of damaged DNA ends for double-strand break repair in mammalian cells publication-title: ISRN Molecular Biology doi: 10.5402/2012/345805 – volume: 23 start-page: 3874 year: 2004 ident: bib18 article-title: Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV publication-title: The EMBO Journal doi: 10.1038/sj.emboj.7600375 – volume: 535 start-page: 566 year: 2016 ident: bib4 article-title: Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA publication-title: Nature doi: 10.1038/nature18643 – volume: 334 start-page: 215 year: 2003 ident: bib29 article-title: Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2003.09.031 – volume: 57 start-page: 648 year: 2015 ident: bib22 article-title: Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair publication-title: Molecular Cell doi: 10.1016/j.molcel.2015.01.005 – volume: 3 start-page: 267 year: 2004 ident: bib19 article-title: Identification of DNA-PKcs phosphorylation sites in XRCC4 and effects of mutations at these sites on DNA end joining in a cell-free system publication-title: DNA Repair doi: 10.1016/j.dnarep.2003.11.005 – volume: 339 start-page: 823 year: 2013 ident: bib25 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 31 start-page: 631 year: 2008 ident: bib20 article-title: Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination publication-title: Molecular Cell doi: 10.1016/j.molcel.2008.07.017 – volume: 104 start-page: 7851 year: 2007 ident: bib40 article-title: Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends publication-title: PNAS doi: 10.1073/pnas.0702620104 – volume: 7 start-page: 1680 year: 2008 ident: bib44 article-title: DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks publication-title: DNA Repair doi: 10.1016/j.dnarep.2008.06.015 – volume: 39 start-page: 1387 year: 2011 ident: bib43 article-title: Non-homologous end-joining partners in a helical dance: structural studies of XLF-XRCC4 interactions publication-title: Biochemical Society Transactions doi: 10.1042/BST0391387 – volume: 64 start-page: 189 year: 2016 ident: bib41 article-title: VCP/p97 extracts Sterically Trapped Ku70/80 rings from DNA in Double-Strand Break Repair publication-title: Molecular Cell doi: 10.1016/j.molcel.2016.08.037 – volume: 196 start-page: 3032 year: 2016 ident: bib31 article-title: Restoration of ATM expression in DNA-PKcs-Deficient cells inhibits signal end joining publication-title: The Journal of Immunology doi: 10.4049/jimmunol.1501654 – volume: 281 start-page: 37517 year: 2006 ident: bib16 article-title: Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M608727200 – volume: 17 start-page: 9 year: 2014 ident: bib42 article-title: Reprint of "The clinical impact of deficiency in DNA non-homologous end-joining" publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.04.002 – volume: 282 start-page: 11155 year: 2007 ident: bib23 article-title: Length-dependent binding of human XLF to DNA and stimulation of XRCC4.DNA ligase IV activity publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M609904200 – volume: 124 start-page: 287 year: 2006 ident: bib6 article-title: Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly publication-title: Cell doi: 10.1016/j.cell.2005.12.030 – volume: 112 start-page: E2575 year: 2015 ident: bib36 article-title: Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair publication-title: PNAS doi: 10.1073/pnas.1420115112 – volume: 35 start-page: 116 year: 2015 ident: bib7 article-title: Versatility in phospho-dependent molecular recognition of the XRCC1 and XRCC4 DNA-damage scaffolds by aprataxin-family FHA domains publication-title: DNA Repair doi: 10.1016/j.dnarep.2015.10.002 – volume: 585 start-page: 2876 year: 2011 ident: bib33 article-title: Destroying the ring: freeing DNA from Ku with ubiquitin publication-title: FEBS Letters doi: 10.1016/j.febslet.2011.05.046 – volume: 45 start-page: 1872 year: 2017 ident: bib35 article-title: Bridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1221 – volume: 35 start-page: 3017 year: 2015 ident: bib39 article-title: XRCC4/XLF interaction is variably required for DNA repair and is not required for Ligase IV stimulation publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.01503-14 – volume: 11 start-page: 704 year: 2015 ident: bib5 article-title: Neddylation promotes ubiquitylation and release of Ku from DNA-damage sites publication-title: Cell Reports doi: 10.1016/j.celrep.2015.03.058 – volume: 25 start-page: 10842 year: 2005 ident: bib10 article-title: Autophosphorylation of DNA-dependent protein kinase regulates DNA end processing and may also alter double-strand break repair pathway choice publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.25.24.10842-10852.2005 – volume: 40 start-page: 1684 year: 2012 ident: bib38 article-title: XRCC4's interaction with XLF is required for coding (but not signal) end joining publication-title: Nucleic Acids Research doi: 10.1093/nar/gkr1315 – volume: 23 start-page: 5836 year: 2003 ident: bib12 article-title: Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.23.16.5836-5848.2003 – volume: 3 start-page: 1493 year: 2004 ident: bib8 article-title: The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4 publication-title: DNA Repair doi: 10.1016/j.dnarep.2004.06.017 – volume: 79 start-page: 181 year: 2010 ident: bib21 article-title: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.biochem.052308.093131 – volume: 2 start-page: 1239 year: 2003 ident: bib45 article-title: DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination publication-title: DNA Repair doi: 10.1016/S1568-7864(03)00143-5 – volume: 7 start-page: 292 year: 2008 ident: bib24 article-title: APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation publication-title: DNA Repair doi: 10.1016/j.dnarep.2007.10.008 – volume: 285 start-page: 26475 year: 2010 ident: bib26 article-title: Delineation of the Xrcc4-interacting region in the globular head domain of cernunnos/XLF publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M110.138156 – volume: 108 start-page: 12663 year: 2011 ident: bib37 article-title: Structural characterization of filaments formed by human Xrcc4-Cernunnos/XLF complex involved in nonhomologous DNA end-joining publication-title: PNAS doi: 10.1073/pnas.1100758108 – volume: 286 start-page: 32638 year: 2011 ident: bib15 article-title: XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M111.272641 – volume: 200 start-page: 173 year: 2013 ident: bib9 article-title: A noncatalytic function of the ligation complex during nonhomologous end joining publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201203128 – volume: 182 start-page: 467 year: 2008 ident: bib32 article-title: Ku80 removal from DNA through double strand break-induced ubiquitylation publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200802146 – volume: 7 start-page: e37120 year: 2012 ident: bib14 article-title: Crystal structure of a complex of DNA with one AT-hook of HMGA1 publication-title: PLoS One doi: 10.1371/journal.pone.0037120 – volume: 34 start-page: 2162 year: 2014 ident: bib30 article-title: Unraveling the complexities of DNA-dependent protein kinase autophosphorylation publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.01554-13 – reference: 27924007 - Nucleic Acids Res. 2017 Feb 28;45(4):1872-1878 – reference: 18678709 - J Cell Biol. 2008 Aug 11;182(3):467-79 – reference: 17317666 - J Biol Chem. 2007 Apr 13;282(15):11155-62 – reference: 15385968 - EMBO J. 2004 Oct 1;23 (19):3874-85 – reference: 18644470 - DNA Repair (Amst). 2008 Oct 1;7(10):1680-92 – reference: 24236237 - ISRN Mol Biol. 2012;2012:null – reference: 17353262 - Mol Cell Biol. 2007 May;27(10 ):3793-803 – reference: 27716483 - Mol Cell. 2016 Oct 6;64(1):189-198 – reference: 21936820 - Biochem Soc Trans. 2011 Oct;39(5):1387-92, suppl 2 p following 1392 – reference: 25921528 - Cell Rep. 2015 May 5;11(5):704-14 – reference: 18158905 - Mol Cell. 2007 Dec 28;28(6):1093-101 – reference: 15177042 - DNA Repair (Amst). 2004 Mar 4;3(3):267-76 – reference: 16314509 - Mol Cell Biol. 2005 Dec;25(24):10842-52 – reference: 26921311 - J Immunol. 2016 Apr 1;196 (7):3032-42 – reference: 20192759 - Annu Rev Biochem. 2010;79:181-211 – reference: 25941401 - Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2575-84 – reference: 16439204 - Cell. 2006 Jan 27;124(2):287-99 – reference: 21775435 - J Biol Chem. 2011 Sep 16;286(37):32638-50 – reference: 18775323 - Mol Cell. 2008 Sep 5;31(5):631-40 – reference: 20852255 - J Biol Chem. 2010 Nov 26;285(48):37619-29 – reference: 23287722 - Science. 2013 Feb 15;339(6121):823-6 – reference: 22287571 - Nucleic Acids Res. 2012 Feb;40(4):1868-78 – reference: 12897153 - Mol Cell Biol. 2003 Aug;23 (16):5836-48 – reference: 14599745 - DNA Repair (Amst). 2003 Nov 21;2(11):1239-52 – reference: 22228831 - Nucleic Acids Res. 2012 Feb;40(4):1684-94 – reference: 9742243 - Nucleic Acids Res. 1998 Oct 1;26(19):4413-21 – reference: 14607114 - J Mol Biol. 2003 Nov 21;334(2):215-28 – reference: 26100018 - Mol Cell Biol. 2015 Sep 1;35(17 ):3017-28 – reference: 21640108 - FEBS Lett. 2011 Sep 16;585(18):2876-82 – reference: 23337116 - J Cell Biol. 2013 Jan 21;200(2):173-86 – reference: 27437582 - Nature. 2016 Jul 28;535(7613):566-9 – reference: 10202163 - EMBO J. 1999 Apr 1;18(7):2008-18 – reference: 24461734 - DNA Repair (Amst). 2014 Mar;15:39-53 – reference: 26519825 - DNA Repair (Amst). 2015 Nov;35:116-25 – reference: 25661488 - Mol Cell. 2015 Feb 19;57(4):648-61 – reference: 17470781 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):7851-6 – reference: 17038309 - J Biol Chem. 2006 Dec 8;281(49):37517-26 – reference: 21768349 - Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12663-8 – reference: 15380105 - DNA Repair (Amst). 2004 Nov 2;3(11):1493-502 – reference: 18077224 - DNA Repair (Amst). 2008 Feb 1;7(2):292-302 – reference: 24780557 - DNA Repair (Amst). 2014 May;17:9-20 – reference: 20558749 - J Biol Chem. 2010 Aug 20;285(34):26475-83 – reference: 24687855 - Mol Cell Biol. 2014 Jun;34(12):2162-75 – reference: 24050180 - Annu Rev Genet. 2013;47:433-55 – reference: 22615915 - PLoS One. 2012;7(5):e37120 |
| SSID | ssj0000748819 |
| Score | 2.3165405 |
| Snippet | XRCC4 and DNA Ligase 4 (LIG4) form a tight complex that provides DNA ligase activity for classical non-homologous end joining (the predominant DNA... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Alanine Amino Acid Substitution Biochemistry Deoxyribonucleic acid DNA DNA - metabolism DNA damage DNA End-Joining Repair DNA Mutational Analysis DNA repair DNA Repair Enzymes - genetics DNA Repair Enzymes - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA-dependent protein kinase Double-strand break repair Filaments Genes and Chromosomes Humans Kinases Life Sciences LIG4 protein Mimicry Mutation NHEJ Non-homologous end joining Phosphorylation Plasmids Protein Binding Protein Processing, Post-Translational XLF XRCC4 |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagCxIX3guBBRm0J6SwduI09gl1y1Z7KNVqBVJvkV_ZBrVJadqV9u_wS5lJ0kIBceFQKXUsx9KMZ76xx98QcmwkS53yLOR5DAEK53kotXAhnjApbZWLbFtsIp1M5HSqLroNt7pLq9zaxMZQu8riHvkJVwkEUExw9WH5LcSqUXi62pXQuE0OkKlM9MjB6dnk4nK3ywIOUoLPay_mpeA6T_y4yP17ZDlne66oYewHBzPDfMg_webvOZO_OKHRg_-d_kNyv4OfdNDqyyNyy5ePyd22IOXNE_L902bd7Q7S5ayq4RcuikVhVzcUuZ5AV6mGp6Z-fYWN1dxTwL0UcCSdXg6HgurS0el4RIdhl2gzp5ilWtOipIvKNeXCyiv6cTKgzW0x_NNelqQWoTxqDS2rMpxVC5xWtamphzG_Vk0ti6fky-js8_A87Ko4hBag4DrU3ggHQR7jRlrAezzy0gCOETaxTJicOwMO0llt8lgzn8t-GmuuUxCbct6a-JD04KP-OaFG65Q5rSMHUWOikVkm8j42UjHdN14H5N1WoJntKM6x0sY8g1AHpZ810s8a6QfkeNd52TJ7_L3bKWrGrgvScTcN1eoq61Z3FiUSKX6TPNex8BCk9SEOVI7nIrJCaRjkLejV3hjng3GGbWARwYRyec0DcrRVnawzJHX2U28C8mb3GkwAnuvo0oMMMg7rCrQfoFZAnrVauvtUJBNEhSIg6Z7-7s1l_01ZzBqa8UT0JVPsxb-n9ZLcixDpIKFtfER669XGvyJ37PW6qFevu_X4A39TQ_Q priority: 102 providerName: ProQuest |
| Title | Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28500754 https://www.proquest.com/docview/1952740419 https://www.proquest.com/docview/1899119266 https://hal.science/hal-01788018 https://pubmed.ncbi.nlm.nih.gov/PMC5468090 https://doaj.org/article/25865395ffa34e55964879d1f42c49a0 |
| Volume | 6 |
| WOSCitedRecordID | wos000403161500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgA4kXxDeBMRm0J6SwOHES-7Erq4bUVtUEUnmK_JU1qE2mfkzav8Nfyp2TVS0g8cJDrMSxEst39v0uOf-OkBMtotxKF4WsTMBBYawMheI2xD9MUhlpY9Mmm8jHYzGdyslOqi-MCWvpgduBO41TgeypaVmqhDvAvxlAbGlZyWPDpfLeOqCeHWfKr8E5KCaT7Ya8HEzmqRtWpfuE7ObRngnyTP1gWGYYB_knyPw9VnLH-AyekMcdaqS9trdPyT1XPyMP2zySt8_Jz9Fm3X3Uo9ezZgVHuKgWlVneUqRoAhWjCs582vkGK5u5owBXKcA_Or3s9zlVtaXT4YD2wy4-Zk4xuHRFq5ouGuuzfNVX9PO4R_0mL7xo9zhSgwgchU3rpg5nzQK71WxW1MEzfzQ-BcUL8m1w_rV_EXbJF0IDCG4dKqe5Bd8sYloYgGksdkID_OAmNRHXJbMa7Jo1SpeJilwpsjxRTOUw6tI6o5OX5ABe6l4TqpXKI6tUbMHZSxUSwsTOJVrISGXaqYB8vJNHYTpmckyQMS_AQ0HhFV54hRdeQE62ja9bQo6_NztDwW6bIIu2rwDdKjrdKv6lWwH5AGqx94yL3rDAOljIYOVj4oYF5OhOa4pu_q8KJlNw9yPOZEDeb2_DzMXfMap2IIOCwXRgALCzLCCvWiXbvioWKYI5HpB8T_32-rJ_p65mnh085ZmIZPTmfwzAW_IoRhiDbLXJETlYLzfuHXlgbtbVanlM7ufT3JfimByenY8nl8d-GkI5iidY5lAeTr6MJt9_AT9yOlY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90tggEHjZVJYnDiJ84BQ6ag6rasQGlLegmM7bVCblKYd6t_hB_AbOSdJCwXE2x54qJQ6lmMl5_bZx-cjZD8VTqgj49gs8wCgMJbZQnJt4w5TJFWkXdWQTYTDoYjj6P0O-b4-C4NplWubWBtqXSpcIz9kkQ8AyuEsejP7YiNrFO6urik0GrE4MauvANmq18dH8H1fum7v3Vm3b7esAraC0GRhS5NyDaDDYalQEH8w14gU_CpXvnJ4mjGdgsHWSqaZJx2TiSD0JJMhuM5IG5V6MO4lchnseIgpZGEcbtZ0wB0L6NYcAwzBUR-aQZ6ZV1hT3dlyfDU_ALizMWZf_hna_p6h-YvL6938317WLXKjDa5pp9GG22THFHfI1YZuc3WXfDtdLtq1TzoblxX87Gk-zdV8RbGSFWgilXA1QkqzEhvLiaEQ1VOIkmn8odvlVBaaxoMe7dptGtGEYg5uRfOCTktdk6EVI3o07ND6LBz-aY6CUoVABXWCFmVhj8spTqtcVtTAmJ_LmqnjHvl4IS_oPtmFh5qHhKZSho6W0tWAiX2JdXNcY7xURI4MUiMtcrAWoES1BdyRR2SSAJBDaUtqaUtqabPI_qbzrKlb8vdub1ESN12w2HjdUM5HSWu7EtcXWMDYzzLpcQMQNACUG2mWcVfxSMIgL0COt8bodwYJtoG9BwfBxDmzyN5aVJPWTFbJTzm1yPPNbTBwuGslCwPfIGFgNRjgkCCwyINGKzaPcoWPMS-3SLilL1tz2b5T5OO6iLrPA-FEzqN_T-sZudY_Ox0kg-PhyWNy3cWYDkv3entkdzFfmifkijpf5NX8aW0JKPl00dr0A-vpoU0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWG4SE2vB-BAQwaNiOFxomTOAuESks1o-lUFQKpu-DYThvUJqVpB_V3-Ay-jnuTtFBA7GbBolLqWI6V3Nexr-8h5DARTqgj49gs9QCgMJbaQnJt4w5TJFWkXVWTTYSDgRiNouEe-b45C4NplRubWBlqXShcI2-xyAcA5XAWtdImLWLY7b2Zf7GRQQp3Wjd0GrWInJr1V4Bv5euTLnzrl67be_ehc2w3DAO2gjBlaUuTcA0AxGGJUBCLMNeIBHwsV75yeJIynYDx1komqScdk4og9CSTIbjRSBuVeDDuJXI55L6P2nXmDrfrO-CaBXSrjwSG4LRbpp-l5hXWV3d2nGDFFQCubYKZmH-Gub9na_7i_no3_-cXd4vcaIJu2q615DbZM_kdcrWm4VzfJd_OVstmTZTOJ0UJP3uWzTK1WFOscAUaSiVcjZHqrMDGYmooRPsUomc6et_pcCpzTUf9Hu3YTXrRlGJubkmznM4KXZGk5WPaHbRpdUYO_9RHRKlCAIO6QvMityfFDKdVrEpqYMzPRcXgcY98vJAXdJ_sw0PNQ0ITKUNHS-lqwMq-xHo6rjFeIiJHBomRFjnaCFOsmsLuyC8yjQHgoeTFleTFleRZ5HDbeV7XM_l7t7coldsuWIS8aigW47ixabHrCyxs7Kep9LgBaBoA-o00S7mreCRhkBcg0ztjHLf7MbaBHwDHwcQ5s8jBRmzjxnyW8U-Ztcjz7W0wfLibJXMD3yBmYE0Y4JMgsMiDWkO2j3KFj7Ewt0i4ozs7c9m9k2eTqri6zwPhRM6jf0_rGbkGShT3Twanj8l1F0M9rOjrHZD95WJlnpAr6nyZlYunlVGg5NNFK9MPa12qGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutational+phospho-mimicry+reveals+a+regulatory+role+for+the+XRCC4+and+XLF+C-terminal+tails+in+modulating+DNA+bridging+during+classical+non-homologous+end+joining&rft.jtitle=eLife&rft.au=Normanno%2C+Davide&rft.au=N%C3%A9grel%2C+Aur%C3%A9lie&rft.au=de+Melo%2C+Abinadabe+J&rft.au=Betzi%2C+St%C3%A9phane&rft.date=2017-05-13&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=6&rft_id=info:doi/10.7554%2FeLife.22900&rft.externalDBID=n%2Fa&rft.externalDocID=10_7554_eLife_22900 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |