Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey

Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple a...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3625
Main Authors: Orr, James, Dutta, Ayan
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 30.03.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning.
AbstractList Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning.
Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning.Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning.
Audience Academic
Author Orr, James
Dutta, Ayan
AuthorAffiliation School of Computing, University of North Florida, Jacksonville, FL 32224, USA
AuthorAffiliation_xml – name: School of Computing, University of North Florida, Jacksonville, FL 32224, USA
Author_xml – sequence: 1
  givenname: James
  surname: Orr
  fullname: Orr, James
– sequence: 2
  givenname: Ayan
  orcidid: 0000-0003-4343-9999
  surname: Dutta
  fullname: Dutta, Ayan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37050685$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1TAQhSNURB-w4A-gSGxgkXZix7HDBkXlVekCUoG1ZTuT4KskTu2kUv89vjdt1RZ5Yev4zGePj4-Tg9GNmCSvcziltIKzQChwWhL2LDnKC1JkghA4eLA-TI5D2AIQSql4kRxSDgxKwY6SH9-XfrZZ3eE4p58Qp_QS7dg6b3DYSRtUfrRjl0YpXb2XTrs5raept0bN1o3hQ1qnvxZ_jTcvk-et6gO-up1Pkj9fPv8-_5Ztfn69OK83mWGczZmgWjPV6pJWuswZRw0UaKNIYwzoCjXjBsFACQR0YQTyNnq4aPOCKaooPUkuVm7j1FZO3g7K30inrNwLzndS-dmaHqWhLK-oaStgZYElUQ2nojANtKbhnOSR9XFlTYsesDGxba_6R9DHO6P9Kzt3LXOASjDCI-HdLcG7qwXDLAcbDPa9GtEtQRIBENMpShKtb59Yt27xY3wrSXhVcSH4Hni6ujoVO9jlEQ82cTQ4WBPDb23Ua16UVSGKqowFbx72cH_5u6Cj4Ww1GO9C8NhKY-d9epFs-9iL3H0lef-VYsX7JxV30P-9_wCE28ba
CitedBy_id crossref_primary_10_3390_s25113496
crossref_primary_10_1007_s10846_025_02304_6
crossref_primary_10_1088_1361_648X_adac98
crossref_primary_10_1109_ACCESS_2024_3483970
crossref_primary_10_3390_robotics13010005
crossref_primary_10_1109_LRA_2025_3531146
crossref_primary_10_3390_machines12120902
crossref_primary_10_1016_j_procs_2024_09_621
crossref_primary_10_3390_machines12100739
crossref_primary_10_20965_jrm_2023_p1583
crossref_primary_10_3390_infrastructures10050114
crossref_primary_10_3390_s25185749
crossref_primary_10_1016_j_jgsce_2024_205469
crossref_primary_10_1142_S021984362540002X
crossref_primary_10_1145_3749194
crossref_primary_10_1016_j_eswa_2025_126565
crossref_primary_10_3390_photonics11080754
crossref_primary_10_1109_LRA_2025_3557305
crossref_primary_10_1016_j_procs_2023_07_006
crossref_primary_10_3390_electronics13152927
crossref_primary_10_3390_a17010014
crossref_primary_10_3390_electronics12204239
crossref_primary_10_1007_s00521_023_08735_2
crossref_primary_10_1109_ACCESS_2023_3344455
crossref_primary_10_3390_math11183916
crossref_primary_10_1109_OJCOMS_2025_3567585
crossref_primary_10_3390_electronics14122361
crossref_primary_10_3390_jmse11071257
crossref_primary_10_3390_app15042179
crossref_primary_10_3390_jmse13071271
crossref_primary_10_51583_IJLTEMAS_2024_131109
crossref_primary_10_1017_S0263574725000050
crossref_primary_10_3390_jmse13050901
crossref_primary_10_3390_s25030765
crossref_primary_10_1038_s41598_025_05192_w
crossref_primary_10_3390_app15063146
crossref_primary_10_1016_j_jai_2024_02_003
crossref_primary_10_1016_j_swevo_2024_101615
crossref_primary_10_1016_j_swevo_2025_101854
crossref_primary_10_3390_drones8100540
crossref_primary_10_1007_s13235_025_00631_9
crossref_primary_10_1371_journal_pone_0311550
crossref_primary_10_3390_app142412068
crossref_primary_10_3390_electronics13163180
crossref_primary_10_3389_fnbot_2023_1329589
crossref_primary_10_3389_frobt_2025_1534346
crossref_primary_10_1109_JAS_2023_124140
crossref_primary_10_1007_s10462_025_11340_5
crossref_primary_10_3390_electronics12183874
crossref_primary_10_1049_cth2_70021
crossref_primary_10_3390_math11204392
crossref_primary_10_1002_rnc_70030
crossref_primary_10_1016_j_birob_2024_100203
crossref_primary_10_1145_3729343
crossref_primary_10_1155_2024_4756690
crossref_primary_10_1080_00207179_2025_2450824
crossref_primary_10_1007_s11432_024_4303_8
crossref_primary_10_1109_ACCESS_2025_3571931
crossref_primary_10_1016_j_robot_2025_105131
crossref_primary_10_3390_rs15194757
Cites_doi 10.1109/TRO.2016.2603528
10.1109/ICRA.2019.8794090
10.1109/IROS47612.2022.9981803
10.3390/s20205911
10.1109/IROS51168.2021.9636675
10.1126/sciadv.aap7885
10.1049/trit.2020.0024
10.1609/aaai.v30i1.10295
10.3390/a14020062
10.1109/CAC53003.2021.9727879
10.1109/LRA.2022.3146912
10.1109/TCDS.2023.3239815
10.1609/aaai.v24i1.7767
10.1038/nature14539
10.1109/JSAC.2018.2864373
10.1016/j.cja.2021.09.008
10.1109/ICRAE53653.2021.9657767
10.1109/ACCESS.2021.3055651
10.3390/s21144780
10.1126/science.1133755
10.3390/s22186737
10.1007/s10462-020-09938-y
10.1109/SMC52423.2021.9658635
10.1109/ACCESS.2020.2965327
10.1109/IROS45743.2020.9340934
10.1109/ACCESS.2021.3130900
10.1371/journal.pone.0172395
10.1109/ICRA46639.2022.9812341
10.1109/ICAIIC54071.2022.9722643
10.1109/ACCESS.2019.2913776
10.1007/s41315-022-00245-z
10.1109/ICIInfS.2012.6304778
10.1109/LRA.2022.3161699
10.1109/IROS.2017.8206200
10.1109/ICISS49785.2020.9316033
10.1016/j.dt.2022.04.001
10.1109/ACCESS.2020.3030190
10.1016/S0921-8890(02)00256-7
10.1109/ICARA51699.2021.9376457
10.1109/LRA.2021.3098332
10.1007/s10514-011-9241-4
10.23919/CCC52363.2021.9550712
10.1109/ICRA.2017.7989037
10.1145/3163080.3163113
10.1109/LRA.2019.2903261
10.1109/IROS.2005.1545269
10.1109/ICRA46639.2022.9812151
10.1109/CogMI52975.2021.00042
10.1038/nature14236
10.1016/j.asoc.2021.107605
10.5772/5618
10.1155/2022/4384954
10.1109/TSP.2018.2887403
10.3390/app12010272
10.1016/j.ast.2022.108098
10.1162/neco.1997.9.8.1735
10.1109/ICRA46639.2022.9811744
10.1145/37401.37406
10.3389/frobt.2018.00059
10.1109/JSAC.2021.3088718
10.1109/LRA.2020.3002198
10.1109/ICRA.2017.7989250
10.1109/ICRA46639.2022.9812221
10.1016/j.neucom.2020.04.028
10.1002/cav.2113
10.3390/s21030841
10.1007/s10489-020-01832-y
10.1109/ICRA46639.2022.9812370
10.3390/s23062997
10.1109/IROS.2014.6942796
10.1109/IROS.2018.8593871
10.1145/1102351.1102464
10.1109/ICNSC52481.2021.9702196
10.1109/IROS45743.2020.9341805
10.1109/TVT.2022.3190557
10.1063/1.1397396
10.1109/ICDCS54860.2022.00090
10.1007/s10846-016-0461-x
10.1109/ICRA40945.2020.9197209
10.1109/LRA.2020.3026638
10.1109/JIOT.2020.3008299
10.1038/s41586-022-05172-4
10.1109/CSE53436.2021.00015
10.1109/TWC.2019.2900035
10.1177/0278364913496484
10.1109/TNNLS.2022.3220798
10.1007/s00446-016-0291-x
10.1109/LCSYS.2021.3138941
10.1016/S0004-3702(02)00121-2
10.1109/ICRA46639.2022.9812163
10.1109/TVT.2019.2929227
10.1186/s40537-016-0043-6
10.1109/SMC53654.2022.9945272
10.1109/TVT.2020.3034800
10.1109/TASE.2022.3205651
10.1109/LCSYS.2021.3070850
10.1145/3303848
10.1016/j.dt.2022.09.014
10.1613/jair.4818
10.3390/s22051919
10.1007/BF00992698
10.1109/IEEECONF38699.2020.9389128
10.1109/LRA.2022.3188904
10.1109/EIConRus.2018.8317240
10.1016/j.robot.2017.03.003
10.1016/j.neucom.2020.06.038
10.1126/science.1254295
10.1109/IROS.2007.4399095
10.1007/s11721-017-0135-8
10.1109/IROS.2009.5354598
10.3390/en15197426
10.1109/ICRA48506.2021.9561386
10.3390/drones6110339
10.1177/0278364913495721
10.5194/essd-9-1-2017
10.1038/nature16961
10.1109/ICCRE51898.2021.9435666
10.1109/ICMA.2019.8816208
10.3390/app11072895
10.1609/aaai.v35i12.17276
10.1109/ICRA.2014.6907770
10.32604/csse.2023.031116
10.1016/j.robot.2020.103594
10.1016/j.eswa.2021.115128
10.1109/ICRA.2017.7989385
10.1016/j.robot.2013.09.004
10.3390/app9204198
10.1109/MRA.2007.339623
10.1109/ROBIO.2018.8665165
10.1016/j.procs.2018.01.054
10.1109/INFOCOM42981.2021.9488669
10.1109/IRC.2019.00120
10.1109/ICRA.2018.8461113
10.1109/IROS51168.2021.9636349
10.1109/IROS.2013.6696520
10.1016/j.conengprac.2006.08.007
10.1177/0278364920916531
10.1109/TVT.2022.3184043
10.1126/science.1245842
10.1016/j.neucom.2020.06.031
10.1109/TIE.2022.3206745
10.1109/TRA.2002.806024
10.1007/978-3-319-44427-7_1
10.1016/S0004-3702(99)00052-1
10.1007/s10472-009-9120-2
10.1109/LRA.2019.2924839
10.1016/j.robot.2013.08.008
10.1109/ACCESS.2020.3025287
10.1109/ICTAI50040.2020.00088
10.1109/ICARA51699.2021.9376509
10.1109/IROS51168.2021.9636183
10.13164/mendel.2021.2.023
10.3390/app9153057
10.1109/LRA.2020.2974695
10.1017/pds.2021.17
10.1109/ICMLA.2019.00040
10.1109/TNNLS.2020.2978386
10.1109/JPROC.2006.887296
10.1007/s10846-019-01106-x
10.1109/ICRAE50850.2020.9310796
10.1109/TII.2021.3094207
10.1109/IROS.2017.8202312
10.1049/joe.2019.1200
10.1609/aaai.v32i1.11798
10.1109/TCYB.2020.2977374
10.1109/ACCESS.2022.3202208
10.1109/LRA.2021.3062803
10.1109/SMC52423.2021.9658795
10.1109/JIOT.2021.3073973
10.1109/TMC.2019.2908171
10.1109/ICCA.2018.8444355
10.1109/TSSC.1968.300136
10.1109/ICC.2018.8422706
10.1109/TSMCC.2007.913919
10.1109/LRA.2022.3184795
10.1109/ACCESS.2020.3016951
10.1177/0278364913515309
10.1016/j.artint.2014.11.001
10.1109/TRO.2005.861455
10.1145/1553374.1553380
10.1109/ECTI-CON54298.2022.9795641
10.1109/TVT.2022.3145346
10.1109/ICRA.2017.7989105
10.1002/adc2.27
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23073625
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c35193cf90564e62ad7384cd0fcd7721
PMC10098527
A746948496
37050685
10_3390_s23073625
Genre Journal Article
Review
GeographicLocations Massachusetts
Germany
GeographicLocations_xml – name: Massachusetts
– name: Germany
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c575t-83bb5afb639b6157eb0303da2dcc0b9eb57ce0c06020b4c8e7f7eb78f145a3a33
IEDL.DBID DOA
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970434900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:32:23 EST 2025
Tue Nov 04 02:06:48 EST 2025
Thu Oct 02 10:51:57 EDT 2025
Tue Oct 07 07:26:33 EDT 2025
Tue Nov 04 18:15:25 EST 2025
Wed Feb 19 02:24:20 EST 2025
Sat Nov 29 07:14:11 EST 2025
Tue Nov 18 21:41:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords multi-robot systems
survey
deep reinforcement learning
multi-agent learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-83bb5afb639b6157eb0303da2dcc0b9eb57ce0c06020b4c8e7f7eb78f145a3a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4343-9999
OpenAccessLink https://doaj.org/article/c35193cf90564e62ad7384cd0fcd7721
PMID 37050685
PQID 2799788727
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c35193cf90564e62ad7384cd0fcd7721
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10098527
proquest_miscellaneous_2800625462
proquest_journals_2799788727
gale_infotracacademiconefile_A746948496
pubmed_primary_37050685
crossref_citationtrail_10_3390_s23073625
crossref_primary_10_3390_s23073625
PublicationCentury 2000
PublicationDate 20230330
PublicationDateYYYYMMDD 2023-03-30
PublicationDate_xml – month: 3
  year: 2023
  text: 20230330
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_137
ref_258
ref_136
ref_257
ref_92
ref_139
ref_91
ref_90
Tuci (ref_250) 2018; 5
Tokekar (ref_238) 2016; 32
ref_131
ref_99
Setyawan (ref_101) 2022; 13
ref_130
ref_251
ref_254
ref_97
ref_132
Wu (ref_229) 2020; 32
ref_253
ref_96
ref_135
ref_256
ref_134
Hochreiter (ref_182) 1997; 9
Zhou (ref_19) 2021; 9
Fawzi (ref_8) 2022; 610
ref_126
ref_247
ref_127
Flocchini (ref_226) 2017; 30
ref_248
ref_129
Kapoutsis (ref_147) 2017; 86
Challita (ref_186) 2019; 18
ref_241
ref_122
ref_121
ref_124
ref_245
ref_123
ref_244
Liu (ref_120) 2022; 19
Busoniu (ref_16) 2008; 38
Wang (ref_142) 2022; 71
Mnih (ref_6) 2015; 518
ref_72
ref_70
Mammeri (ref_11) 2019; 7
Luo (ref_193) 2022; 71
Sutton (ref_25) 1999; 112
ref_79
ref_150
ref_78
ref_77
ref_152
Kadanoff (ref_170) 2001; 54
ref_76
ref_75
ref_154
ref_74
Meng (ref_102) 2021; 6
ref_157
Yliniemi (ref_21) 2014; 35
ref_156
Bowling (ref_29) 2002; 136
(ref_234) 2009; 60
Rizk (ref_3) 2019; 52
Liu (ref_84) 2020; 2020
Gama (ref_158) 2018; 67
ref_269
ref_268
ref_81
ref_80
ref_149
ref_140
ref_261
ref_260
ref_89
ref_263
ref_88
ref_262
ref_144
ref_265
ref_86
ref_143
ref_264
ref_85
ref_146
ref_267
Sadhukhan (ref_125) 2022; 6
Christensen (ref_151) 2014; 33
Viseras (ref_240) 2019; 4
ref_214
Nguyen (ref_65) 2020; 50
Sun (ref_198) 2023; 34
ref_213
ref_218
Agrawal (ref_52) 2021; 1
Moon (ref_38) 2021; 8
ref_210
ref_212
ref_211
Zhang (ref_73) 2020; 8
Rooker (ref_153) 2007; 15
Acar (ref_166) 2006; 22
Weiss (ref_191) 2016; 3
ref_202
Han (ref_54) 2022; 7
ref_205
ref_204
ref_207
Hu (ref_35) 2003; 4
ref_206
ref_209
ref_208
Tan (ref_272) 2020; 8
Paszke (ref_259) 2019; 32
Wang (ref_187) 2020; 5
ref_200
Alkilabi (ref_249) 2017; 11
Dutta (ref_18) 2021; 9
Wagner (ref_175) 2015; 219
Du (ref_64) 2021; 54
Queralta (ref_20) 2020; 8
Chung (ref_233) 2011; 31
ref_115
ref_114
ref_235
Wang (ref_39) 2021; 180
ref_117
Werfel (ref_255) 2014; 343
ref_116
ref_119
Mou (ref_68) 2021; 39
ref_118
Michel (ref_266) 2004; 1
ref_111
Sartoretti (ref_194) 2019; 4
ref_232
ref_110
ref_113
ref_112
Ma (ref_98) 2020; 99
Rekleitis (ref_148) 2008; 52
ref_225
ref_224
ref_106
ref_227
ref_105
Wang (ref_237) 2020; 412
ref_108
ref_228
ref_109
Liu (ref_104) 2018; 36
ref_100
ref_221
ref_220
ref_223
ref_222
Zhu (ref_216) 2020; 8
Chen (ref_87) 2022; 70
Rubenstein (ref_215) 2014; 345
Galceran (ref_145) 2013; 61
Chen (ref_167) 2020; 8
ref_14
ref_13
Qamar (ref_138) 2022; 10
ref_17
ref_15
Narvekar (ref_252) 2020; 21
Watkins (ref_5) 1992; 8
Yan (ref_219) 2020; 131
Popova (ref_9) 2018; 4
Adrian (ref_141) 2019; 20
Wang (ref_82) 2020; 5
ref_24
Batjes (ref_239) 2017; 9
ref_22
Wang (ref_23) 2020; 2
Lan (ref_217) 2020; 410
ref_28
Yu (ref_40) 2020; 2020
Bennewitz (ref_176) 2002; 41
Vaswani (ref_246) 2017; 30
Na (ref_49) 2022; 71
Andrychowicz (ref_201) 2017; 30
Li (ref_69) 2022; 2022
Hart (ref_174) 1968; 4
Hamed (ref_103) 2021; 27
Zhang (ref_160) 2022; 7
Bloembergen (ref_27) 2015; 53
Liu (ref_172) 2019; 19
Yim (ref_273) 2007; 14
Khamis (ref_242) 2015; 2015
Panov (ref_12) 2018; 123
ref_50
Sheng (ref_162) 2022; 7
Korsah (ref_243) 2013; 32
Silver (ref_10) 2016; 529
Sadhu (ref_34) 2017; 92
ref_58
ref_173
ref_57
ref_55
Arai (ref_1) 2002; 18
ref_177
ref_53
ref_179
ref_51
ref_178
Baca (ref_270) 2014; 62
ref_180
Thumiger (ref_56) 2021; 6
ref_59
Hu (ref_155) 2020; 69
Kober (ref_26) 2013; 32
ref_60
ref_169
Zhang (ref_168) 2019; 68
ref_161
ref_67
ref_164
Wang (ref_181) 2020; 406
ref_66
Johnson (ref_93) 2022; 7
Aydemir (ref_159) 2023; 45
ref_163
ref_165
ref_63
ref_62
Oh (ref_236) 2007; 95
ref_171
Damani (ref_196) 2021; 6
Lowe (ref_61) 2017; 30
Wenhong (ref_230) 2022; 35
Yang (ref_71) 2020; 5
ref_36
ref_195
Chennareddy (ref_271) 2017; 2017
ref_197
ref_33
ref_32
ref_199
ref_31
ref_30
Fan (ref_107) 2020; 39
ref_37
Miyashita (ref_95) 2021; 51
Nowak (ref_231) 2006; 314
ref_47
ref_184
ref_46
ref_183
LeCun (ref_7) 2015; 521
ref_45
ref_44
Wen (ref_133) 2021; 110
ref_185
Semnani (ref_203) 2020; 5
ref_43
ref_188
ref_42
ref_41
ref_189
ref_2
ref_190
ref_48
Yan (ref_83) 2021; 18
ref_192
Li (ref_128) 2022; 2022
ref_4
References_xml – volume: 32
  start-page: 1498
  year: 2016
  ident: ref_238
  article-title: Sensor planning for a symbiotic UAV and UGV system for precision agriculture
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2016.2603528
– ident: ref_185
  doi: 10.1109/ICRA.2019.8794090
– ident: ref_205
  doi: 10.1109/IROS47612.2022.9981803
– volume: 13
  start-page: 35
  year: 2022
  ident: ref_101
  article-title: Cooperative Multi-Robot Hierarchical Reinforcement Learning
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_178
– ident: ref_264
– ident: ref_42
– ident: ref_143
  doi: 10.3390/s20205911
– ident: ref_184
– ident: ref_110
  doi: 10.1109/IROS51168.2021.9636675
– ident: ref_4
– volume: 4
  start-page: eaap7885
  year: 2018
  ident: ref_9
  article-title: Deep reinforcement learning for de novo drug design
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap7885
– volume: 5
  start-page: 177
  year: 2020
  ident: ref_71
  article-title: Multi-robot path planning based on a deep reinforcement learning DQN algorithm
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2020.0024
– ident: ref_37
  doi: 10.1609/aaai.v30i1.10295
– ident: ref_258
– ident: ref_223
  doi: 10.3390/a14020062
– ident: ref_46
  doi: 10.1109/CAC53003.2021.9727879
– volume: 7
  start-page: 3435
  year: 2022
  ident: ref_160
  article-title: H2GNN: Hierarchical-Hops Graph Neural Networks for Multi-Robot Exploration in Unknown Environments
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3146912
– ident: ref_130
  doi: 10.1109/TCDS.2023.3239815
– ident: ref_59
– ident: ref_149
– ident: ref_173
  doi: 10.1609/aaai.v24i1.7767
– ident: ref_53
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_7
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_30
– volume: 30
  start-page: 6382
  year: 2017
  ident: ref_61
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 36
  start-page: 2059
  year: 2018
  ident: ref_104
  article-title: Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2864373
– volume: 35
  start-page: 100
  year: 2022
  ident: ref_230
  article-title: Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2021.09.008
– ident: ref_228
– ident: ref_106
  doi: 10.1109/ICRAE53653.2021.9657767
– ident: ref_85
  doi: 10.1109/ACCESS.2021.3055651
– ident: ref_79
  doi: 10.3390/s21144780
– volume: 314
  start-page: 1560
  year: 2006
  ident: ref_231
  article-title: Five rules for the evolution of cooperation
  publication-title: Science
  doi: 10.1126/science.1133755
– ident: ref_161
  doi: 10.3390/s22186737
– volume: 54
  start-page: 3215
  year: 2021
  ident: ref_64
  article-title: A survey on multi-agent deep reinforcement learning: From the perspective of challenges and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09938-y
– ident: ref_121
  doi: 10.1109/SMC52423.2021.9658635
– ident: ref_14
– volume: 8
  start-page: 13969
  year: 2020
  ident: ref_272
  article-title: A framework for taxonomy and evaluation of self-reconfigurable robotic systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2965327
– ident: ref_13
  doi: 10.1109/IROS45743.2020.9340934
– volume: 9
  start-page: 161416
  year: 2021
  ident: ref_18
  article-title: Multi-Robot Information Gathering for Precision Agriculture: Current State, Scope, and Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3130900
– volume: 9
  start-page: 1
  year: 2021
  ident: ref_19
  article-title: A survey of underwater multi-robot systems
  publication-title: IEEE/CAA J. Autom. Sin.
– ident: ref_58
  doi: 10.1371/journal.pone.0172395
– ident: ref_74
  doi: 10.1109/ICRA46639.2022.9812341
– ident: ref_92
  doi: 10.1109/ICAIIC54071.2022.9722643
– volume: 7
  start-page: 55916
  year: 2019
  ident: ref_11
  article-title: Reinforcement learning based routing in networks: Review and classification of approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913776
– volume: 6
  start-page: 746
  year: 2022
  ident: ref_125
  article-title: Proximal policy optimization for formation navigation and obstacle avoidance
  publication-title: Int. J. Intell. Robot. Appl.
  doi: 10.1007/s41315-022-00245-z
– ident: ref_200
– ident: ref_2
  doi: 10.1109/ICIInfS.2012.6304778
– volume: 2015
  start-page: 31
  year: 2015
  ident: ref_242
  article-title: Multi-robot task allocation: A review of the state-of-the-art
  publication-title: Coop. Robot. Sens. Netw.
– volume: 7
  start-page: 5896
  year: 2022
  ident: ref_54
  article-title: Reinforcement Learned Distributed Multi-Robot Navigation With Reciprocal Velocity Obstacle Shaped Rewards
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3161699
– ident: ref_31
  doi: 10.1109/IROS.2017.8206200
– ident: ref_119
  doi: 10.1109/ICISS49785.2020.9316033
– volume: 19
  start-page: 210
  year: 2022
  ident: ref_120
  article-title: Task assignment in ground-to-air confrontation based on multiagent deep reinforcement learning
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2022.04.001
– volume: 8
  start-page: 191617
  year: 2020
  ident: ref_20
  article-title: Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030190
– volume: 41
  start-page: 89
  year: 2002
  ident: ref_176
  article-title: Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(02)00256-7
– ident: ref_88
  doi: 10.1109/ICARA51699.2021.9376457
– ident: ref_137
  doi: 10.1109/LRA.2021.3098332
– volume: 31
  start-page: 299
  year: 2011
  ident: ref_233
  article-title: Search and pursuit-evasion in mobile robotics
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-011-9241-4
– ident: ref_179
– ident: ref_126
– ident: ref_57
  doi: 10.23919/CCC52363.2021.9550712
– ident: ref_36
– ident: ref_70
– ident: ref_189
  doi: 10.1109/ICRA.2017.7989037
– ident: ref_80
  doi: 10.1145/3163080.3163113
– volume: 4
  start-page: 2378
  year: 2019
  ident: ref_194
  article-title: Primal: Pathfinding via reinforcement and imitation multi-agent learning
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2903261
– ident: ref_253
  doi: 10.1109/IROS.2005.1545269
– volume: 32
  start-page: 8024
  year: 2019
  ident: ref_259
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_222
– ident: ref_124
  doi: 10.1109/ICRA46639.2022.9812151
– ident: ref_165
  doi: 10.1109/CogMI52975.2021.00042
– volume: 2017
  start-page: 5013532
  year: 2017
  ident: ref_271
  article-title: Modular self-reconfigurable robotic systems: A survey on hardware architectures
  publication-title: J. Robot.
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_6
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 110
  start-page: 107605
  year: 2021
  ident: ref_133
  article-title: A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107605
– volume: 1
  start-page: 5
  year: 2004
  ident: ref_266
  article-title: Cyberbotics Ltd. Webots™: Professional mobile robot simulation
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/5618
– ident: ref_260
– volume: 2022
  start-page: 4384954
  year: 2022
  ident: ref_128
  article-title: Supervised Reinforcement Learning for ULV Path Planning in Complex Warehouse Environment
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2022/4384954
– volume: 67
  start-page: 1034
  year: 2018
  ident: ref_158
  article-title: Convolutional neural network architectures for signals supported on graphs
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2887403
– ident: ref_188
– volume: 2022
  start-page: 6825902
  year: 2022
  ident: ref_69
  article-title: Multirobot Coverage Path Planning Based on Deep Q-Network in Unknown Environment
  publication-title: J. Robot.
– ident: ref_254
– ident: ref_114
  doi: 10.3390/app12010272
– ident: ref_144
  doi: 10.1016/j.ast.2022.108098
– ident: ref_227
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_182
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_156
– ident: ref_111
  doi: 10.1109/ICRA46639.2022.9811744
– ident: ref_66
– ident: ref_164
  doi: 10.1145/37401.37406
– volume: 5
  start-page: 59
  year: 2018
  ident: ref_250
  article-title: Cooperative object transport in multi-robot systems: A review of the state-of-the-art
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2018.00059
– ident: ref_265
– volume: 39
  start-page: 3160
  year: 2021
  ident: ref_68
  article-title: Deep reinforcement learning based three-dimensional area coverage with UAV swarm
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2021.3088718
– volume: 5
  start-page: 4509
  year: 2020
  ident: ref_82
  article-title: Learning scheduling policies for multi-robot coordination with graph attention networks
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3002198
– ident: ref_247
  doi: 10.1109/ICRA.2017.7989250
– ident: ref_123
  doi: 10.1109/ICRA46639.2022.9812221
– volume: 406
  start-page: 68
  year: 2020
  ident: ref_181
  article-title: Mrcdrl: Multi-robot coordination with deep reinforcement learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.028
– volume: 34
  start-page: e2113
  year: 2023
  ident: ref_198
  article-title: Path planning for multiple agents in an unknown environment using soft actor critic and curriculum learning
  publication-title: Comput. Animat. Virtual Worlds
  doi: 10.1002/cav.2113
– ident: ref_94
  doi: 10.3390/s21030841
– volume: 51
  start-page: 1069
  year: 2021
  ident: ref_95
  article-title: Analysis of coordinated behavior structures with multi-agent deep reinforcement learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01832-y
– volume: 30
  start-page: 5048
  year: 2017
  ident: ref_201
  article-title: Hindsight experience replay
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_129
  doi: 10.1109/ICRA46639.2022.9812370
– volume: 2020
  start-page: 7842768
  year: 2020
  ident: ref_84
  article-title: Multi-usv system cooperative underwater target search based on reinforcement learning and probability map
  publication-title: Math. Probl. Eng.
– ident: ref_180
  doi: 10.3390/s23062997
– ident: ref_235
  doi: 10.1109/IROS.2014.6942796
– ident: ref_202
  doi: 10.1109/IROS.2018.8593871
– ident: ref_211
  doi: 10.1145/1102351.1102464
– ident: ref_204
  doi: 10.1109/ICNSC52481.2021.9702196
– ident: ref_116
  doi: 10.1109/IROS45743.2020.9341805
– volume: 71
  start-page: 12321
  year: 2022
  ident: ref_193
  article-title: Federated Deep Reinforcement Learning for RIS-Assisted Indoor Multi-Robot Communication Systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3190557
– volume: 54
  start-page: 54
  year: 2001
  ident: ref_170
  article-title: Statistical physics: Statics, dynamics, and renormalization
  publication-title: Phys. Today
  doi: 10.1063/1.1397396
– ident: ref_212
  doi: 10.1109/ICDCS54860.2022.00090
– volume: 86
  start-page: 663
  year: 2017
  ident: ref_147
  article-title: DARP: Divide areas algorithm for optimal multi-robot coverage path planning
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-016-0461-x
– ident: ref_209
– ident: ref_117
  doi: 10.1109/ICRA40945.2020.9197209
– volume: 5
  start-page: 6932
  year: 2020
  ident: ref_187
  article-title: Mobile robot path planning in dynamic environments through globally guided reinforcement learning
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3026638
– volume: 8
  start-page: 813
  year: 2020
  ident: ref_167
  article-title: Mean field deep reinforcement learning for fair and efficient UAV control
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3008299
– volume: 610
  start-page: 47
  year: 2022
  ident: ref_8
  article-title: Discovering faster matrix multiplication algorithms with reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-022-05172-4
– ident: ref_154
  doi: 10.1109/CSE53436.2021.00015
– volume: 18
  start-page: 2125
  year: 2019
  ident: ref_186
  article-title: Interference management for cellular-connected UAVs: A deep reinforcement learning approach
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2900035
– ident: ref_122
– volume: 4
  start-page: 1039
  year: 2003
  ident: ref_35
  article-title: Nash Q-learning for general-sum stochastic games
  publication-title: J. Mach. Learn. Res.
– ident: ref_210
– volume: 32
  start-page: 1495
  year: 2013
  ident: ref_243
  article-title: A comprehensive taxonomy for multi-robot task allocation
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913496484
– ident: ref_195
– ident: ref_90
  doi: 10.1109/TNNLS.2022.3220798
– volume: 30
  start-page: 413
  year: 2017
  ident: ref_226
  article-title: Distributed computing by mobile robots: Uniform circle formation
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-016-0291-x
– ident: ref_43
– ident: ref_60
– volume: 6
  start-page: 2174
  year: 2021
  ident: ref_56
  article-title: A Multi-Agent Deep Reinforcement Learning Approach for Practical Decentralized UAV Collision Avoidance
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2021.3138941
– volume: 136
  start-page: 215
  year: 2002
  ident: ref_29
  article-title: Multiagent learning using a variable learning rate
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(02)00121-2
– ident: ref_221
– ident: ref_183
  doi: 10.1109/ICRA46639.2022.9812163
– ident: ref_51
– volume: 68
  start-page: 8814
  year: 2019
  ident: ref_168
  article-title: Distributed interference-aware traffic offloading and power control in ultra-dense networks: Mean field game with dominating player
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2929227
– volume: 3
  start-page: 1
  year: 2016
  ident: ref_191
  article-title: A survey of transfer learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-016-0043-6
– ident: ref_232
– ident: ref_100
  doi: 10.1109/SMC53654.2022.9945272
– volume: 69
  start-page: 14413
  year: 2020
  ident: ref_155
  article-title: Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3034800
– ident: ref_89
  doi: 10.1109/TASE.2022.3205651
– volume: 6
  start-page: 283
  year: 2021
  ident: ref_102
  article-title: Deep reinforcement learning-based effective coverage control with connectivity constraints
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2021.3070850
– volume: 52
  start-page: 1
  year: 2019
  ident: ref_3
  article-title: Cooperative heterogeneous multi-robot systems: A survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3303848
– ident: ref_146
– ident: ref_127
  doi: 10.1016/j.dt.2022.09.014
– volume: 53
  start-page: 659
  year: 2015
  ident: ref_27
  article-title: Evolutionary dynamics of multi-agent learning: A survey
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.4818
– ident: ref_171
  doi: 10.3390/s22051919
– ident: ref_169
– volume: 8
  start-page: 279
  year: 1992
  ident: ref_5
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– ident: ref_105
  doi: 10.1109/IEEECONF38699.2020.9389128
– volume: 7
  start-page: 8869
  year: 2022
  ident: ref_162
  article-title: PD-FAC: Probability Density Factorized Multi-Agent Distributional Reinforcement Learning for Multi-Robot Reliable Search
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3188904
– ident: ref_77
  doi: 10.1109/EIConRus.2018.8317240
– volume: 92
  start-page: 66
  year: 2017
  ident: ref_34
  article-title: Improving the speed of convergence of multi-agent Q-learning for cooperative task-planning by a robot-team
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2017.03.003
– ident: ref_244
– ident: ref_135
– volume: 410
  start-page: 410
  year: 2020
  ident: ref_217
  article-title: Cooperative control for swarming systems based on reinforcement learning in unknown dynamic environment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.038
– ident: ref_152
– volume: 345
  start-page: 795
  year: 2014
  ident: ref_215
  article-title: Programmable self-assembly in a thousand-robot swarm
  publication-title: Science
  doi: 10.1126/science.1254295
– ident: ref_62
– ident: ref_45
– ident: ref_261
– ident: ref_32
  doi: 10.1109/IROS.2007.4399095
– volume: 11
  start-page: 185
  year: 2017
  ident: ref_249
  article-title: Cooperative object transport with a swarm of e-puck robots: Robustness and scalability of evolved collective strategies
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-017-0135-8
– ident: ref_150
  doi: 10.1109/IROS.2009.5354598
– ident: ref_207
  doi: 10.3390/en15197426
– ident: ref_28
– ident: ref_218
  doi: 10.1109/ICRA48506.2021.9561386
– ident: ref_139
  doi: 10.3390/drones6110339
– volume: 32
  start-page: 1238
  year: 2013
  ident: ref_26
  article-title: Reinforcement learning in robotics: A survey
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913495721
– volume: 9
  start-page: 1
  year: 2017
  ident: ref_239
  article-title: WoSIS: Providing standardised soil profile data for the world
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-9-1-2017
– ident: ref_140
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_10
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref_55
  doi: 10.1109/ICCRE51898.2021.9435666
– ident: ref_134
– ident: ref_109
  doi: 10.1109/ICMA.2019.8816208
– ident: ref_86
– ident: ref_132
  doi: 10.3390/app11072895
– ident: ref_157
– ident: ref_206
  doi: 10.1609/aaai.v35i12.17276
– ident: ref_213
  doi: 10.1109/ICRA.2014.6907770
– volume: 45
  start-page: 215
  year: 2023
  ident: ref_159
  article-title: Multi-Agent Dynamic Area Coverage Based on Reinforcement Learning with Connected Agents
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.031116
– volume: 131
  start-page: 103594
  year: 2020
  ident: ref_219
  article-title: Fixed-Wing UAVs flocking in continuous spaces: A deep reinforcement learning approach
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2020.103594
– volume: 180
  start-page: 115128
  year: 2021
  ident: ref_39
  article-title: Multirobot coordination with deep reinforcement learning in complex environments
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115128
– ident: ref_44
– ident: ref_262
– ident: ref_50
  doi: 10.1109/ICRA.2017.7989385
– volume: 61
  start-page: 1258
  year: 2013
  ident: ref_145
  article-title: A survey on coverage path planning for robotics
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2013.09.004
– ident: ref_163
– ident: ref_97
  doi: 10.3390/app9204198
– ident: ref_225
– volume: 14
  start-page: 43
  year: 2007
  ident: ref_273
  article-title: Modular self-reconfigurable robot systems [grand challenges of robotics]
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2007.339623
– ident: ref_76
  doi: 10.1109/ROBIO.2018.8665165
– ident: ref_81
– volume: 123
  start-page: 347
  year: 2018
  ident: ref_12
  article-title: Grid path planning with deep reinforcement learning: Preliminary results
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.01.054
– ident: ref_33
– ident: ref_67
  doi: 10.1109/INFOCOM42981.2021.9488669
– ident: ref_112
– ident: ref_15
  doi: 10.1109/IRC.2019.00120
– ident: ref_22
  doi: 10.1109/ICRA.2018.8461113
– ident: ref_199
– ident: ref_75
  doi: 10.1109/IROS51168.2021.9636349
– ident: ref_267
  doi: 10.1109/IROS.2013.6696520
– volume: 15
  start-page: 435
  year: 2007
  ident: ref_153
  article-title: Multi-robot exploration under the constraints of wireless networking
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2006.08.007
– volume: 39
  start-page: 856
  year: 2020
  ident: ref_107
  article-title: Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364920916531
– volume: 71
  start-page: 10280
  year: 2022
  ident: ref_142
  article-title: Oracle-Guided Deep Reinforcement Learning for Large-Scale Multi-UAVs Flocking and Navigation
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3184043
– ident: ref_208
– volume: 343
  start-page: 754
  year: 2014
  ident: ref_255
  article-title: Designing collective behavior in a termite-inspired robot construction team
  publication-title: Science
  doi: 10.1126/science.1245842
– volume: 412
  start-page: 101
  year: 2020
  ident: ref_237
  article-title: Cooperative control for multi-player pursuit-evasion games with reinforcement learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.031
– ident: ref_256
– volume: 70
  start-page: 7032
  year: 2022
  ident: ref_87
  article-title: Multi-Agent Path Finding Using Deep Reinforcement Learning Coupled With Hot Supervision Contrastive Loss
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2022.3206745
– volume: 18
  start-page: 655
  year: 2002
  ident: ref_1
  article-title: Advances in multi-robot systems
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/TRA.2002.806024
– ident: ref_78
– ident: ref_214
  doi: 10.1007/978-3-319-44427-7_1
– volume: 112
  start-page: 181
  year: 1999
  ident: ref_25
  article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(99)00052-1
– volume: 52
  start-page: 109
  year: 2008
  ident: ref_148
  article-title: Efficient boustrophedon multi-robot coverage: An algorithmic approach
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-009-9120-2
– ident: ref_251
– volume: 4
  start-page: 3059
  year: 2019
  ident: ref_240
  article-title: DeepIG: Multi-robot information gathering with deep reinforcement learning
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2924839
– ident: ref_245
– volume: 62
  start-page: 1002
  year: 2014
  ident: ref_270
  article-title: Modred: Hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2013.08.008
– volume: 8
  start-page: 184109
  year: 2020
  ident: ref_73
  article-title: Decentralized control of multi-robot system in cooperative object transportation using deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025287
– ident: ref_115
  doi: 10.1109/ICTAI50040.2020.00088
– ident: ref_136
– ident: ref_268
– ident: ref_48
  doi: 10.1109/ICARA51699.2021.9376509
– ident: ref_220
  doi: 10.1109/IROS51168.2021.9636183
– volume: 27
  start-page: 23
  year: 2021
  ident: ref_103
  article-title: Hybrid Formation Control for Multi-Robot Hunters Based on Multi-Agent Deep Deterministic Policy Gradient
  publication-title: Mendel
  doi: 10.13164/mendel.2021.2.023
– ident: ref_72
  doi: 10.3390/app9153057
– volume: 5
  start-page: 3221
  year: 2020
  ident: ref_203
  article-title: Multi-agent motion planning for dense and dynamic environments via deep reinforcement learning
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2974695
– volume: 20
  start-page: 1
  year: 2019
  ident: ref_141
  article-title: Deep reinforcement learning for swarm systems
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 161
  year: 2021
  ident: ref_52
  article-title: A multi-agent reinforcement learning framework for intelligent manufacturing with autonomous mobile robots
  publication-title: Proc. Des. Soc.
  doi: 10.1017/pds.2021.17
– volume: 35
  start-page: 61
  year: 2014
  ident: ref_21
  article-title: Multirobot coordination for space exploration
  publication-title: AI Mag.
– ident: ref_113
  doi: 10.1109/ICMLA.2019.00040
– ident: ref_118
– volume: 32
  start-page: 4
  year: 2020
  ident: ref_229
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– volume: 60
  start-page: 143
  year: 2009
  ident: ref_234
  article-title: Multi–robot control system for pursuit–evasion problem
  publication-title: J. Electr. Eng
– volume: 95
  start-page: 234
  year: 2007
  ident: ref_236
  article-title: Tracking and coordination of multiple agents using sensor networks: System design, algorithms and experiments
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2006.887296
– volume: 99
  start-page: 371
  year: 2020
  ident: ref_98
  article-title: Multi-robot target encirclement control with collision avoidance via deep reinforcement learning
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-019-01106-x
– ident: ref_41
– ident: ref_108
  doi: 10.1109/ICRAE50850.2020.9310796
– volume: 18
  start-page: 1260
  year: 2021
  ident: ref_83
  article-title: Deep reinforcement learning of collision-free flocking policies for multiple fixed-wing uavs using local situation maps
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3094207
– ident: ref_17
– ident: ref_131
– ident: ref_224
– ident: ref_190
  doi: 10.1109/IROS.2017.8202312
– volume: 2020
  start-page: 499
  year: 2020
  ident: ref_40
  article-title: Distributed multi-agent deep reinforcement learning for cooperative multi-robot pursuit
  publication-title: J. Eng.
  doi: 10.1049/joe.2019.1200
– ident: ref_248
  doi: 10.1609/aaai.v32i1.11798
– volume: 50
  start-page: 3826
  year: 2020
  ident: ref_65
  article-title: Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2977374
– ident: ref_24
– volume: 10
  start-page: 91073
  year: 2022
  ident: ref_138
  article-title: Autonomous Drone Swarm Navigation and Multi-target Tracking with Island Policy-based Optimization Framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3202208
– volume: 6
  start-page: 2666
  year: 2021
  ident: ref_196
  article-title: PRIMAL _2: Pathfinding via reinforcement and imitation multi-agent learning-lifelong
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3062803
– ident: ref_192
– ident: ref_241
  doi: 10.1109/SMC52423.2021.9658795
– volume: 8
  start-page: 15441
  year: 2021
  ident: ref_38
  article-title: Deep reinforcement learning multi-UAV trajectory control for target tracking
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3073973
– volume: 19
  start-page: 1274
  year: 2019
  ident: ref_172
  article-title: Distributed energy-efficient multi-UAV navigation for long-term communication coverage by deep reinforcement learning
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2019.2908171
– ident: ref_63
– ident: ref_257
– volume: 21
  start-page: 181:1
  year: 2020
  ident: ref_252
  article-title: Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey
  publication-title: J. Mach. Learn. Res.
– ident: ref_47
  doi: 10.1109/ICCA.2018.8444355
– volume: 4
  start-page: 100
  year: 1968
  ident: ref_174
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– volume: 30
  start-page: 5998
  year: 2017
  ident: ref_246
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_269
  doi: 10.1109/ICC.2018.8422706
– ident: ref_96
– volume: 38
  start-page: 156
  year: 2008
  ident: ref_16
  article-title: A comprehensive survey of multiagent reinforcement learning
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2007.913919
– volume: 7
  start-page: 7684
  year: 2022
  ident: ref_93
  article-title: Multi-Agent Reinforcement Learning for Real-Time Dynamic Production Scheduling in a Robot Assembly Cell
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3184795
– volume: 8
  start-page: 150397
  year: 2020
  ident: ref_216
  article-title: Multi-robot flocking control based on deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016951
– volume: 33
  start-page: 519
  year: 2014
  ident: ref_151
  article-title: Coordination strategies for multi-robot exploration and mapping
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913515309
– volume: 219
  start-page: 1
  year: 2015
  ident: ref_175
  article-title: Subdimensional expansion for multirobot path planning
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2014.11.001
– volume: 22
  start-page: 189
  year: 2006
  ident: ref_166
  article-title: Sensor-based coverage with extended range detectors
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2005.861455
– ident: ref_197
  doi: 10.1145/1553374.1553380
– ident: ref_99
  doi: 10.1109/ECTI-CON54298.2022.9795641
– volume: 71
  start-page: 2511
  year: 2022
  ident: ref_49
  article-title: Bio-Inspired Collision Avoidance in Swarm Systems via Deep Reinforcement Learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3145346
– ident: ref_91
– ident: ref_177
  doi: 10.1109/ICRA.2017.7989105
– ident: ref_263
– volume: 2
  start-page: e27
  year: 2020
  ident: ref_23
  article-title: Cooperatively pursuing a target unmanned aerial vehicle by multiple unmanned aerial vehicles based on multiagent reinforcement learning
  publication-title: Adv. Control Appl. Eng. Ind. Syst.
  doi: 10.1002/adc2.27
SSID ssj0023338
Score 2.677851
SecondaryResourceType review_article
Snippet Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3625
SubjectTerms Algorithms
Deep learning
deep reinforcement learning
Expected utility
Expected values
multi-agent learning
multi-robot systems
Neural networks
Planning
Radio communications
Review
Robotics
Robots
survey
Surveys
Values
SummonAdditionalLinks – databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD5U2gRQYhwSVqEjuxw6UKhYoDWqEC0t4ie-KUSihZ9lGJf8-M4003AnHhmoyiceZte75h7JUEa4Vo0riEtIwlJDrWhXGxaXKMfxjRpPUgrp_UbKbn8_Jz2HBbhWuVW5_oHXXTA-2RH2WqLOnmW6aOFz9jmhpFp6thhMZ1doPGZpOeq_lVwSWw_hrQhASW9kcruvSMDjufxCAP1f-nQ96JSNPbkjvh53T_fxm_y-6ExJNXg6bcY9dcd5_d3oEjfMBmvhs3rqjbir93bsHPnAdWBb-HyAMW6znHR3ygPettv-bVzin4W17xL5vlpfv1kH07_fD15GMc5i3EgEnbOtbC2ty0FpMWi4mOchY9gGhM1gAktnQ2V-ASSApMMa0E7VSLNEq3qcyNMEI8Yntd37knjDvdYl7gBAjjCBIevySVLGyaQaFNWkTszVYCNQQwcpqJ8aPGooSEVY_CitjLkXQxIHD8jegdiXEkINBs_6BfntfBBmugYYQC2hKTPumKzDRKaAlN0kKDRUYasdekBDX9WWQGTOhQwCURSFZd4QpKqWWJ7B9sZV0Hm1_VV4KO2IvxNVorHcGYzvUbpNHUtJrLIovY40GtRp6FSvKk0LgWPVG4yaKmb7qL7x4RPCVY2DxTT__N1zN2K0Or8C2VyQHbWy837pDdhMv1xWr53NvOb8kxI3M
  priority: 102
  providerName: ProQuest
Title Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey
URI https://www.ncbi.nlm.nih.gov/pubmed/37050685
https://www.proquest.com/docview/2799788727
https://www.proquest.com/docview/2800625462
https://pubmed.ncbi.nlm.nih.gov/PMC10098527
https://doaj.org/article/c35193cf90564e62ad7384cd0fcd7721
Volume 23
WOSCitedRecordID wos000970434900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB909aCHxc-1uj6iCHop2zZpk3jr6lsU3MfjqfA8hSRNdUH6lvexsBf_didpX2lR8OIlh2Qok8lMZqbJ_ALwilljKK3SWNpUxswmIhaFdrGucvR_6NGYCSCun_hsJpZLOR889eXvhLXwwK3gTqx_QY7aWqKnZq7IdMWpYLZKalthZBgSn4TLfTLVpVoUM68WR4hiUn-y8dedcavOR94ngPT_uRUPfNH4nuTA8Zzdg8MuYiRly-l9uOGaB3B3gCP4EGahjDYufZkUee_cJVm4gIhqw88_0oGofifYRVraxcqstqQcHF-_JSX5vFtfuetH8PVs-uXdh7h7KCG2GG1tY0GNyXVtMNowGKFwZ9B0aaWzytrESGdybl1ikwJjQ8OscLxGGi7qlOWaakofw0GzatwTIE7U6NAdtVQ7j-WOX2KcFSbNbCF0WkTwZi9AZTsUcf-YxU-F2YSXteplHcHLnvSyhc74G9GpX4WewKNdhw7UAdXpgPqXDkTw2q-h8pJFZqzuSgtwSh7dSpU4A8kEk8j-8X6ZVWesG5VxKf2lyoxH8KIfRjPzZye6casd0ghfbZqzIovgqNWKnmfKkzwpBM5FjPRlNKnxSHPxI0B5px7PNc_40_8hhmdwJ0PVDxWTyTEcbNc79xxu26vtxWY9gZt8yUMrJnDrdDqbLybBaLA9_zXFvvnH8_m339EFGzo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQ98H4EChgEgkvUJHZiBwmhQKladVmh0kp7M7bjtJVQsuyjqH-K38hMXt0IxK0Hrsko8sSf52F7viHkJbfGMJaHfmrD1Oc2kL5MtPN1HoP_A4_GTU3iOhLjsZxM0i9r5FdXC4PXKjubWBvqvLK4R74ViTTFm2-ReD_94WPXKDxd7VpoNLDYd-c_IWWbv9vbhvl9FUU7nw4_7vptVwHfQmiy8CUzJtaFAddswJ0LZwDnLNdRbm1gUmdiYV1ggwQCKcOtdKIAGSGLkMeaadwABZN_Bey4wGRPTC4SPAb5XsNexFgabM3xkjU4iHjg8-rWAH86gBUPOLydueLudm7-bz_qFrnRBtY0a1bCbbLmyjtkY4Vu8S4Z19XGfobVZHTbuSk9cDVxrK33SGnLNXtM4RFtZA8qUy1otnLK_5Zm9OtydubO75GjS1HoPlkvq9I9JNTJAuIexyzTDinv4Utc8MSEkU2kDhOPvOlmXNmWbB17fnxXkHQhOFQPDo-86EWnDcPI34Q-IGx6ASQFrx9Us2PV2hhlsdkis0UKQS13SaRzwSS3eVDYHJKo0COvEXQK_ywMxuq2AgNUQhIwlYEGKZc8heFvdthSrU2bqwtgeeR5_xqsER4x6dJVS5CRWJQb8yTyyIMGxv2YmQjiIJGgixwAfKDU8E15elIznodIextH4tG_x_WMXNs9_DxSo73x_mNyPYIVWZePBptkfTFbuifkqj1bnM5nT-t1S8m3y8b_b_qGghY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4TgwPsRKGAQCC5RE9tJbCSEAsuKVctqVahUTsF2nFIJJcs-ivrX-HWM82JXIG49cE1GkR1_noc98w3AU260ZiwPfWlC6XMTCF_Eyvoqj9D-oUXjuiZx3U8mE3F0JKdb8LOrhXFplZ1OrBV1Xhl3Rr5LEyld5huG6kWbFjEdjl7Pvvuug5S7ae3aaTQQ2bNnPzB8W7waD3Gtn1E6evfp7Xu_7TDgG3RTlr5gWkeq0GimNZr2xGrEPMsVzY0JtLQ6SowNTBCjU6W5ETYpUCYRRcgjxZQ7DEX1v40uOacD2J6OP0w_9-Eew-iv4TJiTAa7C5dyjeYi2rCAdaOAP83Bmj3czNVcM36jq__zb7sGV1qXm6TNHrkOW7a8AZfXiBhvwqSuQ_ZTV2dGhtbOyIGtKWVNfXpKWhbaY4KPSCN7UOlqSdK1-_-XJCUfV_NTe3YLDs9lQrdhUFalvQvEigI9IssMU9aR4eOXEB2xDqmJhQpjD150q5-ZlobddQP5lmE45oCS9UDx4EkvOmu4R_4m9MZBqBdwdOH1g2p-nLXaJzOuDSMzhUR3l9uYqjxhgps8KEyO4VXowXMHwMz9WRyMUW1tBk7J0YNlKc5AcsElDn-nw1nWartF9htkHjzuX6OecpdPqrTVCmWEK9eNeEw9uNNAuh8zS4IoiAXORWyAfWNSm2_Kk681F3roCHEjmtz797gewUWEfbY_nuzdh0sUN2ddVxrswGA5X9kHcMGcLk8W84ftJibw5bw3wC-RRoxl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Deep+Reinforcement+Learning+for+Multi-Robot+Applications%3A+A+Survey&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=James+Orr&rft.au=Ayan+Dutta&rft.date=2023-03-30&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft.spage=3625&rft_id=info:doi/10.3390%2Fs23073625&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c35193cf90564e62ad7384cd0fcd7721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon