Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey
Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple a...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3625 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
30.03.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning. |
|---|---|
| AbstractList | Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning. Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning.Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning. |
| Audience | Academic |
| Author | Orr, James Dutta, Ayan |
| AuthorAffiliation | School of Computing, University of North Florida, Jacksonville, FL 32224, USA |
| AuthorAffiliation_xml | – name: School of Computing, University of North Florida, Jacksonville, FL 32224, USA |
| Author_xml | – sequence: 1 givenname: James surname: Orr fullname: Orr, James – sequence: 2 givenname: Ayan orcidid: 0000-0003-4343-9999 surname: Dutta fullname: Dutta, Ayan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37050685$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkktv1TAQhSNURB-w4A-gSGxgkXZix7HDBkXlVekCUoG1ZTuT4KskTu2kUv89vjdt1RZ5Yev4zGePj4-Tg9GNmCSvcziltIKzQChwWhL2LDnKC1JkghA4eLA-TI5D2AIQSql4kRxSDgxKwY6SH9-XfrZZ3eE4p58Qp_QS7dg6b3DYSRtUfrRjl0YpXb2XTrs5raept0bN1o3hQ1qnvxZ_jTcvk-et6gO-up1Pkj9fPv8-_5Ztfn69OK83mWGczZmgWjPV6pJWuswZRw0UaKNIYwzoCjXjBsFACQR0YQTyNnq4aPOCKaooPUkuVm7j1FZO3g7K30inrNwLzndS-dmaHqWhLK-oaStgZYElUQ2nojANtKbhnOSR9XFlTYsesDGxba_6R9DHO6P9Kzt3LXOASjDCI-HdLcG7qwXDLAcbDPa9GtEtQRIBENMpShKtb59Yt27xY3wrSXhVcSH4Hni6ujoVO9jlEQ82cTQ4WBPDb23Ua16UVSGKqowFbx72cH_5u6Cj4Ww1GO9C8NhKY-d9epFs-9iL3H0lef-VYsX7JxV30P-9_wCE28ba |
| CitedBy_id | crossref_primary_10_3390_s25113496 crossref_primary_10_1007_s10846_025_02304_6 crossref_primary_10_1088_1361_648X_adac98 crossref_primary_10_1109_ACCESS_2024_3483970 crossref_primary_10_3390_robotics13010005 crossref_primary_10_1109_LRA_2025_3531146 crossref_primary_10_3390_machines12120902 crossref_primary_10_1016_j_procs_2024_09_621 crossref_primary_10_3390_machines12100739 crossref_primary_10_20965_jrm_2023_p1583 crossref_primary_10_3390_infrastructures10050114 crossref_primary_10_3390_s25185749 crossref_primary_10_1016_j_jgsce_2024_205469 crossref_primary_10_1142_S021984362540002X crossref_primary_10_1145_3749194 crossref_primary_10_1016_j_eswa_2025_126565 crossref_primary_10_3390_photonics11080754 crossref_primary_10_1109_LRA_2025_3557305 crossref_primary_10_1016_j_procs_2023_07_006 crossref_primary_10_3390_electronics13152927 crossref_primary_10_3390_a17010014 crossref_primary_10_3390_electronics12204239 crossref_primary_10_1007_s00521_023_08735_2 crossref_primary_10_1109_ACCESS_2023_3344455 crossref_primary_10_3390_math11183916 crossref_primary_10_1109_OJCOMS_2025_3567585 crossref_primary_10_3390_electronics14122361 crossref_primary_10_3390_jmse11071257 crossref_primary_10_3390_app15042179 crossref_primary_10_3390_jmse13071271 crossref_primary_10_51583_IJLTEMAS_2024_131109 crossref_primary_10_1017_S0263574725000050 crossref_primary_10_3390_jmse13050901 crossref_primary_10_3390_s25030765 crossref_primary_10_1038_s41598_025_05192_w crossref_primary_10_3390_app15063146 crossref_primary_10_1016_j_jai_2024_02_003 crossref_primary_10_1016_j_swevo_2024_101615 crossref_primary_10_1016_j_swevo_2025_101854 crossref_primary_10_3390_drones8100540 crossref_primary_10_1007_s13235_025_00631_9 crossref_primary_10_1371_journal_pone_0311550 crossref_primary_10_3390_app142412068 crossref_primary_10_3390_electronics13163180 crossref_primary_10_3389_fnbot_2023_1329589 crossref_primary_10_3389_frobt_2025_1534346 crossref_primary_10_1109_JAS_2023_124140 crossref_primary_10_1007_s10462_025_11340_5 crossref_primary_10_3390_electronics12183874 crossref_primary_10_1049_cth2_70021 crossref_primary_10_3390_math11204392 crossref_primary_10_1002_rnc_70030 crossref_primary_10_1016_j_birob_2024_100203 crossref_primary_10_1145_3729343 crossref_primary_10_1155_2024_4756690 crossref_primary_10_1080_00207179_2025_2450824 crossref_primary_10_1007_s11432_024_4303_8 crossref_primary_10_1109_ACCESS_2025_3571931 crossref_primary_10_1016_j_robot_2025_105131 crossref_primary_10_3390_rs15194757 |
| Cites_doi | 10.1109/TRO.2016.2603528 10.1109/ICRA.2019.8794090 10.1109/IROS47612.2022.9981803 10.3390/s20205911 10.1109/IROS51168.2021.9636675 10.1126/sciadv.aap7885 10.1049/trit.2020.0024 10.1609/aaai.v30i1.10295 10.3390/a14020062 10.1109/CAC53003.2021.9727879 10.1109/LRA.2022.3146912 10.1109/TCDS.2023.3239815 10.1609/aaai.v24i1.7767 10.1038/nature14539 10.1109/JSAC.2018.2864373 10.1016/j.cja.2021.09.008 10.1109/ICRAE53653.2021.9657767 10.1109/ACCESS.2021.3055651 10.3390/s21144780 10.1126/science.1133755 10.3390/s22186737 10.1007/s10462-020-09938-y 10.1109/SMC52423.2021.9658635 10.1109/ACCESS.2020.2965327 10.1109/IROS45743.2020.9340934 10.1109/ACCESS.2021.3130900 10.1371/journal.pone.0172395 10.1109/ICRA46639.2022.9812341 10.1109/ICAIIC54071.2022.9722643 10.1109/ACCESS.2019.2913776 10.1007/s41315-022-00245-z 10.1109/ICIInfS.2012.6304778 10.1109/LRA.2022.3161699 10.1109/IROS.2017.8206200 10.1109/ICISS49785.2020.9316033 10.1016/j.dt.2022.04.001 10.1109/ACCESS.2020.3030190 10.1016/S0921-8890(02)00256-7 10.1109/ICARA51699.2021.9376457 10.1109/LRA.2021.3098332 10.1007/s10514-011-9241-4 10.23919/CCC52363.2021.9550712 10.1109/ICRA.2017.7989037 10.1145/3163080.3163113 10.1109/LRA.2019.2903261 10.1109/IROS.2005.1545269 10.1109/ICRA46639.2022.9812151 10.1109/CogMI52975.2021.00042 10.1038/nature14236 10.1016/j.asoc.2021.107605 10.5772/5618 10.1155/2022/4384954 10.1109/TSP.2018.2887403 10.3390/app12010272 10.1016/j.ast.2022.108098 10.1162/neco.1997.9.8.1735 10.1109/ICRA46639.2022.9811744 10.1145/37401.37406 10.3389/frobt.2018.00059 10.1109/JSAC.2021.3088718 10.1109/LRA.2020.3002198 10.1109/ICRA.2017.7989250 10.1109/ICRA46639.2022.9812221 10.1016/j.neucom.2020.04.028 10.1002/cav.2113 10.3390/s21030841 10.1007/s10489-020-01832-y 10.1109/ICRA46639.2022.9812370 10.3390/s23062997 10.1109/IROS.2014.6942796 10.1109/IROS.2018.8593871 10.1145/1102351.1102464 10.1109/ICNSC52481.2021.9702196 10.1109/IROS45743.2020.9341805 10.1109/TVT.2022.3190557 10.1063/1.1397396 10.1109/ICDCS54860.2022.00090 10.1007/s10846-016-0461-x 10.1109/ICRA40945.2020.9197209 10.1109/LRA.2020.3026638 10.1109/JIOT.2020.3008299 10.1038/s41586-022-05172-4 10.1109/CSE53436.2021.00015 10.1109/TWC.2019.2900035 10.1177/0278364913496484 10.1109/TNNLS.2022.3220798 10.1007/s00446-016-0291-x 10.1109/LCSYS.2021.3138941 10.1016/S0004-3702(02)00121-2 10.1109/ICRA46639.2022.9812163 10.1109/TVT.2019.2929227 10.1186/s40537-016-0043-6 10.1109/SMC53654.2022.9945272 10.1109/TVT.2020.3034800 10.1109/TASE.2022.3205651 10.1109/LCSYS.2021.3070850 10.1145/3303848 10.1016/j.dt.2022.09.014 10.1613/jair.4818 10.3390/s22051919 10.1007/BF00992698 10.1109/IEEECONF38699.2020.9389128 10.1109/LRA.2022.3188904 10.1109/EIConRus.2018.8317240 10.1016/j.robot.2017.03.003 10.1016/j.neucom.2020.06.038 10.1126/science.1254295 10.1109/IROS.2007.4399095 10.1007/s11721-017-0135-8 10.1109/IROS.2009.5354598 10.3390/en15197426 10.1109/ICRA48506.2021.9561386 10.3390/drones6110339 10.1177/0278364913495721 10.5194/essd-9-1-2017 10.1038/nature16961 10.1109/ICCRE51898.2021.9435666 10.1109/ICMA.2019.8816208 10.3390/app11072895 10.1609/aaai.v35i12.17276 10.1109/ICRA.2014.6907770 10.32604/csse.2023.031116 10.1016/j.robot.2020.103594 10.1016/j.eswa.2021.115128 10.1109/ICRA.2017.7989385 10.1016/j.robot.2013.09.004 10.3390/app9204198 10.1109/MRA.2007.339623 10.1109/ROBIO.2018.8665165 10.1016/j.procs.2018.01.054 10.1109/INFOCOM42981.2021.9488669 10.1109/IRC.2019.00120 10.1109/ICRA.2018.8461113 10.1109/IROS51168.2021.9636349 10.1109/IROS.2013.6696520 10.1016/j.conengprac.2006.08.007 10.1177/0278364920916531 10.1109/TVT.2022.3184043 10.1126/science.1245842 10.1016/j.neucom.2020.06.031 10.1109/TIE.2022.3206745 10.1109/TRA.2002.806024 10.1007/978-3-319-44427-7_1 10.1016/S0004-3702(99)00052-1 10.1007/s10472-009-9120-2 10.1109/LRA.2019.2924839 10.1016/j.robot.2013.08.008 10.1109/ACCESS.2020.3025287 10.1109/ICTAI50040.2020.00088 10.1109/ICARA51699.2021.9376509 10.1109/IROS51168.2021.9636183 10.13164/mendel.2021.2.023 10.3390/app9153057 10.1109/LRA.2020.2974695 10.1017/pds.2021.17 10.1109/ICMLA.2019.00040 10.1109/TNNLS.2020.2978386 10.1109/JPROC.2006.887296 10.1007/s10846-019-01106-x 10.1109/ICRAE50850.2020.9310796 10.1109/TII.2021.3094207 10.1109/IROS.2017.8202312 10.1049/joe.2019.1200 10.1609/aaai.v32i1.11798 10.1109/TCYB.2020.2977374 10.1109/ACCESS.2022.3202208 10.1109/LRA.2021.3062803 10.1109/SMC52423.2021.9658795 10.1109/JIOT.2021.3073973 10.1109/TMC.2019.2908171 10.1109/ICCA.2018.8444355 10.1109/TSSC.1968.300136 10.1109/ICC.2018.8422706 10.1109/TSMCC.2007.913919 10.1109/LRA.2022.3184795 10.1109/ACCESS.2020.3016951 10.1177/0278364913515309 10.1016/j.artint.2014.11.001 10.1109/TRO.2005.861455 10.1145/1553374.1553380 10.1109/ECTI-CON54298.2022.9795641 10.1109/TVT.2022.3145346 10.1109/ICRA.2017.7989105 10.1002/adc2.27 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s23073625 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c35193cf90564e62ad7384cd0fcd7721 PMC10098527 A746948496 37050685 10_3390_s23073625 |
| Genre | Journal Article Review |
| GeographicLocations | Massachusetts Germany |
| GeographicLocations_xml | – name: Massachusetts – name: Germany |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c575t-83bb5afb639b6157eb0303da2dcc0b9eb57ce0c06020b4c8e7f7eb78f145a3a33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 79 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970434900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:32:23 EST 2025 Tue Nov 04 02:06:48 EST 2025 Thu Oct 02 10:51:57 EDT 2025 Tue Oct 07 07:26:33 EDT 2025 Tue Nov 04 18:15:25 EST 2025 Wed Feb 19 02:24:20 EST 2025 Sat Nov 29 07:14:11 EST 2025 Tue Nov 18 21:41:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | multi-robot systems survey deep reinforcement learning multi-agent learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-83bb5afb639b6157eb0303da2dcc0b9eb57ce0c06020b4c8e7f7eb78f145a3a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4343-9999 |
| OpenAccessLink | https://doaj.org/article/c35193cf90564e62ad7384cd0fcd7721 |
| PMID | 37050685 |
| PQID | 2799788727 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c35193cf90564e62ad7384cd0fcd7721 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10098527 proquest_miscellaneous_2800625462 proquest_journals_2799788727 gale_infotracacademiconefile_A746948496 pubmed_primary_37050685 crossref_citationtrail_10_3390_s23073625 crossref_primary_10_3390_s23073625 |
| PublicationCentury | 2000 |
| PublicationDate | 20230330 |
| PublicationDateYYYYMMDD | 2023-03-30 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230330 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 ref_137 ref_258 ref_136 ref_257 ref_92 ref_139 ref_91 ref_90 Tuci (ref_250) 2018; 5 Tokekar (ref_238) 2016; 32 ref_131 ref_99 Setyawan (ref_101) 2022; 13 ref_130 ref_251 ref_254 ref_97 ref_132 Wu (ref_229) 2020; 32 ref_253 ref_96 ref_135 ref_256 ref_134 Hochreiter (ref_182) 1997; 9 Zhou (ref_19) 2021; 9 Fawzi (ref_8) 2022; 610 ref_126 ref_247 ref_127 Flocchini (ref_226) 2017; 30 ref_248 ref_129 Kapoutsis (ref_147) 2017; 86 Challita (ref_186) 2019; 18 ref_241 ref_122 ref_121 ref_124 ref_245 ref_123 ref_244 Liu (ref_120) 2022; 19 Busoniu (ref_16) 2008; 38 Wang (ref_142) 2022; 71 Mnih (ref_6) 2015; 518 ref_72 ref_70 Mammeri (ref_11) 2019; 7 Luo (ref_193) 2022; 71 Sutton (ref_25) 1999; 112 ref_79 ref_150 ref_78 ref_77 ref_152 Kadanoff (ref_170) 2001; 54 ref_76 ref_75 ref_154 ref_74 Meng (ref_102) 2021; 6 ref_157 Yliniemi (ref_21) 2014; 35 ref_156 Bowling (ref_29) 2002; 136 (ref_234) 2009; 60 Rizk (ref_3) 2019; 52 Liu (ref_84) 2020; 2020 Gama (ref_158) 2018; 67 ref_269 ref_268 ref_81 ref_80 ref_149 ref_140 ref_261 ref_260 ref_89 ref_263 ref_88 ref_262 ref_144 ref_265 ref_86 ref_143 ref_264 ref_85 ref_146 ref_267 Sadhukhan (ref_125) 2022; 6 Christensen (ref_151) 2014; 33 Viseras (ref_240) 2019; 4 ref_214 Nguyen (ref_65) 2020; 50 Sun (ref_198) 2023; 34 ref_213 ref_218 Agrawal (ref_52) 2021; 1 Moon (ref_38) 2021; 8 ref_210 ref_212 ref_211 Zhang (ref_73) 2020; 8 Rooker (ref_153) 2007; 15 Acar (ref_166) 2006; 22 Weiss (ref_191) 2016; 3 ref_202 Han (ref_54) 2022; 7 ref_205 ref_204 ref_207 Hu (ref_35) 2003; 4 ref_206 ref_209 ref_208 Tan (ref_272) 2020; 8 Paszke (ref_259) 2019; 32 Wang (ref_187) 2020; 5 ref_200 Alkilabi (ref_249) 2017; 11 Dutta (ref_18) 2021; 9 Wagner (ref_175) 2015; 219 Du (ref_64) 2021; 54 Queralta (ref_20) 2020; 8 Chung (ref_233) 2011; 31 ref_115 ref_114 ref_235 Wang (ref_39) 2021; 180 ref_117 Werfel (ref_255) 2014; 343 ref_116 ref_119 Mou (ref_68) 2021; 39 ref_118 Michel (ref_266) 2004; 1 ref_111 Sartoretti (ref_194) 2019; 4 ref_232 ref_110 ref_113 ref_112 Ma (ref_98) 2020; 99 Rekleitis (ref_148) 2008; 52 ref_225 ref_224 ref_106 ref_227 ref_105 Wang (ref_237) 2020; 412 ref_108 ref_228 ref_109 Liu (ref_104) 2018; 36 ref_100 ref_221 ref_220 ref_223 ref_222 Zhu (ref_216) 2020; 8 Chen (ref_87) 2022; 70 Rubenstein (ref_215) 2014; 345 Galceran (ref_145) 2013; 61 Chen (ref_167) 2020; 8 ref_14 ref_13 Qamar (ref_138) 2022; 10 ref_17 ref_15 Narvekar (ref_252) 2020; 21 Watkins (ref_5) 1992; 8 Yan (ref_219) 2020; 131 Popova (ref_9) 2018; 4 Adrian (ref_141) 2019; 20 Wang (ref_82) 2020; 5 ref_24 Batjes (ref_239) 2017; 9 ref_22 Wang (ref_23) 2020; 2 Lan (ref_217) 2020; 410 ref_28 Yu (ref_40) 2020; 2020 Bennewitz (ref_176) 2002; 41 Vaswani (ref_246) 2017; 30 Na (ref_49) 2022; 71 Andrychowicz (ref_201) 2017; 30 Li (ref_69) 2022; 2022 Hart (ref_174) 1968; 4 Hamed (ref_103) 2021; 27 Zhang (ref_160) 2022; 7 Bloembergen (ref_27) 2015; 53 Liu (ref_172) 2019; 19 Yim (ref_273) 2007; 14 Khamis (ref_242) 2015; 2015 Panov (ref_12) 2018; 123 ref_50 Sheng (ref_162) 2022; 7 Korsah (ref_243) 2013; 32 Silver (ref_10) 2016; 529 Sadhu (ref_34) 2017; 92 ref_58 ref_173 ref_57 ref_55 Arai (ref_1) 2002; 18 ref_177 ref_53 ref_179 ref_51 ref_178 Baca (ref_270) 2014; 62 ref_180 Thumiger (ref_56) 2021; 6 ref_59 Hu (ref_155) 2020; 69 Kober (ref_26) 2013; 32 ref_60 ref_169 Zhang (ref_168) 2019; 68 ref_161 ref_67 ref_164 Wang (ref_181) 2020; 406 ref_66 Johnson (ref_93) 2022; 7 Aydemir (ref_159) 2023; 45 ref_163 ref_165 ref_63 ref_62 Oh (ref_236) 2007; 95 ref_171 Damani (ref_196) 2021; 6 Lowe (ref_61) 2017; 30 Wenhong (ref_230) 2022; 35 Yang (ref_71) 2020; 5 ref_36 ref_195 Chennareddy (ref_271) 2017; 2017 ref_197 ref_33 ref_32 ref_199 ref_31 ref_30 Fan (ref_107) 2020; 39 ref_37 Miyashita (ref_95) 2021; 51 Nowak (ref_231) 2006; 314 ref_47 ref_184 ref_46 ref_183 LeCun (ref_7) 2015; 521 ref_45 ref_44 Wen (ref_133) 2021; 110 ref_185 Semnani (ref_203) 2020; 5 ref_43 ref_188 ref_42 ref_41 ref_189 ref_2 ref_190 ref_48 Yan (ref_83) 2021; 18 ref_192 Li (ref_128) 2022; 2022 ref_4 |
| References_xml | – volume: 32 start-page: 1498 year: 2016 ident: ref_238 article-title: Sensor planning for a symbiotic UAV and UGV system for precision agriculture publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2016.2603528 – ident: ref_185 doi: 10.1109/ICRA.2019.8794090 – ident: ref_205 doi: 10.1109/IROS47612.2022.9981803 – volume: 13 start-page: 35 year: 2022 ident: ref_101 article-title: Cooperative Multi-Robot Hierarchical Reinforcement Learning publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_178 – ident: ref_264 – ident: ref_42 – ident: ref_143 doi: 10.3390/s20205911 – ident: ref_184 – ident: ref_110 doi: 10.1109/IROS51168.2021.9636675 – ident: ref_4 – volume: 4 start-page: eaap7885 year: 2018 ident: ref_9 article-title: Deep reinforcement learning for de novo drug design publication-title: Sci. Adv. doi: 10.1126/sciadv.aap7885 – volume: 5 start-page: 177 year: 2020 ident: ref_71 article-title: Multi-robot path planning based on a deep reinforcement learning DQN algorithm publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2020.0024 – ident: ref_37 doi: 10.1609/aaai.v30i1.10295 – ident: ref_258 – ident: ref_223 doi: 10.3390/a14020062 – ident: ref_46 doi: 10.1109/CAC53003.2021.9727879 – volume: 7 start-page: 3435 year: 2022 ident: ref_160 article-title: H2GNN: Hierarchical-Hops Graph Neural Networks for Multi-Robot Exploration in Unknown Environments publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3146912 – ident: ref_130 doi: 10.1109/TCDS.2023.3239815 – ident: ref_59 – ident: ref_149 – ident: ref_173 doi: 10.1609/aaai.v24i1.7767 – ident: ref_53 – volume: 521 start-page: 436 year: 2015 ident: ref_7 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_30 – volume: 30 start-page: 6382 year: 2017 ident: ref_61 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Adv. Neural Inf. Process. Syst. – volume: 36 start-page: 2059 year: 2018 ident: ref_104 article-title: Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2864373 – volume: 35 start-page: 100 year: 2022 ident: ref_230 article-title: Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2021.09.008 – ident: ref_228 – ident: ref_106 doi: 10.1109/ICRAE53653.2021.9657767 – ident: ref_85 doi: 10.1109/ACCESS.2021.3055651 – ident: ref_79 doi: 10.3390/s21144780 – volume: 314 start-page: 1560 year: 2006 ident: ref_231 article-title: Five rules for the evolution of cooperation publication-title: Science doi: 10.1126/science.1133755 – ident: ref_161 doi: 10.3390/s22186737 – volume: 54 start-page: 3215 year: 2021 ident: ref_64 article-title: A survey on multi-agent deep reinforcement learning: From the perspective of challenges and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09938-y – ident: ref_121 doi: 10.1109/SMC52423.2021.9658635 – ident: ref_14 – volume: 8 start-page: 13969 year: 2020 ident: ref_272 article-title: A framework for taxonomy and evaluation of self-reconfigurable robotic systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2965327 – ident: ref_13 doi: 10.1109/IROS45743.2020.9340934 – volume: 9 start-page: 161416 year: 2021 ident: ref_18 article-title: Multi-Robot Information Gathering for Precision Agriculture: Current State, Scope, and Challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3130900 – volume: 9 start-page: 1 year: 2021 ident: ref_19 article-title: A survey of underwater multi-robot systems publication-title: IEEE/CAA J. Autom. Sin. – ident: ref_58 doi: 10.1371/journal.pone.0172395 – ident: ref_74 doi: 10.1109/ICRA46639.2022.9812341 – ident: ref_92 doi: 10.1109/ICAIIC54071.2022.9722643 – volume: 7 start-page: 55916 year: 2019 ident: ref_11 article-title: Reinforcement learning based routing in networks: Review and classification of approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913776 – volume: 6 start-page: 746 year: 2022 ident: ref_125 article-title: Proximal policy optimization for formation navigation and obstacle avoidance publication-title: Int. J. Intell. Robot. Appl. doi: 10.1007/s41315-022-00245-z – ident: ref_200 – ident: ref_2 doi: 10.1109/ICIInfS.2012.6304778 – volume: 2015 start-page: 31 year: 2015 ident: ref_242 article-title: Multi-robot task allocation: A review of the state-of-the-art publication-title: Coop. Robot. Sens. Netw. – volume: 7 start-page: 5896 year: 2022 ident: ref_54 article-title: Reinforcement Learned Distributed Multi-Robot Navigation With Reciprocal Velocity Obstacle Shaped Rewards publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3161699 – ident: ref_31 doi: 10.1109/IROS.2017.8206200 – ident: ref_119 doi: 10.1109/ICISS49785.2020.9316033 – volume: 19 start-page: 210 year: 2022 ident: ref_120 article-title: Task assignment in ground-to-air confrontation based on multiagent deep reinforcement learning publication-title: Def. Technol. doi: 10.1016/j.dt.2022.04.001 – volume: 8 start-page: 191617 year: 2020 ident: ref_20 article-title: Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030190 – volume: 41 start-page: 89 year: 2002 ident: ref_176 article-title: Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots publication-title: Robot. Auton. Syst. doi: 10.1016/S0921-8890(02)00256-7 – ident: ref_88 doi: 10.1109/ICARA51699.2021.9376457 – ident: ref_137 doi: 10.1109/LRA.2021.3098332 – volume: 31 start-page: 299 year: 2011 ident: ref_233 article-title: Search and pursuit-evasion in mobile robotics publication-title: Auton. Robot. doi: 10.1007/s10514-011-9241-4 – ident: ref_179 – ident: ref_126 – ident: ref_57 doi: 10.23919/CCC52363.2021.9550712 – ident: ref_36 – ident: ref_70 – ident: ref_189 doi: 10.1109/ICRA.2017.7989037 – ident: ref_80 doi: 10.1145/3163080.3163113 – volume: 4 start-page: 2378 year: 2019 ident: ref_194 article-title: Primal: Pathfinding via reinforcement and imitation multi-agent learning publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2903261 – ident: ref_253 doi: 10.1109/IROS.2005.1545269 – volume: 32 start-page: 8024 year: 2019 ident: ref_259 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_222 – ident: ref_124 doi: 10.1109/ICRA46639.2022.9812151 – ident: ref_165 doi: 10.1109/CogMI52975.2021.00042 – volume: 2017 start-page: 5013532 year: 2017 ident: ref_271 article-title: Modular self-reconfigurable robotic systems: A survey on hardware architectures publication-title: J. Robot. – volume: 518 start-page: 529 year: 2015 ident: ref_6 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 110 start-page: 107605 year: 2021 ident: ref_133 article-title: A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107605 – volume: 1 start-page: 5 year: 2004 ident: ref_266 article-title: Cyberbotics Ltd. Webots™: Professional mobile robot simulation publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/5618 – ident: ref_260 – volume: 2022 start-page: 4384954 year: 2022 ident: ref_128 article-title: Supervised Reinforcement Learning for ULV Path Planning in Complex Warehouse Environment publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2022/4384954 – volume: 67 start-page: 1034 year: 2018 ident: ref_158 article-title: Convolutional neural network architectures for signals supported on graphs publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2887403 – ident: ref_188 – volume: 2022 start-page: 6825902 year: 2022 ident: ref_69 article-title: Multirobot Coverage Path Planning Based on Deep Q-Network in Unknown Environment publication-title: J. Robot. – ident: ref_254 – ident: ref_114 doi: 10.3390/app12010272 – ident: ref_144 doi: 10.1016/j.ast.2022.108098 – ident: ref_227 – volume: 9 start-page: 1735 year: 1997 ident: ref_182 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_156 – ident: ref_111 doi: 10.1109/ICRA46639.2022.9811744 – ident: ref_66 – ident: ref_164 doi: 10.1145/37401.37406 – volume: 5 start-page: 59 year: 2018 ident: ref_250 article-title: Cooperative object transport in multi-robot systems: A review of the state-of-the-art publication-title: Front. Robot. AI doi: 10.3389/frobt.2018.00059 – ident: ref_265 – volume: 39 start-page: 3160 year: 2021 ident: ref_68 article-title: Deep reinforcement learning based three-dimensional area coverage with UAV swarm publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2021.3088718 – volume: 5 start-page: 4509 year: 2020 ident: ref_82 article-title: Learning scheduling policies for multi-robot coordination with graph attention networks publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3002198 – ident: ref_247 doi: 10.1109/ICRA.2017.7989250 – ident: ref_123 doi: 10.1109/ICRA46639.2022.9812221 – volume: 406 start-page: 68 year: 2020 ident: ref_181 article-title: Mrcdrl: Multi-robot coordination with deep reinforcement learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.028 – volume: 34 start-page: e2113 year: 2023 ident: ref_198 article-title: Path planning for multiple agents in an unknown environment using soft actor critic and curriculum learning publication-title: Comput. Animat. Virtual Worlds doi: 10.1002/cav.2113 – ident: ref_94 doi: 10.3390/s21030841 – volume: 51 start-page: 1069 year: 2021 ident: ref_95 article-title: Analysis of coordinated behavior structures with multi-agent deep reinforcement learning publication-title: Appl. Intell. doi: 10.1007/s10489-020-01832-y – volume: 30 start-page: 5048 year: 2017 ident: ref_201 article-title: Hindsight experience replay publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_129 doi: 10.1109/ICRA46639.2022.9812370 – volume: 2020 start-page: 7842768 year: 2020 ident: ref_84 article-title: Multi-usv system cooperative underwater target search based on reinforcement learning and probability map publication-title: Math. Probl. Eng. – ident: ref_180 doi: 10.3390/s23062997 – ident: ref_235 doi: 10.1109/IROS.2014.6942796 – ident: ref_202 doi: 10.1109/IROS.2018.8593871 – ident: ref_211 doi: 10.1145/1102351.1102464 – ident: ref_204 doi: 10.1109/ICNSC52481.2021.9702196 – ident: ref_116 doi: 10.1109/IROS45743.2020.9341805 – volume: 71 start-page: 12321 year: 2022 ident: ref_193 article-title: Federated Deep Reinforcement Learning for RIS-Assisted Indoor Multi-Robot Communication Systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3190557 – volume: 54 start-page: 54 year: 2001 ident: ref_170 article-title: Statistical physics: Statics, dynamics, and renormalization publication-title: Phys. Today doi: 10.1063/1.1397396 – ident: ref_212 doi: 10.1109/ICDCS54860.2022.00090 – volume: 86 start-page: 663 year: 2017 ident: ref_147 article-title: DARP: Divide areas algorithm for optimal multi-robot coverage path planning publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-016-0461-x – ident: ref_209 – ident: ref_117 doi: 10.1109/ICRA40945.2020.9197209 – volume: 5 start-page: 6932 year: 2020 ident: ref_187 article-title: Mobile robot path planning in dynamic environments through globally guided reinforcement learning publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3026638 – volume: 8 start-page: 813 year: 2020 ident: ref_167 article-title: Mean field deep reinforcement learning for fair and efficient UAV control publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3008299 – volume: 610 start-page: 47 year: 2022 ident: ref_8 article-title: Discovering faster matrix multiplication algorithms with reinforcement learning publication-title: Nature doi: 10.1038/s41586-022-05172-4 – ident: ref_154 doi: 10.1109/CSE53436.2021.00015 – volume: 18 start-page: 2125 year: 2019 ident: ref_186 article-title: Interference management for cellular-connected UAVs: A deep reinforcement learning approach publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2900035 – ident: ref_122 – volume: 4 start-page: 1039 year: 2003 ident: ref_35 article-title: Nash Q-learning for general-sum stochastic games publication-title: J. Mach. Learn. Res. – ident: ref_210 – volume: 32 start-page: 1495 year: 2013 ident: ref_243 article-title: A comprehensive taxonomy for multi-robot task allocation publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913496484 – ident: ref_195 – ident: ref_90 doi: 10.1109/TNNLS.2022.3220798 – volume: 30 start-page: 413 year: 2017 ident: ref_226 article-title: Distributed computing by mobile robots: Uniform circle formation publication-title: Distrib. Comput. doi: 10.1007/s00446-016-0291-x – ident: ref_43 – ident: ref_60 – volume: 6 start-page: 2174 year: 2021 ident: ref_56 article-title: A Multi-Agent Deep Reinforcement Learning Approach for Practical Decentralized UAV Collision Avoidance publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2021.3138941 – volume: 136 start-page: 215 year: 2002 ident: ref_29 article-title: Multiagent learning using a variable learning rate publication-title: Artif. Intell. doi: 10.1016/S0004-3702(02)00121-2 – ident: ref_221 – ident: ref_183 doi: 10.1109/ICRA46639.2022.9812163 – ident: ref_51 – volume: 68 start-page: 8814 year: 2019 ident: ref_168 article-title: Distributed interference-aware traffic offloading and power control in ultra-dense networks: Mean field game with dominating player publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2929227 – volume: 3 start-page: 1 year: 2016 ident: ref_191 article-title: A survey of transfer learning publication-title: J. Big Data doi: 10.1186/s40537-016-0043-6 – ident: ref_232 – ident: ref_100 doi: 10.1109/SMC53654.2022.9945272 – volume: 69 start-page: 14413 year: 2020 ident: ref_155 article-title: Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3034800 – ident: ref_89 doi: 10.1109/TASE.2022.3205651 – volume: 6 start-page: 283 year: 2021 ident: ref_102 article-title: Deep reinforcement learning-based effective coverage control with connectivity constraints publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2021.3070850 – volume: 52 start-page: 1 year: 2019 ident: ref_3 article-title: Cooperative heterogeneous multi-robot systems: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3303848 – ident: ref_146 – ident: ref_127 doi: 10.1016/j.dt.2022.09.014 – volume: 53 start-page: 659 year: 2015 ident: ref_27 article-title: Evolutionary dynamics of multi-agent learning: A survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.4818 – ident: ref_171 doi: 10.3390/s22051919 – ident: ref_169 – volume: 8 start-page: 279 year: 1992 ident: ref_5 article-title: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 – ident: ref_105 doi: 10.1109/IEEECONF38699.2020.9389128 – volume: 7 start-page: 8869 year: 2022 ident: ref_162 article-title: PD-FAC: Probability Density Factorized Multi-Agent Distributional Reinforcement Learning for Multi-Robot Reliable Search publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3188904 – ident: ref_77 doi: 10.1109/EIConRus.2018.8317240 – volume: 92 start-page: 66 year: 2017 ident: ref_34 article-title: Improving the speed of convergence of multi-agent Q-learning for cooperative task-planning by a robot-team publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2017.03.003 – ident: ref_244 – ident: ref_135 – volume: 410 start-page: 410 year: 2020 ident: ref_217 article-title: Cooperative control for swarming systems based on reinforcement learning in unknown dynamic environment publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.038 – ident: ref_152 – volume: 345 start-page: 795 year: 2014 ident: ref_215 article-title: Programmable self-assembly in a thousand-robot swarm publication-title: Science doi: 10.1126/science.1254295 – ident: ref_62 – ident: ref_45 – ident: ref_261 – ident: ref_32 doi: 10.1109/IROS.2007.4399095 – volume: 11 start-page: 185 year: 2017 ident: ref_249 article-title: Cooperative object transport with a swarm of e-puck robots: Robustness and scalability of evolved collective strategies publication-title: Swarm Intell. doi: 10.1007/s11721-017-0135-8 – ident: ref_150 doi: 10.1109/IROS.2009.5354598 – ident: ref_207 doi: 10.3390/en15197426 – ident: ref_28 – ident: ref_218 doi: 10.1109/ICRA48506.2021.9561386 – ident: ref_139 doi: 10.3390/drones6110339 – volume: 32 start-page: 1238 year: 2013 ident: ref_26 article-title: Reinforcement learning in robotics: A survey publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913495721 – volume: 9 start-page: 1 year: 2017 ident: ref_239 article-title: WoSIS: Providing standardised soil profile data for the world publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-9-1-2017 – ident: ref_140 – volume: 529 start-page: 484 year: 2016 ident: ref_10 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref_55 doi: 10.1109/ICCRE51898.2021.9435666 – ident: ref_134 – ident: ref_109 doi: 10.1109/ICMA.2019.8816208 – ident: ref_86 – ident: ref_132 doi: 10.3390/app11072895 – ident: ref_157 – ident: ref_206 doi: 10.1609/aaai.v35i12.17276 – ident: ref_213 doi: 10.1109/ICRA.2014.6907770 – volume: 45 start-page: 215 year: 2023 ident: ref_159 article-title: Multi-Agent Dynamic Area Coverage Based on Reinforcement Learning with Connected Agents publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.031116 – volume: 131 start-page: 103594 year: 2020 ident: ref_219 article-title: Fixed-Wing UAVs flocking in continuous spaces: A deep reinforcement learning approach publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2020.103594 – volume: 180 start-page: 115128 year: 2021 ident: ref_39 article-title: Multirobot coordination with deep reinforcement learning in complex environments publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115128 – ident: ref_44 – ident: ref_262 – ident: ref_50 doi: 10.1109/ICRA.2017.7989385 – volume: 61 start-page: 1258 year: 2013 ident: ref_145 article-title: A survey on coverage path planning for robotics publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2013.09.004 – ident: ref_163 – ident: ref_97 doi: 10.3390/app9204198 – ident: ref_225 – volume: 14 start-page: 43 year: 2007 ident: ref_273 article-title: Modular self-reconfigurable robot systems [grand challenges of robotics] publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2007.339623 – ident: ref_76 doi: 10.1109/ROBIO.2018.8665165 – ident: ref_81 – volume: 123 start-page: 347 year: 2018 ident: ref_12 article-title: Grid path planning with deep reinforcement learning: Preliminary results publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.054 – ident: ref_33 – ident: ref_67 doi: 10.1109/INFOCOM42981.2021.9488669 – ident: ref_112 – ident: ref_15 doi: 10.1109/IRC.2019.00120 – ident: ref_22 doi: 10.1109/ICRA.2018.8461113 – ident: ref_199 – ident: ref_75 doi: 10.1109/IROS51168.2021.9636349 – ident: ref_267 doi: 10.1109/IROS.2013.6696520 – volume: 15 start-page: 435 year: 2007 ident: ref_153 article-title: Multi-robot exploration under the constraints of wireless networking publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2006.08.007 – volume: 39 start-page: 856 year: 2020 ident: ref_107 article-title: Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios publication-title: Int. J. Robot. Res. doi: 10.1177/0278364920916531 – volume: 71 start-page: 10280 year: 2022 ident: ref_142 article-title: Oracle-Guided Deep Reinforcement Learning for Large-Scale Multi-UAVs Flocking and Navigation publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3184043 – ident: ref_208 – volume: 343 start-page: 754 year: 2014 ident: ref_255 article-title: Designing collective behavior in a termite-inspired robot construction team publication-title: Science doi: 10.1126/science.1245842 – volume: 412 start-page: 101 year: 2020 ident: ref_237 article-title: Cooperative control for multi-player pursuit-evasion games with reinforcement learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.031 – ident: ref_256 – volume: 70 start-page: 7032 year: 2022 ident: ref_87 article-title: Multi-Agent Path Finding Using Deep Reinforcement Learning Coupled With Hot Supervision Contrastive Loss publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2022.3206745 – volume: 18 start-page: 655 year: 2002 ident: ref_1 article-title: Advances in multi-robot systems publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/TRA.2002.806024 – ident: ref_78 – ident: ref_214 doi: 10.1007/978-3-319-44427-7_1 – volume: 112 start-page: 181 year: 1999 ident: ref_25 article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning publication-title: Artif. Intell. doi: 10.1016/S0004-3702(99)00052-1 – volume: 52 start-page: 109 year: 2008 ident: ref_148 article-title: Efficient boustrophedon multi-robot coverage: An algorithmic approach publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-009-9120-2 – ident: ref_251 – volume: 4 start-page: 3059 year: 2019 ident: ref_240 article-title: DeepIG: Multi-robot information gathering with deep reinforcement learning publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2924839 – ident: ref_245 – volume: 62 start-page: 1002 year: 2014 ident: ref_270 article-title: Modred: Hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2013.08.008 – volume: 8 start-page: 184109 year: 2020 ident: ref_73 article-title: Decentralized control of multi-robot system in cooperative object transportation using deep reinforcement learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025287 – ident: ref_115 doi: 10.1109/ICTAI50040.2020.00088 – ident: ref_136 – ident: ref_268 – ident: ref_48 doi: 10.1109/ICARA51699.2021.9376509 – ident: ref_220 doi: 10.1109/IROS51168.2021.9636183 – volume: 27 start-page: 23 year: 2021 ident: ref_103 article-title: Hybrid Formation Control for Multi-Robot Hunters Based on Multi-Agent Deep Deterministic Policy Gradient publication-title: Mendel doi: 10.13164/mendel.2021.2.023 – ident: ref_72 doi: 10.3390/app9153057 – volume: 5 start-page: 3221 year: 2020 ident: ref_203 article-title: Multi-agent motion planning for dense and dynamic environments via deep reinforcement learning publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2974695 – volume: 20 start-page: 1 year: 2019 ident: ref_141 article-title: Deep reinforcement learning for swarm systems publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 161 year: 2021 ident: ref_52 article-title: A multi-agent reinforcement learning framework for intelligent manufacturing with autonomous mobile robots publication-title: Proc. Des. Soc. doi: 10.1017/pds.2021.17 – volume: 35 start-page: 61 year: 2014 ident: ref_21 article-title: Multirobot coordination for space exploration publication-title: AI Mag. – ident: ref_113 doi: 10.1109/ICMLA.2019.00040 – ident: ref_118 – volume: 32 start-page: 4 year: 2020 ident: ref_229 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – volume: 60 start-page: 143 year: 2009 ident: ref_234 article-title: Multi–robot control system for pursuit–evasion problem publication-title: J. Electr. Eng – volume: 95 start-page: 234 year: 2007 ident: ref_236 article-title: Tracking and coordination of multiple agents using sensor networks: System design, algorithms and experiments publication-title: Proc. IEEE doi: 10.1109/JPROC.2006.887296 – volume: 99 start-page: 371 year: 2020 ident: ref_98 article-title: Multi-robot target encirclement control with collision avoidance via deep reinforcement learning publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-019-01106-x – ident: ref_41 – ident: ref_108 doi: 10.1109/ICRAE50850.2020.9310796 – volume: 18 start-page: 1260 year: 2021 ident: ref_83 article-title: Deep reinforcement learning of collision-free flocking policies for multiple fixed-wing uavs using local situation maps publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3094207 – ident: ref_17 – ident: ref_131 – ident: ref_224 – ident: ref_190 doi: 10.1109/IROS.2017.8202312 – volume: 2020 start-page: 499 year: 2020 ident: ref_40 article-title: Distributed multi-agent deep reinforcement learning for cooperative multi-robot pursuit publication-title: J. Eng. doi: 10.1049/joe.2019.1200 – ident: ref_248 doi: 10.1609/aaai.v32i1.11798 – volume: 50 start-page: 3826 year: 2020 ident: ref_65 article-title: Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2977374 – ident: ref_24 – volume: 10 start-page: 91073 year: 2022 ident: ref_138 article-title: Autonomous Drone Swarm Navigation and Multi-target Tracking with Island Policy-based Optimization Framework publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3202208 – volume: 6 start-page: 2666 year: 2021 ident: ref_196 article-title: PRIMAL _2: Pathfinding via reinforcement and imitation multi-agent learning-lifelong publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3062803 – ident: ref_192 – ident: ref_241 doi: 10.1109/SMC52423.2021.9658795 – volume: 8 start-page: 15441 year: 2021 ident: ref_38 article-title: Deep reinforcement learning multi-UAV trajectory control for target tracking publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3073973 – volume: 19 start-page: 1274 year: 2019 ident: ref_172 article-title: Distributed energy-efficient multi-UAV navigation for long-term communication coverage by deep reinforcement learning publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2019.2908171 – ident: ref_63 – ident: ref_257 – volume: 21 start-page: 181:1 year: 2020 ident: ref_252 article-title: Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey publication-title: J. Mach. Learn. Res. – ident: ref_47 doi: 10.1109/ICCA.2018.8444355 – volume: 4 start-page: 100 year: 1968 ident: ref_174 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – volume: 30 start-page: 5998 year: 2017 ident: ref_246 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_269 doi: 10.1109/ICC.2018.8422706 – ident: ref_96 – volume: 38 start-page: 156 year: 2008 ident: ref_16 article-title: A comprehensive survey of multiagent reinforcement learning publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2007.913919 – volume: 7 start-page: 7684 year: 2022 ident: ref_93 article-title: Multi-Agent Reinforcement Learning for Real-Time Dynamic Production Scheduling in a Robot Assembly Cell publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3184795 – volume: 8 start-page: 150397 year: 2020 ident: ref_216 article-title: Multi-robot flocking control based on deep reinforcement learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016951 – volume: 33 start-page: 519 year: 2014 ident: ref_151 article-title: Coordination strategies for multi-robot exploration and mapping publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913515309 – volume: 219 start-page: 1 year: 2015 ident: ref_175 article-title: Subdimensional expansion for multirobot path planning publication-title: Artif. Intell. doi: 10.1016/j.artint.2014.11.001 – volume: 22 start-page: 189 year: 2006 ident: ref_166 article-title: Sensor-based coverage with extended range detectors publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2005.861455 – ident: ref_197 doi: 10.1145/1553374.1553380 – ident: ref_99 doi: 10.1109/ECTI-CON54298.2022.9795641 – volume: 71 start-page: 2511 year: 2022 ident: ref_49 article-title: Bio-Inspired Collision Avoidance in Swarm Systems via Deep Reinforcement Learning publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3145346 – ident: ref_91 – ident: ref_177 doi: 10.1109/ICRA.2017.7989105 – ident: ref_263 – volume: 2 start-page: e27 year: 2020 ident: ref_23 article-title: Cooperatively pursuing a target unmanned aerial vehicle by multiple unmanned aerial vehicles based on multiagent reinforcement learning publication-title: Adv. Control Appl. Eng. Ind. Syst. doi: 10.1002/adc2.27 |
| SSID | ssj0023338 |
| Score | 2.677851 |
| SecondaryResourceType | review_article |
| Snippet | Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3625 |
| SubjectTerms | Algorithms Deep learning deep reinforcement learning Expected utility Expected values multi-agent learning multi-robot systems Neural networks Planning Radio communications Review Robotics Robots survey Surveys Values |
| SummonAdditionalLinks | – databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD5U2gRQYhwSVqEjuxw6UKhYoDWqEC0t4ie-KUSihZ9lGJf8-M4003AnHhmoyiceZte75h7JUEa4Vo0riEtIwlJDrWhXGxaXKMfxjRpPUgrp_UbKbn8_Jz2HBbhWuVW5_oHXXTA-2RH2WqLOnmW6aOFz9jmhpFp6thhMZ1doPGZpOeq_lVwSWw_hrQhASW9kcruvSMDjufxCAP1f-nQ96JSNPbkjvh53T_fxm_y-6ExJNXg6bcY9dcd5_d3oEjfMBmvhs3rqjbir93bsHPnAdWBb-HyAMW6znHR3ygPettv-bVzin4W17xL5vlpfv1kH07_fD15GMc5i3EgEnbOtbC2ty0FpMWi4mOchY9gGhM1gAktnQ2V-ASSApMMa0E7VSLNEq3qcyNMEI8Yntd37knjDvdYl7gBAjjCBIevySVLGyaQaFNWkTszVYCNQQwcpqJ8aPGooSEVY_CitjLkXQxIHD8jegdiXEkINBs_6BfntfBBmugYYQC2hKTPumKzDRKaAlN0kKDRUYasdekBDX9WWQGTOhQwCURSFZd4QpKqWWJ7B9sZV0Hm1_VV4KO2IvxNVorHcGYzvUbpNHUtJrLIovY40GtRp6FSvKk0LgWPVG4yaKmb7qL7x4RPCVY2DxTT__N1zN2K0Or8C2VyQHbWy837pDdhMv1xWr53NvOb8kxI3M priority: 102 providerName: ProQuest |
| Title | Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37050685 https://www.proquest.com/docview/2799788727 https://www.proquest.com/docview/2800625462 https://pubmed.ncbi.nlm.nih.gov/PMC10098527 https://doaj.org/article/c35193cf90564e62ad7384cd0fcd7721 |
| Volume | 23 |
| WOSCitedRecordID | wos000970434900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB909aCHxc-1uj6iCHop2zZpk3jr6lsU3MfjqfA8hSRNdUH6lvexsBf_didpX2lR8OIlh2Qok8lMZqbJ_ALwilljKK3SWNpUxswmIhaFdrGucvR_6NGYCSCun_hsJpZLOR889eXvhLXwwK3gTqx_QY7aWqKnZq7IdMWpYLZKalthZBgSn4TLfTLVpVoUM68WR4hiUn-y8dedcavOR94ngPT_uRUPfNH4nuTA8Zzdg8MuYiRly-l9uOGaB3B3gCP4EGahjDYufZkUee_cJVm4gIhqw88_0oGofifYRVraxcqstqQcHF-_JSX5vFtfuetH8PVs-uXdh7h7KCG2GG1tY0GNyXVtMNowGKFwZ9B0aaWzytrESGdybl1ikwJjQ8OscLxGGi7qlOWaakofw0GzatwTIE7U6NAdtVQ7j-WOX2KcFSbNbCF0WkTwZi9AZTsUcf-YxU-F2YSXteplHcHLnvSyhc74G9GpX4WewKNdhw7UAdXpgPqXDkTw2q-h8pJFZqzuSgtwSh7dSpU4A8kEk8j-8X6ZVWesG5VxKf2lyoxH8KIfRjPzZye6casd0ghfbZqzIovgqNWKnmfKkzwpBM5FjPRlNKnxSHPxI0B5px7PNc_40_8hhmdwJ0PVDxWTyTEcbNc79xxu26vtxWY9gZt8yUMrJnDrdDqbLybBaLA9_zXFvvnH8_m339EFGzo |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQ98H4EChgEgkvUJHZiBwmhQKladVmh0kp7M7bjtJVQsuyjqH-K38hMXt0IxK0Hrsko8sSf52F7viHkJbfGMJaHfmrD1Oc2kL5MtPN1HoP_A4_GTU3iOhLjsZxM0i9r5FdXC4PXKjubWBvqvLK4R74ViTTFm2-ReD_94WPXKDxd7VpoNLDYd-c_IWWbv9vbhvl9FUU7nw4_7vptVwHfQmiy8CUzJtaFAddswJ0LZwDnLNdRbm1gUmdiYV1ggwQCKcOtdKIAGSGLkMeaadwABZN_Bey4wGRPTC4SPAb5XsNexFgabM3xkjU4iHjg8-rWAH86gBUPOLydueLudm7-bz_qFrnRBtY0a1bCbbLmyjtkY4Vu8S4Z19XGfobVZHTbuSk9cDVxrK33SGnLNXtM4RFtZA8qUy1otnLK_5Zm9OtydubO75GjS1HoPlkvq9I9JNTJAuIexyzTDinv4Utc8MSEkU2kDhOPvOlmXNmWbB17fnxXkHQhOFQPDo-86EWnDcPI34Q-IGx6ASQFrx9Us2PV2hhlsdkis0UKQS13SaRzwSS3eVDYHJKo0COvEXQK_ywMxuq2AgNUQhIwlYEGKZc8heFvdthSrU2bqwtgeeR5_xqsER4x6dJVS5CRWJQb8yTyyIMGxv2YmQjiIJGgixwAfKDU8E15elIznodIextH4tG_x_WMXNs9_DxSo73x_mNyPYIVWZePBptkfTFbuifkqj1bnM5nT-t1S8m3y8b_b_qGghY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4TgwPsRKGAQCC5RE9tJbCSEAsuKVctqVahUTsF2nFIJJcs-ivrX-HWM82JXIG49cE1GkR1_noc98w3AU260ZiwPfWlC6XMTCF_Eyvoqj9D-oUXjuiZx3U8mE3F0JKdb8LOrhXFplZ1OrBV1Xhl3Rr5LEyld5huG6kWbFjEdjl7Pvvuug5S7ae3aaTQQ2bNnPzB8W7waD3Gtn1E6evfp7Xu_7TDgG3RTlr5gWkeq0GimNZr2xGrEPMsVzY0JtLQ6SowNTBCjU6W5ETYpUCYRRcgjxZQ7DEX1v40uOacD2J6OP0w_9-Eew-iv4TJiTAa7C5dyjeYi2rCAdaOAP83Bmj3czNVcM36jq__zb7sGV1qXm6TNHrkOW7a8AZfXiBhvwqSuQ_ZTV2dGhtbOyIGtKWVNfXpKWhbaY4KPSCN7UOlqSdK1-_-XJCUfV_NTe3YLDs9lQrdhUFalvQvEigI9IssMU9aR4eOXEB2xDqmJhQpjD150q5-ZlobddQP5lmE45oCS9UDx4EkvOmu4R_4m9MZBqBdwdOH1g2p-nLXaJzOuDSMzhUR3l9uYqjxhgps8KEyO4VXowXMHwMz9WRyMUW1tBk7J0YNlKc5AcsElDn-nw1nWartF9htkHjzuX6OecpdPqrTVCmWEK9eNeEw9uNNAuh8zS4IoiAXORWyAfWNSm2_Kk681F3roCHEjmtz797gewUWEfbY_nuzdh0sUN2ddVxrswGA5X9kHcMGcLk8W84ftJibw5bw3wC-RRoxl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Deep+Reinforcement+Learning+for+Multi-Robot+Applications%3A+A+Survey&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=James+Orr&rft.au=Ayan+Dutta&rft.date=2023-03-30&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft.spage=3625&rft_id=info:doi/10.3390%2Fs23073625&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c35193cf90564e62ad7384cd0fcd7721 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |