A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation

Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3762
Main Authors: Han, Dong, Mulyana, Beni, Stankovic, Vladimir, Cheng, Samuel
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 05.04.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor–critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject.
AbstractList Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor–critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject.
Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor-critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject.Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor-critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject.
Audience Academic
Author Stankovic, Vladimir
Han, Dong
Cheng, Samuel
Mulyana, Beni
AuthorAffiliation 1 School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
2 Department of Electronic and Electrical Engineering, University of Straclyde, Glasglow G1 1XW, UK
AuthorAffiliation_xml – name: 2 Department of Electronic and Electrical Engineering, University of Straclyde, Glasglow G1 1XW, UK
– name: 1 School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA
Author_xml – sequence: 1
  givenname: Dong
  surname: Han
  fullname: Han, Dong
– sequence: 2
  givenname: Beni
  surname: Mulyana
  fullname: Mulyana, Beni
– sequence: 3
  givenname: Vladimir
  orcidid: 0000-0002-1075-2420
  surname: Stankovic
  fullname: Stankovic, Vladimir
– sequence: 4
  givenname: Samuel
  orcidid: 0000-0002-5439-1137
  surname: Cheng
  fullname: Cheng, Samuel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37050822$$D View this record in MEDLINE/PubMed
BookMark eNptUk1v1DAQjVAR_YADfwBF4kIP205sJ7ZPaFUKVCxCKnC2HGeSepXYi5NU6r9nultWbYV8sDXvzZs3Mz7ODkIMmGVvCzjjXMP5yDhILiv2IjsqBBMLxRgcPHofZsfjuAZgnHP1KjvkEkog4Cj7tsx_zukW7_IY8k-Im_wafWhjcjhgmPIV2hR86PJl38Xkp5thzAnNr2MdJ-_y7zb4zdzbycfwOnvZ2n7ENw_3Sfb78-Wvi6-L1Y8vVxfL1cKVspwWJS9rIZluy9ICc2QPNAquUVc1LxtR6UYr2wrJC2S8AqFV3QBrlKwAqF9-kl3tdJto12aT_GDTnYnWm20gps7YROZ6NFIL5lyroIZWNE7qxqGugeZSIatkSVofd1qbuR6Q0DAl2z8RfYoEf2O6eGsKcq2ULEjhw4NCin9mHCcz-NFh39uAcR4NUwAVK9m22Ptn1HWcU6BZGSa1llCwQhLrbMfqLHVwvwwq7Og0OHhHm289xZeSBiVUJRQlvHvcw978vy0T4XRHcCmOY8J2TynA3P8gs_9BxD1_xnV-2q6XXPj-Pxl_AeJKw_8
CitedBy_id crossref_primary_10_3390_info15080425
crossref_primary_10_1016_j_eswa_2025_126923
crossref_primary_10_3390_aerospace10090758
crossref_primary_10_1109_ACCESS_2024_3425497
crossref_primary_10_1109_TIV_2024_3400597
crossref_primary_10_2478_cait_2024_0031
crossref_primary_10_1080_01691864_2025_2475295
crossref_primary_10_1016_j_ifacol_2024_10_057
crossref_primary_10_3390_computation12060116
crossref_primary_10_1002_cav_70008
crossref_primary_10_1016_j_compeleceng_2025_110559
crossref_primary_10_1049_sil2_6422115
crossref_primary_10_1109_ACCESS_2024_3504354
crossref_primary_10_1016_j_array_2025_100393
crossref_primary_10_1049_cit2_12359
crossref_primary_10_1109_TASE_2025_3555206
crossref_primary_10_3390_en16207156
crossref_primary_10_1109_ACCESS_2024_3432741
crossref_primary_10_1109_ACCESS_2024_3416179
crossref_primary_10_3390_electronics13101804
crossref_primary_10_3390_electronics13101969
crossref_primary_10_3390_s24082461
crossref_primary_10_1002_bit_28753
crossref_primary_10_1016_j_inffus_2023_102221
crossref_primary_10_1016_j_compstruct_2025_119662
crossref_primary_10_3390_plants14050634
crossref_primary_10_1109_ACCESS_2024_3435949
crossref_primary_10_1007_s11432_024_4397_7
crossref_primary_10_3390_machines13080666
crossref_primary_10_1049_ein2_70004
crossref_primary_10_1109_LRA_2025_3606379
crossref_primary_10_3390_sym17040524
crossref_primary_10_3390_math11183916
crossref_primary_10_1109_ACCESS_2025_3606053
crossref_primary_10_1108_IR_01_2025_0033
crossref_primary_10_3390_info15120755
crossref_primary_10_3390_electricity4040020
crossref_primary_10_1007_s42417_025_01777_x
crossref_primary_10_3390_app15158596
crossref_primary_10_1038_s41598_025_05192_w
crossref_primary_10_1016_j_neucom_2025_131090
crossref_primary_10_3390_pr13061791
crossref_primary_10_1109_ACCESS_2024_3504735
crossref_primary_10_1109_JSTSP_2024_3416841
crossref_primary_10_3390_app142310929
crossref_primary_10_3390_biomimetics10090577
crossref_primary_10_3390_app14093785
crossref_primary_10_1108_EC_02_2025_0130
crossref_primary_10_1109_ACCESS_2023_3324039
crossref_primary_10_3390_machines12100681
crossref_primary_10_1109_TITS_2025_3560379
crossref_primary_10_3390_fi16120435
crossref_primary_10_1007_s11633_025_1542_8
crossref_primary_10_1016_j_neuroscience_2025_09_004
crossref_primary_10_1038_s41598_025_16458_8
crossref_primary_10_1108_IR_12_2024_0534
crossref_primary_10_3390_app14199018
crossref_primary_10_1038_s41598_025_89285_6
crossref_primary_10_3390_s25072271
crossref_primary_10_17979_ja_cea_2025_46_12226
crossref_primary_10_3389_frobt_2024_1455431
crossref_primary_10_3390_agriengineering7060192
crossref_primary_10_3390_agronomy15051031
crossref_primary_10_3390_app14188383
crossref_primary_10_1016_j_measurement_2024_115729
crossref_primary_10_1016_j_engappai_2024_109688
crossref_primary_10_3389_fpubh_2023_1310016
crossref_primary_10_1145_3729343
crossref_primary_10_1007_s13198_025_02940_z
crossref_primary_10_1016_j_oceaneng_2024_117096
crossref_primary_10_1016_j_vehcom_2025_100899
crossref_primary_10_1080_10447318_2024_2342101
crossref_primary_10_3390_machines11111013
crossref_primary_10_1007_s00500_024_09744_6
crossref_primary_10_3390_app14177859
crossref_primary_10_3390_app13116847
crossref_primary_10_1109_OJITS_2025_3584024
crossref_primary_10_3390_act12060219
crossref_primary_10_3390_s25154681
Cites_doi 10.1109/CDC.2018.8619829
10.1145/3240323.3240374
10.3390/s23031513
10.1109/LRA.2022.3189156
10.1109/TITS.2021.3054625
10.1109/ICDL49984.2021.9515637
10.1080/01691864.2018.1509018
10.1007/978-3-030-89177-0_2
10.1109/ICRA46639.2022.9812312
10.1016/j.autcon.2021.104006
10.1109/CVPR52729.2023.01717
10.3390/app9020348
10.1126/scirobotics.aau5872
10.1109/LRA.2022.3143518
10.1109/ICRA46639.2022.9812140
10.1109/DEVLRN.2019.8850721
10.1109/JAS.2016.7471613
10.1162/neco.1997.9.8.1735
10.15607/RSS.2021.XVII.002
10.1007/s11370-021-00402-6
10.1109/TNNLS.2019.2934906
10.1109/ICRA48891.2023.10160560
10.1111/exsy.13205
10.1109/ICRA.2018.8460528
10.1038/nature14236
10.1109/ICRA46639.2022.9811973
10.32604/csse.2023.031720
10.15607/RSS.2021.XVII.044
10.1109/ICRA40945.2020.9197468
10.1109/IRC55401.2022.00022
10.3390/s21103409
10.1088/1742-6596/2216/1/012026
10.1109/SII52469.2022.9708826
10.1109/ICRA48506.2021.9561157
10.1109/ACCESS.2021.3069975
10.1016/S0004-3702(99)00052-1
10.1109/CVPR.2018.00493
10.1609/aaai.v35i18.17881
10.1109/LRA.2022.3150024
10.1109/ROBIO55434.2022.10011878
10.1109/IJCNN55064.2022.9892101
10.1109/ICRA40945.2020.9196647
10.1109/ICAC55051.2022.9911100
10.1109/72.572108
10.3390/biomimetics7040232
10.1126/sciadv.aap7885
10.1109/LRA.2021.3061308
10.1007/s12599-014-0334-4
10.3390/app122412861
10.1103/PhysRev.36.823
10.1109/ICRA.2017.7989385
10.1038/nature16961
10.1109/IROS51168.2021.9636259
10.1145/1553374.1553380
10.1016/j.neunet.2022.04.003
10.1016/j.robot.2022.104264
10.1007/s10796-021-10213-w
10.1109/ICRA46639.2022.9812181
10.1109/IROS51168.2021.9636280
10.1609/aaai.v30i1.10295
10.1109/JSAC.2022.3221993
10.1109/ICRA48506.2021.9561379
10.1016/j.rcim.2022.102517
10.3390/s21041278
10.1177/09544054221100004
10.3390/app13020723
10.1109/ICRA.2018.8463162
10.1146/annurev-control-060117-104848
10.1109/LRA.2021.3140127
10.1177/0278364919887447
10.1109/TASE.2022.3220728
10.3390/electronics11244192
10.3389/fnbot.2022.829437
10.1109/MCS.2022.3216653
10.1007/BF00992698
10.15607/RSS.2018.XIV.002
10.1177/0278364913495721
10.3390/app10030803
10.1007/s11370-021-00398-z
10.1017/S0263574722001527
10.21236/ADA164453
10.1146/annurev-control-042920-020211
10.1109/IROS45743.2020.9341370
10.1109/IRC.2019.00121
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23073762
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_7942ccf80b0f4dc79dce9b04246e2675
PMC10098871
A746948648
37050822
10_3390_s23073762
Genre Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c575t-535b4729f55a02c22009e439e96b35d469d98af4731e2360498bd02d876003393
IEDL.DBID DOA
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:36 EDT 2025
Tue Nov 04 02:06:46 EST 2025
Fri Sep 05 14:46:28 EDT 2025
Tue Oct 07 07:27:19 EDT 2025
Tue Nov 04 18:15:26 EST 2025
Wed Feb 19 02:24:20 EST 2025
Sat Nov 29 07:10:27 EST 2025
Tue Nov 18 21:41:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords robotic manipulation
graph neural network
reinforcement learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-535b4729f55a02c22009e439e96b35d469d98af4731e2360498bd02d876003393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5439-1137
0000-0002-1075-2420
OpenAccessLink https://doaj.org/article/7942ccf80b0f4dc79dce9b04246e2675
PMID 37050822
PQID 2799701217
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_7942ccf80b0f4dc79dce9b04246e2675
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10098871
proquest_miscellaneous_2800625275
proquest_journals_2799701217
gale_infotracacademiconefile_A746948648
pubmed_primary_37050822
crossref_primary_10_3390_s23073762
crossref_citationtrail_10_3390_s23073762
PublicationCentury 2000
PublicationDate 20230405
PublicationDateYYYYMMDD 2023-04-05
PublicationDate_xml – month: 4
  year: 2023
  text: 20230405
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_137
Mason (ref_4) 2018; 1
ref_93
ref_136
ref_92
ref_139
ref_91
ref_90
ref_13
ref_131
ref_11
ref_99
ref_130
ref_10
ref_98
ref_133
ref_97
ref_132
ref_96
ref_135
Morales (ref_7) 2021; 14
ref_95
ref_134
Kober (ref_53) 2013; 32
ref_19
ref_18
ref_17
Hafiz (ref_5) 2023; 46
ref_126
ref_125
ref_128
ref_127
Vulin (ref_63) 2021; 6
ref_25
ref_24
ref_23
ref_120
ref_22
ref_21
ref_20
ref_121
ref_124
ref_123
ref_28
ref_26
Luu (ref_142) 2021; 9
Matiisen (ref_42) 2019; 31
Yamanokuchi (ref_129) 2022; 7
Meng (ref_147) 2022; 41
ref_72
ref_71
ref_70
ref_151
ref_150
ref_153
ref_152
ref_76
ref_75
ref_154
ref_157
ref_156
Kim (ref_81) 2022; 15
Lu (ref_73) 2022; 2216
Uhlenbeck (ref_29) 1930; 36
ref_83
ref_82
ref_149
Brunke (ref_86) 2022; 5
Cong (ref_80) 2022; 16
ref_140
Belousov (ref_78) 2022; 133
ref_89
ref_88
ref_141
ref_87
ref_144
ref_143
ref_146
ref_84
ref_145
Xie (ref_155) 2020; 33
Krizhevsky (ref_45) 2012; 25
Lin (ref_79) 2022; 7
ref_50
Tsurumine (ref_122) 2022; 158
ref_58
ref_57
Davchev (ref_74) 2022; 7
ref_56
Ding (ref_77) 2023; 237
ref_54
ref_52
ref_51
ref_59
Chrysostomou (ref_14) 2023; 81
Sutton (ref_44) 1999; 112
Andrychowicz (ref_55) 2020; 39
ref_61
ref_60
Lasi (ref_1) 2014; 6
Wang (ref_106) 2022; 8
Silver (ref_9) 2016; 529
Deisenroth (ref_65) 2011; Volume 7
ref_69
ref_68
ref_67
ref_66
ref_64
ref_62
Hochreiter (ref_47) 1997; 9
Rubagotti (ref_8) 2023; 43
Dick (ref_85) 2022; 152
ref_115
ref_114
ref_117
ref_116
Ho (ref_38) 2016; 29
ref_119
ref_36
ref_35
ref_34
ref_33
Hwangbo (ref_138) 2019; 4
ref_32
ref_111
ref_31
ref_110
ref_30
ref_113
ref_112
Popova (ref_12) 2018; 4
ref_39
ref_37
ref_104
ref_103
ref_105
ref_108
ref_107
ref_109
ref_46
Sperduti (ref_48) 1997; 8
Wang (ref_15) 2016; 3
ref_43
ref_100
ref_41
ref_102
ref_40
ref_101
ref_3
Mnih (ref_27) 2015; 518
ref_2
Watkins (ref_16) 1992; 8
ref_49
Osa (ref_118) 2018; 32
Li (ref_148) 2022; 41
ref_6
References_xml – ident: ref_117
– ident: ref_87
  doi: 10.1109/CDC.2018.8619829
– ident: ref_116
  doi: 10.1145/3240323.3240374
– ident: ref_134
  doi: 10.3390/s23031513
– ident: ref_51
– volume: 7
  start-page: 8964
  year: 2022
  ident: ref_129
  article-title: Randomized-to-Canonical Model Predictive Control for Real-World Visual Robotic Manipulation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3189156
– ident: ref_13
  doi: 10.1109/TITS.2021.3054625
– ident: ref_100
– ident: ref_68
– ident: ref_39
– ident: ref_94
  doi: 10.1109/ICDL49984.2021.9515637
– volume: 32
  start-page: 955
  year: 2018
  ident: ref_118
  article-title: Hierarchical reinforcement learning of multiple grasping strategies with human instructions
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2018.1509018
– ident: ref_132
– ident: ref_62
  doi: 10.1007/978-3-030-89177-0_2
– ident: ref_76
  doi: 10.1109/ICRA46639.2022.9812312
– volume: 133
  start-page: 104006
  year: 2022
  ident: ref_78
  article-title: Robotic architectural assembly with tactile skills: Simulation and optimization
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104006
– ident: ref_123
– ident: ref_71
– ident: ref_146
– ident: ref_101
  doi: 10.1109/CVPR52729.2023.01717
– ident: ref_137
  doi: 10.3390/app9020348
– volume: 4
  start-page: eaau5872
  year: 2019
  ident: ref_138
  article-title: Learning agile and dynamic motor skills for legged robots
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aau5872
– ident: ref_153
  doi: 10.1109/LRA.2022.3143518
– ident: ref_82
  doi: 10.1109/ICRA46639.2022.9812140
– ident: ref_143
  doi: 10.1109/DEVLRN.2019.8850721
– volume: 3
  start-page: 113
  year: 2016
  ident: ref_15
  article-title: Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2016.7471613
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_47
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_114
– ident: ref_31
– ident: ref_56
– ident: ref_120
– ident: ref_108
  doi: 10.15607/RSS.2021.XVII.002
– volume: 15
  start-page: 171
  year: 2022
  ident: ref_81
  article-title: Object manipulation system based on image-based reinforcement learning
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-021-00402-6
– ident: ref_10
– volume: 31
  start-page: 3732
  year: 2019
  ident: ref_42
  article-title: Teacher–Student curriculum learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2934906
– ident: ref_102
  doi: 10.1109/ICRA48891.2023.10160560
– ident: ref_141
  doi: 10.1111/exsy.13205
– ident: ref_152
– ident: ref_128
– ident: ref_103
– ident: ref_54
  doi: 10.1109/ICRA.2018.8460528
– ident: ref_149
– ident: ref_97
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_27
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref_28
– ident: ref_75
  doi: 10.1109/ICRA46639.2022.9811973
– ident: ref_30
– ident: ref_115
– ident: ref_140
– volume: 46
  start-page: 2651
  year: 2023
  ident: ref_5
  article-title: Reinforcement Learning with an Ensemble of Binary Action Deep Q-Networks
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.031720
– ident: ref_121
– ident: ref_133
  doi: 10.15607/RSS.2021.XVII.044
– ident: ref_11
– ident: ref_66
  doi: 10.1109/ICRA40945.2020.9197468
– ident: ref_145
  doi: 10.1109/IRC55401.2022.00022
– ident: ref_67
– ident: ref_109
  doi: 10.3390/s21103409
– volume: 2216
  start-page: 012026
  year: 2022
  ident: ref_73
  article-title: A Method of Robot Grasping Based on Reinforcement Learning
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2216/1/012026
– ident: ref_83
  doi: 10.1109/SII52469.2022.9708826
– ident: ref_25
– ident: ref_50
– ident: ref_33
– ident: ref_90
  doi: 10.1109/ICRA48506.2021.9561157
– volume: 9
  start-page: 51996
  year: 2021
  ident: ref_142
  article-title: Hindsight Goal Ranking on Replay Buffer for Sparse Reward Environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3069975
– ident: ref_112
– volume: 112
  start-page: 181
  year: 1999
  ident: ref_44
  article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(99)00052-1
– ident: ref_92
  doi: 10.1109/CVPR.2018.00493
– ident: ref_59
  doi: 10.1609/aaai.v35i18.17881
– volume: 7
  start-page: 4488
  year: 2022
  ident: ref_74
  article-title: Residual learning from demonstration: Adapting dmps for contact-rich manipulation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3150024
– ident: ref_127
  doi: 10.1109/ROBIO55434.2022.10011878
– ident: ref_157
  doi: 10.1109/IJCNN55064.2022.9892101
– ident: ref_64
– ident: ref_135
  doi: 10.1109/ICRA40945.2020.9196647
– ident: ref_154
– ident: ref_36
– ident: ref_70
– ident: ref_22
– ident: ref_124
  doi: 10.1109/ICAC55051.2022.9911100
– ident: ref_49
– ident: ref_32
– volume: 8
  start-page: 714
  year: 1997
  ident: ref_48
  article-title: Supervised neural networks for the classification of structures
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.572108
– ident: ref_26
– ident: ref_113
– ident: ref_110
  doi: 10.3390/biomimetics7040232
– ident: ref_84
– volume: 4
  start-page: eaap7885
  year: 2018
  ident: ref_12
  article-title: Deep reinforcement learning for de novo drug design
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap7885
– volume: Volume 7
  start-page: 57
  year: 2011
  ident: ref_65
  article-title: Learning to control a low-cost manipulator using data-efficient reinforcement learning
  publication-title: Robotics: Science and Systems VII
– volume: 6
  start-page: 2194
  year: 2021
  ident: ref_63
  article-title: Improved learning of robot manipulation tasks via tactile intrinsic motivation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3061308
– volume: 33
  start-page: 2327
  year: 2020
  ident: ref_155
  article-title: Deep imitation learning for bimanual robotic manipulation
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_151
– volume: 6
  start-page: 239
  year: 2014
  ident: ref_1
  article-title: Industry 4.0
  publication-title: Bus. Inf. Syst. Eng.
  doi: 10.1007/s12599-014-0334-4
– ident: ref_105
  doi: 10.3390/app122412861
– ident: ref_61
– ident: ref_35
– ident: ref_23
– volume: 36
  start-page: 823
  year: 1930
  ident: ref_29
  article-title: On the theory of the Brownian motion
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.36.823
– ident: ref_58
– ident: ref_93
  doi: 10.1109/ICRA.2017.7989385
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_9
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref_95
  doi: 10.1109/IROS51168.2021.9636259
– ident: ref_41
  doi: 10.1145/1553374.1553380
– volume: 152
  start-page: 70
  year: 2022
  ident: ref_85
  article-title: Context meta-reinforcement learning via neuromodulation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.04.003
– ident: ref_139
– volume: 158
  start-page: 104264
  year: 2022
  ident: ref_122
  article-title: Goal-aware generative adversarial imitation learning from imperfect demonstration for robotic cloth manipulation
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2022.104264
– ident: ref_2
  doi: 10.1007/s10796-021-10213-w
– ident: ref_52
– ident: ref_136
  doi: 10.1109/ICRA46639.2022.9812181
– ident: ref_156
– ident: ref_125
  doi: 10.1109/IROS51168.2021.9636280
– ident: ref_107
– ident: ref_17
– ident: ref_19
  doi: 10.1609/aaai.v30i1.10295
– ident: ref_131
– ident: ref_72
– ident: ref_20
– volume: 41
  start-page: 288
  year: 2022
  ident: ref_147
  article-title: Sampling, communication, and prediction co-design for synchronizing the real-world device and digital model in metaverse
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2022.3221993
– ident: ref_150
  doi: 10.1109/ICRA48506.2021.9561379
– volume: 81
  start-page: 102517
  year: 2023
  ident: ref_14
  article-title: A review on reinforcement learning for contact-rich robotic manipulation tasks
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102517
– volume: 29
  start-page: 4565
  year: 2016
  ident: ref_38
  article-title: Generative adversarial imitation learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref_45
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_3
  doi: 10.3390/s21041278
– ident: ref_119
– volume: 237
  start-page: 216
  year: 2023
  ident: ref_77
  article-title: Impedance control and parameter optimization of surface polishing robot based on reinforcement learning
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1177/09544054221100004
– ident: ref_6
  doi: 10.3390/app13020723
– ident: ref_24
– ident: ref_34
– ident: ref_69
  doi: 10.1109/ICRA.2018.8463162
– volume: 1
  start-page: 1
  year: 2018
  ident: ref_4
  article-title: Toward Robotic Manipulation
  publication-title: Annu. Rev. Control. Robot. Auton. Syst.
  doi: 10.1146/annurev-control-060117-104848
– ident: ref_40
– ident: ref_37
– volume: 7
  start-page: 1387
  year: 2022
  ident: ref_79
  article-title: Manipulation planning from demonstration via goal-conditioned prior action primitive decomposition and alignment
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3140127
– volume: 39
  start-page: 3
  year: 2020
  ident: ref_55
  article-title: Learning dexterous in-hand manipulation
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364919887447
– volume: 8
  start-page: 414
  year: 2022
  ident: ref_106
  article-title: An adaptive imitation learning framework for robotic complex contact-rich insertion tasks
  publication-title: Front. Robot.
– ident: ref_18
– ident: ref_130
– ident: ref_104
  doi: 10.1109/TASE.2022.3220728
– ident: ref_111
– ident: ref_96
– ident: ref_21
– ident: ref_88
  doi: 10.3390/electronics11244192
– volume: 16
  start-page: 829437
  year: 2022
  ident: ref_80
  article-title: Reinforcement learning with vision-proprioception model for robot planar pushing
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2022.829437
– volume: 43
  start-page: 44
  year: 2023
  ident: ref_8
  article-title: Shared Control of Robot Manipulators With Obstacle Avoidance: A Deep Reinforcement Learning Approach
  publication-title: IEEE Control. Syst. Mag.
  doi: 10.1109/MCS.2022.3216653
– volume: 8
  start-page: 279
  year: 1992
  ident: ref_16
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– ident: ref_98
  doi: 10.15607/RSS.2018.XIV.002
– volume: 32
  start-page: 1238
  year: 2013
  ident: ref_53
  article-title: Reinforcement learning in robotics: A survey
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913495721
– ident: ref_89
  doi: 10.3390/app10030803
– volume: 14
  start-page: 773
  year: 2021
  ident: ref_7
  article-title: A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
  publication-title: Intell. Serv. Robot.
  doi: 10.1007/s11370-021-00398-z
– ident: ref_91
– ident: ref_43
– ident: ref_60
– volume: 41
  start-page: 1115
  year: 2022
  ident: ref_148
  article-title: Discrete soft actor-critic with auto-encoder on vascular robotic system
  publication-title: Robotica
  doi: 10.1017/S0263574722001527
– ident: ref_46
  doi: 10.21236/ADA164453
– ident: ref_57
– volume: 5
  start-page: 411
  year: 2022
  ident: ref_86
  article-title: Safe learning in robotics: From learning-based control to safe reinforcement learning
  publication-title: Annu. Rev. Control. Robot. Auton. Syst.
  doi: 10.1146/annurev-control-042920-020211
– ident: ref_99
– ident: ref_126
  doi: 10.1109/IROS45743.2020.9341370
– ident: ref_144
  doi: 10.1109/IRC.2019.00121
SSID ssj0023338
Score 2.6880782
SecondaryResourceType review_article
Snippet Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3762
SubjectTerms Actors
Actresses
Algorithms
Artificial intelligence
Automation
Computational linguistics
Data mining
Deep learning
graph neural network
Language processing
Machine learning
Manufacturing
Natural language interfaces
Neural networks
Portfolio management
Productivity
Recommender systems
reinforcement learning
Review
robotic manipulation
Robotics
Robotics industry
Robots
Search engines
Space exploration
Surveys
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BlwMceD8CCzIICS7Rpn4k9gl1YVdIiGpVQNpb5DhOt9KSlKZdiX_PTOKGViAuXGMrHnsenvHY3wC8tgad-NKkseGFiqUXSazRVMalTFWptdQ27YtNZNOpPj83Z-HArQ3XKrc2sTPUZePojPyIZ8ZkBECWvVv-iKlqFGVXQwmN63BASGVyBAfHJ9Oz2RByCYzAejwhgcH9UUvXnlGl-N4u1IH1_2mSd_ak_fuSOxvQ6Z3_Jf0u3A6uJ5v0snIPrvn6PtzaASR8AJ8m7MtmdeV_sqZmH7xfspnvoFVdd4rIAhrrnE0u5zjC-uJ7y7CVzZqiwb-yz7ZebAuCPYRvpydf33-MQ7mF2KHPto6VUIVEX7tSyibcccqbePRXvEkLoZB5yFNtK5mJsecixdBCF2XCS025PVxe8QhGdVP7J8DKtNKVKTC0UVaOvbRGuCpT1smk8JXPIni7Xf7cBSxyKolxmWNMQpzKB05F8GrouuwBOP7W6Zh4OHQgzOzuQ7Oa50EFc7Q83LlKJ0VSydJlBvlpCkr9pp5j3BTBG5KAnJYViXE2PFDAKRFGVj7JcAmkTqWO4HDL6DyofJv_5nIEL4dmVFbKwNjaNxvso-nNquI02ONepgaaRZYogt-PQO9J296k9lvqxUUHCD4mVFiMfJ_-m65ncJOjSnT3jtQhjNarjX8ON9zVetGuXgTV-QWO1SI5
  priority: 102
  providerName: ProQuest
Title A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation
URI https://www.ncbi.nlm.nih.gov/pubmed/37050822
https://www.proquest.com/docview/2799701217
https://www.proquest.com/docview/2800625275
https://pubmed.ncbi.nlm.nih.gov/PMC10098871
https://doaj.org/article/7942ccf80b0f4dc79dce9b04246e2675
Volume 23
WOSCitedRecordID wos000970453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeFpTIICS7Rpn7E9rELXYFQq6qAVE6R4zi7lZZk1cdKXPjtzCRp1AgkLlxysK3E_mZsz8TjbwDeOItGfG6TyPJMRTKIODK4VEa5TFRujDQuaZJN6NnMLJd2fpDqi2LCGnrgBrgT1BfufWHiLC5k7rXNfbAZHdglgaO1S6svWj17Z6p1tQR6Xg2PkECn_mRD4c44lXhv96lJ-v9cig_2on6c5MHGc3Yf7rUWIxs3PX0AN0L5EO4e8Ag-gs9j9mW3vg4_WVWyDyFcsUWoGVF9_fOPtSSq52x8eV6tV9uLHxuGtWxRZRW-lU1dudrn8XoM384mX99_jNosCZFHU2sbKaEyiSZyoZSLued03BHQzAg2yYRCzFEUxhVSi1HgIkGPwGR5zHNDR3KIjngCR2VVhmfA8qQwhc3QI1FOjoJ0VvhCK-dlnIUi6AG826OX-pZCnDJZXKboShDQaQf0AF53Ta8a3oy_NTolEXQNiOq6LkAFSFsFSP-lAAN4SwJMCVbsjHftvQIcElFbpWONEEiTSDOA472M03amblKurdVEbIeje9VV4xyjgxNXhmqHbQxdNVWcPva0UYmuz0LHiljzB2B6ytIbVL-mXF3UPN4jInNFh_X5_4DhBdzhqPd1UJE6hqPtehdewm1_vV1t1kO4qZe6fpoh3DqdzOaLYT1j8Dn9NcGy-afp_Ptv4QYZQg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48H4EChgEgkvUrGPH9gGhhVK12naFSpH2FhLH2a5UkmUfRf1T_EZm8uquQNx64Lq2smPn8zwy428AXiUGnfjMRL7hqfSFCwNfo6r0MxHJTGuhk6huNqGGQz0amc8b8Ku9C0Nlla1OrBR1Vlr6Rr7NlTGKCMjU--kPn7pGUXa1baFRw2Lgzn9iyDZ_t7-D7_c157ufjj_u-U1XAd-ia7LwZShTgS5lLmUScMspPeDQLDsTpaFEGVF0neRChT3Hwwg9aJ1mAc80pbDCkMiXUOVfQT2uqIRMjS4CvBDjvZq9COcF23MqssYDzNdsXtUa4E8DsGIB16szV8zd7q3_baNuw83GsWb9-iTcgQ1X3IUbK3SL92DQZ1-WszN3zsqC7Tg3ZUeuIo611TdS1nDNjln_dIwrWpx8nzMcZUdlWuJT2WFSTNp2Z_fh66Ws5gFsFmXhHgHLolznJsXATSai50RiQpsrmVgRpC53yoO37euObcO0Tg0_TmOMuAgZcYcMD152U6c1vcjfJn0gzHQTiBG8-qGcjeNGwcSoV7m1uQ7SIBeZVQbxY1JKbEeOY1TowRtCXEzbisLYpLl-gUsiBrC4r3ALhI6E9mCrBVbcKLR5fIEqD150w6iKKL-UFK5c4hxNN3Ilpz97WGO4kzlUgaTmAh7oNXSvLWp9pJicVHTnPeK8xbj-8b_leg7X9o4PD-KD_eHgCVzneByrCiu5BZuL2dI9hav2bDGZz55Vh5bBt8sG_281gnif
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tdhGCA-9HYAGDQHCJmjp2Yh8QKpSKqmxVLSDtnkLiON1KS1L6WLR_jV_HTF60AnHbA9d6lHqcb16x_Q3A81hjEp_qwNU8ka6wvucqdJVuKgKZKiVUHFTNJsLxWB0d6ckO_GzuwtCxysYnlo46LQx9I-_wUOuQCMjCTlYfi5j0B2_m313qIEU7rU07jQoiI3v-A8u35ethH9_1C84H7z-_--DWHQZcg2nKypW-TASml5mUsccNp60CiyHa6iDxJc4X1VBxJkK_a7kfYDatktTjqaLtLN8nIiZ0_3uYkgu0sb3J8GBy3JZ7PlZ_FZcRSnqdJR25RnPmWxGwbBTwZzjYiIfbZzU3gt_g-v-8bDfgWp1ys15lIzdhx-a34OoGEeNtGPXYp_XizJ6zImd9a-fs0JaUsqb8espqFtop651OUaPVybclw1F2WCQFPpUdxPmsaYR2B75ciDZ3YTcvcnsfWBpkKtMJlnQyFl0rYu2bLJSxEV5iMxs68Kp59ZGpOdipFchphLUYoSRqUeLAs1Z0XhGP_E3oLeGnFSCu8PKHYjGNatcTocflxmTKS7xMpCbUiCWd0JZ3YDnWiw68JPRFtKw4GRPXFzNQJeIGi3ohLoFQgVAO7Dcgi2pXt4x-I8yBp-0wOinaeYpzW6xRRtFdXcnpz-5VeG7n7IeepLYDDqgtpG8ptT2Sz05KIvQuseFixf_g3_N6ApcR89HH4Xj0EK5wtMzy6JXch93VYm0fwSVztpotF49rC2bw9aLR_wt1UILu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Deep+Reinforcement+Learning+Algorithms+for+Robotic+Manipulation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Han%2C+Dong&rft.au=Mulyana%2C+Beni&rft.au=Stankovic%2C+Vladimir&rft.au=Cheng%2C+Samuel&rft.date=2023-04-05&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073762&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon