A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation
Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3762 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
05.04.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor–critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject. |
|---|---|
| AbstractList | Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor–critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject. Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor-critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject.Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems. We give an overview of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts of a reinforcement learning system. The many deep reinforcement learning algorithms, such as value-based methods, policy-based methods, and actor-critic approaches, that have been suggested for robotic manipulation tasks are then covered. We also examine the numerous issues that have arisen when applying these algorithms to robotics tasks, as well as the various solutions that have been put forth to deal with these issues. Finally, we highlight several unsolved research issues and talk about possible future directions for the subject. |
| Audience | Academic |
| Author | Stankovic, Vladimir Han, Dong Cheng, Samuel Mulyana, Beni |
| AuthorAffiliation | 1 School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA 2 Department of Electronic and Electrical Engineering, University of Straclyde, Glasglow G1 1XW, UK |
| AuthorAffiliation_xml | – name: 2 Department of Electronic and Electrical Engineering, University of Straclyde, Glasglow G1 1XW, UK – name: 1 School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA |
| Author_xml | – sequence: 1 givenname: Dong surname: Han fullname: Han, Dong – sequence: 2 givenname: Beni surname: Mulyana fullname: Mulyana, Beni – sequence: 3 givenname: Vladimir orcidid: 0000-0002-1075-2420 surname: Stankovic fullname: Stankovic, Vladimir – sequence: 4 givenname: Samuel orcidid: 0000-0002-5439-1137 surname: Cheng fullname: Cheng, Samuel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37050822$$D View this record in MEDLINE/PubMed |
| BookMark | eNptUk1v1DAQjVAR_YADfwBF4kIP205sJ7ZPaFUKVCxCKnC2HGeSepXYi5NU6r9nultWbYV8sDXvzZs3Mz7ODkIMmGVvCzjjXMP5yDhILiv2IjsqBBMLxRgcPHofZsfjuAZgnHP1KjvkEkog4Cj7tsx_zukW7_IY8k-Im_wafWhjcjhgmPIV2hR86PJl38Xkp5thzAnNr2MdJ-_y7zb4zdzbycfwOnvZ2n7ENw_3Sfb78-Wvi6-L1Y8vVxfL1cKVspwWJS9rIZluy9ICc2QPNAquUVc1LxtR6UYr2wrJC2S8AqFV3QBrlKwAqF9-kl3tdJto12aT_GDTnYnWm20gps7YROZ6NFIL5lyroIZWNE7qxqGugeZSIatkSVofd1qbuR6Q0DAl2z8RfYoEf2O6eGsKcq2ULEjhw4NCin9mHCcz-NFh39uAcR4NUwAVK9m22Ptn1HWcU6BZGSa1llCwQhLrbMfqLHVwvwwq7Og0OHhHm289xZeSBiVUJRQlvHvcw978vy0T4XRHcCmOY8J2TynA3P8gs_9BxD1_xnV-2q6XXPj-Pxl_AeJKw_8 |
| CitedBy_id | crossref_primary_10_3390_info15080425 crossref_primary_10_1016_j_eswa_2025_126923 crossref_primary_10_3390_aerospace10090758 crossref_primary_10_1109_ACCESS_2024_3425497 crossref_primary_10_1109_TIV_2024_3400597 crossref_primary_10_2478_cait_2024_0031 crossref_primary_10_1080_01691864_2025_2475295 crossref_primary_10_1016_j_ifacol_2024_10_057 crossref_primary_10_3390_computation12060116 crossref_primary_10_1002_cav_70008 crossref_primary_10_1016_j_compeleceng_2025_110559 crossref_primary_10_1049_sil2_6422115 crossref_primary_10_1109_ACCESS_2024_3504354 crossref_primary_10_1016_j_array_2025_100393 crossref_primary_10_1049_cit2_12359 crossref_primary_10_1109_TASE_2025_3555206 crossref_primary_10_3390_en16207156 crossref_primary_10_1109_ACCESS_2024_3432741 crossref_primary_10_1109_ACCESS_2024_3416179 crossref_primary_10_3390_electronics13101804 crossref_primary_10_3390_electronics13101969 crossref_primary_10_3390_s24082461 crossref_primary_10_1002_bit_28753 crossref_primary_10_1016_j_inffus_2023_102221 crossref_primary_10_1016_j_compstruct_2025_119662 crossref_primary_10_3390_plants14050634 crossref_primary_10_1109_ACCESS_2024_3435949 crossref_primary_10_1007_s11432_024_4397_7 crossref_primary_10_3390_machines13080666 crossref_primary_10_1049_ein2_70004 crossref_primary_10_1109_LRA_2025_3606379 crossref_primary_10_3390_sym17040524 crossref_primary_10_3390_math11183916 crossref_primary_10_1109_ACCESS_2025_3606053 crossref_primary_10_1108_IR_01_2025_0033 crossref_primary_10_3390_info15120755 crossref_primary_10_3390_electricity4040020 crossref_primary_10_1007_s42417_025_01777_x crossref_primary_10_3390_app15158596 crossref_primary_10_1038_s41598_025_05192_w crossref_primary_10_1016_j_neucom_2025_131090 crossref_primary_10_3390_pr13061791 crossref_primary_10_1109_ACCESS_2024_3504735 crossref_primary_10_1109_JSTSP_2024_3416841 crossref_primary_10_3390_app142310929 crossref_primary_10_3390_biomimetics10090577 crossref_primary_10_3390_app14093785 crossref_primary_10_1108_EC_02_2025_0130 crossref_primary_10_1109_ACCESS_2023_3324039 crossref_primary_10_3390_machines12100681 crossref_primary_10_1109_TITS_2025_3560379 crossref_primary_10_3390_fi16120435 crossref_primary_10_1007_s11633_025_1542_8 crossref_primary_10_1016_j_neuroscience_2025_09_004 crossref_primary_10_1038_s41598_025_16458_8 crossref_primary_10_1108_IR_12_2024_0534 crossref_primary_10_3390_app14199018 crossref_primary_10_1038_s41598_025_89285_6 crossref_primary_10_3390_s25072271 crossref_primary_10_17979_ja_cea_2025_46_12226 crossref_primary_10_3389_frobt_2024_1455431 crossref_primary_10_3390_agriengineering7060192 crossref_primary_10_3390_agronomy15051031 crossref_primary_10_3390_app14188383 crossref_primary_10_1016_j_measurement_2024_115729 crossref_primary_10_1016_j_engappai_2024_109688 crossref_primary_10_3389_fpubh_2023_1310016 crossref_primary_10_1145_3729343 crossref_primary_10_1007_s13198_025_02940_z crossref_primary_10_1016_j_oceaneng_2024_117096 crossref_primary_10_1016_j_vehcom_2025_100899 crossref_primary_10_1080_10447318_2024_2342101 crossref_primary_10_3390_machines11111013 crossref_primary_10_1007_s00500_024_09744_6 crossref_primary_10_3390_app14177859 crossref_primary_10_3390_app13116847 crossref_primary_10_1109_OJITS_2025_3584024 crossref_primary_10_3390_act12060219 crossref_primary_10_3390_s25154681 |
| Cites_doi | 10.1109/CDC.2018.8619829 10.1145/3240323.3240374 10.3390/s23031513 10.1109/LRA.2022.3189156 10.1109/TITS.2021.3054625 10.1109/ICDL49984.2021.9515637 10.1080/01691864.2018.1509018 10.1007/978-3-030-89177-0_2 10.1109/ICRA46639.2022.9812312 10.1016/j.autcon.2021.104006 10.1109/CVPR52729.2023.01717 10.3390/app9020348 10.1126/scirobotics.aau5872 10.1109/LRA.2022.3143518 10.1109/ICRA46639.2022.9812140 10.1109/DEVLRN.2019.8850721 10.1109/JAS.2016.7471613 10.1162/neco.1997.9.8.1735 10.15607/RSS.2021.XVII.002 10.1007/s11370-021-00402-6 10.1109/TNNLS.2019.2934906 10.1109/ICRA48891.2023.10160560 10.1111/exsy.13205 10.1109/ICRA.2018.8460528 10.1038/nature14236 10.1109/ICRA46639.2022.9811973 10.32604/csse.2023.031720 10.15607/RSS.2021.XVII.044 10.1109/ICRA40945.2020.9197468 10.1109/IRC55401.2022.00022 10.3390/s21103409 10.1088/1742-6596/2216/1/012026 10.1109/SII52469.2022.9708826 10.1109/ICRA48506.2021.9561157 10.1109/ACCESS.2021.3069975 10.1016/S0004-3702(99)00052-1 10.1109/CVPR.2018.00493 10.1609/aaai.v35i18.17881 10.1109/LRA.2022.3150024 10.1109/ROBIO55434.2022.10011878 10.1109/IJCNN55064.2022.9892101 10.1109/ICRA40945.2020.9196647 10.1109/ICAC55051.2022.9911100 10.1109/72.572108 10.3390/biomimetics7040232 10.1126/sciadv.aap7885 10.1109/LRA.2021.3061308 10.1007/s12599-014-0334-4 10.3390/app122412861 10.1103/PhysRev.36.823 10.1109/ICRA.2017.7989385 10.1038/nature16961 10.1109/IROS51168.2021.9636259 10.1145/1553374.1553380 10.1016/j.neunet.2022.04.003 10.1016/j.robot.2022.104264 10.1007/s10796-021-10213-w 10.1109/ICRA46639.2022.9812181 10.1109/IROS51168.2021.9636280 10.1609/aaai.v30i1.10295 10.1109/JSAC.2022.3221993 10.1109/ICRA48506.2021.9561379 10.1016/j.rcim.2022.102517 10.3390/s21041278 10.1177/09544054221100004 10.3390/app13020723 10.1109/ICRA.2018.8463162 10.1146/annurev-control-060117-104848 10.1109/LRA.2021.3140127 10.1177/0278364919887447 10.1109/TASE.2022.3220728 10.3390/electronics11244192 10.3389/fnbot.2022.829437 10.1109/MCS.2022.3216653 10.1007/BF00992698 10.15607/RSS.2018.XIV.002 10.1177/0278364913495721 10.3390/app10030803 10.1007/s11370-021-00398-z 10.1017/S0263574722001527 10.21236/ADA164453 10.1146/annurev-control-042920-020211 10.1109/IROS45743.2020.9341370 10.1109/IRC.2019.00121 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s23073762 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_7942ccf80b0f4dc79dce9b04246e2675 PMC10098871 A746948648 37050822 10_3390_s23073762 |
| Genre | Journal Article Review |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c575t-535b4729f55a02c22009e439e96b35d469d98af4731e2360498bd02d876003393 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:36 EDT 2025 Tue Nov 04 02:06:46 EST 2025 Fri Sep 05 14:46:28 EDT 2025 Tue Oct 07 07:27:19 EDT 2025 Tue Nov 04 18:15:26 EST 2025 Wed Feb 19 02:24:20 EST 2025 Sat Nov 29 07:10:27 EST 2025 Tue Nov 18 21:41:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | robotic manipulation graph neural network reinforcement learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-535b4729f55a02c22009e439e96b35d469d98af4731e2360498bd02d876003393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-5439-1137 0000-0002-1075-2420 |
| OpenAccessLink | https://www.proquest.com/docview/2799701217?pq-origsite=%requestingapplication% |
| PMID | 37050822 |
| PQID | 2799701217 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7942ccf80b0f4dc79dce9b04246e2675 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10098871 proquest_miscellaneous_2800625275 proquest_journals_2799701217 gale_infotracacademiconefile_A746948648 pubmed_primary_37050822 crossref_primary_10_3390_s23073762 crossref_citationtrail_10_3390_s23073762 |
| PublicationCentury | 2000 |
| PublicationDate | 20230405 |
| PublicationDateYYYYMMDD | 2023-04-05 |
| PublicationDate_xml | – month: 4 year: 2023 text: 20230405 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 ref_137 Mason (ref_4) 2018; 1 ref_93 ref_136 ref_92 ref_139 ref_91 ref_90 ref_13 ref_131 ref_11 ref_99 ref_130 ref_10 ref_98 ref_133 ref_97 ref_132 ref_96 ref_135 Morales (ref_7) 2021; 14 ref_95 ref_134 Kober (ref_53) 2013; 32 ref_19 ref_18 ref_17 Hafiz (ref_5) 2023; 46 ref_126 ref_125 ref_128 ref_127 Vulin (ref_63) 2021; 6 ref_25 ref_24 ref_23 ref_120 ref_22 ref_21 ref_20 ref_121 ref_124 ref_123 ref_28 ref_26 Luu (ref_142) 2021; 9 Matiisen (ref_42) 2019; 31 Yamanokuchi (ref_129) 2022; 7 Meng (ref_147) 2022; 41 ref_72 ref_71 ref_70 ref_151 ref_150 ref_153 ref_152 ref_76 ref_75 ref_154 ref_157 ref_156 Kim (ref_81) 2022; 15 Lu (ref_73) 2022; 2216 Uhlenbeck (ref_29) 1930; 36 ref_83 ref_82 ref_149 Brunke (ref_86) 2022; 5 Cong (ref_80) 2022; 16 ref_140 Belousov (ref_78) 2022; 133 ref_89 ref_88 ref_141 ref_87 ref_144 ref_143 ref_146 ref_84 ref_145 Xie (ref_155) 2020; 33 Krizhevsky (ref_45) 2012; 25 Lin (ref_79) 2022; 7 ref_50 Tsurumine (ref_122) 2022; 158 ref_58 ref_57 Davchev (ref_74) 2022; 7 ref_56 Ding (ref_77) 2023; 237 ref_54 ref_52 ref_51 ref_59 Chrysostomou (ref_14) 2023; 81 Sutton (ref_44) 1999; 112 Andrychowicz (ref_55) 2020; 39 ref_61 ref_60 Lasi (ref_1) 2014; 6 Wang (ref_106) 2022; 8 Silver (ref_9) 2016; 529 Deisenroth (ref_65) 2011; Volume 7 ref_69 ref_68 ref_67 ref_66 ref_64 ref_62 Hochreiter (ref_47) 1997; 9 Rubagotti (ref_8) 2023; 43 Dick (ref_85) 2022; 152 ref_115 ref_114 ref_117 ref_116 Ho (ref_38) 2016; 29 ref_119 ref_36 ref_35 ref_34 ref_33 Hwangbo (ref_138) 2019; 4 ref_32 ref_111 ref_31 ref_110 ref_30 ref_113 ref_112 Popova (ref_12) 2018; 4 ref_39 ref_37 ref_104 ref_103 ref_105 ref_108 ref_107 ref_109 ref_46 Sperduti (ref_48) 1997; 8 Wang (ref_15) 2016; 3 ref_43 ref_100 ref_41 ref_102 ref_40 ref_101 ref_3 Mnih (ref_27) 2015; 518 ref_2 Watkins (ref_16) 1992; 8 ref_49 Osa (ref_118) 2018; 32 Li (ref_148) 2022; 41 ref_6 |
| References_xml | – ident: ref_117 – ident: ref_87 doi: 10.1109/CDC.2018.8619829 – ident: ref_116 doi: 10.1145/3240323.3240374 – ident: ref_134 doi: 10.3390/s23031513 – ident: ref_51 – volume: 7 start-page: 8964 year: 2022 ident: ref_129 article-title: Randomized-to-Canonical Model Predictive Control for Real-World Visual Robotic Manipulation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3189156 – ident: ref_13 doi: 10.1109/TITS.2021.3054625 – ident: ref_100 – ident: ref_68 – ident: ref_39 – ident: ref_94 doi: 10.1109/ICDL49984.2021.9515637 – volume: 32 start-page: 955 year: 2018 ident: ref_118 article-title: Hierarchical reinforcement learning of multiple grasping strategies with human instructions publication-title: Adv. Robot. doi: 10.1080/01691864.2018.1509018 – ident: ref_132 – ident: ref_62 doi: 10.1007/978-3-030-89177-0_2 – ident: ref_76 doi: 10.1109/ICRA46639.2022.9812312 – volume: 133 start-page: 104006 year: 2022 ident: ref_78 article-title: Robotic architectural assembly with tactile skills: Simulation and optimization publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104006 – ident: ref_123 – ident: ref_71 – ident: ref_146 – ident: ref_101 doi: 10.1109/CVPR52729.2023.01717 – ident: ref_137 doi: 10.3390/app9020348 – volume: 4 start-page: eaau5872 year: 2019 ident: ref_138 article-title: Learning agile and dynamic motor skills for legged robots publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau5872 – ident: ref_153 doi: 10.1109/LRA.2022.3143518 – ident: ref_82 doi: 10.1109/ICRA46639.2022.9812140 – ident: ref_143 doi: 10.1109/DEVLRN.2019.8850721 – volume: 3 start-page: 113 year: 2016 ident: ref_15 article-title: Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2016.7471613 – volume: 9 start-page: 1735 year: 1997 ident: ref_47 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_114 – ident: ref_31 – ident: ref_56 – ident: ref_120 – ident: ref_108 doi: 10.15607/RSS.2021.XVII.002 – volume: 15 start-page: 171 year: 2022 ident: ref_81 article-title: Object manipulation system based on image-based reinforcement learning publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-021-00402-6 – ident: ref_10 – volume: 31 start-page: 3732 year: 2019 ident: ref_42 article-title: Teacher–Student curriculum learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2934906 – ident: ref_102 doi: 10.1109/ICRA48891.2023.10160560 – ident: ref_141 doi: 10.1111/exsy.13205 – ident: ref_152 – ident: ref_128 – ident: ref_103 – ident: ref_54 doi: 10.1109/ICRA.2018.8460528 – ident: ref_149 – ident: ref_97 – volume: 518 start-page: 529 year: 2015 ident: ref_27 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref_28 – ident: ref_75 doi: 10.1109/ICRA46639.2022.9811973 – ident: ref_30 – ident: ref_115 – ident: ref_140 – volume: 46 start-page: 2651 year: 2023 ident: ref_5 article-title: Reinforcement Learning with an Ensemble of Binary Action Deep Q-Networks publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.031720 – ident: ref_121 – ident: ref_133 doi: 10.15607/RSS.2021.XVII.044 – ident: ref_11 – ident: ref_66 doi: 10.1109/ICRA40945.2020.9197468 – ident: ref_145 doi: 10.1109/IRC55401.2022.00022 – ident: ref_67 – ident: ref_109 doi: 10.3390/s21103409 – volume: 2216 start-page: 012026 year: 2022 ident: ref_73 article-title: A Method of Robot Grasping Based on Reinforcement Learning publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2216/1/012026 – ident: ref_83 doi: 10.1109/SII52469.2022.9708826 – ident: ref_25 – ident: ref_50 – ident: ref_33 – ident: ref_90 doi: 10.1109/ICRA48506.2021.9561157 – volume: 9 start-page: 51996 year: 2021 ident: ref_142 article-title: Hindsight Goal Ranking on Replay Buffer for Sparse Reward Environment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3069975 – ident: ref_112 – volume: 112 start-page: 181 year: 1999 ident: ref_44 article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning publication-title: Artif. Intell. doi: 10.1016/S0004-3702(99)00052-1 – ident: ref_92 doi: 10.1109/CVPR.2018.00493 – ident: ref_59 doi: 10.1609/aaai.v35i18.17881 – volume: 7 start-page: 4488 year: 2022 ident: ref_74 article-title: Residual learning from demonstration: Adapting dmps for contact-rich manipulation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3150024 – ident: ref_127 doi: 10.1109/ROBIO55434.2022.10011878 – ident: ref_157 doi: 10.1109/IJCNN55064.2022.9892101 – ident: ref_64 – ident: ref_135 doi: 10.1109/ICRA40945.2020.9196647 – ident: ref_154 – ident: ref_36 – ident: ref_70 – ident: ref_22 – ident: ref_124 doi: 10.1109/ICAC55051.2022.9911100 – ident: ref_49 – ident: ref_32 – volume: 8 start-page: 714 year: 1997 ident: ref_48 article-title: Supervised neural networks for the classification of structures publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.572108 – ident: ref_26 – ident: ref_113 – ident: ref_110 doi: 10.3390/biomimetics7040232 – ident: ref_84 – volume: 4 start-page: eaap7885 year: 2018 ident: ref_12 article-title: Deep reinforcement learning for de novo drug design publication-title: Sci. Adv. doi: 10.1126/sciadv.aap7885 – volume: Volume 7 start-page: 57 year: 2011 ident: ref_65 article-title: Learning to control a low-cost manipulator using data-efficient reinforcement learning publication-title: Robotics: Science and Systems VII – volume: 6 start-page: 2194 year: 2021 ident: ref_63 article-title: Improved learning of robot manipulation tasks via tactile intrinsic motivation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3061308 – volume: 33 start-page: 2327 year: 2020 ident: ref_155 article-title: Deep imitation learning for bimanual robotic manipulation publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_151 – volume: 6 start-page: 239 year: 2014 ident: ref_1 article-title: Industry 4.0 publication-title: Bus. Inf. Syst. Eng. doi: 10.1007/s12599-014-0334-4 – ident: ref_105 doi: 10.3390/app122412861 – ident: ref_61 – ident: ref_35 – ident: ref_23 – volume: 36 start-page: 823 year: 1930 ident: ref_29 article-title: On the theory of the Brownian motion publication-title: Phys. Rev. doi: 10.1103/PhysRev.36.823 – ident: ref_58 – ident: ref_93 doi: 10.1109/ICRA.2017.7989385 – volume: 529 start-page: 484 year: 2016 ident: ref_9 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref_95 doi: 10.1109/IROS51168.2021.9636259 – ident: ref_41 doi: 10.1145/1553374.1553380 – volume: 152 start-page: 70 year: 2022 ident: ref_85 article-title: Context meta-reinforcement learning via neuromodulation publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.04.003 – ident: ref_139 – volume: 158 start-page: 104264 year: 2022 ident: ref_122 article-title: Goal-aware generative adversarial imitation learning from imperfect demonstration for robotic cloth manipulation publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2022.104264 – ident: ref_2 doi: 10.1007/s10796-021-10213-w – ident: ref_52 – ident: ref_136 doi: 10.1109/ICRA46639.2022.9812181 – ident: ref_156 – ident: ref_125 doi: 10.1109/IROS51168.2021.9636280 – ident: ref_107 – ident: ref_17 – ident: ref_19 doi: 10.1609/aaai.v30i1.10295 – ident: ref_131 – ident: ref_72 – ident: ref_20 – volume: 41 start-page: 288 year: 2022 ident: ref_147 article-title: Sampling, communication, and prediction co-design for synchronizing the real-world device and digital model in metaverse publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2022.3221993 – ident: ref_150 doi: 10.1109/ICRA48506.2021.9561379 – volume: 81 start-page: 102517 year: 2023 ident: ref_14 article-title: A review on reinforcement learning for contact-rich robotic manipulation tasks publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2022.102517 – volume: 29 start-page: 4565 year: 2016 ident: ref_38 article-title: Generative adversarial imitation learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 25 start-page: 1097 year: 2012 ident: ref_45 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_3 doi: 10.3390/s21041278 – ident: ref_119 – volume: 237 start-page: 216 year: 2023 ident: ref_77 article-title: Impedance control and parameter optimization of surface polishing robot based on reinforcement learning publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. doi: 10.1177/09544054221100004 – ident: ref_6 doi: 10.3390/app13020723 – ident: ref_24 – ident: ref_34 – ident: ref_69 doi: 10.1109/ICRA.2018.8463162 – volume: 1 start-page: 1 year: 2018 ident: ref_4 article-title: Toward Robotic Manipulation publication-title: Annu. Rev. Control. Robot. Auton. Syst. doi: 10.1146/annurev-control-060117-104848 – ident: ref_40 – ident: ref_37 – volume: 7 start-page: 1387 year: 2022 ident: ref_79 article-title: Manipulation planning from demonstration via goal-conditioned prior action primitive decomposition and alignment publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3140127 – volume: 39 start-page: 3 year: 2020 ident: ref_55 article-title: Learning dexterous in-hand manipulation publication-title: Int. J. Robot. Res. doi: 10.1177/0278364919887447 – volume: 8 start-page: 414 year: 2022 ident: ref_106 article-title: An adaptive imitation learning framework for robotic complex contact-rich insertion tasks publication-title: Front. Robot. – ident: ref_18 – ident: ref_130 – ident: ref_104 doi: 10.1109/TASE.2022.3220728 – ident: ref_111 – ident: ref_96 – ident: ref_21 – ident: ref_88 doi: 10.3390/electronics11244192 – volume: 16 start-page: 829437 year: 2022 ident: ref_80 article-title: Reinforcement learning with vision-proprioception model for robot planar pushing publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2022.829437 – volume: 43 start-page: 44 year: 2023 ident: ref_8 article-title: Shared Control of Robot Manipulators With Obstacle Avoidance: A Deep Reinforcement Learning Approach publication-title: IEEE Control. Syst. Mag. doi: 10.1109/MCS.2022.3216653 – volume: 8 start-page: 279 year: 1992 ident: ref_16 article-title: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 – ident: ref_98 doi: 10.15607/RSS.2018.XIV.002 – volume: 32 start-page: 1238 year: 2013 ident: ref_53 article-title: Reinforcement learning in robotics: A survey publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913495721 – ident: ref_89 doi: 10.3390/app10030803 – volume: 14 start-page: 773 year: 2021 ident: ref_7 article-title: A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-021-00398-z – ident: ref_91 – ident: ref_43 – ident: ref_60 – volume: 41 start-page: 1115 year: 2022 ident: ref_148 article-title: Discrete soft actor-critic with auto-encoder on vascular robotic system publication-title: Robotica doi: 10.1017/S0263574722001527 – ident: ref_46 doi: 10.21236/ADA164453 – ident: ref_57 – volume: 5 start-page: 411 year: 2022 ident: ref_86 article-title: Safe learning in robotics: From learning-based control to safe reinforcement learning publication-title: Annu. Rev. Control. Robot. Auton. Syst. doi: 10.1146/annurev-control-042920-020211 – ident: ref_99 – ident: ref_126 doi: 10.1109/IROS45743.2020.9341370 – ident: ref_144 doi: 10.1109/IRC.2019.00121 |
| SSID | ssj0023338 |
| Score | 2.6880782 |
| SecondaryResourceType | review_article |
| Snippet | Robotic manipulation challenges, such as grasping and object manipulation, have been tackled successfully with the help of deep reinforcement learning systems.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3762 |
| SubjectTerms | Actors Actresses Algorithms Artificial intelligence Automation Computational linguistics Data mining Deep learning graph neural network Language processing Machine learning Manufacturing Natural language interfaces Neural networks Portfolio management Productivity Recommender systems reinforcement learning Review robotic manipulation Robotics Robotics industry Robots Search engines Space exploration Surveys |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCMorUCqDkOAS1etH7ByXR1WpokIFpN4s25m0K5Wk2kcl_j0zSTbaCCQuXGPLcebhmcmMv2HsrQJt0QrYvC6kzrVKkLui1rnSIZgEsZ6J0DWbsGdn7uKi_LrT6otqwnp44J5wRygvMqXaiShqXSVbVgnKSAm7AiR6u3T6otezDaaGUEth5NXjCCkM6o9WVO6MqiQn1qcD6f_zKN6xRdM6yR3Dc_yQPRg8Rj7vd_qI3YFmn93fwRF8zE7n_NtmeQu_eNvwTwA3_Bw6RNTU_fzjA4jqJZ9fX7bLxfrq54rjKD9vY4ur8i-hWWz7eD1hP44_f_94kg9dEvKErtY6N8pEjS5ybUwQMklKdwC6GVAWUZkKw9-qdKHWVs1AqgIjAhcrIStHKTmkjnrK9pq2geeMFy5aURvkK65gRIzWiiJIqAgTRmrI2Pst9XwaIMSpk8W1x1CCCO1HQmfszTj1psfN-NukD8SCcQJBXXcPUAD8IAD-XwKQsXfEQE9kxc2kMNwrwE8iaCs_t0gC7QrtMnaw5bEfNHXlpS1LS8B2NmOvx2HUMUqchAbaDc5xdNXUSHrZs14kxj0rKwyh5mfMTYRl8lHTkWZx1eF4zwjMFQPWF_-DDC_ZPYly3xUVmQO2t15u4BW7m27Xi9XysNOO390NEzg priority: 102 providerName: Directory of Open Access Journals |
| Title | A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37050822 https://www.proquest.com/docview/2799701217 https://www.proquest.com/docview/2800625275 https://pubmed.ncbi.nlm.nih.gov/PMC10098871 https://doaj.org/article/7942ccf80b0f4dc79dce9b04246e2675 |
| Volume | 23 |
| WOSCitedRecordID | wos000970453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXQ5w4P0ILJVBSHCJNvUjdk6oC12BUKuqgFROUeI43UpLUvpYiQu_nZnUDa1AXLj4YI_8mhnb47G_AXgpnNS4C-iwjLkMpbAuNHEpQyGzTFmXl70oa4JN6NHITKfJ2F-4rfyzyt2a2CzURW3pjvyU6yTRBECm3yy-hxQ1iryrPoTGERwTUpnswPHZYDSetCaXQAtsiyck0Lg_XdGzZ1QpfrALNWD9fy7Je3vS4XvJvQ3o_Pb_dv0O3PJHT9bfyspduOaqe3BzD5DwPnzss0-b5ZX7weqKvXNuwSaugVa1zS0i82isM9a_nGEL64tvK4albFLnNdbKhlk13wUEewBfzgef374PfbiF0OKZbR0qoXKJZ-1SqSzilpPfxOF5xSVxLlSBdnSRmKyUWvQcFzGaFiYvIl4Y8u3h9IqH0Knqyj0GFptcR6VCAcEaVJTnWkdxxl1B4DJcugBe76Y_tR6LnEJiXKZokxCn0pZTAbxoSRdbAI6_EZ0RD1sCwsxuMurlLPUqmOLKw60tTZRHpSysTpCfSU6u39hxtJsCeEUSkNK0Ymds5j8o4JAIIyvta5wCaWJpAjjZMTr1Kr9Kf3M5gOdtMSoreWCyytUbpDH0Z1VxauzRVqbaPgsdKYLfD8AcSNvBoA5LqvlFAwjeI1RYtHyf_LtfT-EGR5Vo3h2pE-islxv3DK7bq_V8tezCkZ7qJjVdr0bd5oYC0-HPAeaNPwzHX38BP54oIg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48H4EChgEgkvUrB-xc0BooVSttl2hUqS9hcRxtiuVZNnsFvVP8RuZySbbjUDceuAajxLb-Tzj8Yy_AXglnNRoBbSfh1z6UljnmzCXvpBJoqxL816Q1MUm9HBoRqPo8wb8au_CUFplqxNrRZ2Vls7It7mOIk0EZPr99IdPVaMoutqW0FjCYuDOf6LLVr3b38H_-5rz3U_HH_f8pqqAb3FrMveVUKnELWWuVBJwyyk84NAsuyhMhcrQXcwik-RSi57jIsQdtEmzgGeGQlhCEPkSqvwrqMc1pZDp0YWDJ9DfW7IXoVywXVGSNS5g3rF5dWmAPw3AmgXsZmeumbvdW__bRN2Gm83GmvWXK-EObLjiLtxYo1u8B4M--7KYnblzVhZsx7kpO3I1caytz0hZwzU7Zv3TMY5ofvK9YtjKjsq0xLeyw6SYtOXO7sPXSxnNA9gsysI9AhaaVAe5QvjjG1SQploHYcJdRtQ5XDoP3ra_O7YN0zoV_DiN0eMiZMQrZHjwciU6XdKL_E3oA2FmJUCM4PWDcjaOGwUTo17l1uYmSINcZlZHiJ8opcB26Dh6hR68IcTFNK3YGZs01y9wSMQAFvc1ToE0oTQebLXAihuFVsUXqPLgxaoZVRHFl5LClQuUMXQjV3H62MMlhld9FjpQVFzAA9NBd2dQ3ZZiclLTnfeI8xb9-sf_7tdzuLZ3fHgQH-wPB0_gOsflWGdYqS3YnM8W7ilctWfzSTV7Vi9aBt8uG_y_ASHpeOE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWuwjBgfcjsIBBILhETf2InQNChVJRla2qBaTdU0gcp1tpSUrTLtq_xq9jJi8agbjtgWs9Sm3nmxlPZvwNIc-5FQq8gHJTnwlXcGNd7afC5SKKpLFx2veistmEmk710VEw2yE_m7swWFbZ2MTSUCe5wW_kPaaCQCEBmeqldVnEbDh6s_zuYgcpzLQ27TQqiEzs-Q8I34rX4yG86xeMjd5_fvfBrTsMuAaOKWtXchkLOF6mUkYeMwxTBRZctA38mMsEQsck0FEqFO9bxn04Tes48ViiMZ3FORIxgfnfgyO5AB3bm40PZsdtuMch-qu4jEDS6xVYcg3qzDoesGwU8Kc72PKH3VrNLec3uv4_b9sNcq0-ctNBpSM3yY7NbpGrW0SMt8lkQD9tVmf2nOYZHVq7pIe2pJQ15ddTWrPQzungdA4rWp98KyiM0sM8zuGp9CDKFk0jtDvky4Ws5i7ZzfLM3ifU17HyUgmKAU-QXhwr5fkRswmS6jBhHfKqefWhqTnYsRXIaQixGKIkbFHikGet6LIiHvmb0FvETyuAXOHlD_lqHtamJwSLy4xJtRd7qUiMCgBLQYwpb98yiBcd8hLRF-K2wmRMVF_MgCUhN1g4ULAFQvtCO2S_AVlYm7oi_I0whzxth8FIYeYpymy-ARmNd3Ulwz-7V-G5nTNXnsS2Aw7RHaR3FtUdyRYnJRF6H9lwIeJ_8O95PSGXAfPhx_F08pBcYaCZZemV3Ce769XGPiKXzNl6Uawe1xpMydeLRv8vd8-DMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Deep+Reinforcement+Learning+Algorithms+for+Robotic+Manipulation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Han%2C+Dong&rft.au=Mulyana%2C+Beni&rft.au=Stankovic%2C+Vladimir&rft.au=Cheng%2C+Samuel&rft.date=2023-04-05&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft.spage=3762&rft_id=info:doi/10.3390%2Fs23073762&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |