Improving biomedical named entity recognition with syntactic information
Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioB...
Uložené v:
| Vydané v: | BMC bioinformatics Ročník 21; číslo 1; s. 539 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
25.11.2020
BioMed Central Ltd Springer Nature B.V |
| Predmet: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance.
Results
In this paper, we propose
BioKMNER
, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate
BioKMNER
on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800).
Conclusion
The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance. |
|---|---|
| AbstractList | Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance. Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER , a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance. Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance.BACKGROUNDBiomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance.In this paper, we propose BIOKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BIOKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800).RESULTSIn this paper, we propose BIOKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BIOKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800).The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.CONCLUSIONThe experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance. Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. In this paper, we propose BioKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance. Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance. Keywords: Named entity recognition, Text mining, Key-value memory networks, Syntactic information, Neural networks Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. In this paper, we propose BIOKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BIOKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance. |
| ArticleNumber | 539 |
| Audience | Academic |
| Author | Tian, Yuanhe Xia, Fei Song, Yan Li, Kenli He, Min Shen, Wang |
| Author_xml | – sequence: 1 givenname: Yuanhe surname: Tian fullname: Tian, Yuanhe organization: University of Washington – sequence: 2 givenname: Wang surname: Shen fullname: Shen, Wang organization: Hunan University – sequence: 3 givenname: Yan orcidid: 0000-0002-2849-2962 surname: Song fullname: Song, Yan email: songyan@cuhk.edu.cn organization: The Chinese University of Hong Kong, Shenzhen Research Institute of Big Data – sequence: 4 givenname: Fei surname: Xia fullname: Xia, Fei organization: University of Washington – sequence: 5 givenname: Min surname: He fullname: He, Min organization: Hunan University – sequence: 6 givenname: Kenli surname: Li fullname: Li, Kenli organization: Hunan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33238875$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1rHCEUhiWk5PsP9KIM9Ka9mFTH8WNvCiG0zUKg0OZeHFcnhhndqpN0_33PZpN2N5TgheJ53tfjOecY7YcYLEJvCT4nRPJPmTSSzWrc4BpTSdua76Ej0gpSNwSz_a3zITrO-Q5jIiRmB-iQ0oZKKdgRupqPyxTvfeirzsfRLrzRQxU0nCobii-rKlkT--CLj6F68OW2yqtQtCneVD64mEa9Dp2iN04P2Z497Sfo5uuXm8ur-vr7t_nlxXVtmGClZtgsqOWdc8x1wnWMc8w4oWTGWCPlbMGNproT3DCNKe240JRKR1o8c0539AR93tgupw5yNJBj0oNaJj_qtFJRe7UbCf5W9fFeCS6FIAQMPjwZpPhrsrmo0Wdjh0EHG6esmpa3HEvBW0Dfv0Dv4pQC_A4o8Gpw025RvR6sWlcE3jVrU3XBGeacyBYDdf4fCtbCjt5AX52H-x3Bxx0BMMX-Lr2eclbznz922XfbRflbjec2AyA3gEkx52SdMr48tg2y8IMiWK0nSm0mSsFEqceJUhykzQvps_urIroRZYBDb9O_yr2i-gPk6dwl |
| CitedBy_id | crossref_primary_10_3103_S014768822470059X crossref_primary_10_1186_s12859_022_05051_9 crossref_primary_10_3390_app14188495 crossref_primary_10_1038_s41598_025_04036_x crossref_primary_10_1007_s42979_023_02068_6 crossref_primary_10_3233_JCM_225952 crossref_primary_10_1186_s12859_024_06008_w crossref_primary_10_1007_s10462_022_10197_2 crossref_primary_10_1016_j_compbiomed_2023_107522 crossref_primary_10_1145_3586158 crossref_primary_10_1145_3655619 crossref_primary_10_1007_s11063_022_10768_y crossref_primary_10_1109_ACCESS_2023_3289863 crossref_primary_10_1186_s12859_022_04994_3 crossref_primary_10_3389_frma_2021_689059 crossref_primary_10_1109_TCBB_2022_3157630 crossref_primary_10_1186_s12859_023_05172_9 crossref_primary_10_1016_j_jbi_2024_104739 |
| Cites_doi | 10.1093/bioinformatics/btw343 10.1186/gb-2008-9-s2-s2 10.1093/bioinformatics/bty356 10.18653/v1/D19-1371 10.1016/j.jbi.2013.12.006 10.18653/v1/2020.findings-emnlp.425 10.1186/1471-2105-11-85 10.3115/v1/P14-5010 10.1093/database/baw140 10.1093/bioinformatics/btt014 10.1186/s12859-019-2813-6 10.1093/bioinformatics/btx761 10.18653/v1/W19-2011 10.18653/v1/N18-1202 10.1155/2020/8894760 10.3115/1225753.1225768 10.18653/v1/2020.acl-demos.6 10.1093/bioinformatics/bty449 10.1093/bioinformatics/btt474 10.1186/s12859-020-3375-3 10.1093/bioinformatics/btx228 10.1093/bioinformatics/btz682 10.18653/v1/D16-1147 10.18653/v1/2020.acl-main.734 10.1093/bioinformatics/bty869 10.1186/1758-2946-7-S1-S10 10.1371/journal.pone.0065390 10.18653/v1/N19-1340 10.3115/1567594.1567610 10.1186/1758-2946-7-S1-S3 10.18653/v1/P16-1209 10.1093/bioinformatics/bti414 10.1109/ICICEE.2012.393 10.18653/v1/2020.acl-main.735 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
| DOI | 10.1186/s12859-020-03834-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| ExternalDocumentID | PMC7687711 A650661840 33238875 10_1186_s12859_020_03834_6 |
| Genre | Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: The Chinese University of Hong Kong (Shenzhen) grantid: UDF01001809 – fundername: ; grantid: UDF01001809 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c575t-50cd3e6bff5fb7fb5660561319552889d6ca3ab76c5a033b67a338f1409ffab3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592527700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Tue Nov 04 02:00:25 EST 2025 Thu Sep 04 17:37:00 EDT 2025 Tue Oct 07 05:18:09 EDT 2025 Tue Nov 11 10:19:19 EST 2025 Tue Nov 04 17:35:24 EST 2025 Thu Nov 13 14:51:27 EST 2025 Thu Apr 03 06:55:03 EDT 2025 Sat Nov 29 05:40:08 EST 2025 Tue Nov 18 21:54:00 EST 2025 Sat Sep 06 07:27:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Text mining Syntactic information Key-value memory networks Neural networks Named entity recognition |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-50cd3e6bff5fb7fb5660561319552889d6ca3ab76c5a033b67a338f1409ffab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2849-2962 |
| OpenAccessLink | https://www.proquest.com/docview/2471120244?pq-origsite=%requestingapplication% |
| PMID | 33238875 |
| PQID | 2471120244 |
| PQPubID | 44065 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687711 proquest_miscellaneous_2464608764 proquest_journals_2471120244 gale_infotracmisc_A650661840 gale_infotracacademiconefile_A650661840 gale_incontextgauss_ISR_A650661840 pubmed_primary_33238875 crossref_citationtrail_10_1186_s12859_020_03834_6 crossref_primary_10_1186_s12859_020_03834_6 springer_journals_10_1186_s12859_020_03834_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20201125 |
| PublicationDateYYYYMMDD | 2020-11-25 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201125 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | E Pafilis (3834_CR29) 2013; 8 JM Giorgi (3834_CR10) 2018; 34 L Luo (3834_CR23) 2018; 34 TH Dang (3834_CR5) 2018; 34 3834_CR44 3834_CR45 3834_CR46 L Smith (3834_CR35) 2008; 9 3834_CR40 3834_CR41 3834_CR42 3834_CR3 3834_CR2 R Leaman (3834_CR17) 2013; 29 L Luo (3834_CR24) 2017; 34 3834_CR7 3834_CR6 3834_CR19 D Szklarczyk (3834_CR38) 2016; 937 3834_CR11 3834_CR13 3834_CR14 3834_CR15 S Lim (3834_CR21) 2018; 13 H Zhou (3834_CR49) 2020; 21 Y Song (3834_CR37) 2005; 21 M Gerner (3834_CR9) 2010; 11 W Yoon (3834_CR48) 2019; 20 3834_CR22 R Leaman (3834_CR16) 2016; 32 3834_CR25 RI Doğan (3834_CR8) 2014; 47 3834_CR26 3834_CR27 3834_CR28 3834_CR20 B Xie (3834_CR47) 2013; 29 R Leaman (3834_CR18) 2015; 7 X Wang (3834_CR43) 2018; 35 3834_CR33 F Chang (3834_CR4) 2015 3834_CR34 3834_CR36 M Habibi (3834_CR12) 2017; 33 3834_CR39 SA Akhondi (3834_CR1) 2015; 7 3834_CR30 3834_CR31 3834_CR32 |
| References_xml | – volume: 32 start-page: 2839 issue: 18 year: 2016 ident: 3834_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw343 – volume: 9 start-page: 2 issue: 2 year: 2008 ident: 3834_CR35 publication-title: Genome Biol doi: 10.1186/gb-2008-9-s2-s2 – ident: 3834_CR44 – volume: 34 start-page: 3539 issue: 20 year: 2018 ident: 3834_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty356 – ident: 3834_CR15 – ident: 3834_CR3 doi: 10.18653/v1/D19-1371 – volume: 47 start-page: 1 year: 2014 ident: 3834_CR8 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2013.12.006 – ident: 3834_CR7 doi: 10.18653/v1/2020.findings-emnlp.425 – volume: 11 start-page: 85 year: 2010 ident: 3834_CR9 publication-title: BMC Bioinform doi: 10.1186/1471-2105-11-85 – ident: 3834_CR25 doi: 10.3115/v1/P14-5010 – ident: 3834_CR45 doi: 10.1093/database/baw140 – volume: 13 start-page: 0190926 issue: 1 year: 2018 ident: 3834_CR21 publication-title: PLoS ONE – volume: 29 start-page: 638 issue: 5 year: 2013 ident: 3834_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt014 – volume: 20 start-page: 249 issue: 10 year: 2019 ident: 3834_CR48 publication-title: BMC Bioinform doi: 10.1186/s12859-019-2813-6 – volume: 34 start-page: 1381 issue: 8 year: 2017 ident: 3834_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx761 – ident: 3834_CR31 – ident: 3834_CR13 doi: 10.18653/v1/W19-2011 – volume: 34 start-page: 1381 issue: 8 year: 2018 ident: 3834_CR23 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btx761 – ident: 3834_CR30 doi: 10.18653/v1/N18-1202 – year: 2015 ident: 3834_CR4 publication-title: J Digit Inf Manag doi: 10.1155/2020/8894760 – ident: 3834_CR2 – ident: 3834_CR28 doi: 10.3115/1225753.1225768 – ident: 3834_CR33 doi: 10.18653/v1/2020.acl-demos.6 – ident: 3834_CR34 – volume: 34 start-page: 4087 issue: 23 year: 2018 ident: 3834_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty449 – volume: 29 start-page: 2909 issue: 22 year: 2013 ident: 3834_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt474 – ident: 3834_CR41 – volume: 21 start-page: 35 issue: 1 year: 2020 ident: 3834_CR49 publication-title: BMC Bioinform doi: 10.1186/s12859-020-3375-3 – volume: 33 start-page: 37 issue: 14 year: 2017 ident: 3834_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx228 – ident: 3834_CR42 – ident: 3834_CR46 – ident: 3834_CR19 doi: 10.1093/bioinformatics/btz682 – ident: 3834_CR6 – ident: 3834_CR26 doi: 10.18653/v1/D16-1147 – ident: 3834_CR40 doi: 10.18653/v1/2020.acl-main.734 – volume: 35 start-page: 1745 issue: 10 year: 2018 ident: 3834_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty869 – volume: 7 start-page: 10 issue: S1 year: 2015 ident: 3834_CR1 publication-title: J Cheminform doi: 10.1186/1758-2946-7-S1-S10 – volume: 8 start-page: 65390 issue: 6 year: 2013 ident: 3834_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0065390 – ident: 3834_CR27 – volume: 937 start-page: D362 issue: 45 year: 2016 ident: 3834_CR38 publication-title: Nucleic Acids Res – ident: 3834_CR11 doi: 10.18653/v1/N19-1340 – ident: 3834_CR14 doi: 10.3115/1567594.1567610 – ident: 3834_CR22 – volume: 7 start-page: 3 issue: 1 year: 2015 ident: 3834_CR18 publication-title: J Cheminform doi: 10.1186/1758-2946-7-S1-S3 – ident: 3834_CR32 doi: 10.18653/v1/P16-1209 – volume: 21 start-page: 2794 issue: 11 year: 2005 ident: 3834_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti414 – ident: 3834_CR20 doi: 10.1109/ICICEE.2012.393 – ident: 3834_CR36 – ident: 3834_CR39 doi: 10.18653/v1/2020.acl-main.735 |
| SSID | ssj0017805 |
| Score | 2.5630994 |
| Snippet | Background
Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of... Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale... Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 539 |
| SubjectTerms | Algorithms Annotations Benchmarking Bioinformatics Biomedical and Life Sciences Biomedical Research Biosensors Coders Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data Mining Databases as Topic Datasets Deep Learning Disease Information processing Life Sciences Machine Learning and Artificial Intelligence in Bioinformatics Methods Microarrays Recognition Research Article Semantics Statistics as Topic Texts |
| SummonAdditionalLinks | – databaseName: SpringerLink Standard dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9UwDLdggMRlfI-OgQpC4gARbdKm6XGaNo3LhLYJ7RYlaTImob5pfQ_p_ffY6Qf0CZDgVimOmrp2bCf2zwBvg8qlqeqKGecLVijbMCWCZCoUTZ1xH5xXsdlEdXKiLi7qz0NRWDdmu49XknGnjmqt5McuJ6w1RuFOhmFVweRtuIPmTpE6np59me4OCKV_LI_57byZCdrciH-xRJtZkhtXpdECHT34v7U_hO3B40z3exF5BLd8-xju9T0o10_geDpWSPtSfPpraWvwKY01vOt0SjJatCmd26bdul3G4qp0wF2loadwfnR4fnDMhvYKzKGPtmRl5hrhpQ2hDLYKFh27GE7kdVlypepGOiOMraQrTSaElZXBeDYQQlYIxopnsNUuWv8cUowxm7wS3HlpimBVbawtG5uZnHNbe55APjJcuwF6nDpgfNMxBFFS9wzSyCAdGaRlAu-nOdc98MZfqd_Qf9SEaNFSysylWXWd_nR2qvfRB5XU1iZL4N1AFBb4emeGCgT8CALBmlHuzShR5dx8eBQXPah8pzma-Zyjy1Mk8HoappmUxtb6xYpoZCEJBBBpdnrpmj5OCPSeMHpMoJrJ3URAQODzkfbqawQEx5Cxwpcn8GGUvp_L-jPPdv-N_AXc5yTAec54uQdby5uVfwl33fflVXfzKqrgD3ZHLOA priority: 102 providerName: Springer Nature |
| Title | Improving biomedical named entity recognition with syntactic information |
| URI | https://link.springer.com/article/10.1186/s12859-020-03834-6 https://www.ncbi.nlm.nih.gov/pubmed/33238875 https://www.proquest.com/docview/2471120244 https://www.proquest.com/docview/2464608764 https://pubmed.ncbi.nlm.nih.gov/PMC7687711 |
| Volume | 21 |
| WOSCitedRecordID | wos000592527700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Standard customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYBhIvfH8UxqkgJB4gWj-T9AkNtGkT4lTdJjR4iZK0gUmoN9Y7pPvvsdNeR09iL7xEreyqTZ04sWP_DPDayZhrUQimbZ2xTJqKydRxJl1WFVFSO1tLX2xCTKfy7Kwoe4db24dVrnWiV9TV3JKPfC9BLRqjpZ5l7y9-MaoaRaerfQmNLdghlITUh-6VwykC4fWvE2Uk32tjQmtjZDBFaJhljI8Wo02V_NeatBkvuXFo6teiw7v_24t7cKffhYb73bC5Dzfq5gHc6upSrh7C0eBqCLv0fJJk2Gi8Cn1e7yocAo_mTUi-3LBdNQufcBX2WKxEegSnhwenH49YX3KBWdy3LVge2SqtuXEud0Y4g5s9b2LERZ4nUhYVtzrVRnCb6yhNDRcabVxHqFnOaZM-hu1m3tRPIUS7s4pFmtia68wZWWhj8spEOk4SU9RJAPH61yvbw5FTVYyfypslkqtOXArFpby4FA_g7fDMRQfGcS33K5KoIpSLhsJovutl26rjk5nax30pp1I3UQBveiY3x9db3WclYCcIGGvEuTvixGlox-S1xFWvBlp1Je4AXg5kepJC25p6viQennECBkSeJ904GzqXprijQosyADEagQMDgYOPKc35Dw8SjmakwJcH8G49Vq8-69__7Nn1vXgOtxOaPnHMknwXtheXy_oF3LS_F-ft5QS2xJnwrZzAzoeDaTmbeB8Htp8Em_jJiW2Zf0N6efy5_Ip3s5MvfwDr_j-H |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQEAgDmA1cRLbOSBUAdWutqwQ7KE3y3ZsqISS0uyC9kfxH_HkVbISvfXAbSVPknXyzXjGnvkG4LkTMVM850QZm5JU6IKIxDEiXFrkEbXOWNE0m-DzuTg8zD9twe--FgbTKnub2BjqojK4R75LvRWNfaSepm-PfxDsGoWnq30LjRYWM7v-5UO2-s30vf--Lyjd_7B4NyFdVwFivGuyJFlkisQy7VzmNHfa-zONFx3nWUaFyAtmVKI0ZyZTUZJoxpUP4xwSQzmndOJvewEupongSNU_42Q4tMD2AH1djmC7dYzkcATjs8jHgSlho7VvcwX4awncTM_cOKNtlr796__ZS7sB1zofO9xrleImbNnyFlxuu26ub8Nk2EgJW_IBxGlYKv8rbKqW1-GQVlWVIe5Uh_W6XDblZGHHNItDd2BxHrO4C9tlVdr7EPqouoh5Qo1lKnVa5ErrrNCRiinVuaUBxP2XlqYjW8eeH99lE3QJJlt0SI8O2aBDsgBeDdcct1QjZ0o_QwBJ5PAoMUnoq1rVtZx--Sz3vNfNsJFPFMDLTshV_vFGdTUXfhJI-zWS3BlJeiNjxsM9wGRn5Gp5iq4Ang7DeCUm7pW2WqEMSxnSHnqZey2sh8klifcXfbwcAB8BfhBA6vPxSHn0raFA90Ey9w8P4HWvGqd_69_v7MHZs3gCVyaLjwfyYDqfPYSrFDU3jgnNdmB7ebKyj-CS-bk8qk8eN3ofgjxnlfkDqjWSYQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFD_o1OGLn1PrplYRfNCwNm3T9HGolw3lMtyQvYUkTeZg5I61V7j_vTnph-vFCeJbISekOT1Jzq8553cA3lqeMllWJZHa5CTnqiY8s4xwm9dVQo3VhodiE-V8zk9OqsMrWfwh2n24kuxyGpClybW7F7Xtljhnu02KvGsEoU_iIVZO2E24lWPRIMTrR9_HewRk7B9SZf7Yb3IcrW_KV06l9YjJtWvTcBrN7v__PB7Avd4Tjfc603kIN4x7BHe62pSrx7A__m6IuxR9_Jqxk_4pDrm9q3gMPlq4GP_nxs3KtSHpKu75WLFpC45nn48_7pO-7ALR3ndrSZHoOjNMWVtYVVrlHb4AM9KqKCjnVc20zKQqmS5kkmWKldLjXIvMWdZKlT2BDbdw5hnEHnvWaZlRbZjMreKVVKqoVSJTSlVlaATpoHyhe0pyrIxxLgI04Ux0ChJeQSIoSLAI3o99LjpCjr9Kv8FvKpDpwmEozalcNo04OPom9rxvyrDcTRLBu17ILvzwWvaZCX4SSI41kdyZSPqlqKfNg-mIfitoBPXHf0q9K5RH8Hpsxp4Y3ubMYokyLGdIDuhlnnaWNk4uy7xX5VFlBOXEBkcBJAiftrizH4Eo3EPJ0g8ewYfBEn-_1vU6e_5v4q9g8_DTTHw9mH_ZhrsUbTlNCS12YKO9XJoXcFv_bM-ay5dhZf4CH7o4qA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+biomedical+named+entity+recognition+with+syntactic+information&rft.jtitle=BMC+bioinformatics&rft.au=Tian%2C+Yuanhe&rft.au=Wang%2C+Shen&rft.au=Song%2C+Yan&rft.au=Xia%2C+Fei&rft.date=2020-11-25&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=21&rft.spage=1&rft_id=info:doi/10.1186%2Fs12859-020-03834-6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |