Improving biomedical named entity recognition with syntactic information

Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioB...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 21; číslo 1; s. 539
Hlavní autori: Tian, Yuanhe, Shen, Wang, Song, Yan, Xia, Fei, He, Min, Li, Kenli
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 25.11.2020
BioMed Central Ltd
Springer Nature B.V
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER , a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.
AbstractList Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.
Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER , a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.
Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance.BACKGROUNDBiomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance.In this paper, we propose BIOKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BIOKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800).RESULTSIn this paper, we propose BIOKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BIOKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800).The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.CONCLUSIONThe experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.
Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. In this paper, we propose BioKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.
Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance. Keywords: Named entity recognition, Text mining, Key-value memory networks, Syntactic information, Neural networks
Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. In this paper, we propose BIOKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BIOKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.
ArticleNumber 539
Audience Academic
Author Tian, Yuanhe
Xia, Fei
Song, Yan
Li, Kenli
He, Min
Shen, Wang
Author_xml – sequence: 1
  givenname: Yuanhe
  surname: Tian
  fullname: Tian, Yuanhe
  organization: University of Washington
– sequence: 2
  givenname: Wang
  surname: Shen
  fullname: Shen, Wang
  organization: Hunan University
– sequence: 3
  givenname: Yan
  orcidid: 0000-0002-2849-2962
  surname: Song
  fullname: Song, Yan
  email: songyan@cuhk.edu.cn
  organization: The Chinese University of Hong Kong, Shenzhen Research Institute of Big Data
– sequence: 4
  givenname: Fei
  surname: Xia
  fullname: Xia, Fei
  organization: University of Washington
– sequence: 5
  givenname: Min
  surname: He
  fullname: He, Min
  organization: Hunan University
– sequence: 6
  givenname: Kenli
  surname: Li
  fullname: Li, Kenli
  organization: Hunan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33238875$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rHCEUhiWk5PsP9KIM9Ka9mFTH8WNvCiG0zUKg0OZeHFcnhhndqpN0_33PZpN2N5TgheJ53tfjOecY7YcYLEJvCT4nRPJPmTSSzWrc4BpTSdua76Ej0gpSNwSz_a3zITrO-Q5jIiRmB-iQ0oZKKdgRupqPyxTvfeirzsfRLrzRQxU0nCobii-rKlkT--CLj6F68OW2yqtQtCneVD64mEa9Dp2iN04P2Z497Sfo5uuXm8ur-vr7t_nlxXVtmGClZtgsqOWdc8x1wnWMc8w4oWTGWCPlbMGNproT3DCNKe240JRKR1o8c0539AR93tgupw5yNJBj0oNaJj_qtFJRe7UbCf5W9fFeCS6FIAQMPjwZpPhrsrmo0Wdjh0EHG6esmpa3HEvBW0Dfv0Dv4pQC_A4o8Gpw025RvR6sWlcE3jVrU3XBGeacyBYDdf4fCtbCjt5AX52H-x3Bxx0BMMX-Lr2eclbznz922XfbRflbjec2AyA3gEkx52SdMr48tg2y8IMiWK0nSm0mSsFEqceJUhykzQvps_urIroRZYBDb9O_yr2i-gPk6dwl
CitedBy_id crossref_primary_10_3103_S014768822470059X
crossref_primary_10_1186_s12859_022_05051_9
crossref_primary_10_3390_app14188495
crossref_primary_10_1038_s41598_025_04036_x
crossref_primary_10_1007_s42979_023_02068_6
crossref_primary_10_3233_JCM_225952
crossref_primary_10_1186_s12859_024_06008_w
crossref_primary_10_1007_s10462_022_10197_2
crossref_primary_10_1016_j_compbiomed_2023_107522
crossref_primary_10_1145_3586158
crossref_primary_10_1145_3655619
crossref_primary_10_1007_s11063_022_10768_y
crossref_primary_10_1109_ACCESS_2023_3289863
crossref_primary_10_1186_s12859_022_04994_3
crossref_primary_10_3389_frma_2021_689059
crossref_primary_10_1109_TCBB_2022_3157630
crossref_primary_10_1186_s12859_023_05172_9
crossref_primary_10_1016_j_jbi_2024_104739
Cites_doi 10.1093/bioinformatics/btw343
10.1186/gb-2008-9-s2-s2
10.1093/bioinformatics/bty356
10.18653/v1/D19-1371
10.1016/j.jbi.2013.12.006
10.18653/v1/2020.findings-emnlp.425
10.1186/1471-2105-11-85
10.3115/v1/P14-5010
10.1093/database/baw140
10.1093/bioinformatics/btt014
10.1186/s12859-019-2813-6
10.1093/bioinformatics/btx761
10.18653/v1/W19-2011
10.18653/v1/N18-1202
10.1155/2020/8894760
10.3115/1225753.1225768
10.18653/v1/2020.acl-demos.6
10.1093/bioinformatics/bty449
10.1093/bioinformatics/btt474
10.1186/s12859-020-3375-3
10.1093/bioinformatics/btx228
10.1093/bioinformatics/btz682
10.18653/v1/D16-1147
10.18653/v1/2020.acl-main.734
10.1093/bioinformatics/bty869
10.1186/1758-2946-7-S1-S10
10.1371/journal.pone.0065390
10.18653/v1/N19-1340
10.3115/1567594.1567610
10.1186/1758-2946-7-S1-S3
10.18653/v1/P16-1209
10.1093/bioinformatics/bti414
10.1109/ICICEE.2012.393
10.18653/v1/2020.acl-main.735
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1186/s12859-020-03834-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID PMC7687711
A650661840
33238875
10_1186_s12859_020_03834_6
Genre Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: The Chinese University of Hong Kong (Shenzhen)
  grantid: UDF01001809
– fundername: ;
  grantid: UDF01001809
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c575t-50cd3e6bff5fb7fb5660561319552889d6ca3ab76c5a033b67a338f1409ffab3
IEDL.DBID M7P
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592527700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 02:00:25 EST 2025
Thu Sep 04 17:37:00 EDT 2025
Tue Oct 07 05:18:09 EDT 2025
Tue Nov 11 10:19:19 EST 2025
Tue Nov 04 17:35:24 EST 2025
Thu Nov 13 14:51:27 EST 2025
Thu Apr 03 06:55:03 EDT 2025
Sat Nov 29 05:40:08 EST 2025
Tue Nov 18 21:54:00 EST 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Text mining
Syntactic information
Key-value memory networks
Neural networks
Named entity recognition
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-50cd3e6bff5fb7fb5660561319552889d6ca3ab76c5a033b67a338f1409ffab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2849-2962
OpenAccessLink https://www.proquest.com/docview/2471120244?pq-origsite=%requestingapplication%
PMID 33238875
PQID 2471120244
PQPubID 44065
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687711
proquest_miscellaneous_2464608764
proquest_journals_2471120244
gale_infotracmisc_A650661840
gale_infotracacademiconefile_A650661840
gale_incontextgauss_ISR_A650661840
pubmed_primary_33238875
crossref_citationtrail_10_1186_s12859_020_03834_6
crossref_primary_10_1186_s12859_020_03834_6
springer_journals_10_1186_s12859_020_03834_6
PublicationCentury 2000
PublicationDate 20201125
PublicationDateYYYYMMDD 2020-11-25
PublicationDate_xml – month: 11
  year: 2020
  text: 20201125
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References E Pafilis (3834_CR29) 2013; 8
JM Giorgi (3834_CR10) 2018; 34
L Luo (3834_CR23) 2018; 34
TH Dang (3834_CR5) 2018; 34
3834_CR44
3834_CR45
3834_CR46
L Smith (3834_CR35) 2008; 9
3834_CR40
3834_CR41
3834_CR42
3834_CR3
3834_CR2
R Leaman (3834_CR17) 2013; 29
L Luo (3834_CR24) 2017; 34
3834_CR7
3834_CR6
3834_CR19
D Szklarczyk (3834_CR38) 2016; 937
3834_CR11
3834_CR13
3834_CR14
3834_CR15
S Lim (3834_CR21) 2018; 13
H Zhou (3834_CR49) 2020; 21
Y Song (3834_CR37) 2005; 21
M Gerner (3834_CR9) 2010; 11
W Yoon (3834_CR48) 2019; 20
3834_CR22
R Leaman (3834_CR16) 2016; 32
3834_CR25
RI Doğan (3834_CR8) 2014; 47
3834_CR26
3834_CR27
3834_CR28
3834_CR20
B Xie (3834_CR47) 2013; 29
R Leaman (3834_CR18) 2015; 7
X Wang (3834_CR43) 2018; 35
3834_CR33
F Chang (3834_CR4) 2015
3834_CR34
3834_CR36
M Habibi (3834_CR12) 2017; 33
3834_CR39
SA Akhondi (3834_CR1) 2015; 7
3834_CR30
3834_CR31
3834_CR32
References_xml – volume: 32
  start-page: 2839
  issue: 18
  year: 2016
  ident: 3834_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw343
– volume: 9
  start-page: 2
  issue: 2
  year: 2008
  ident: 3834_CR35
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s2-s2
– ident: 3834_CR44
– volume: 34
  start-page: 3539
  issue: 20
  year: 2018
  ident: 3834_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty356
– ident: 3834_CR15
– ident: 3834_CR3
  doi: 10.18653/v1/D19-1371
– volume: 47
  start-page: 1
  year: 2014
  ident: 3834_CR8
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2013.12.006
– ident: 3834_CR7
  doi: 10.18653/v1/2020.findings-emnlp.425
– volume: 11
  start-page: 85
  year: 2010
  ident: 3834_CR9
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-85
– ident: 3834_CR25
  doi: 10.3115/v1/P14-5010
– ident: 3834_CR45
  doi: 10.1093/database/baw140
– volume: 13
  start-page: 0190926
  issue: 1
  year: 2018
  ident: 3834_CR21
  publication-title: PLoS ONE
– volume: 29
  start-page: 638
  issue: 5
  year: 2013
  ident: 3834_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt014
– volume: 20
  start-page: 249
  issue: 10
  year: 2019
  ident: 3834_CR48
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-2813-6
– volume: 34
  start-page: 1381
  issue: 8
  year: 2017
  ident: 3834_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx761
– ident: 3834_CR31
– ident: 3834_CR13
  doi: 10.18653/v1/W19-2011
– volume: 34
  start-page: 1381
  issue: 8
  year: 2018
  ident: 3834_CR23
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btx761
– ident: 3834_CR30
  doi: 10.18653/v1/N18-1202
– year: 2015
  ident: 3834_CR4
  publication-title: J Digit Inf Manag
  doi: 10.1155/2020/8894760
– ident: 3834_CR2
– ident: 3834_CR28
  doi: 10.3115/1225753.1225768
– ident: 3834_CR33
  doi: 10.18653/v1/2020.acl-demos.6
– ident: 3834_CR34
– volume: 34
  start-page: 4087
  issue: 23
  year: 2018
  ident: 3834_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty449
– volume: 29
  start-page: 2909
  issue: 22
  year: 2013
  ident: 3834_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt474
– ident: 3834_CR41
– volume: 21
  start-page: 35
  issue: 1
  year: 2020
  ident: 3834_CR49
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-3375-3
– volume: 33
  start-page: 37
  issue: 14
  year: 2017
  ident: 3834_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx228
– ident: 3834_CR42
– ident: 3834_CR46
– ident: 3834_CR19
  doi: 10.1093/bioinformatics/btz682
– ident: 3834_CR6
– ident: 3834_CR26
  doi: 10.18653/v1/D16-1147
– ident: 3834_CR40
  doi: 10.18653/v1/2020.acl-main.734
– volume: 35
  start-page: 1745
  issue: 10
  year: 2018
  ident: 3834_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty869
– volume: 7
  start-page: 10
  issue: S1
  year: 2015
  ident: 3834_CR1
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-7-S1-S10
– volume: 8
  start-page: 65390
  issue: 6
  year: 2013
  ident: 3834_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0065390
– ident: 3834_CR27
– volume: 937
  start-page: D362
  issue: 45
  year: 2016
  ident: 3834_CR38
  publication-title: Nucleic Acids Res
– ident: 3834_CR11
  doi: 10.18653/v1/N19-1340
– ident: 3834_CR14
  doi: 10.3115/1567594.1567610
– ident: 3834_CR22
– volume: 7
  start-page: 3
  issue: 1
  year: 2015
  ident: 3834_CR18
  publication-title: J Cheminform
  doi: 10.1186/1758-2946-7-S1-S3
– ident: 3834_CR32
  doi: 10.18653/v1/P16-1209
– volume: 21
  start-page: 2794
  issue: 11
  year: 2005
  ident: 3834_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti414
– ident: 3834_CR20
  doi: 10.1109/ICICEE.2012.393
– ident: 3834_CR36
– ident: 3834_CR39
  doi: 10.18653/v1/2020.acl-main.735
SSID ssj0017805
Score 2.5630994
Snippet Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of...
Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale...
Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 539
SubjectTerms Algorithms
Annotations
Benchmarking
Bioinformatics
Biomedical and Life Sciences
Biomedical Research
Biosensors
Coders
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data Mining
Databases as Topic
Datasets
Deep Learning
Disease
Information processing
Life Sciences
Machine Learning and Artificial Intelligence in Bioinformatics
Methods
Microarrays
Recognition
Research Article
Semantics
Statistics as Topic
Texts
SummonAdditionalLinks – databaseName: SpringerLink Standard
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9UwDLdggMRlfI-OgQpC4gARbdKm6XGaNo3LhLYJ7RYlaTImob5pfQ_p_ffY6Qf0CZDgVimOmrp2bCf2zwBvg8qlqeqKGecLVijbMCWCZCoUTZ1xH5xXsdlEdXKiLi7qz0NRWDdmu49XknGnjmqt5McuJ6w1RuFOhmFVweRtuIPmTpE6np59me4OCKV_LI_57byZCdrciH-xRJtZkhtXpdECHT34v7U_hO3B40z3exF5BLd8-xju9T0o10_geDpWSPtSfPpraWvwKY01vOt0SjJatCmd26bdul3G4qp0wF2loadwfnR4fnDMhvYKzKGPtmRl5hrhpQ2hDLYKFh27GE7kdVlypepGOiOMraQrTSaElZXBeDYQQlYIxopnsNUuWv8cUowxm7wS3HlpimBVbawtG5uZnHNbe55APjJcuwF6nDpgfNMxBFFS9wzSyCAdGaRlAu-nOdc98MZfqd_Qf9SEaNFSysylWXWd_nR2qvfRB5XU1iZL4N1AFBb4emeGCgT8CALBmlHuzShR5dx8eBQXPah8pzma-Zyjy1Mk8HoappmUxtb6xYpoZCEJBBBpdnrpmj5OCPSeMHpMoJrJ3URAQODzkfbqawQEx5Cxwpcn8GGUvp_L-jPPdv-N_AXc5yTAec54uQdby5uVfwl33fflVXfzKqrgD3ZHLOA
  priority: 102
  providerName: Springer Nature
Title Improving biomedical named entity recognition with syntactic information
URI https://link.springer.com/article/10.1186/s12859-020-03834-6
https://www.ncbi.nlm.nih.gov/pubmed/33238875
https://www.proquest.com/docview/2471120244
https://www.proquest.com/docview/2464608764
https://pubmed.ncbi.nlm.nih.gov/PMC7687711
Volume 21
WOSCitedRecordID wos000592527700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Standard
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYBhIvfH8UxqkgJB4gWj-T9AkNtGkT4lTdJjR4iZK0gUmoN9Y7pPvvsdNeR09iL7xEreyqTZ04sWP_DPDayZhrUQimbZ2xTJqKydRxJl1WFVFSO1tLX2xCTKfy7Kwoe4db24dVrnWiV9TV3JKPfC9BLRqjpZ5l7y9-MaoaRaerfQmNLdghlITUh-6VwykC4fWvE2Uk32tjQmtjZDBFaJhljI8Wo02V_NeatBkvuXFo6teiw7v_24t7cKffhYb73bC5Dzfq5gHc6upSrh7C0eBqCLv0fJJk2Gi8Cn1e7yocAo_mTUi-3LBdNQufcBX2WKxEegSnhwenH49YX3KBWdy3LVge2SqtuXEud0Y4g5s9b2LERZ4nUhYVtzrVRnCb6yhNDRcabVxHqFnOaZM-hu1m3tRPIUS7s4pFmtia68wZWWhj8spEOk4SU9RJAPH61yvbw5FTVYyfypslkqtOXArFpby4FA_g7fDMRQfGcS33K5KoIpSLhsJovutl26rjk5nax30pp1I3UQBveiY3x9db3WclYCcIGGvEuTvixGlox-S1xFWvBlp1Je4AXg5kepJC25p6viQennECBkSeJ904GzqXprijQosyADEagQMDgYOPKc35Dw8SjmakwJcH8G49Vq8-69__7Nn1vXgOtxOaPnHMknwXtheXy_oF3LS_F-ft5QS2xJnwrZzAzoeDaTmbeB8Htp8Em_jJiW2Zf0N6efy5_Ip3s5MvfwDr_j-H
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQEAgDmA1cRLbOSBUAdWutqwQ7KE3y3ZsqISS0uyC9kfxH_HkVbISvfXAbSVPknXyzXjGnvkG4LkTMVM850QZm5JU6IKIxDEiXFrkEbXOWNE0m-DzuTg8zD9twe--FgbTKnub2BjqojK4R75LvRWNfaSepm-PfxDsGoWnq30LjRYWM7v-5UO2-s30vf--Lyjd_7B4NyFdVwFivGuyJFlkisQy7VzmNHfa-zONFx3nWUaFyAtmVKI0ZyZTUZJoxpUP4xwSQzmndOJvewEupongSNU_42Q4tMD2AH1djmC7dYzkcATjs8jHgSlho7VvcwX4awncTM_cOKNtlr796__ZS7sB1zofO9xrleImbNnyFlxuu26ub8Nk2EgJW_IBxGlYKv8rbKqW1-GQVlWVIe5Uh_W6XDblZGHHNItDd2BxHrO4C9tlVdr7EPqouoh5Qo1lKnVa5ErrrNCRiinVuaUBxP2XlqYjW8eeH99lE3QJJlt0SI8O2aBDsgBeDdcct1QjZ0o_QwBJ5PAoMUnoq1rVtZx--Sz3vNfNsJFPFMDLTshV_vFGdTUXfhJI-zWS3BlJeiNjxsM9wGRn5Gp5iq4Ang7DeCUm7pW2WqEMSxnSHnqZey2sh8klifcXfbwcAB8BfhBA6vPxSHn0raFA90Ey9w8P4HWvGqd_69_v7MHZs3gCVyaLjwfyYDqfPYSrFDU3jgnNdmB7ebKyj-CS-bk8qk8eN3ofgjxnlfkDqjWSYQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFD_o1OGLn1PrplYRfNCwNm3T9HGolw3lMtyQvYUkTeZg5I61V7j_vTnph-vFCeJbISekOT1Jzq8553cA3lqeMllWJZHa5CTnqiY8s4xwm9dVQo3VhodiE-V8zk9OqsMrWfwh2n24kuxyGpClybW7F7Xtljhnu02KvGsEoU_iIVZO2E24lWPRIMTrR9_HewRk7B9SZf7Yb3IcrW_KV06l9YjJtWvTcBrN7v__PB7Avd4Tjfc603kIN4x7BHe62pSrx7A__m6IuxR9_Jqxk_4pDrm9q3gMPlq4GP_nxs3KtSHpKu75WLFpC45nn48_7pO-7ALR3ndrSZHoOjNMWVtYVVrlHb4AM9KqKCjnVc20zKQqmS5kkmWKldLjXIvMWdZKlT2BDbdw5hnEHnvWaZlRbZjMreKVVKqoVSJTSlVlaATpoHyhe0pyrIxxLgI04Ux0ChJeQSIoSLAI3o99LjpCjr9Kv8FvKpDpwmEozalcNo04OPom9rxvyrDcTRLBu17ILvzwWvaZCX4SSI41kdyZSPqlqKfNg-mIfitoBPXHf0q9K5RH8Hpsxp4Y3ubMYokyLGdIDuhlnnaWNk4uy7xX5VFlBOXEBkcBJAiftrizH4Eo3EPJ0g8ewYfBEn-_1vU6e_5v4q9g8_DTTHw9mH_ZhrsUbTlNCS12YKO9XJoXcFv_bM-ay5dhZf4CH7o4qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+biomedical+named+entity+recognition+with+syntactic+information&rft.jtitle=BMC+bioinformatics&rft.au=Tian%2C+Yuanhe&rft.au=Wang%2C+Shen&rft.au=Song%2C+Yan&rft.au=Xia%2C+Fei&rft.date=2020-11-25&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=21&rft.spage=1&rft_id=info:doi/10.1186%2Fs12859-020-03834-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon