Advances in Spectral-Spatial Classification of Hyperspectral Images
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel...
Saved in:
| Published in: | Proceedings of the IEEE Vol. 101; no. 3; pp. 652 - 675 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects: | |
| ISSN: | 0018-9219, 1558-2256 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods. |
|---|---|
| AbstractList | Recent Advances in Spectral-Spatial Classification of Hyperspectral Images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods. Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes character- istics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods. |
| Author | Benediktsson, Jon Atli Chanussot, Jocelyn Tilton, James C. Fauvel, Mathieu Tarabalka, Yuliya |
| Author_xml | – sequence: 1 givenname: Mathieu surname: Fauvel fullname: Fauvel, Mathieu email: mathieu.fauvel@ensat.fr organization: DYNAFOR lab, INRA and the University of Toulouse, France – sequence: 2 givenname: Yuliya surname: Tarabalka fullname: Tarabalka, Yuliya organization: AYIN, INRIA, Sophia Antipolis, France – sequence: 3 givenname: Jon Atli surname: Benediktsson fullname: Benediktsson, Jon Atli organization: Faculty of Electrical and Computer Engineering, University of Iceland, Iceland – sequence: 4 givenname: Jocelyn surname: Chanussot fullname: Chanussot, Jocelyn organization: GIPSA-lab, Grenoble Institute of Technology , France – sequence: 5 givenname: James C. surname: Tilton fullname: Tilton, James C. organization: NASA Goddard Space Flight Center, USA |
| BackLink | https://inria.hal.science/hal-00737075$$DView record in HAL |
| BookMark | eNqFkU1P3DAQhi1EJRbaPwCXSFzoIVuPv31cRbRLtRIV0LPlmAkYZZMQZ5H49_WyKw4cqOdgefy84_G8x-Sw6zsk5BToHIDaH7__3FxXc0aBzRlYLY09IDOQ0pSMSXVIZpSCKW2-OyLHKT1RSrlUfEaqxf2L7wKmInbF7YBhGn1b3g5-ir4tqtanFJsY8rHvir4plq8DjmnPFVdr_4DpK_nS-Dbht_1-Qv7-vLyrluXq-tdVtViVQWo5ldwLpfBe24AMPLOWKxAoeG1MY2SNjakFBKhB1N5YIbFWAY1H5W2WScFPyPdd3UffumGMaz--ut5Ht1ys3DZHqeaaavkCmb3YscPYP28wTW4dU8C29R32m-RAa8qFEpL9H-UsR142o-cf0Kd-M3b50w6YBWm1ZTRTbEeFsU9pxOa9WaBua5d7s8tt7XJ7u7LIfBCFOL2NPU86tp9Lz3bSiIjvbymWu7GM_wNm56K3 |
| CODEN | IEEPAD |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2021_3123086 crossref_primary_10_1109_TGRS_2018_2865102 crossref_primary_10_1109_JSTARS_2013_2272879 crossref_primary_10_1109_TGRS_2019_2927659 crossref_primary_10_1109_TCYB_2018_2883472 crossref_primary_10_1109_JSTSP_2015_2414401 crossref_primary_10_1109_JSTARS_2013_2295513 crossref_primary_10_1080_01431161_2016_1244363 crossref_primary_10_1080_01431161_2016_1277042 crossref_primary_10_1109_TGRS_2016_2616489 crossref_primary_10_1109_TCYB_2016_2533430 crossref_primary_10_1109_TGRS_2023_3267638 crossref_primary_10_1109_TGRS_2018_2805286 crossref_primary_10_1080_2150704X_2016_1182661 crossref_primary_10_1016_j_patrec_2016_11_010 crossref_primary_10_1109_JSTSP_2022_3219357 crossref_primary_10_1007_s12517_020_05487_4 crossref_primary_10_3390_rs14030716 crossref_primary_10_1109_TGRS_2022_3217892 crossref_primary_10_3390_rs15215208 crossref_primary_10_1109_TGRS_2019_2947032 crossref_primary_10_1109_TGRS_2015_2410991 crossref_primary_10_1109_TGRS_2023_3276589 crossref_primary_10_1109_TGRS_2022_3231930 crossref_primary_10_3390_rs8070601 crossref_primary_10_1016_j_aeue_2014_09_001 crossref_primary_10_1109_TGRS_2018_2874077 crossref_primary_10_1109_JSTARS_2017_2756864 crossref_primary_10_1016_j_inffus_2021_09_019 crossref_primary_10_1007_s00371_022_02489_z crossref_primary_10_1109_TGRS_2021_3108352 crossref_primary_10_1109_JSTARS_2020_3008359 crossref_primary_10_1080_01431161_2021_1934599 crossref_primary_10_1007_s10994_021_05972_1 crossref_primary_10_1109_JSTARS_2018_2847042 crossref_primary_10_1109_TPAMI_2020_2982166 crossref_primary_10_1007_s12524_018_0875_y crossref_primary_10_1109_MGRS_2021_3136100 crossref_primary_10_1109_TGRS_2018_2869723 crossref_primary_10_1109_TGRS_2018_2888485 crossref_primary_10_1109_TGRS_2017_2761893 crossref_primary_10_1109_TCSVT_2017_2746684 crossref_primary_10_3390_rs15041053 crossref_primary_10_1016_j_apm_2018_07_036 crossref_primary_10_1109_JSTARS_2015_2394778 crossref_primary_10_1109_TGRS_2019_2937204 crossref_primary_10_1051_e3sconf_202016503001 crossref_primary_10_1007_s12524_016_0597_y crossref_primary_10_1016_j_isprsjprs_2019_09_006 crossref_primary_10_1088_1757_899X_1074_1_012002 crossref_primary_10_3390_rs10030383 crossref_primary_10_3390_rs71114806 crossref_primary_10_1109_JSTARS_2013_2251969 crossref_primary_10_1109_ACCESS_2017_2758168 crossref_primary_10_1109_TGRS_2024_3402058 crossref_primary_10_1364_AO_55_004808 crossref_primary_10_3390_rs8121023 crossref_primary_10_1109_TGRS_2020_3024258 crossref_primary_10_1109_ACCESS_2025_3549277 crossref_primary_10_3390_rs8020124 crossref_primary_10_1109_TGRS_2016_2576978 crossref_primary_10_1007_s11852_025_01098_x crossref_primary_10_1007_s12517_021_07203_2 crossref_primary_10_1109_LGRS_2014_2380313 crossref_primary_10_1002_cem_2985 crossref_primary_10_1007_s11227_018_2300_2 crossref_primary_10_1109_LGRS_2019_2945546 crossref_primary_10_1109_TGRS_2016_2585201 crossref_primary_10_1109_JSTARS_2021_3062872 crossref_primary_10_1155_2021_9035163 crossref_primary_10_1007_s11104_025_07306_9 crossref_primary_10_1016_j_isprsjprs_2018_01_021 crossref_primary_10_1109_JPROC_2017_2729890 crossref_primary_10_1109_JSTARS_2013_2259470 crossref_primary_10_3390_rs12111780 crossref_primary_10_1109_TGRS_2024_3429372 crossref_primary_10_1016_j_infrared_2025_105726 crossref_primary_10_1109_MGRS_2020_2979764 crossref_primary_10_1109_TGRS_2018_2870980 crossref_primary_10_1007_s10773_021_04747_7 crossref_primary_10_1016_j_inffus_2016_05_004 crossref_primary_10_1109_TGRS_2021_3135506 crossref_primary_10_1109_TGRS_2016_2642951 crossref_primary_10_3390_rs9101042 crossref_primary_10_1109_TNNLS_2021_3056181 crossref_primary_10_1016_j_asoc_2025_112947 crossref_primary_10_1109_TGRS_2016_2584107 crossref_primary_10_3103_S8756699017010058 crossref_primary_10_1109_JSTARS_2021_3136599 crossref_primary_10_3390_rs8080636 crossref_primary_10_1109_TGRS_2014_2360672 crossref_primary_10_3390_rs11192289 crossref_primary_10_3390_s18113627 crossref_primary_10_1109_TGRS_2020_3006872 crossref_primary_10_1109_TGRS_2015_2496185 crossref_primary_10_1109_TGRS_2019_2957251 crossref_primary_10_3390_rs11020150 crossref_primary_10_1109_TGRS_2020_3015357 crossref_primary_10_1016_j_patcog_2016_10_019 crossref_primary_10_1109_TGRS_2023_3244750 crossref_primary_10_1109_JSTARS_2013_2292032 crossref_primary_10_1109_TGRS_2016_2553842 crossref_primary_10_3390_rs16050870 crossref_primary_10_3390_rs9050456 crossref_primary_10_1109_TGRS_2018_2868690 crossref_primary_10_1016_j_ijleo_2015_07_184 crossref_primary_10_1016_j_neucom_2016_03_097 crossref_primary_10_3390_rs10010113 crossref_primary_10_3390_rs11101219 crossref_primary_10_1126_science_aat2298 crossref_primary_10_1109_TGRS_2016_2587672 crossref_primary_10_3390_rs6087158 crossref_primary_10_1038_s41598_023_27472_z crossref_primary_10_1109_JSTARS_2014_2384133 crossref_primary_10_1109_LGRS_2014_2363586 crossref_primary_10_3390_rs16111957 crossref_primary_10_1109_TGRS_2023_3297216 crossref_primary_10_1016_j_patcog_2016_04_009 crossref_primary_10_3390_rs10071070 crossref_primary_10_1016_j_compag_2025_110360 crossref_primary_10_1109_JSTARS_2019_2939833 crossref_primary_10_1080_01431161_2014_999882 crossref_primary_10_1016_j_jag_2022_102687 crossref_primary_10_3390_s22197308 crossref_primary_10_1007_s12524_022_01563_2 crossref_primary_10_1109_JSTARS_2017_2655516 crossref_primary_10_1049_ell2_12238 crossref_primary_10_1109_TGRS_2018_2796069 crossref_primary_10_1007_s11063_015_9447_0 crossref_primary_10_1007_s13137_016_0085_0 crossref_primary_10_1109_JSTARS_2020_3040218 crossref_primary_10_3390_rs9090939 crossref_primary_10_1109_TNNLS_2022_3189049 crossref_primary_10_1145_3337798 crossref_primary_10_1109_JSTARS_2017_2706190 crossref_primary_10_3390_s17122726 crossref_primary_10_1109_TGRS_2017_2743102 crossref_primary_10_1109_JSTARS_2024_3394771 crossref_primary_10_1016_j_rse_2019_111322 crossref_primary_10_1109_TGRS_2017_2743110 crossref_primary_10_3390_rs15133402 crossref_primary_10_1007_s00500_020_04697_y crossref_primary_10_1109_ACCESS_2019_2963624 crossref_primary_10_1109_JSTARS_2017_2724604 crossref_primary_10_1109_JSTARS_2019_2939857 crossref_primary_10_1109_JSTARS_2019_2950876 crossref_primary_10_1080_07038992_2018_1559725 crossref_primary_10_1109_LGRS_2017_2755061 crossref_primary_10_1109_TGRS_2023_3242776 crossref_primary_10_3390_rs16101688 crossref_primary_10_1007_s41060_018_0115_0 crossref_primary_10_1109_ACCESS_2019_2894766 crossref_primary_10_1109_LGRS_2019_2962768 crossref_primary_10_1109_TGRS_2024_3502782 crossref_primary_10_1109_JSTARS_2016_2526604 crossref_primary_10_1109_TGRS_2018_2829400 crossref_primary_10_3390_s18061695 crossref_primary_10_1016_j_compbiomed_2017_06_018 crossref_primary_10_1016_j_inffus_2023_101907 crossref_primary_10_1109_JSTARS_2021_3133021 crossref_primary_10_3390_rs8040355 crossref_primary_10_3390_s20061652 crossref_primary_10_3390_rs13112216 crossref_primary_10_1109_TGRS_2018_2889195 crossref_primary_10_1109_JSTARS_2014_2355843 crossref_primary_10_1016_j_sigpro_2020_107737 crossref_primary_10_1109_TGRS_2019_2896471 crossref_primary_10_1109_TGRS_2017_2744662 crossref_primary_10_1007_s12524_015_0515_8 crossref_primary_10_1109_TGRS_2020_3016820 crossref_primary_10_3390_rs13122268 crossref_primary_10_1109_TGRS_2018_2818945 crossref_primary_10_1007_s11760_015_0851_8 crossref_primary_10_3390_rs9030203 crossref_primary_10_1109_JSTARS_2017_2732227 crossref_primary_10_3390_cancers11060756 crossref_primary_10_1080_01431161_2020_1807650 crossref_primary_10_1109_TGRS_2017_2651639 crossref_primary_10_1080_01431161_2023_2227320 crossref_primary_10_1016_j_eswa_2015_11_016 crossref_primary_10_1109_JSTARS_2020_3006772 crossref_primary_10_3390_rs14112568 crossref_primary_10_1007_s10812_022_01399_1 crossref_primary_10_1109_TNNLS_2018_2874432 crossref_primary_10_1016_j_ijggc_2020_103181 crossref_primary_10_1080_01431161_2018_1465614 crossref_primary_10_1089_big_2014_0064 crossref_primary_10_1109_JSTARS_2015_2470129 crossref_primary_10_1016_j_isprsjprs_2015_01_006 crossref_primary_10_1109_TGRS_2019_2918080 crossref_primary_10_1109_TGRS_2019_2915809 crossref_primary_10_1109_TMI_2020_3024923 crossref_primary_10_3390_s19132887 crossref_primary_10_1109_JSTARS_2019_2895070 crossref_primary_10_1007_s00500_017_2867_1 crossref_primary_10_1109_TGRS_2023_3344583 crossref_primary_10_3390_rs10020322 crossref_primary_10_1109_TGRS_2015_2490482 crossref_primary_10_3390_jcm8010036 crossref_primary_10_3390_rs11161953 crossref_primary_10_1109_TGRS_2020_3022029 crossref_primary_10_1016_j_measurement_2021_110229 crossref_primary_10_1016_j_ecolind_2017_05_071 crossref_primary_10_1109_ACCESS_2020_3016171 crossref_primary_10_1109_TGRS_2020_3004858 crossref_primary_10_1016_j_optlastec_2021_106931 crossref_primary_10_3390_rs11171983 crossref_primary_10_1109_JSTARS_2017_2782706 crossref_primary_10_1109_LGRS_2022_3194257 crossref_primary_10_1109_TGRS_2014_2366513 crossref_primary_10_1109_TGRS_2014_2306692 crossref_primary_10_1109_TGRS_2020_2967778 crossref_primary_10_1109_TGRS_2019_2911993 crossref_primary_10_1155_2021_5217578 crossref_primary_10_1016_j_bbrc_2016_01_125 crossref_primary_10_1109_TGRS_2015_2409195 crossref_primary_10_1109_TGRS_2019_2892903 crossref_primary_10_1016_j_neucom_2015_09_035 crossref_primary_10_1109_TGRS_2020_2987137 crossref_primary_10_3390_rs10081282 crossref_primary_10_1109_TGRS_2017_2730583 crossref_primary_10_3390_rs14215455 crossref_primary_10_1117_1_JRS_19_024507 crossref_primary_10_1109_JSTARS_2015_2420582 crossref_primary_10_1109_TGRS_2019_2955557 crossref_primary_10_1109_LGRS_2019_2917788 crossref_primary_10_1109_LGRS_2019_2939356 crossref_primary_10_1016_j_isprsjprs_2020_01_015 crossref_primary_10_1109_JSTARS_2022_3216590 crossref_primary_10_1016_j_ijggc_2022_103659 crossref_primary_10_1109_JSTARS_2024_3372138 crossref_primary_10_1109_TGRS_2016_2632042 crossref_primary_10_1016_j_scitotenv_2022_153559 crossref_primary_10_1109_TGRS_2024_3433024 crossref_primary_10_1080_01431161_2024_2394234 crossref_primary_10_3390_rs13245009 crossref_primary_10_1109_MSP_2013_2279179 crossref_primary_10_3390_f11010032 crossref_primary_10_1109_TGRS_2016_2643166 crossref_primary_10_1016_j_measurement_2025_118773 crossref_primary_10_1007_s12145_019_00411_1 crossref_primary_10_1007_s12524_016_0558_5 crossref_primary_10_1109_TGRS_2023_3319512 crossref_primary_10_1109_TGRS_2017_2754511 crossref_primary_10_1109_TGRS_2018_2861992 crossref_primary_10_3390_f16050827 crossref_primary_10_1007_s11760_015_0753_9 crossref_primary_10_1109_JSTARS_2023_3279506 crossref_primary_10_1016_j_asr_2025_07_100 crossref_primary_10_1109_TGRS_2022_3165204 crossref_primary_10_1109_JSTARS_2013_2265331 crossref_primary_10_3390_rs10040515 crossref_primary_10_1016_j_asoc_2017_11_045 crossref_primary_10_1007_s11554_014_0464_4 crossref_primary_10_1109_TGRS_2021_3085801 crossref_primary_10_3390_rs13091812 crossref_primary_10_3390_rs10050783 crossref_primary_10_1109_TGRS_2015_2484619 crossref_primary_10_3390_rs10121939 crossref_primary_10_3390_rs11080952 crossref_primary_10_3390_s18061978 crossref_primary_10_1080_22797254_2018_1529543 crossref_primary_10_1109_LGRS_2013_2286078 crossref_primary_10_1109_TGRS_2023_3272639 crossref_primary_10_1109_TNNLS_2022_3158280 crossref_primary_10_1109_JSTARS_2016_2522182 crossref_primary_10_1109_TIP_2024_3465038 crossref_primary_10_1038_s41598_024_58125_4 crossref_primary_10_1109_TGRS_2014_2321405 crossref_primary_10_3390_rs8110919 crossref_primary_10_1080_01431161_2019_1601284 crossref_primary_10_1109_LGRS_2015_2408433 crossref_primary_10_1109_TNNLS_2019_2962878 crossref_primary_10_3390_rs17050763 crossref_primary_10_1109_LGRS_2015_2481321 crossref_primary_10_1109_ACCESS_2021_3099631 crossref_primary_10_1109_TGRS_2017_2765364 crossref_primary_10_1109_ACCESS_2020_3029174 crossref_primary_10_1109_TGRS_2017_2697453 crossref_primary_10_1109_TGRS_2018_2864983 crossref_primary_10_1016_j_neucom_2019_10_071 crossref_primary_10_1109_JSTARS_2021_3107105 crossref_primary_10_1109_LGRS_2016_2596039 crossref_primary_10_1080_01431161_2022_2145580 crossref_primary_10_1016_j_patcog_2022_108705 crossref_primary_10_1109_LGRS_2022_3220601 crossref_primary_10_1109_ACCESS_2020_3011668 crossref_primary_10_1109_TNNLS_2020_3029523 crossref_primary_10_1109_TGRS_2013_2294724 crossref_primary_10_1109_JSTARS_2015_2456102 crossref_primary_10_1109_TGRS_2014_2358934 crossref_primary_10_3103_S8756699018010120 crossref_primary_10_1007_s10619_020_07309_8 crossref_primary_10_1109_TGRS_2013_2292544 crossref_primary_10_3390_rs15092367 crossref_primary_10_1109_TGRS_2025_3534881 crossref_primary_10_1007_s00500_014_1505_4 crossref_primary_10_1109_JSTARS_2015_2428232 crossref_primary_10_1109_TGRS_2022_3151004 crossref_primary_10_1109_TGRS_2016_2623742 crossref_primary_10_1109_JSTARS_2020_2984568 crossref_primary_10_1080_01431161_2017_1317941 crossref_primary_10_1109_JSTARS_2019_2938208 crossref_primary_10_1109_LGRS_2015_2418232 crossref_primary_10_1109_LGRS_2015_2424911 crossref_primary_10_1016_j_rse_2020_112129 crossref_primary_10_1080_01431161_2018_1433893 crossref_primary_10_1016_j_cosrev_2024_100658 crossref_primary_10_3390_rs16030489 crossref_primary_10_1109_TGRS_2020_3024730 crossref_primary_10_1016_j_isprsjprs_2018_11_023 crossref_primary_10_1109_TGRS_2017_2694159 crossref_primary_10_1016_j_isprsjprs_2017_03_020 crossref_primary_10_1109_JSTARS_2015_2398835 crossref_primary_10_1080_10106049_2019_1622597 crossref_primary_10_1109_JSTARS_2021_3107311 crossref_primary_10_1016_j_neucom_2020_12_064 crossref_primary_10_1109_LGRS_2016_2521763 crossref_primary_10_1016_j_infrared_2018_10_012 crossref_primary_10_1080_10095020_2017_1399674 crossref_primary_10_1007_s10586_018_2243_7 crossref_primary_10_1080_01431161_2015_1137649 crossref_primary_10_1109_TGRS_2017_2703598 crossref_primary_10_1007_s10766_017_0547_5 crossref_primary_10_1109_TGRS_2014_2319373 crossref_primary_10_3390_s24041187 crossref_primary_10_1109_JSTARS_2015_2437614 crossref_primary_10_1109_MGRS_2017_2762087 crossref_primary_10_1109_LGRS_2013_2284007 crossref_primary_10_3390_rs17162833 crossref_primary_10_1109_TGRS_2015_2503886 crossref_primary_10_3390_rs14071686 crossref_primary_10_1109_TGRS_2016_2535538 crossref_primary_10_1109_JSTARS_2018_2872969 crossref_primary_10_1109_JSTARS_2022_3187757 crossref_primary_10_3390_rs12050779 crossref_primary_10_3390_s17102421 crossref_primary_10_1109_JSTARS_2016_2569480 crossref_primary_10_3390_rs12121973 crossref_primary_10_1109_TGRS_2023_3280205 crossref_primary_10_1109_TGRS_2020_3018879 crossref_primary_10_1109_TGRS_2016_2561842 crossref_primary_10_1109_TGRS_2022_3162100 crossref_primary_10_3390_app8101792 crossref_primary_10_1016_j_jag_2018_06_006 crossref_primary_10_14358_PERS_22_00111R2 crossref_primary_10_1007_s10994_016_5559_7 crossref_primary_10_1109_JSTARS_2019_2916495 crossref_primary_10_1109_JSTARS_2018_2836671 crossref_primary_10_1016_j_cja_2018_01_027 crossref_primary_10_1109_TGRS_2022_3173474 crossref_primary_10_1016_j_ins_2021_07_003 crossref_primary_10_1109_TGRS_2021_3053397 crossref_primary_10_1080_01431161_2015_1007251 crossref_primary_10_1109_TGRS_2014_2299540 crossref_primary_10_1080_22797254_2023_2237654 crossref_primary_10_1109_TGRS_2016_2612821 crossref_primary_10_1109_TIP_2014_2319735 crossref_primary_10_1155_2015_784504 crossref_primary_10_3390_rs13040706 crossref_primary_10_1109_LGRS_2015_2511186 crossref_primary_10_1109_TGRS_2013_2260552 crossref_primary_10_1109_TIP_2022_3161834 crossref_primary_10_1016_j_neunet_2019_08_012 crossref_primary_10_1109_TGRS_2014_2318058 crossref_primary_10_1109_JSTARS_2020_2968966 crossref_primary_10_1051_matecconf_201824603046 crossref_primary_10_1038_s41598_022_14757_y crossref_primary_10_3390_ijgi6110344 crossref_primary_10_1109_TGRS_2013_2264508 crossref_primary_10_1007_s12145_022_00923_3 crossref_primary_10_1109_JSTARS_2016_2621416 crossref_primary_10_1190_geo2015_0539_1 crossref_primary_10_3390_rs13091672 crossref_primary_10_3390_jimaging6110114 crossref_primary_10_3390_rs10081238 crossref_primary_10_3390_rs11212560 crossref_primary_10_1109_TGRS_2016_2536687 crossref_primary_10_1007_s00521_022_07440_w crossref_primary_10_1109_TGRS_2020_2994205 crossref_primary_10_3390_rs14184682 crossref_primary_10_1109_LGRS_2020_2966987 crossref_primary_10_1109_JPROC_2017_2735018 crossref_primary_10_1109_TGRS_2025_3603835 crossref_primary_10_1016_j_inffus_2023_102148 crossref_primary_10_1109_TGRS_2024_3362471 crossref_primary_10_1109_TGRS_2022_3151875 crossref_primary_10_3390_drones7080536 crossref_primary_10_3390_rs14163998 crossref_primary_10_1016_j_optlastec_2018_08_044 crossref_primary_10_1186_s13640_017_0219_9 crossref_primary_10_1109_MGRS_2019_2912563 crossref_primary_10_1109_TGRS_2013_2272593 crossref_primary_10_3390_s24227131 crossref_primary_10_1016_j_catena_2019_104217 crossref_primary_10_3390_rs14184433 crossref_primary_10_1016_j_knosys_2022_109845 crossref_primary_10_1007_s11432_016_5576_y crossref_primary_10_1109_JSTARS_2015_2434997 crossref_primary_10_1109_TGRS_2017_2647815 crossref_primary_10_1109_MGRS_2017_2663666 crossref_primary_10_1016_j_isprsjprs_2016_08_007 crossref_primary_10_1080_2150704X_2018_1446565 crossref_primary_10_1109_TGRS_2014_2301415 crossref_primary_10_1016_j_cviu_2016_04_001 crossref_primary_10_1109_TGRS_2016_2560529 crossref_primary_10_1080_22797254_2017_1348914 crossref_primary_10_1109_TGRS_2019_2892516 crossref_primary_10_3390_rs10010089 crossref_primary_10_1016_j_isprsjprs_2016_08_011 crossref_primary_10_1109_JSTSP_2015_2416677 crossref_primary_10_1007_s12145_017_0298_2 crossref_primary_10_1109_TGRS_2017_2769113 crossref_primary_10_1109_TGRS_2019_2916329 crossref_primary_10_3390_rs9070688 crossref_primary_10_1109_JSTARS_2015_2413831 crossref_primary_10_1016_j_neucom_2017_09_004 crossref_primary_10_1109_TNNLS_2015_2477537 crossref_primary_10_1109_TGRS_2019_2907924 crossref_primary_10_1016_j_neucom_2017_10_046 crossref_primary_10_1016_j_inffus_2020_07_002 crossref_primary_10_1179_1432891715Z_0000000002096 crossref_primary_10_1080_01431161_2018_1524177 crossref_primary_10_1109_TCSVT_2020_3027616 crossref_primary_10_1109_TPAMI_2020_3015691 crossref_primary_10_1109_LGRS_2018_2886422 crossref_primary_10_1007_s11042_020_09180_2 crossref_primary_10_1109_JSTARS_2016_2602305 crossref_primary_10_1109_TCI_2017_2666551 crossref_primary_10_1080_01431161_2021_1876272 crossref_primary_10_1109_TGRS_2014_2308192 crossref_primary_10_1109_TGRS_2022_3202036 crossref_primary_10_1109_JSTARS_2015_2472460 crossref_primary_10_3390_rs11182170 crossref_primary_10_1109_TGRS_2016_2530807 crossref_primary_10_1190_geo2020_0521_1 crossref_primary_10_1039_D0RA06938H crossref_primary_10_1109_JSTARS_2022_3233125 crossref_primary_10_1109_TGRS_2015_2466657 crossref_primary_10_1109_TGRS_2022_3185612 crossref_primary_10_1007_s10462_021_10018_y crossref_primary_10_1080_2150704X_2015_1117152 crossref_primary_10_1109_LGRS_2023_3316262 crossref_primary_10_1016_j_sigpro_2019_107361 crossref_primary_10_1109_TGRS_2021_3121671 crossref_primary_10_1007_s00521_016_2376_7 crossref_primary_10_1080_01431161_2017_1292071 crossref_primary_10_1109_TGRS_2021_3075679 crossref_primary_10_1109_TGRS_2015_2500680 crossref_primary_10_1109_TCSVT_2025_3526960 crossref_primary_10_1080_01431161_2019_1633699 crossref_primary_10_1109_TGRS_2016_2616585 crossref_primary_10_1109_TGRS_2017_2690445 crossref_primary_10_3390_s19010204 crossref_primary_10_1080_01431161_2020_1781286 crossref_primary_10_1109_TGRS_2018_2828029 crossref_primary_10_1109_TGRS_2023_3310023 crossref_primary_10_1109_TGRS_2021_3075223 crossref_primary_10_3390_rs10060905 crossref_primary_10_1016_j_image_2021_116549 crossref_primary_10_1109_TGRS_2018_2867679 crossref_primary_10_1108_IJIUS_09_2019_0053 crossref_primary_10_1109_ACCESS_2019_2938397 crossref_primary_10_1109_JSTARS_2015_2423278 crossref_primary_10_1080_01431161_2016_1192700 crossref_primary_10_3390_rs11222718 crossref_primary_10_1109_JSTARS_2018_2866901 crossref_primary_10_1109_TGRS_2020_3047479 crossref_primary_10_3390_ijgi7090379 crossref_primary_10_1109_JSTARS_2020_2982614 crossref_primary_10_3390_rs15133378 crossref_primary_10_1002_col_22788 crossref_primary_10_1088_1361_6501_aaaeff crossref_primary_10_1109_TGRS_2021_3053204 crossref_primary_10_1109_TGRS_2015_2445767 crossref_primary_10_1016_j_isprsjprs_2016_12_003 crossref_primary_10_1080_22797254_2022_2153747 crossref_primary_10_3390_rs12142335 crossref_primary_10_1016_j_eswa_2021_114777 crossref_primary_10_3390_rs14174236 crossref_primary_10_11728_cjss2025_02_2024_0195 crossref_primary_10_1007_s12145_020_00485_2 crossref_primary_10_1109_TIP_2022_3177322 crossref_primary_10_1109_LGRS_2019_2943001 crossref_primary_10_1088_1402_4896_adee51 crossref_primary_10_1080_02664763_2017_1414162 crossref_primary_10_1109_JSTARS_2014_2311915 crossref_primary_10_1109_JSTSP_2015_2423260 crossref_primary_10_1109_JSTARS_2018_2802041 crossref_primary_10_1080_01431161_2013_869633 crossref_primary_10_1109_LGRS_2020_3005078 crossref_primary_10_1016_j_rse_2020_111938 crossref_primary_10_1631_jzus_A1700149 crossref_primary_10_1109_LGRS_2013_2273792 crossref_primary_10_1109_TGRS_2016_2641985 crossref_primary_10_1109_LGRS_2021_3112198 crossref_primary_10_3390_s16122146 crossref_primary_10_1016_j_neucom_2022_07_071 crossref_primary_10_1109_TGRS_2021_3073699 crossref_primary_10_1109_MSP_2013_2279894 crossref_primary_10_1109_JSTARS_2015_2498664 crossref_primary_10_1088_1742_6596_1096_1_012026 crossref_primary_10_1109_TGRS_2020_3013285 crossref_primary_10_1109_LGRS_2021_3084203 crossref_primary_10_1109_JSTARS_2017_2755639 crossref_primary_10_1016_j_engappai_2023_106307 crossref_primary_10_1016_j_jenvman_2024_123815 crossref_primary_10_1109_TGRS_2018_2850152 crossref_primary_10_1007_s11220_015_0126_z crossref_primary_10_1080_01431161_2020_1723172 crossref_primary_10_1109_JSTARS_2023_3308723 crossref_primary_10_1109_TGRS_2014_2347343 crossref_primary_10_1109_MGRS_2013_2244672 crossref_primary_10_1109_JSTARS_2015_2471176 crossref_primary_10_1109_ACCESS_2019_2940268 crossref_primary_10_1109_JSTARS_2020_3019300 crossref_primary_10_1049_iet_cvi_2018_5112 crossref_primary_10_1109_TNNLS_2020_2978760 crossref_primary_10_1109_JSTARS_2014_2298876 crossref_primary_10_1109_TNNLS_2019_2921564 crossref_primary_10_1109_TGRS_2017_2747862 crossref_primary_10_1109_LGRS_2019_2913884 crossref_primary_10_1109_JSTARS_2023_3304119 crossref_primary_10_1109_JSTARS_2014_2359965 crossref_primary_10_1016_j_pdpdt_2020_102165 crossref_primary_10_3390_s20061734 crossref_primary_10_1109_LGRS_2013_2257675 crossref_primary_10_1016_j_asoc_2019_105630 crossref_primary_10_1080_10106049_2015_1110207 crossref_primary_10_1109_TGRS_2013_2264392 crossref_primary_10_1080_01431161_2016_1251629 crossref_primary_10_1109_TGRS_2020_3035642 crossref_primary_10_3390_rs11161896 crossref_primary_10_1007_s13131_023_2249_8 crossref_primary_10_1007_s10043_015_0139_9 crossref_primary_10_1109_JSTARS_2014_2342281 crossref_primary_10_1109_TGRS_2016_2562018 crossref_primary_10_3390_rs15051353 crossref_primary_10_1109_TGRS_2018_2809912 crossref_primary_10_1109_TGRS_2017_2743243 crossref_primary_10_1109_TGRS_2023_3272270 crossref_primary_10_1007_s41651_020_00048_5 crossref_primary_10_1109_TGRS_2023_3282064 crossref_primary_10_1109_TGRS_2025_3589253 crossref_primary_10_1109_JSTARS_2018_2873051 crossref_primary_10_3390_s20205833 crossref_primary_10_1080_22797254_2019_1565418 crossref_primary_10_1109_JSTARS_2015_2441771 crossref_primary_10_1109_TGRS_2013_2263282 crossref_primary_10_1109_TGRS_2021_3094582 crossref_primary_10_1109_JSTARS_2025_3561007 crossref_primary_10_3390_rs13214348 crossref_primary_10_3390_rs16214029 crossref_primary_10_1109_TGRS_2014_2360100 crossref_primary_10_1109_JSTARS_2021_3054926 crossref_primary_10_1109_LGRS_2018_2868841 crossref_primary_10_1016_j_engappai_2024_107909 crossref_primary_10_1109_ACCESS_2019_2936130 crossref_primary_10_1080_01431161_2022_2133579 crossref_primary_10_1088_1757_899X_1022_1_012120 crossref_primary_10_3390_rs13020324 crossref_primary_10_1016_j_isprsjprs_2025_01_006 crossref_primary_10_1109_TGRS_2019_2931189 crossref_primary_10_1109_TGRS_2018_2866190 crossref_primary_10_1109_MGRS_2016_2540798 crossref_primary_10_3390_rs12101640 crossref_primary_10_1108_SR_07_2016_0124 crossref_primary_10_1109_JSTARS_2015_2388797 crossref_primary_10_1109_JSTARS_2016_2536761 crossref_primary_10_1186_s13634_022_00926_8 crossref_primary_10_1109_TIP_2018_2855418 crossref_primary_10_3390_s19040920 crossref_primary_10_1109_TGRS_2013_2293732 crossref_primary_10_1109_TGRS_2017_2705176 crossref_primary_10_1109_JSTARS_2021_3135548 crossref_primary_10_1109_TGRS_2014_2363682 crossref_primary_10_1109_TGRS_2018_2837357 crossref_primary_10_1109_TGRS_2018_2872875 crossref_primary_10_1186_s12870_021_03308_8 crossref_primary_10_1109_TGRS_2020_2971716 crossref_primary_10_3390_rs9090872 crossref_primary_10_1109_TGRS_2018_2871782 crossref_primary_10_1007_s12665_024_11950_2 crossref_primary_10_1109_TGRS_2023_3344448 crossref_primary_10_1109_JSTARS_2016_2524517 crossref_primary_10_1109_TGRS_2020_3047682 crossref_primary_10_1109_ACCESS_2019_2925283 crossref_primary_10_1109_TGRS_2018_2860125 crossref_primary_10_3390_rs10030441 crossref_primary_10_1109_JSTARS_2018_2792532 crossref_primary_10_3233_IDT_190076 crossref_primary_10_1088_2040_8986_ab828a crossref_primary_10_1109_TGRS_2017_2692280 crossref_primary_10_1109_TGRS_2017_2785359 crossref_primary_10_1109_TGRS_2024_3370633 crossref_primary_10_1109_JSTARS_2024_3396883 crossref_primary_10_1109_JSTARS_2019_2950946 crossref_primary_10_3390_rs16132336 crossref_primary_10_3390_rs15112879 crossref_primary_10_1109_ACCESS_2019_2940697 crossref_primary_10_1109_TGRS_2018_2869004 crossref_primary_10_3390_s17112603 crossref_primary_10_1007_s11042_018_7010_5 crossref_primary_10_1109_JSTARS_2021_3083283 crossref_primary_10_1007_s41095_020_0176_6 crossref_primary_10_1109_JSTARS_2020_3038456 crossref_primary_10_1109_TGRS_2022_3176028 crossref_primary_10_3390_rs14112653 crossref_primary_10_1109_TGRS_2015_2513082 crossref_primary_10_1109_LGRS_2015_2419713 crossref_primary_10_3390_rs12132154 crossref_primary_10_1007_s10851_019_00925_9 crossref_primary_10_1016_j_epsr_2024_110118 crossref_primary_10_1109_JSTARS_2017_2768541 crossref_primary_10_1109_LGRS_2014_2341044 crossref_primary_10_1002_adfm_202424325 crossref_primary_10_3390_rs10122036 crossref_primary_10_1109_TGRS_2024_3355037 crossref_primary_10_1109_LGRS_2015_2441631 crossref_primary_10_1109_TGRS_2014_2306687 crossref_primary_10_3390_rs9111139 crossref_primary_10_1016_j_isprsjprs_2016_03_004 crossref_primary_10_3390_rs17071255 crossref_primary_10_1109_TGRS_2013_2287022 crossref_primary_10_1109_TGRS_2017_2693346 crossref_primary_10_1371_journal_pone_0254362 crossref_primary_10_21307_ijssis_2017_224 crossref_primary_10_1109_TGRS_2016_2596260 crossref_primary_10_1109_JSTARS_2014_2339298 crossref_primary_10_1109_JSTARS_2020_3014493 crossref_primary_10_1177_09603360211024971 crossref_primary_10_3390_rs13122354 crossref_primary_10_1007_s12293_018_0257_6 crossref_primary_10_1109_TGRS_2018_2875943 crossref_primary_10_1109_TGRS_2016_2579648 crossref_primary_10_3390_rs12162540 crossref_primary_10_3390_rs70606611 crossref_primary_10_3390_rs9111106 crossref_primary_10_5721_EuJRS20144723 crossref_primary_10_3390_rs13030405 crossref_primary_10_3390_app10041261 crossref_primary_10_1109_JSTARS_2017_2770144 crossref_primary_10_1109_TGRS_2022_3202714 crossref_primary_10_1016_j_infrared_2016_12_010 crossref_primary_10_3390_rs12010120 crossref_primary_10_1109_TIP_2018_2799324 crossref_primary_10_1109_TGRS_2019_2934760 crossref_primary_10_3390_rs16132499 crossref_primary_10_3390_rs11040397 crossref_primary_10_1109_JSTARS_2015_2413931 crossref_primary_10_1109_TGRS_2018_2828612 crossref_primary_10_1109_TGRS_2016_2542342 crossref_primary_10_1109_TCYB_2017_2682846 crossref_primary_10_1109_JSTARS_2015_2477364 crossref_primary_10_1109_JSTARS_2014_2322143 crossref_primary_10_1007_s11554_018_0823_7 crossref_primary_10_1016_j_infrared_2019_103055 crossref_primary_10_1108_JEDT_01_2021_0030 crossref_primary_10_1109_JSTARS_2015_2407493 crossref_primary_10_1016_j_isprsjprs_2017_08_003 crossref_primary_10_1109_JSTARS_2020_3016739 crossref_primary_10_1109_JSTARS_2014_2360694 crossref_primary_10_1109_JSTARS_2017_2700490 crossref_primary_10_1007_s00521_015_1862_7 crossref_primary_10_1117_1_JRS_18_014512 crossref_primary_10_1109_LGRS_2019_2899823 crossref_primary_10_1109_TGRS_2019_2920112 crossref_primary_10_1109_TGRS_2021_3094867 crossref_primary_10_1016_j_isprsjprs_2017_10_006 crossref_primary_10_1016_j_eswa_2014_09_004 crossref_primary_10_1109_TGRS_2019_2900509 crossref_primary_10_1016_j_eswa_2019_04_006 crossref_primary_10_1109_JSTARS_2018_2866595 crossref_primary_10_1109_TCYB_2015_2453359 crossref_primary_10_1080_01431161_2016_1225175 crossref_primary_10_3390_rs11161903 crossref_primary_10_1109_TPS_2023_3297579 crossref_primary_10_3390_electronics11172799 crossref_primary_10_1109_TGRS_2020_3018135 crossref_primary_10_1109_JSTARS_2022_3192127 crossref_primary_10_1109_TGRS_2014_2318332 crossref_primary_10_1109_TGRS_2023_3271424 crossref_primary_10_1109_ACCESS_2020_2979291 crossref_primary_10_1109_TGRS_2016_2613848 crossref_primary_10_1109_TGRS_2014_2345739 crossref_primary_10_1364_AO_58_0000B9 crossref_primary_10_1080_2150704X_2017_1302103 crossref_primary_10_1109_JSTARS_2021_3076005 crossref_primary_10_1109_JPROC_2015_2501814 crossref_primary_10_1109_LGRS_2021_3110204 crossref_primary_10_1109_TGRS_2016_2600522 crossref_primary_10_1109_JSTARS_2016_2539981 crossref_primary_10_1109_ACCESS_2022_3172501 crossref_primary_10_1080_01431161_2018_1547932 crossref_primary_10_1109_TGRS_2019_2944989 crossref_primary_10_1007_s12524_014_0420_6 crossref_primary_10_3390_rs10071156 crossref_primary_10_1109_JSTARS_2021_3111508 crossref_primary_10_1109_JSTARS_2014_2347414 crossref_primary_10_1109_TGRS_2020_2992788 crossref_primary_10_1080_01431161_2023_2173034 crossref_primary_10_3390_rs12071104 crossref_primary_10_1080_01431161_2016_1204032 crossref_primary_10_1109_TGRS_2023_3257369 crossref_primary_10_1109_JSTARS_2017_2658948 crossref_primary_10_1109_LGRS_2015_2482520 crossref_primary_10_1007_s12517_021_06943_5 crossref_primary_10_1016_j_neucom_2015_07_114 crossref_primary_10_1109_JSTARS_2019_2915259 crossref_primary_10_1016_j_ecolmodel_2017_01_004 crossref_primary_10_1016_j_patrec_2016_01_022 crossref_primary_10_3390_rs9080775 crossref_primary_10_1109_JSTARS_2016_2587678 crossref_primary_10_1109_JSTARS_2024_3353551 crossref_primary_10_1109_TGRS_2017_2729882 crossref_primary_10_1109_TGRS_2023_3281490 crossref_primary_10_1080_01431161_2017_1390275 crossref_primary_10_1109_TGRS_2019_2949180 crossref_primary_10_1007_s12517_021_08061_8 crossref_primary_10_1002_cem_3132 crossref_primary_10_1016_j_patcog_2018_03_027 crossref_primary_10_1016_j_neucom_2019_01_010 crossref_primary_10_1109_JSTARS_2016_2588530 crossref_primary_10_1038_s41598_017_07337_y crossref_primary_10_3390_electronics13081578 crossref_primary_10_1016_j_isprsjprs_2018_05_020 crossref_primary_10_1080_01431161_2015_1055607 crossref_primary_10_1080_01431161_2023_2275325 crossref_primary_10_1109_JSTARS_2015_2493887 crossref_primary_10_1109_TGRS_2017_2748160 crossref_primary_10_1109_TIM_2017_2664480 crossref_primary_10_1109_JSTARS_2022_3173893 crossref_primary_10_1109_TGRS_2017_2737037 crossref_primary_10_1080_00401706_2019_1677268 crossref_primary_10_1109_TGRS_2017_2702197 crossref_primary_10_1155_2018_8264961 crossref_primary_10_1016_j_cviu_2025_104382 crossref_primary_10_1109_ACCESS_2019_2935496 crossref_primary_10_1109_TGRS_2014_2334608 crossref_primary_10_3390_s19245401 crossref_primary_10_1109_TGRS_2015_2511197 crossref_primary_10_3390_rs9121330 crossref_primary_10_1109_ACCESS_2020_2971556 crossref_primary_10_1109_TIP_2018_2869691 crossref_primary_10_3390_app11167614 crossref_primary_10_1109_JSTARS_2020_3026724 crossref_primary_10_1007_s11119_024_10112_5 crossref_primary_10_1109_JSTARS_2013_2282161 crossref_primary_10_1016_j_sigpro_2015_09_004 crossref_primary_10_1016_j_neucom_2020_03_022 crossref_primary_10_1080_01431161_2017_1302110 crossref_primary_10_1007_s11227_022_04961_y crossref_primary_10_1109_TAES_2014_130484 crossref_primary_10_3390_rs15071773 crossref_primary_10_1109_TGRS_2022_3177935 crossref_primary_10_1007_s11276_023_03611_2 crossref_primary_10_3389_fmed_2018_00350 crossref_primary_10_1016_j_asr_2016_11_006 crossref_primary_10_1109_ACCESS_2018_2799079 crossref_primary_10_1049_iet_ipr_2018_5104 crossref_primary_10_1016_j_engappai_2023_107070 crossref_primary_10_3390_rs16183442 crossref_primary_10_1109_TGRS_2014_2333539 crossref_primary_10_1109_TGRS_2019_2926069 crossref_primary_10_1109_TCSVT_2021_3078559 crossref_primary_10_1109_JSTARS_2015_2432037 crossref_primary_10_1016_j_compag_2018_03_029 crossref_primary_10_3390_rs11222690 crossref_primary_10_1109_TGRS_2014_2358615 crossref_primary_10_1109_TGRS_2018_2794326 crossref_primary_10_1109_TGRS_2019_2952319 crossref_primary_10_1109_TGRS_2020_2986313 crossref_primary_10_1007_s12524_019_01021_6 crossref_primary_10_1109_JSTARS_2017_2775644 crossref_primary_10_1002_ecs2_2708 crossref_primary_10_1016_j_matpr_2021_01_045 crossref_primary_10_1109_JSTARS_2019_2940278 crossref_primary_10_3390_app13127143 crossref_primary_10_1080_10106049_2020_1734871 crossref_primary_10_1109_ACCESS_2020_3027776 crossref_primary_10_1109_TIP_2018_2862629 crossref_primary_10_1016_j_neucom_2016_09_010 crossref_primary_10_3390_rs15245715 crossref_primary_10_1109_TGRS_2023_3250715 crossref_primary_10_1016_j_autcon_2022_104164 crossref_primary_10_3390_rs15245717 crossref_primary_10_1016_j_jksuci_2016_11_002 crossref_primary_10_1109_TIP_2018_2809606 crossref_primary_10_1109_LGRS_2015_2513002 crossref_primary_10_3390_rs11070884 crossref_primary_10_1109_JSTARS_2019_2913097 crossref_primary_10_1109_TIP_2018_2828341 crossref_primary_10_1080_01431161_2015_1125547 crossref_primary_10_1007_s11042_019_08114_x crossref_primary_10_1109_JSTARS_2019_2906387 crossref_primary_10_1109_TIP_2016_2577886 crossref_primary_10_3390_rs16010140 crossref_primary_10_1109_TCYB_2016_2605044 crossref_primary_10_1109_TGRS_2015_2465899 crossref_primary_10_1109_TGRS_2016_2604290 crossref_primary_10_1109_TGRS_2022_3217168 crossref_primary_10_3390_rs9050506 crossref_primary_10_1080_2150704X_2016_1151568 crossref_primary_10_1109_MGRS_2018_2854840 crossref_primary_10_1109_LGRS_2015_2476498 crossref_primary_10_1109_MGRS_2019_2911100 crossref_primary_10_1109_TGRS_2018_2890508 crossref_primary_10_1145_3477396 crossref_primary_10_1117_1_JRS_18_036507 crossref_primary_10_1109_TGRS_2016_2603190 crossref_primary_10_1016_j_sigpro_2017_11_007 crossref_primary_10_1016_j_gexplo_2024_107510 crossref_primary_10_1109_TGRS_2024_3385202 crossref_primary_10_1109_LGRS_2018_2871507 crossref_primary_10_1109_TGRS_2016_2582209 crossref_primary_10_1109_TGRS_2023_3265388 crossref_primary_10_1109_LGRS_2017_2759168 crossref_primary_10_1109_TGRS_2019_2952758 crossref_primary_10_3390_rs9010067 crossref_primary_10_1109_JSTARS_2015_2394330 crossref_primary_10_1016_j_infrared_2019_103013 crossref_primary_10_1016_j_displa_2021_102114 crossref_primary_10_3390_rs11091114 crossref_primary_10_1109_MGRS_2016_2616418 crossref_primary_10_3233_IFS_151983 crossref_primary_10_1515_phys_2023_0157 crossref_primary_10_1109_TCSVT_2022_3218284 crossref_primary_10_1007_s11227_020_03474_w crossref_primary_10_1109_TNNLS_2021_3105543 crossref_primary_10_1145_3386313 |
| Cites_doi | 10.1109/LGRS.2011.2145353 10.1109/TGRS.2007.893821 10.1109/34.206958 10.1007/s10851-006-7451-8 10.1002/0471723800 10.1109/TGRS.2010.2062526 10.1109/TIP.2009.2019302 10.1109/36.905239 10.1109/IGARSS.1998.703645 10.1109/IGARSS.2008.4779060 10.1109/TIT.1968.1054102 10.1561/2200000002 10.1007/1-4020-3968-9 10.1016/0165-1684(95)00108-5 10.1109/TPAMI.1984.4767596 10.1109/ICASSP.2006.1660467 10.1109/LGRS.2005.857031 10.1109/36.225529 10.1109/TGRS.2010.2049496 10.1016/j.patcog.2007.02.004 10.1109/TGRS.2003.814625 10.1109/LGRS.2008.916076 10.1109/TGRS.2002.805087 10.1016/j.imavis.2004.06.002 10.1109/LGRS.2007.896331 10.1109/TGRS.2012.2190079 10.1080/01431160500409577 10.1016/j.imavis.2006.09.002 10.1080/01431161.2010.512313 10.1109/JSTARS.2012.2190045 10.1007/978-3-642-14212-3_8 10.1080/01431160902926681 10.1007/978-1-4419-9170-6 10.1109/TGRS.2004.842481 10.1109/34.16711 10.1080/01431169608948770 10.1016/j.patcog.2011.03.035 10.1109/CISP.2011.6100425 10.1109/JSTARS.2010.2069085 10.1109/TGRS.2009.2037898 10.1109/TGRS.2010.2048116 10.1109/TIP.2011.2175741 10.1155/2009/783194 10.1109/TGRS.2004.842478 10.1109/TIP.2007.891150 10.1109/LGRS.2005.856117 10.1109/JSTARS.2012.2192472 10.1109/TGRS.2009.2016214 10.1109/TGRS.2008.2000628 10.1109/TGRS.2002.805088 10.1109/TGRS.2002.802476 10.1109/83.753737 10.1109/5326.661089 10.1016/0167-9473(92)90042-E 10.1109/TGRS.2008.922034 10.1117/12.672030 10.1016/j.patcog.2010.01.016 10.1109/TGRS.2005.852082 10.1016/0031-3203(81)90028-5 10.1109/IGARSS.2005.1526133 10.1109/TGRS.2002.804618 10.1007/s10851-006-7452-7 10.1109/ICASSP.2011.5946597 10.1300/J064v22n03_03 10.1109/JSTARS.2011.2173466 10.1109/TGRS.2004.831865 10.1109/34.87344 10.1109/IGARSS.2005.1526784 10.1016/j.rse.2007.12.011 10.1109/TGRS.2004.837327 10.1007/s11263-006-7934-5 10.1109/83.663500 10.1109/TIP.2005.864164 10.1109/TSMCB.2009.2037132 10.1109/ICIP.2011.6115666 10.1109/ICIP.2008.4712147 10.1109/5.54807 10.1109/LGRS.2010.2091253 10.1109/IGARSS.2003.1293813 10.1080/01431160050021303 10.1109/TGRS.2009.2027895 10.1109/TPAMI.2004.1262177 10.1002/j.1538-7305.1957.tb01515.x 10.1016/j.rse.2007.07.028 10.1016/j.patcog.2004.01.006 10.14358/PERS.70.5.627 10.5566/ias.v26.p101-109 10.1109/TGE.1976.294460 10.1109/36.774728 10.1109/WARSD.2003.1295218 10.1109/34.667881 10.1117/12.836024 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M F28 FR3 1XC VOOES |
| DOI | 10.1109/JPROC.2012.2197589 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Engineering Research Database Engineering Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2256 |
| EndPage | 675 |
| ExternalDocumentID | oai:HAL:hal-00737075v1 2898235111 10_1109_JPROC_2012_2197589 6297992 |
| Genre | orig-research |
| GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION 7SP 8FD L7M RIG F28 FR3 1XC VOOES |
| ID | FETCH-LOGICAL-c575t-3a466ed79ce21a2993614e43b88f85bef8b41c1b14ba8945eb6ce8ae6a96ed543 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315480200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9219 |
| IngestDate | Sat Nov 29 15:05:36 EST 2025 Thu Sep 04 16:22:19 EDT 2025 Thu Sep 04 18:41:20 EDT 2025 Mon Jun 30 10:17:46 EDT 2025 Tue Nov 18 21:49:15 EST 2025 Sat Nov 29 03:15:04 EST 2025 Wed Aug 27 02:43:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | spectral-spatial classifier morphological neighborhood hyperspectral image kernel method mathematical morphology segmentation classification |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-3a466ed79ce21a2993614e43b88f85bef8b41c1b14ba8945eb6ce8ae6a96ed543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0003-4817-2875 0000-0002-3304-6932 |
| OpenAccessLink | https://inria.hal.science/hal-00737075 |
| PQID | 1291597920 |
| PQPubID | 23500 |
| PageCount | 24 |
| ParticipantIDs | crossref_primary_10_1109_JPROC_2012_2197589 hal_primary_oai_HAL_hal_00737075v1 proquest_miscellaneous_1770346452 crossref_citationtrail_10_1109_JPROC_2012_2197589 proquest_miscellaneous_1323233339 ieee_primary_6297992 proquest_journals_1291597920 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Proceedings of the IEEE |
| PublicationTitleAbbrev | JPROC |
| PublicationYear | 2013 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref57 ref56 ref59 ref58 ref53 ref55 ref54 richards (ref62) 2006 v d linden (ref104) 2007; 1 widayati (ref103) 2002 soille (ref48) 2003 ref50 ref46 ref45 ref47 ref42 ref41 ref44 serra (ref52) 1982 ref49 shapiro (ref96) 2002 chang (ref105) 2008 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 tadjudin (ref23) 1998 ref31 ref30 ref33 ref32 (ref20) 2009 fauvel (ref64) 2009; 2009 ref39 ref38 serra (ref51) 1988 hastie (ref79) 2001 ref24 ref26 ref25 ref22 ref21 ref28 ref27 ref29 donoho (ref15) 2000 kendall (ref13) 1961 stawiaski (ref109) 2008 ref12 ref14 ref97 ref11 ref98 ref10 ref17 gonzalez (ref43) 2002 ref16 ref19 ref18 ref93 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 debayle (ref69) 2006; 25 ref82 ref81 ref84 ref83 ref80 ref108 ref78 ref107 ref75 ref74 ref77 ref102 ref2 ref1 aksoy (ref37) 2006 wu (ref106) 2004 ref71 ref111 ref112 ref73 ref110 gonzlez (ref36) 2008 weston (ref76) 2001 ref68 ref67 ref63 beucher (ref92) 1979 ref66 ref113 debayle (ref70) 2006; 25 ref65 ref114 tilton (ref99) 2012 ref60 vapnik (ref72) 1999 ref61 |
| References_xml | – ident: ref35 doi: 10.1109/LGRS.2011.2145353 – ident: ref41 doi: 10.1109/TGRS.2007.893821 – year: 2001 ident: ref79 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction With 200 Full-Color Illustrations – year: 2002 ident: ref96 publication-title: Computer Vision – ident: ref113 doi: 10.1109/34.206958 – volume: 25 start-page: 245 year: 2006 ident: ref69 article-title: General adaptive neighborhood image processing-Part I publication-title: J Math Imag Vis doi: 10.1007/s10851-006-7451-8 – ident: ref12 doi: 10.1002/0471723800 – ident: ref46 doi: 10.1109/TGRS.2010.2062526 – ident: ref33 doi: 10.1109/TIP.2009.2019302 – ident: ref56 doi: 10.1109/36.905239 – ident: ref89 doi: 10.1109/IGARSS.1998.703645 – ident: ref6 doi: 10.1109/IGARSS.2008.4779060 – year: 1961 ident: ref13 publication-title: A Course in the Geometry of n-Dimensions – ident: ref16 doi: 10.1109/TIT.1968.1054102 – ident: ref17 doi: 10.1561/2200000002 – year: 2006 ident: ref62 publication-title: Remote Sensing Digital Image Analysis doi: 10.1007/1-4020-3968-9 – year: 2008 ident: ref109 publication-title: Mathematical morphology and graphs Application to interactive medical image segmentation – ident: ref55 doi: 10.1016/0165-1684(95)00108-5 – ident: ref28 doi: 10.1109/TPAMI.1984.4767596 – ident: ref21 doi: 10.1109/ICASSP.2006.1660467 – ident: ref77 doi: 10.1109/LGRS.2005.857031 – ident: ref91 doi: 10.1109/36.225529 – ident: ref86 doi: 10.1109/TGRS.2010.2049496 – ident: ref60 doi: 10.1016/j.patcog.2007.02.004 – ident: ref39 doi: 10.1109/TGRS.2003.814625 – ident: ref30 doi: 10.1109/LGRS.2008.916076 – ident: ref27 doi: 10.1109/TGRS.2002.805087 – ident: ref66 doi: 10.1016/j.imavis.2004.06.002 – year: 1988 ident: ref51 publication-title: Image Analysis and Mathematical Morphology Volume 2 Theoretical Advances – year: 1979 ident: ref92 article-title: Use of watersheds in contour detection publication-title: Int Workshop Image Process Real-Time Edge Motion Detection/Estimation – ident: ref97 doi: 10.1109/LGRS.2007.896331 – ident: ref47 doi: 10.1109/TGRS.2012.2190079 – ident: ref42 doi: 10.1080/01431160500409577 – ident: ref85 doi: 10.1016/j.imavis.2006.09.002 – ident: ref65 doi: 10.1080/01431161.2010.512313 – year: 2008 ident: ref36 publication-title: Digital Image Processing – ident: ref59 doi: 10.1109/JSTARS.2012.2190045 – ident: ref82 doi: 10.1007/978-3-642-14212-3_8 – year: 2002 ident: ref43 publication-title: Digital Image Processing – ident: ref2 doi: 10.1080/01431160902926681 – ident: ref11 doi: 10.1007/978-1-4419-9170-6 – ident: ref18 doi: 10.1109/TGRS.2004.842481 – ident: ref98 doi: 10.1109/34.16711 – ident: ref4 doi: 10.1080/01431169608948770 – ident: ref67 doi: 10.1016/j.patcog.2011.03.035 – ident: ref38 doi: 10.1109/CISP.2011.6100425 – ident: ref87 doi: 10.1109/JSTARS.2010.2069085 – volume: 1 start-page: 1 year: 2007 ident: ref104 article-title: Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines publication-title: J Appl Remote Sens – ident: ref19 doi: 10.1109/TGRS.2009.2037898 – start-page: 1 year: 2002 ident: ref103 article-title: Application of combined pixel-based and spatial-based approaches for improved mixed vegetation classification using IKONOS publication-title: Proc 23rd Asian Conf Remote Sens – ident: ref81 doi: 10.1109/TGRS.2010.2048116 – ident: ref111 doi: 10.1109/TIP.2011.2175741 – volume: 2009 start-page: 1 year: 2009 ident: ref64 article-title: Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas publication-title: EURASIP J Adv Signal Process doi: 10.1155/2009/783194 – ident: ref40 doi: 10.1109/TGRS.2004.842478 – ident: ref34 doi: 10.1109/TIP.2007.891150 – year: 1982 ident: ref52 publication-title: Image Analysis and Mathematical Morphology – ident: ref24 doi: 10.1109/LGRS.2005.856117 – ident: ref25 doi: 10.1109/JSTARS.2012.2192472 – ident: ref45 doi: 10.1109/TGRS.2009.2016214 – ident: ref58 doi: 10.1109/TGRS.2008.2000628 – ident: ref114 doi: 10.1109/TGRS.2002.805088 – ident: ref107 doi: 10.1109/TGRS.2002.802476 – ident: ref29 doi: 10.1109/83.753737 – ident: ref14 doi: 10.1109/5326.661089 – ident: ref90 doi: 10.1016/0167-9473(92)90042-E – ident: ref75 doi: 10.1109/TGRS.2008.922034 – ident: ref9 doi: 10.1117/12.672030 – ident: ref44 doi: 10.1016/j.patcog.2010.01.016 – ident: ref5 doi: 10.1109/TGRS.2005.852082 – ident: ref88 doi: 10.1016/0031-3203(81)90028-5 – ident: ref63 doi: 10.1109/IGARSS.2005.1526133 – year: 2012 ident: ref99 publication-title: RHSeg User's Manual Including HSWO HSeg HSegExtract HSegReader and HSegViewer – year: 1998 ident: ref23 publication-title: Classification of high dimensional data with limited training samples – ident: ref53 doi: 10.1109/TGRS.2002.804618 – volume: 25 start-page: 267 year: 2006 ident: ref70 article-title: General adaptive neighborhood image processing-Part II publication-title: J Math Imag Vis doi: 10.1007/s10851-006-7452-7 – year: 2008 ident: ref105 publication-title: LIBSVMA library for support vector machines – ident: ref101 doi: 10.1109/ICASSP.2011.5946597 – ident: ref7 doi: 10.1300/J064v22n03_03 – ident: ref102 doi: 10.1109/JSTARS.2011.2173466 – ident: ref22 doi: 10.1109/TGRS.2004.831865 – start-page: 668 year: 2001 ident: ref76 publication-title: Advances in Neural Information Processing Systems 13 – year: 2009 ident: ref20 publication-title: Kernel Methods for Remote Sensing Data Analysis – ident: ref95 doi: 10.1109/34.87344 – ident: ref100 doi: 10.1109/IGARSS.2005.1526784 – year: 1999 ident: ref72 publication-title: The Nature of Statistical Learning Theory – start-page: 975 year: 2004 ident: ref106 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J Mach Learn Res – ident: ref3 doi: 10.1016/j.rse.2007.12.011 – ident: ref10 doi: 10.1109/TGRS.2004.837327 – start-page: 491 year: 2006 ident: ref37 publication-title: Signal and Image Processing for Remote sensing – year: 2003 ident: ref48 publication-title: Morphological Image Analysis Principles and Applications – ident: ref31 doi: 10.1007/s11263-006-7934-5 – ident: ref80 doi: 10.1109/83.663500 – ident: ref94 doi: 10.1109/TIP.2005.864164 – ident: ref73 doi: 10.1109/TGRS.2004.831865 – ident: ref49 doi: 10.1109/TSMCB.2009.2037132 – ident: ref84 doi: 10.1109/ICIP.2011.6115666 – ident: ref78 doi: 10.1109/ICIP.2008.4712147 – ident: ref71 doi: 10.1109/5.54807 – ident: ref83 doi: 10.1109/LGRS.2010.2091253 – ident: ref68 doi: 10.1109/IGARSS.2003.1293813 – ident: ref1 doi: 10.1080/01431160050021303 – ident: ref57 doi: 10.1109/TGRS.2009.2027895 – ident: ref32 doi: 10.1109/TPAMI.2004.1262177 – ident: ref110 doi: 10.1002/j.1538-7305.1957.tb01515.x – start-page: 1 year: 2000 ident: ref15 article-title: High-dimensional data analysis: The curses and blessing of dimensionality publication-title: Proc AMS Conf Math Challenges of the 21st Century – ident: ref74 doi: 10.1016/j.rse.2007.07.028 – ident: ref61 doi: 10.1016/j.patcog.2004.01.006 – ident: ref112 doi: 10.14358/PERS.70.5.627 – ident: ref93 doi: 10.5566/ias.v26.p101-109 – ident: ref26 doi: 10.1109/TGE.1976.294460 – ident: ref50 doi: 10.1109/36.774728 – ident: ref8 doi: 10.1109/WARSD.2003.1295218 – ident: ref108 doi: 10.1109/34.667881 – ident: ref54 doi: 10.1117/12.836024 |
| SSID | ssj0003563 |
| Score | 2.629085 |
| Snippet | Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both... Recent Advances in Spectral-Spatial Classification of Hyperspectral Images are presented in this paper. Several techniques are investigated for combining both... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 652 |
| SubjectTerms | Classification Classification algorithms Computer Science Construction Feature extraction hyperspectral image Hyperspectral imaging Image contrast Image Processing Image segmentation Kernel kernel methods mathematical morphology morphological neighborhood Nearest neighbor searches Pixels Remote sensing segmentation Spatial resolution Spectra Spectral analysis spectral-spatial classifier Strategy |
| Title | Advances in Spectral-Spatial Classification of Hyperspectral Images |
| URI | https://ieeexplore.ieee.org/document/6297992 https://www.proquest.com/docview/1291597920 https://www.proquest.com/docview/1323233339 https://www.proquest.com/docview/1770346452 https://inria.hal.science/hal-00737075 |
| Volume | 101 |
| WOSCitedRecordID | wos000315480200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2256 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003563 issn: 0018-9219 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_a4oM--FXF1Fqi-KZpb5PNfjweR8tVSi2i0rewHxMsaE56d_37O7PJBUUp9C1kZ0mY2Z357c7s_gDeO65Wo6VPIWPrCqazKLyuRaEoFLpKxbZOLArfz_T5ubm8tBdb8HE8C4OIqfgMD_kx5fLjIqx5q-xIlZyEIoe7rbXqz2qNXreqB9Y0QROYpuHmgMzEHn26-PJ5xlVc5SE1EEC2fwWh7R9cApm4Vf5xyCnKnDy53_89hccDmsynvfmfwRZ2z-HRH3cM7sJs2mf5l_lVlzPbPG9tFMxETCMvT5yYXC2UDJQv2nxOC9P-_CXJ5ae_yN8sX8C3k-Ovs3kxMCcUgeDXqqicVAqjtgFL4SjiVBSFUVbemNbUHlvjpQjCC-mdsbJGrwIah8pZ6lbL6iXsdIsOX0Eeoiu1N46BozQRPWEyjKoN3kYdhcxAbFTZhOFacWa3-Nmk5cXENkn9Dau_GdSfwYexz-_-Uo07pd-RhUZBvg97Pj1r-B3nGTWBnhuRwS7bY5QaTJHB_sagzTA5lw1BHAJx2paTDN6OzTStOFfiOlysSaYiqEmDuLJ3yGhylykzvPf_r7-Gh2Viz-CStX3YWV2v8Q08CDerq-X1QRq_t_fB64E |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NDQn2wNdAZBsjIN4gW504if1YVZs6KGVCA-3N8sdFTIIUre3-_t25aQQCTdpbFJ-V6M6--9l39g_gneVqNVr6ZDI0NmM6i8zVpcgqCoW2qEJTRhaF75N6OlUXF_psAz70Z2EQMRaf4SE_xlx-mPklb5UdVTknocjhbjFzVndaq_e7RdnxpgmawjQR10dkBvro49nXLyOu48oPqYEgsv4rDN37wUWQkV3lH5cc48zJ47v94RN41OHJdLgaAE9hA9tnsP3HLYM7MBqu8vzz9LJNmW-eNzcy5iKmsZdGVkyuF4omSmdNOqal6eoEJsmlp7_I48yfw7eT4_PROOu4EzJPAGyRFVZWFYZae8yFpZhTUBxGWTilGlU6bJSTwgsnpLNKyxJd5VFZrKymbqUsXsBmO2vxJaQ-2Lx2yjJ0lCqgI1SGoWq806EOQiYg1qo0vrtYnPktfpq4wBhoE9VvWP2mU38C7_s-v1fXatwq_ZYs1Avyjdjj4cTwO8401gR7rkUCO2yPXqozRQL7a4OabnrODYEcgnG1zgcJvOmbaWJxtsS2OFuSTEFgk4ZxoW-Rqclhxtzw7v-__hoejM8_T8zkdPppDx7mkUuDC9j2YXNxtcRXcN9fLy7nVwdxLN8AYQnuyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Spectral-Spatial+Classification+of+Hyperspectral+Images&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Fauvel%2C+Mathieu&rft.au=Tarabalka%2C+Yuliya&rft.au=Benediktsson%2C+Jon+Atli&rft.au=Chanussot%2C+Jocelyn&rft.date=2013-03-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=101&rft.issue=3&rft.spage=652&rft.epage=675&rft_id=info:doi/10.1109%2FJPROC.2012.2197589&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00737075v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |