Advances in Spectral-Spatial Classification of Hyperspectral Images

Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE Vol. 101; no. 3; pp. 652 - 675
Main Authors: Fauvel, Mathieu, Tarabalka, Yuliya, Benediktsson, Jon Atli, Chanussot, Jocelyn, Tilton, James C.
Format: Journal Article
Language:English
Published: New York IEEE 01.03.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0018-9219, 1558-2256
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
AbstractList Recent Advances in Spectral-Spatial Classification of Hyperspectral Images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes character- istics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
Author Benediktsson, Jon Atli
Chanussot, Jocelyn
Tilton, James C.
Fauvel, Mathieu
Tarabalka, Yuliya
Author_xml – sequence: 1
  givenname: Mathieu
  surname: Fauvel
  fullname: Fauvel, Mathieu
  email: mathieu.fauvel@ensat.fr
  organization: DYNAFOR lab, INRA and the University of Toulouse, France
– sequence: 2
  givenname: Yuliya
  surname: Tarabalka
  fullname: Tarabalka, Yuliya
  organization: AYIN, INRIA, Sophia Antipolis, France
– sequence: 3
  givenname: Jon Atli
  surname: Benediktsson
  fullname: Benediktsson, Jon Atli
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Iceland
– sequence: 4
  givenname: Jocelyn
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  organization: GIPSA-lab, Grenoble Institute of Technology , France
– sequence: 5
  givenname: James C.
  surname: Tilton
  fullname: Tilton, James C.
  organization: NASA Goddard Space Flight Center, USA
BackLink https://inria.hal.science/hal-00737075$$DView record in HAL
BookMark eNqFkU1P3DAQhi1EJRbaPwCXSFzoIVuPv31cRbRLtRIV0LPlmAkYZZMQZ5H49_WyKw4cqOdgefy84_G8x-Sw6zsk5BToHIDaH7__3FxXc0aBzRlYLY09IDOQ0pSMSXVIZpSCKW2-OyLHKT1RSrlUfEaqxf2L7wKmInbF7YBhGn1b3g5-ir4tqtanFJsY8rHvir4plq8DjmnPFVdr_4DpK_nS-Dbht_1-Qv7-vLyrluXq-tdVtViVQWo5ldwLpfBe24AMPLOWKxAoeG1MY2SNjakFBKhB1N5YIbFWAY1H5W2WScFPyPdd3UffumGMaz--ut5Ht1ys3DZHqeaaavkCmb3YscPYP28wTW4dU8C29R32m-RAa8qFEpL9H-UsR142o-cf0Kd-M3b50w6YBWm1ZTRTbEeFsU9pxOa9WaBua5d7s8tt7XJ7u7LIfBCFOL2NPU86tp9Lz3bSiIjvbymWu7GM_wNm56K3
CODEN IEEPAD
CitedBy_id crossref_primary_10_1109_JSTARS_2021_3123086
crossref_primary_10_1109_TGRS_2018_2865102
crossref_primary_10_1109_JSTARS_2013_2272879
crossref_primary_10_1109_TGRS_2019_2927659
crossref_primary_10_1109_TCYB_2018_2883472
crossref_primary_10_1109_JSTSP_2015_2414401
crossref_primary_10_1109_JSTARS_2013_2295513
crossref_primary_10_1080_01431161_2016_1244363
crossref_primary_10_1080_01431161_2016_1277042
crossref_primary_10_1109_TGRS_2016_2616489
crossref_primary_10_1109_TCYB_2016_2533430
crossref_primary_10_1109_TGRS_2023_3267638
crossref_primary_10_1109_TGRS_2018_2805286
crossref_primary_10_1080_2150704X_2016_1182661
crossref_primary_10_1016_j_patrec_2016_11_010
crossref_primary_10_1109_JSTSP_2022_3219357
crossref_primary_10_1007_s12517_020_05487_4
crossref_primary_10_3390_rs14030716
crossref_primary_10_1109_TGRS_2022_3217892
crossref_primary_10_3390_rs15215208
crossref_primary_10_1109_TGRS_2019_2947032
crossref_primary_10_1109_TGRS_2015_2410991
crossref_primary_10_1109_TGRS_2023_3276589
crossref_primary_10_1109_TGRS_2022_3231930
crossref_primary_10_3390_rs8070601
crossref_primary_10_1016_j_aeue_2014_09_001
crossref_primary_10_1109_TGRS_2018_2874077
crossref_primary_10_1109_JSTARS_2017_2756864
crossref_primary_10_1016_j_inffus_2021_09_019
crossref_primary_10_1007_s00371_022_02489_z
crossref_primary_10_1109_TGRS_2021_3108352
crossref_primary_10_1109_JSTARS_2020_3008359
crossref_primary_10_1080_01431161_2021_1934599
crossref_primary_10_1007_s10994_021_05972_1
crossref_primary_10_1109_JSTARS_2018_2847042
crossref_primary_10_1109_TPAMI_2020_2982166
crossref_primary_10_1007_s12524_018_0875_y
crossref_primary_10_1109_MGRS_2021_3136100
crossref_primary_10_1109_TGRS_2018_2869723
crossref_primary_10_1109_TGRS_2018_2888485
crossref_primary_10_1109_TGRS_2017_2761893
crossref_primary_10_1109_TCSVT_2017_2746684
crossref_primary_10_3390_rs15041053
crossref_primary_10_1016_j_apm_2018_07_036
crossref_primary_10_1109_JSTARS_2015_2394778
crossref_primary_10_1109_TGRS_2019_2937204
crossref_primary_10_1051_e3sconf_202016503001
crossref_primary_10_1007_s12524_016_0597_y
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1088_1757_899X_1074_1_012002
crossref_primary_10_3390_rs10030383
crossref_primary_10_3390_rs71114806
crossref_primary_10_1109_JSTARS_2013_2251969
crossref_primary_10_1109_ACCESS_2017_2758168
crossref_primary_10_1109_TGRS_2024_3402058
crossref_primary_10_1364_AO_55_004808
crossref_primary_10_3390_rs8121023
crossref_primary_10_1109_TGRS_2020_3024258
crossref_primary_10_1109_ACCESS_2025_3549277
crossref_primary_10_3390_rs8020124
crossref_primary_10_1109_TGRS_2016_2576978
crossref_primary_10_1007_s11852_025_01098_x
crossref_primary_10_1007_s12517_021_07203_2
crossref_primary_10_1109_LGRS_2014_2380313
crossref_primary_10_1002_cem_2985
crossref_primary_10_1007_s11227_018_2300_2
crossref_primary_10_1109_LGRS_2019_2945546
crossref_primary_10_1109_TGRS_2016_2585201
crossref_primary_10_1109_JSTARS_2021_3062872
crossref_primary_10_1155_2021_9035163
crossref_primary_10_1007_s11104_025_07306_9
crossref_primary_10_1016_j_isprsjprs_2018_01_021
crossref_primary_10_1109_JPROC_2017_2729890
crossref_primary_10_1109_JSTARS_2013_2259470
crossref_primary_10_3390_rs12111780
crossref_primary_10_1109_TGRS_2024_3429372
crossref_primary_10_1016_j_infrared_2025_105726
crossref_primary_10_1109_MGRS_2020_2979764
crossref_primary_10_1109_TGRS_2018_2870980
crossref_primary_10_1007_s10773_021_04747_7
crossref_primary_10_1016_j_inffus_2016_05_004
crossref_primary_10_1109_TGRS_2021_3135506
crossref_primary_10_1109_TGRS_2016_2642951
crossref_primary_10_3390_rs9101042
crossref_primary_10_1109_TNNLS_2021_3056181
crossref_primary_10_1016_j_asoc_2025_112947
crossref_primary_10_1109_TGRS_2016_2584107
crossref_primary_10_3103_S8756699017010058
crossref_primary_10_1109_JSTARS_2021_3136599
crossref_primary_10_3390_rs8080636
crossref_primary_10_1109_TGRS_2014_2360672
crossref_primary_10_3390_rs11192289
crossref_primary_10_3390_s18113627
crossref_primary_10_1109_TGRS_2020_3006872
crossref_primary_10_1109_TGRS_2015_2496185
crossref_primary_10_1109_TGRS_2019_2957251
crossref_primary_10_3390_rs11020150
crossref_primary_10_1109_TGRS_2020_3015357
crossref_primary_10_1016_j_patcog_2016_10_019
crossref_primary_10_1109_TGRS_2023_3244750
crossref_primary_10_1109_JSTARS_2013_2292032
crossref_primary_10_1109_TGRS_2016_2553842
crossref_primary_10_3390_rs16050870
crossref_primary_10_3390_rs9050456
crossref_primary_10_1109_TGRS_2018_2868690
crossref_primary_10_1016_j_ijleo_2015_07_184
crossref_primary_10_1016_j_neucom_2016_03_097
crossref_primary_10_3390_rs10010113
crossref_primary_10_3390_rs11101219
crossref_primary_10_1126_science_aat2298
crossref_primary_10_1109_TGRS_2016_2587672
crossref_primary_10_3390_rs6087158
crossref_primary_10_1038_s41598_023_27472_z
crossref_primary_10_1109_JSTARS_2014_2384133
crossref_primary_10_1109_LGRS_2014_2363586
crossref_primary_10_3390_rs16111957
crossref_primary_10_1109_TGRS_2023_3297216
crossref_primary_10_1016_j_patcog_2016_04_009
crossref_primary_10_3390_rs10071070
crossref_primary_10_1016_j_compag_2025_110360
crossref_primary_10_1109_JSTARS_2019_2939833
crossref_primary_10_1080_01431161_2014_999882
crossref_primary_10_1016_j_jag_2022_102687
crossref_primary_10_3390_s22197308
crossref_primary_10_1007_s12524_022_01563_2
crossref_primary_10_1109_JSTARS_2017_2655516
crossref_primary_10_1049_ell2_12238
crossref_primary_10_1109_TGRS_2018_2796069
crossref_primary_10_1007_s11063_015_9447_0
crossref_primary_10_1007_s13137_016_0085_0
crossref_primary_10_1109_JSTARS_2020_3040218
crossref_primary_10_3390_rs9090939
crossref_primary_10_1109_TNNLS_2022_3189049
crossref_primary_10_1145_3337798
crossref_primary_10_1109_JSTARS_2017_2706190
crossref_primary_10_3390_s17122726
crossref_primary_10_1109_TGRS_2017_2743102
crossref_primary_10_1109_JSTARS_2024_3394771
crossref_primary_10_1016_j_rse_2019_111322
crossref_primary_10_1109_TGRS_2017_2743110
crossref_primary_10_3390_rs15133402
crossref_primary_10_1007_s00500_020_04697_y
crossref_primary_10_1109_ACCESS_2019_2963624
crossref_primary_10_1109_JSTARS_2017_2724604
crossref_primary_10_1109_JSTARS_2019_2939857
crossref_primary_10_1109_JSTARS_2019_2950876
crossref_primary_10_1080_07038992_2018_1559725
crossref_primary_10_1109_LGRS_2017_2755061
crossref_primary_10_1109_TGRS_2023_3242776
crossref_primary_10_3390_rs16101688
crossref_primary_10_1007_s41060_018_0115_0
crossref_primary_10_1109_ACCESS_2019_2894766
crossref_primary_10_1109_LGRS_2019_2962768
crossref_primary_10_1109_TGRS_2024_3502782
crossref_primary_10_1109_JSTARS_2016_2526604
crossref_primary_10_1109_TGRS_2018_2829400
crossref_primary_10_3390_s18061695
crossref_primary_10_1016_j_compbiomed_2017_06_018
crossref_primary_10_1016_j_inffus_2023_101907
crossref_primary_10_1109_JSTARS_2021_3133021
crossref_primary_10_3390_rs8040355
crossref_primary_10_3390_s20061652
crossref_primary_10_3390_rs13112216
crossref_primary_10_1109_TGRS_2018_2889195
crossref_primary_10_1109_JSTARS_2014_2355843
crossref_primary_10_1016_j_sigpro_2020_107737
crossref_primary_10_1109_TGRS_2019_2896471
crossref_primary_10_1109_TGRS_2017_2744662
crossref_primary_10_1007_s12524_015_0515_8
crossref_primary_10_1109_TGRS_2020_3016820
crossref_primary_10_3390_rs13122268
crossref_primary_10_1109_TGRS_2018_2818945
crossref_primary_10_1007_s11760_015_0851_8
crossref_primary_10_3390_rs9030203
crossref_primary_10_1109_JSTARS_2017_2732227
crossref_primary_10_3390_cancers11060756
crossref_primary_10_1080_01431161_2020_1807650
crossref_primary_10_1109_TGRS_2017_2651639
crossref_primary_10_1080_01431161_2023_2227320
crossref_primary_10_1016_j_eswa_2015_11_016
crossref_primary_10_1109_JSTARS_2020_3006772
crossref_primary_10_3390_rs14112568
crossref_primary_10_1007_s10812_022_01399_1
crossref_primary_10_1109_TNNLS_2018_2874432
crossref_primary_10_1016_j_ijggc_2020_103181
crossref_primary_10_1080_01431161_2018_1465614
crossref_primary_10_1089_big_2014_0064
crossref_primary_10_1109_JSTARS_2015_2470129
crossref_primary_10_1016_j_isprsjprs_2015_01_006
crossref_primary_10_1109_TGRS_2019_2918080
crossref_primary_10_1109_TGRS_2019_2915809
crossref_primary_10_1109_TMI_2020_3024923
crossref_primary_10_3390_s19132887
crossref_primary_10_1109_JSTARS_2019_2895070
crossref_primary_10_1007_s00500_017_2867_1
crossref_primary_10_1109_TGRS_2023_3344583
crossref_primary_10_3390_rs10020322
crossref_primary_10_1109_TGRS_2015_2490482
crossref_primary_10_3390_jcm8010036
crossref_primary_10_3390_rs11161953
crossref_primary_10_1109_TGRS_2020_3022029
crossref_primary_10_1016_j_measurement_2021_110229
crossref_primary_10_1016_j_ecolind_2017_05_071
crossref_primary_10_1109_ACCESS_2020_3016171
crossref_primary_10_1109_TGRS_2020_3004858
crossref_primary_10_1016_j_optlastec_2021_106931
crossref_primary_10_3390_rs11171983
crossref_primary_10_1109_JSTARS_2017_2782706
crossref_primary_10_1109_LGRS_2022_3194257
crossref_primary_10_1109_TGRS_2014_2366513
crossref_primary_10_1109_TGRS_2014_2306692
crossref_primary_10_1109_TGRS_2020_2967778
crossref_primary_10_1109_TGRS_2019_2911993
crossref_primary_10_1155_2021_5217578
crossref_primary_10_1016_j_bbrc_2016_01_125
crossref_primary_10_1109_TGRS_2015_2409195
crossref_primary_10_1109_TGRS_2019_2892903
crossref_primary_10_1016_j_neucom_2015_09_035
crossref_primary_10_1109_TGRS_2020_2987137
crossref_primary_10_3390_rs10081282
crossref_primary_10_1109_TGRS_2017_2730583
crossref_primary_10_3390_rs14215455
crossref_primary_10_1117_1_JRS_19_024507
crossref_primary_10_1109_JSTARS_2015_2420582
crossref_primary_10_1109_TGRS_2019_2955557
crossref_primary_10_1109_LGRS_2019_2917788
crossref_primary_10_1109_LGRS_2019_2939356
crossref_primary_10_1016_j_isprsjprs_2020_01_015
crossref_primary_10_1109_JSTARS_2022_3216590
crossref_primary_10_1016_j_ijggc_2022_103659
crossref_primary_10_1109_JSTARS_2024_3372138
crossref_primary_10_1109_TGRS_2016_2632042
crossref_primary_10_1016_j_scitotenv_2022_153559
crossref_primary_10_1109_TGRS_2024_3433024
crossref_primary_10_1080_01431161_2024_2394234
crossref_primary_10_3390_rs13245009
crossref_primary_10_1109_MSP_2013_2279179
crossref_primary_10_3390_f11010032
crossref_primary_10_1109_TGRS_2016_2643166
crossref_primary_10_1016_j_measurement_2025_118773
crossref_primary_10_1007_s12145_019_00411_1
crossref_primary_10_1007_s12524_016_0558_5
crossref_primary_10_1109_TGRS_2023_3319512
crossref_primary_10_1109_TGRS_2017_2754511
crossref_primary_10_1109_TGRS_2018_2861992
crossref_primary_10_3390_f16050827
crossref_primary_10_1007_s11760_015_0753_9
crossref_primary_10_1109_JSTARS_2023_3279506
crossref_primary_10_1016_j_asr_2025_07_100
crossref_primary_10_1109_TGRS_2022_3165204
crossref_primary_10_1109_JSTARS_2013_2265331
crossref_primary_10_3390_rs10040515
crossref_primary_10_1016_j_asoc_2017_11_045
crossref_primary_10_1007_s11554_014_0464_4
crossref_primary_10_1109_TGRS_2021_3085801
crossref_primary_10_3390_rs13091812
crossref_primary_10_3390_rs10050783
crossref_primary_10_1109_TGRS_2015_2484619
crossref_primary_10_3390_rs10121939
crossref_primary_10_3390_rs11080952
crossref_primary_10_3390_s18061978
crossref_primary_10_1080_22797254_2018_1529543
crossref_primary_10_1109_LGRS_2013_2286078
crossref_primary_10_1109_TGRS_2023_3272639
crossref_primary_10_1109_TNNLS_2022_3158280
crossref_primary_10_1109_JSTARS_2016_2522182
crossref_primary_10_1109_TIP_2024_3465038
crossref_primary_10_1038_s41598_024_58125_4
crossref_primary_10_1109_TGRS_2014_2321405
crossref_primary_10_3390_rs8110919
crossref_primary_10_1080_01431161_2019_1601284
crossref_primary_10_1109_LGRS_2015_2408433
crossref_primary_10_1109_TNNLS_2019_2962878
crossref_primary_10_3390_rs17050763
crossref_primary_10_1109_LGRS_2015_2481321
crossref_primary_10_1109_ACCESS_2021_3099631
crossref_primary_10_1109_TGRS_2017_2765364
crossref_primary_10_1109_ACCESS_2020_3029174
crossref_primary_10_1109_TGRS_2017_2697453
crossref_primary_10_1109_TGRS_2018_2864983
crossref_primary_10_1016_j_neucom_2019_10_071
crossref_primary_10_1109_JSTARS_2021_3107105
crossref_primary_10_1109_LGRS_2016_2596039
crossref_primary_10_1080_01431161_2022_2145580
crossref_primary_10_1016_j_patcog_2022_108705
crossref_primary_10_1109_LGRS_2022_3220601
crossref_primary_10_1109_ACCESS_2020_3011668
crossref_primary_10_1109_TNNLS_2020_3029523
crossref_primary_10_1109_TGRS_2013_2294724
crossref_primary_10_1109_JSTARS_2015_2456102
crossref_primary_10_1109_TGRS_2014_2358934
crossref_primary_10_3103_S8756699018010120
crossref_primary_10_1007_s10619_020_07309_8
crossref_primary_10_1109_TGRS_2013_2292544
crossref_primary_10_3390_rs15092367
crossref_primary_10_1109_TGRS_2025_3534881
crossref_primary_10_1007_s00500_014_1505_4
crossref_primary_10_1109_JSTARS_2015_2428232
crossref_primary_10_1109_TGRS_2022_3151004
crossref_primary_10_1109_TGRS_2016_2623742
crossref_primary_10_1109_JSTARS_2020_2984568
crossref_primary_10_1080_01431161_2017_1317941
crossref_primary_10_1109_JSTARS_2019_2938208
crossref_primary_10_1109_LGRS_2015_2418232
crossref_primary_10_1109_LGRS_2015_2424911
crossref_primary_10_1016_j_rse_2020_112129
crossref_primary_10_1080_01431161_2018_1433893
crossref_primary_10_1016_j_cosrev_2024_100658
crossref_primary_10_3390_rs16030489
crossref_primary_10_1109_TGRS_2020_3024730
crossref_primary_10_1016_j_isprsjprs_2018_11_023
crossref_primary_10_1109_TGRS_2017_2694159
crossref_primary_10_1016_j_isprsjprs_2017_03_020
crossref_primary_10_1109_JSTARS_2015_2398835
crossref_primary_10_1080_10106049_2019_1622597
crossref_primary_10_1109_JSTARS_2021_3107311
crossref_primary_10_1016_j_neucom_2020_12_064
crossref_primary_10_1109_LGRS_2016_2521763
crossref_primary_10_1016_j_infrared_2018_10_012
crossref_primary_10_1080_10095020_2017_1399674
crossref_primary_10_1007_s10586_018_2243_7
crossref_primary_10_1080_01431161_2015_1137649
crossref_primary_10_1109_TGRS_2017_2703598
crossref_primary_10_1007_s10766_017_0547_5
crossref_primary_10_1109_TGRS_2014_2319373
crossref_primary_10_3390_s24041187
crossref_primary_10_1109_JSTARS_2015_2437614
crossref_primary_10_1109_MGRS_2017_2762087
crossref_primary_10_1109_LGRS_2013_2284007
crossref_primary_10_3390_rs17162833
crossref_primary_10_1109_TGRS_2015_2503886
crossref_primary_10_3390_rs14071686
crossref_primary_10_1109_TGRS_2016_2535538
crossref_primary_10_1109_JSTARS_2018_2872969
crossref_primary_10_1109_JSTARS_2022_3187757
crossref_primary_10_3390_rs12050779
crossref_primary_10_3390_s17102421
crossref_primary_10_1109_JSTARS_2016_2569480
crossref_primary_10_3390_rs12121973
crossref_primary_10_1109_TGRS_2023_3280205
crossref_primary_10_1109_TGRS_2020_3018879
crossref_primary_10_1109_TGRS_2016_2561842
crossref_primary_10_1109_TGRS_2022_3162100
crossref_primary_10_3390_app8101792
crossref_primary_10_1016_j_jag_2018_06_006
crossref_primary_10_14358_PERS_22_00111R2
crossref_primary_10_1007_s10994_016_5559_7
crossref_primary_10_1109_JSTARS_2019_2916495
crossref_primary_10_1109_JSTARS_2018_2836671
crossref_primary_10_1016_j_cja_2018_01_027
crossref_primary_10_1109_TGRS_2022_3173474
crossref_primary_10_1016_j_ins_2021_07_003
crossref_primary_10_1109_TGRS_2021_3053397
crossref_primary_10_1080_01431161_2015_1007251
crossref_primary_10_1109_TGRS_2014_2299540
crossref_primary_10_1080_22797254_2023_2237654
crossref_primary_10_1109_TGRS_2016_2612821
crossref_primary_10_1109_TIP_2014_2319735
crossref_primary_10_1155_2015_784504
crossref_primary_10_3390_rs13040706
crossref_primary_10_1109_LGRS_2015_2511186
crossref_primary_10_1109_TGRS_2013_2260552
crossref_primary_10_1109_TIP_2022_3161834
crossref_primary_10_1016_j_neunet_2019_08_012
crossref_primary_10_1109_TGRS_2014_2318058
crossref_primary_10_1109_JSTARS_2020_2968966
crossref_primary_10_1051_matecconf_201824603046
crossref_primary_10_1038_s41598_022_14757_y
crossref_primary_10_3390_ijgi6110344
crossref_primary_10_1109_TGRS_2013_2264508
crossref_primary_10_1007_s12145_022_00923_3
crossref_primary_10_1109_JSTARS_2016_2621416
crossref_primary_10_1190_geo2015_0539_1
crossref_primary_10_3390_rs13091672
crossref_primary_10_3390_jimaging6110114
crossref_primary_10_3390_rs10081238
crossref_primary_10_3390_rs11212560
crossref_primary_10_1109_TGRS_2016_2536687
crossref_primary_10_1007_s00521_022_07440_w
crossref_primary_10_1109_TGRS_2020_2994205
crossref_primary_10_3390_rs14184682
crossref_primary_10_1109_LGRS_2020_2966987
crossref_primary_10_1109_JPROC_2017_2735018
crossref_primary_10_1109_TGRS_2025_3603835
crossref_primary_10_1016_j_inffus_2023_102148
crossref_primary_10_1109_TGRS_2024_3362471
crossref_primary_10_1109_TGRS_2022_3151875
crossref_primary_10_3390_drones7080536
crossref_primary_10_3390_rs14163998
crossref_primary_10_1016_j_optlastec_2018_08_044
crossref_primary_10_1186_s13640_017_0219_9
crossref_primary_10_1109_MGRS_2019_2912563
crossref_primary_10_1109_TGRS_2013_2272593
crossref_primary_10_3390_s24227131
crossref_primary_10_1016_j_catena_2019_104217
crossref_primary_10_3390_rs14184433
crossref_primary_10_1016_j_knosys_2022_109845
crossref_primary_10_1007_s11432_016_5576_y
crossref_primary_10_1109_JSTARS_2015_2434997
crossref_primary_10_1109_TGRS_2017_2647815
crossref_primary_10_1109_MGRS_2017_2663666
crossref_primary_10_1016_j_isprsjprs_2016_08_007
crossref_primary_10_1080_2150704X_2018_1446565
crossref_primary_10_1109_TGRS_2014_2301415
crossref_primary_10_1016_j_cviu_2016_04_001
crossref_primary_10_1109_TGRS_2016_2560529
crossref_primary_10_1080_22797254_2017_1348914
crossref_primary_10_1109_TGRS_2019_2892516
crossref_primary_10_3390_rs10010089
crossref_primary_10_1016_j_isprsjprs_2016_08_011
crossref_primary_10_1109_JSTSP_2015_2416677
crossref_primary_10_1007_s12145_017_0298_2
crossref_primary_10_1109_TGRS_2017_2769113
crossref_primary_10_1109_TGRS_2019_2916329
crossref_primary_10_3390_rs9070688
crossref_primary_10_1109_JSTARS_2015_2413831
crossref_primary_10_1016_j_neucom_2017_09_004
crossref_primary_10_1109_TNNLS_2015_2477537
crossref_primary_10_1109_TGRS_2019_2907924
crossref_primary_10_1016_j_neucom_2017_10_046
crossref_primary_10_1016_j_inffus_2020_07_002
crossref_primary_10_1179_1432891715Z_0000000002096
crossref_primary_10_1080_01431161_2018_1524177
crossref_primary_10_1109_TCSVT_2020_3027616
crossref_primary_10_1109_TPAMI_2020_3015691
crossref_primary_10_1109_LGRS_2018_2886422
crossref_primary_10_1007_s11042_020_09180_2
crossref_primary_10_1109_JSTARS_2016_2602305
crossref_primary_10_1109_TCI_2017_2666551
crossref_primary_10_1080_01431161_2021_1876272
crossref_primary_10_1109_TGRS_2014_2308192
crossref_primary_10_1109_TGRS_2022_3202036
crossref_primary_10_1109_JSTARS_2015_2472460
crossref_primary_10_3390_rs11182170
crossref_primary_10_1109_TGRS_2016_2530807
crossref_primary_10_1190_geo2020_0521_1
crossref_primary_10_1039_D0RA06938H
crossref_primary_10_1109_JSTARS_2022_3233125
crossref_primary_10_1109_TGRS_2015_2466657
crossref_primary_10_1109_TGRS_2022_3185612
crossref_primary_10_1007_s10462_021_10018_y
crossref_primary_10_1080_2150704X_2015_1117152
crossref_primary_10_1109_LGRS_2023_3316262
crossref_primary_10_1016_j_sigpro_2019_107361
crossref_primary_10_1109_TGRS_2021_3121671
crossref_primary_10_1007_s00521_016_2376_7
crossref_primary_10_1080_01431161_2017_1292071
crossref_primary_10_1109_TGRS_2021_3075679
crossref_primary_10_1109_TGRS_2015_2500680
crossref_primary_10_1109_TCSVT_2025_3526960
crossref_primary_10_1080_01431161_2019_1633699
crossref_primary_10_1109_TGRS_2016_2616585
crossref_primary_10_1109_TGRS_2017_2690445
crossref_primary_10_3390_s19010204
crossref_primary_10_1080_01431161_2020_1781286
crossref_primary_10_1109_TGRS_2018_2828029
crossref_primary_10_1109_TGRS_2023_3310023
crossref_primary_10_1109_TGRS_2021_3075223
crossref_primary_10_3390_rs10060905
crossref_primary_10_1016_j_image_2021_116549
crossref_primary_10_1109_TGRS_2018_2867679
crossref_primary_10_1108_IJIUS_09_2019_0053
crossref_primary_10_1109_ACCESS_2019_2938397
crossref_primary_10_1109_JSTARS_2015_2423278
crossref_primary_10_1080_01431161_2016_1192700
crossref_primary_10_3390_rs11222718
crossref_primary_10_1109_JSTARS_2018_2866901
crossref_primary_10_1109_TGRS_2020_3047479
crossref_primary_10_3390_ijgi7090379
crossref_primary_10_1109_JSTARS_2020_2982614
crossref_primary_10_3390_rs15133378
crossref_primary_10_1002_col_22788
crossref_primary_10_1088_1361_6501_aaaeff
crossref_primary_10_1109_TGRS_2021_3053204
crossref_primary_10_1109_TGRS_2015_2445767
crossref_primary_10_1016_j_isprsjprs_2016_12_003
crossref_primary_10_1080_22797254_2022_2153747
crossref_primary_10_3390_rs12142335
crossref_primary_10_1016_j_eswa_2021_114777
crossref_primary_10_3390_rs14174236
crossref_primary_10_11728_cjss2025_02_2024_0195
crossref_primary_10_1007_s12145_020_00485_2
crossref_primary_10_1109_TIP_2022_3177322
crossref_primary_10_1109_LGRS_2019_2943001
crossref_primary_10_1088_1402_4896_adee51
crossref_primary_10_1080_02664763_2017_1414162
crossref_primary_10_1109_JSTARS_2014_2311915
crossref_primary_10_1109_JSTSP_2015_2423260
crossref_primary_10_1109_JSTARS_2018_2802041
crossref_primary_10_1080_01431161_2013_869633
crossref_primary_10_1109_LGRS_2020_3005078
crossref_primary_10_1016_j_rse_2020_111938
crossref_primary_10_1631_jzus_A1700149
crossref_primary_10_1109_LGRS_2013_2273792
crossref_primary_10_1109_TGRS_2016_2641985
crossref_primary_10_1109_LGRS_2021_3112198
crossref_primary_10_3390_s16122146
crossref_primary_10_1016_j_neucom_2022_07_071
crossref_primary_10_1109_TGRS_2021_3073699
crossref_primary_10_1109_MSP_2013_2279894
crossref_primary_10_1109_JSTARS_2015_2498664
crossref_primary_10_1088_1742_6596_1096_1_012026
crossref_primary_10_1109_TGRS_2020_3013285
crossref_primary_10_1109_LGRS_2021_3084203
crossref_primary_10_1109_JSTARS_2017_2755639
crossref_primary_10_1016_j_engappai_2023_106307
crossref_primary_10_1016_j_jenvman_2024_123815
crossref_primary_10_1109_TGRS_2018_2850152
crossref_primary_10_1007_s11220_015_0126_z
crossref_primary_10_1080_01431161_2020_1723172
crossref_primary_10_1109_JSTARS_2023_3308723
crossref_primary_10_1109_TGRS_2014_2347343
crossref_primary_10_1109_MGRS_2013_2244672
crossref_primary_10_1109_JSTARS_2015_2471176
crossref_primary_10_1109_ACCESS_2019_2940268
crossref_primary_10_1109_JSTARS_2020_3019300
crossref_primary_10_1049_iet_cvi_2018_5112
crossref_primary_10_1109_TNNLS_2020_2978760
crossref_primary_10_1109_JSTARS_2014_2298876
crossref_primary_10_1109_TNNLS_2019_2921564
crossref_primary_10_1109_TGRS_2017_2747862
crossref_primary_10_1109_LGRS_2019_2913884
crossref_primary_10_1109_JSTARS_2023_3304119
crossref_primary_10_1109_JSTARS_2014_2359965
crossref_primary_10_1016_j_pdpdt_2020_102165
crossref_primary_10_3390_s20061734
crossref_primary_10_1109_LGRS_2013_2257675
crossref_primary_10_1016_j_asoc_2019_105630
crossref_primary_10_1080_10106049_2015_1110207
crossref_primary_10_1109_TGRS_2013_2264392
crossref_primary_10_1080_01431161_2016_1251629
crossref_primary_10_1109_TGRS_2020_3035642
crossref_primary_10_3390_rs11161896
crossref_primary_10_1007_s13131_023_2249_8
crossref_primary_10_1007_s10043_015_0139_9
crossref_primary_10_1109_JSTARS_2014_2342281
crossref_primary_10_1109_TGRS_2016_2562018
crossref_primary_10_3390_rs15051353
crossref_primary_10_1109_TGRS_2018_2809912
crossref_primary_10_1109_TGRS_2017_2743243
crossref_primary_10_1109_TGRS_2023_3272270
crossref_primary_10_1007_s41651_020_00048_5
crossref_primary_10_1109_TGRS_2023_3282064
crossref_primary_10_1109_TGRS_2025_3589253
crossref_primary_10_1109_JSTARS_2018_2873051
crossref_primary_10_3390_s20205833
crossref_primary_10_1080_22797254_2019_1565418
crossref_primary_10_1109_JSTARS_2015_2441771
crossref_primary_10_1109_TGRS_2013_2263282
crossref_primary_10_1109_TGRS_2021_3094582
crossref_primary_10_1109_JSTARS_2025_3561007
crossref_primary_10_3390_rs13214348
crossref_primary_10_3390_rs16214029
crossref_primary_10_1109_TGRS_2014_2360100
crossref_primary_10_1109_JSTARS_2021_3054926
crossref_primary_10_1109_LGRS_2018_2868841
crossref_primary_10_1016_j_engappai_2024_107909
crossref_primary_10_1109_ACCESS_2019_2936130
crossref_primary_10_1080_01431161_2022_2133579
crossref_primary_10_1088_1757_899X_1022_1_012120
crossref_primary_10_3390_rs13020324
crossref_primary_10_1016_j_isprsjprs_2025_01_006
crossref_primary_10_1109_TGRS_2019_2931189
crossref_primary_10_1109_TGRS_2018_2866190
crossref_primary_10_1109_MGRS_2016_2540798
crossref_primary_10_3390_rs12101640
crossref_primary_10_1108_SR_07_2016_0124
crossref_primary_10_1109_JSTARS_2015_2388797
crossref_primary_10_1109_JSTARS_2016_2536761
crossref_primary_10_1186_s13634_022_00926_8
crossref_primary_10_1109_TIP_2018_2855418
crossref_primary_10_3390_s19040920
crossref_primary_10_1109_TGRS_2013_2293732
crossref_primary_10_1109_TGRS_2017_2705176
crossref_primary_10_1109_JSTARS_2021_3135548
crossref_primary_10_1109_TGRS_2014_2363682
crossref_primary_10_1109_TGRS_2018_2837357
crossref_primary_10_1109_TGRS_2018_2872875
crossref_primary_10_1186_s12870_021_03308_8
crossref_primary_10_1109_TGRS_2020_2971716
crossref_primary_10_3390_rs9090872
crossref_primary_10_1109_TGRS_2018_2871782
crossref_primary_10_1007_s12665_024_11950_2
crossref_primary_10_1109_TGRS_2023_3344448
crossref_primary_10_1109_JSTARS_2016_2524517
crossref_primary_10_1109_TGRS_2020_3047682
crossref_primary_10_1109_ACCESS_2019_2925283
crossref_primary_10_1109_TGRS_2018_2860125
crossref_primary_10_3390_rs10030441
crossref_primary_10_1109_JSTARS_2018_2792532
crossref_primary_10_3233_IDT_190076
crossref_primary_10_1088_2040_8986_ab828a
crossref_primary_10_1109_TGRS_2017_2692280
crossref_primary_10_1109_TGRS_2017_2785359
crossref_primary_10_1109_TGRS_2024_3370633
crossref_primary_10_1109_JSTARS_2024_3396883
crossref_primary_10_1109_JSTARS_2019_2950946
crossref_primary_10_3390_rs16132336
crossref_primary_10_3390_rs15112879
crossref_primary_10_1109_ACCESS_2019_2940697
crossref_primary_10_1109_TGRS_2018_2869004
crossref_primary_10_3390_s17112603
crossref_primary_10_1007_s11042_018_7010_5
crossref_primary_10_1109_JSTARS_2021_3083283
crossref_primary_10_1007_s41095_020_0176_6
crossref_primary_10_1109_JSTARS_2020_3038456
crossref_primary_10_1109_TGRS_2022_3176028
crossref_primary_10_3390_rs14112653
crossref_primary_10_1109_TGRS_2015_2513082
crossref_primary_10_1109_LGRS_2015_2419713
crossref_primary_10_3390_rs12132154
crossref_primary_10_1007_s10851_019_00925_9
crossref_primary_10_1016_j_epsr_2024_110118
crossref_primary_10_1109_JSTARS_2017_2768541
crossref_primary_10_1109_LGRS_2014_2341044
crossref_primary_10_1002_adfm_202424325
crossref_primary_10_3390_rs10122036
crossref_primary_10_1109_TGRS_2024_3355037
crossref_primary_10_1109_LGRS_2015_2441631
crossref_primary_10_1109_TGRS_2014_2306687
crossref_primary_10_3390_rs9111139
crossref_primary_10_1016_j_isprsjprs_2016_03_004
crossref_primary_10_3390_rs17071255
crossref_primary_10_1109_TGRS_2013_2287022
crossref_primary_10_1109_TGRS_2017_2693346
crossref_primary_10_1371_journal_pone_0254362
crossref_primary_10_21307_ijssis_2017_224
crossref_primary_10_1109_TGRS_2016_2596260
crossref_primary_10_1109_JSTARS_2014_2339298
crossref_primary_10_1109_JSTARS_2020_3014493
crossref_primary_10_1177_09603360211024971
crossref_primary_10_3390_rs13122354
crossref_primary_10_1007_s12293_018_0257_6
crossref_primary_10_1109_TGRS_2018_2875943
crossref_primary_10_1109_TGRS_2016_2579648
crossref_primary_10_3390_rs12162540
crossref_primary_10_3390_rs70606611
crossref_primary_10_3390_rs9111106
crossref_primary_10_5721_EuJRS20144723
crossref_primary_10_3390_rs13030405
crossref_primary_10_3390_app10041261
crossref_primary_10_1109_JSTARS_2017_2770144
crossref_primary_10_1109_TGRS_2022_3202714
crossref_primary_10_1016_j_infrared_2016_12_010
crossref_primary_10_3390_rs12010120
crossref_primary_10_1109_TIP_2018_2799324
crossref_primary_10_1109_TGRS_2019_2934760
crossref_primary_10_3390_rs16132499
crossref_primary_10_3390_rs11040397
crossref_primary_10_1109_JSTARS_2015_2413931
crossref_primary_10_1109_TGRS_2018_2828612
crossref_primary_10_1109_TGRS_2016_2542342
crossref_primary_10_1109_TCYB_2017_2682846
crossref_primary_10_1109_JSTARS_2015_2477364
crossref_primary_10_1109_JSTARS_2014_2322143
crossref_primary_10_1007_s11554_018_0823_7
crossref_primary_10_1016_j_infrared_2019_103055
crossref_primary_10_1108_JEDT_01_2021_0030
crossref_primary_10_1109_JSTARS_2015_2407493
crossref_primary_10_1016_j_isprsjprs_2017_08_003
crossref_primary_10_1109_JSTARS_2020_3016739
crossref_primary_10_1109_JSTARS_2014_2360694
crossref_primary_10_1109_JSTARS_2017_2700490
crossref_primary_10_1007_s00521_015_1862_7
crossref_primary_10_1117_1_JRS_18_014512
crossref_primary_10_1109_LGRS_2019_2899823
crossref_primary_10_1109_TGRS_2019_2920112
crossref_primary_10_1109_TGRS_2021_3094867
crossref_primary_10_1016_j_isprsjprs_2017_10_006
crossref_primary_10_1016_j_eswa_2014_09_004
crossref_primary_10_1109_TGRS_2019_2900509
crossref_primary_10_1016_j_eswa_2019_04_006
crossref_primary_10_1109_JSTARS_2018_2866595
crossref_primary_10_1109_TCYB_2015_2453359
crossref_primary_10_1080_01431161_2016_1225175
crossref_primary_10_3390_rs11161903
crossref_primary_10_1109_TPS_2023_3297579
crossref_primary_10_3390_electronics11172799
crossref_primary_10_1109_TGRS_2020_3018135
crossref_primary_10_1109_JSTARS_2022_3192127
crossref_primary_10_1109_TGRS_2014_2318332
crossref_primary_10_1109_TGRS_2023_3271424
crossref_primary_10_1109_ACCESS_2020_2979291
crossref_primary_10_1109_TGRS_2016_2613848
crossref_primary_10_1109_TGRS_2014_2345739
crossref_primary_10_1364_AO_58_0000B9
crossref_primary_10_1080_2150704X_2017_1302103
crossref_primary_10_1109_JSTARS_2021_3076005
crossref_primary_10_1109_JPROC_2015_2501814
crossref_primary_10_1109_LGRS_2021_3110204
crossref_primary_10_1109_TGRS_2016_2600522
crossref_primary_10_1109_JSTARS_2016_2539981
crossref_primary_10_1109_ACCESS_2022_3172501
crossref_primary_10_1080_01431161_2018_1547932
crossref_primary_10_1109_TGRS_2019_2944989
crossref_primary_10_1007_s12524_014_0420_6
crossref_primary_10_3390_rs10071156
crossref_primary_10_1109_JSTARS_2021_3111508
crossref_primary_10_1109_JSTARS_2014_2347414
crossref_primary_10_1109_TGRS_2020_2992788
crossref_primary_10_1080_01431161_2023_2173034
crossref_primary_10_3390_rs12071104
crossref_primary_10_1080_01431161_2016_1204032
crossref_primary_10_1109_TGRS_2023_3257369
crossref_primary_10_1109_JSTARS_2017_2658948
crossref_primary_10_1109_LGRS_2015_2482520
crossref_primary_10_1007_s12517_021_06943_5
crossref_primary_10_1016_j_neucom_2015_07_114
crossref_primary_10_1109_JSTARS_2019_2915259
crossref_primary_10_1016_j_ecolmodel_2017_01_004
crossref_primary_10_1016_j_patrec_2016_01_022
crossref_primary_10_3390_rs9080775
crossref_primary_10_1109_JSTARS_2016_2587678
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_1109_TGRS_2017_2729882
crossref_primary_10_1109_TGRS_2023_3281490
crossref_primary_10_1080_01431161_2017_1390275
crossref_primary_10_1109_TGRS_2019_2949180
crossref_primary_10_1007_s12517_021_08061_8
crossref_primary_10_1002_cem_3132
crossref_primary_10_1016_j_patcog_2018_03_027
crossref_primary_10_1016_j_neucom_2019_01_010
crossref_primary_10_1109_JSTARS_2016_2588530
crossref_primary_10_1038_s41598_017_07337_y
crossref_primary_10_3390_electronics13081578
crossref_primary_10_1016_j_isprsjprs_2018_05_020
crossref_primary_10_1080_01431161_2015_1055607
crossref_primary_10_1080_01431161_2023_2275325
crossref_primary_10_1109_JSTARS_2015_2493887
crossref_primary_10_1109_TGRS_2017_2748160
crossref_primary_10_1109_TIM_2017_2664480
crossref_primary_10_1109_JSTARS_2022_3173893
crossref_primary_10_1109_TGRS_2017_2737037
crossref_primary_10_1080_00401706_2019_1677268
crossref_primary_10_1109_TGRS_2017_2702197
crossref_primary_10_1155_2018_8264961
crossref_primary_10_1016_j_cviu_2025_104382
crossref_primary_10_1109_ACCESS_2019_2935496
crossref_primary_10_1109_TGRS_2014_2334608
crossref_primary_10_3390_s19245401
crossref_primary_10_1109_TGRS_2015_2511197
crossref_primary_10_3390_rs9121330
crossref_primary_10_1109_ACCESS_2020_2971556
crossref_primary_10_1109_TIP_2018_2869691
crossref_primary_10_3390_app11167614
crossref_primary_10_1109_JSTARS_2020_3026724
crossref_primary_10_1007_s11119_024_10112_5
crossref_primary_10_1109_JSTARS_2013_2282161
crossref_primary_10_1016_j_sigpro_2015_09_004
crossref_primary_10_1016_j_neucom_2020_03_022
crossref_primary_10_1080_01431161_2017_1302110
crossref_primary_10_1007_s11227_022_04961_y
crossref_primary_10_1109_TAES_2014_130484
crossref_primary_10_3390_rs15071773
crossref_primary_10_1109_TGRS_2022_3177935
crossref_primary_10_1007_s11276_023_03611_2
crossref_primary_10_3389_fmed_2018_00350
crossref_primary_10_1016_j_asr_2016_11_006
crossref_primary_10_1109_ACCESS_2018_2799079
crossref_primary_10_1049_iet_ipr_2018_5104
crossref_primary_10_1016_j_engappai_2023_107070
crossref_primary_10_3390_rs16183442
crossref_primary_10_1109_TGRS_2014_2333539
crossref_primary_10_1109_TGRS_2019_2926069
crossref_primary_10_1109_TCSVT_2021_3078559
crossref_primary_10_1109_JSTARS_2015_2432037
crossref_primary_10_1016_j_compag_2018_03_029
crossref_primary_10_3390_rs11222690
crossref_primary_10_1109_TGRS_2014_2358615
crossref_primary_10_1109_TGRS_2018_2794326
crossref_primary_10_1109_TGRS_2019_2952319
crossref_primary_10_1109_TGRS_2020_2986313
crossref_primary_10_1007_s12524_019_01021_6
crossref_primary_10_1109_JSTARS_2017_2775644
crossref_primary_10_1002_ecs2_2708
crossref_primary_10_1016_j_matpr_2021_01_045
crossref_primary_10_1109_JSTARS_2019_2940278
crossref_primary_10_3390_app13127143
crossref_primary_10_1080_10106049_2020_1734871
crossref_primary_10_1109_ACCESS_2020_3027776
crossref_primary_10_1109_TIP_2018_2862629
crossref_primary_10_1016_j_neucom_2016_09_010
crossref_primary_10_3390_rs15245715
crossref_primary_10_1109_TGRS_2023_3250715
crossref_primary_10_1016_j_autcon_2022_104164
crossref_primary_10_3390_rs15245717
crossref_primary_10_1016_j_jksuci_2016_11_002
crossref_primary_10_1109_TIP_2018_2809606
crossref_primary_10_1109_LGRS_2015_2513002
crossref_primary_10_3390_rs11070884
crossref_primary_10_1109_JSTARS_2019_2913097
crossref_primary_10_1109_TIP_2018_2828341
crossref_primary_10_1080_01431161_2015_1125547
crossref_primary_10_1007_s11042_019_08114_x
crossref_primary_10_1109_JSTARS_2019_2906387
crossref_primary_10_1109_TIP_2016_2577886
crossref_primary_10_3390_rs16010140
crossref_primary_10_1109_TCYB_2016_2605044
crossref_primary_10_1109_TGRS_2015_2465899
crossref_primary_10_1109_TGRS_2016_2604290
crossref_primary_10_1109_TGRS_2022_3217168
crossref_primary_10_3390_rs9050506
crossref_primary_10_1080_2150704X_2016_1151568
crossref_primary_10_1109_MGRS_2018_2854840
crossref_primary_10_1109_LGRS_2015_2476498
crossref_primary_10_1109_MGRS_2019_2911100
crossref_primary_10_1109_TGRS_2018_2890508
crossref_primary_10_1145_3477396
crossref_primary_10_1117_1_JRS_18_036507
crossref_primary_10_1109_TGRS_2016_2603190
crossref_primary_10_1016_j_sigpro_2017_11_007
crossref_primary_10_1016_j_gexplo_2024_107510
crossref_primary_10_1109_TGRS_2024_3385202
crossref_primary_10_1109_LGRS_2018_2871507
crossref_primary_10_1109_TGRS_2016_2582209
crossref_primary_10_1109_TGRS_2023_3265388
crossref_primary_10_1109_LGRS_2017_2759168
crossref_primary_10_1109_TGRS_2019_2952758
crossref_primary_10_3390_rs9010067
crossref_primary_10_1109_JSTARS_2015_2394330
crossref_primary_10_1016_j_infrared_2019_103013
crossref_primary_10_1016_j_displa_2021_102114
crossref_primary_10_3390_rs11091114
crossref_primary_10_1109_MGRS_2016_2616418
crossref_primary_10_3233_IFS_151983
crossref_primary_10_1515_phys_2023_0157
crossref_primary_10_1109_TCSVT_2022_3218284
crossref_primary_10_1007_s11227_020_03474_w
crossref_primary_10_1109_TNNLS_2021_3105543
crossref_primary_10_1145_3386313
Cites_doi 10.1109/LGRS.2011.2145353
10.1109/TGRS.2007.893821
10.1109/34.206958
10.1007/s10851-006-7451-8
10.1002/0471723800
10.1109/TGRS.2010.2062526
10.1109/TIP.2009.2019302
10.1109/36.905239
10.1109/IGARSS.1998.703645
10.1109/IGARSS.2008.4779060
10.1109/TIT.1968.1054102
10.1561/2200000002
10.1007/1-4020-3968-9
10.1016/0165-1684(95)00108-5
10.1109/TPAMI.1984.4767596
10.1109/ICASSP.2006.1660467
10.1109/LGRS.2005.857031
10.1109/36.225529
10.1109/TGRS.2010.2049496
10.1016/j.patcog.2007.02.004
10.1109/TGRS.2003.814625
10.1109/LGRS.2008.916076
10.1109/TGRS.2002.805087
10.1016/j.imavis.2004.06.002
10.1109/LGRS.2007.896331
10.1109/TGRS.2012.2190079
10.1080/01431160500409577
10.1016/j.imavis.2006.09.002
10.1080/01431161.2010.512313
10.1109/JSTARS.2012.2190045
10.1007/978-3-642-14212-3_8
10.1080/01431160902926681
10.1007/978-1-4419-9170-6
10.1109/TGRS.2004.842481
10.1109/34.16711
10.1080/01431169608948770
10.1016/j.patcog.2011.03.035
10.1109/CISP.2011.6100425
10.1109/JSTARS.2010.2069085
10.1109/TGRS.2009.2037898
10.1109/TGRS.2010.2048116
10.1109/TIP.2011.2175741
10.1155/2009/783194
10.1109/TGRS.2004.842478
10.1109/TIP.2007.891150
10.1109/LGRS.2005.856117
10.1109/JSTARS.2012.2192472
10.1109/TGRS.2009.2016214
10.1109/TGRS.2008.2000628
10.1109/TGRS.2002.805088
10.1109/TGRS.2002.802476
10.1109/83.753737
10.1109/5326.661089
10.1016/0167-9473(92)90042-E
10.1109/TGRS.2008.922034
10.1117/12.672030
10.1016/j.patcog.2010.01.016
10.1109/TGRS.2005.852082
10.1016/0031-3203(81)90028-5
10.1109/IGARSS.2005.1526133
10.1109/TGRS.2002.804618
10.1007/s10851-006-7452-7
10.1109/ICASSP.2011.5946597
10.1300/J064v22n03_03
10.1109/JSTARS.2011.2173466
10.1109/TGRS.2004.831865
10.1109/34.87344
10.1109/IGARSS.2005.1526784
10.1016/j.rse.2007.12.011
10.1109/TGRS.2004.837327
10.1007/s11263-006-7934-5
10.1109/83.663500
10.1109/TIP.2005.864164
10.1109/TSMCB.2009.2037132
10.1109/ICIP.2011.6115666
10.1109/ICIP.2008.4712147
10.1109/5.54807
10.1109/LGRS.2010.2091253
10.1109/IGARSS.2003.1293813
10.1080/01431160050021303
10.1109/TGRS.2009.2027895
10.1109/TPAMI.2004.1262177
10.1002/j.1538-7305.1957.tb01515.x
10.1016/j.rse.2007.07.028
10.1016/j.patcog.2004.01.006
10.14358/PERS.70.5.627
10.5566/ias.v26.p101-109
10.1109/TGE.1976.294460
10.1109/36.774728
10.1109/WARSD.2003.1295218
10.1109/34.667881
10.1117/12.836024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
1XC
VOOES
DOI 10.1109/JPROC.2012.2197589
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Engineering Research Database
Engineering Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2256
EndPage 675
ExternalDocumentID oai:HAL:hal-00737075v1
2898235111
10_1109_JPROC_2012_2197589
6297992
Genre orig-research
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
RIG
F28
FR3
1XC
VOOES
ID FETCH-LOGICAL-c575t-3a466ed79ce21a2993614e43b88f85bef8b41c1b14ba8945eb6ce8ae6a96ed543
IEDL.DBID RIE
ISICitedReferencesCount 1110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315480200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Sat Nov 29 15:05:36 EST 2025
Thu Sep 04 16:22:19 EDT 2025
Thu Sep 04 18:41:20 EDT 2025
Mon Jun 30 10:17:46 EDT 2025
Tue Nov 18 21:49:15 EST 2025
Sat Nov 29 03:15:04 EST 2025
Wed Aug 27 02:43:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords spectral-spatial classifier
morphological neighborhood
hyperspectral image
kernel method
mathematical morphology
segmentation
classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-3a466ed79ce21a2993614e43b88f85bef8b41c1b14ba8945eb6ce8ae6a96ed543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-4817-2875
0000-0002-3304-6932
OpenAccessLink https://inria.hal.science/hal-00737075
PQID 1291597920
PQPubID 23500
PageCount 24
ParticipantIDs crossref_primary_10_1109_JPROC_2012_2197589
hal_primary_oai_HAL_hal_00737075v1
proquest_miscellaneous_1770346452
crossref_citationtrail_10_1109_JPROC_2012_2197589
proquest_miscellaneous_1323233339
ieee_primary_6297992
proquest_journals_1291597920
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref57
ref56
ref59
ref58
ref53
ref55
ref54
richards (ref62) 2006
v d linden (ref104) 2007; 1
widayati (ref103) 2002
soille (ref48) 2003
ref50
ref46
ref45
ref47
ref42
ref41
ref44
serra (ref52) 1982
ref49
shapiro (ref96) 2002
chang (ref105) 2008
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
tadjudin (ref23) 1998
ref31
ref30
ref33
ref32
(ref20) 2009
fauvel (ref64) 2009; 2009
ref39
ref38
serra (ref51) 1988
hastie (ref79) 2001
ref24
ref26
ref25
ref22
ref21
ref28
ref27
ref29
donoho (ref15) 2000
kendall (ref13) 1961
stawiaski (ref109) 2008
ref12
ref14
ref97
ref11
ref98
ref10
ref17
gonzalez (ref43) 2002
ref16
ref19
ref18
ref93
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
debayle (ref69) 2006; 25
ref82
ref81
ref84
ref83
ref80
ref108
ref78
ref107
ref75
ref74
ref77
ref102
ref2
ref1
aksoy (ref37) 2006
wu (ref106) 2004
ref71
ref111
ref112
ref73
ref110
gonzlez (ref36) 2008
weston (ref76) 2001
ref68
ref67
ref63
beucher (ref92) 1979
ref66
ref113
debayle (ref70) 2006; 25
ref65
ref114
tilton (ref99) 2012
ref60
vapnik (ref72) 1999
ref61
References_xml – ident: ref35
  doi: 10.1109/LGRS.2011.2145353
– ident: ref41
  doi: 10.1109/TGRS.2007.893821
– year: 2001
  ident: ref79
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction With 200 Full-Color Illustrations
– year: 2002
  ident: ref96
  publication-title: Computer Vision
– ident: ref113
  doi: 10.1109/34.206958
– volume: 25
  start-page: 245
  year: 2006
  ident: ref69
  article-title: General adaptive neighborhood image processing-Part I
  publication-title: J Math Imag Vis
  doi: 10.1007/s10851-006-7451-8
– ident: ref12
  doi: 10.1002/0471723800
– ident: ref46
  doi: 10.1109/TGRS.2010.2062526
– ident: ref33
  doi: 10.1109/TIP.2009.2019302
– ident: ref56
  doi: 10.1109/36.905239
– ident: ref89
  doi: 10.1109/IGARSS.1998.703645
– ident: ref6
  doi: 10.1109/IGARSS.2008.4779060
– year: 1961
  ident: ref13
  publication-title: A Course in the Geometry of n-Dimensions
– ident: ref16
  doi: 10.1109/TIT.1968.1054102
– ident: ref17
  doi: 10.1561/2200000002
– year: 2006
  ident: ref62
  publication-title: Remote Sensing Digital Image Analysis
  doi: 10.1007/1-4020-3968-9
– year: 2008
  ident: ref109
  publication-title: Mathematical morphology and graphs Application to interactive medical image segmentation
– ident: ref55
  doi: 10.1016/0165-1684(95)00108-5
– ident: ref28
  doi: 10.1109/TPAMI.1984.4767596
– ident: ref21
  doi: 10.1109/ICASSP.2006.1660467
– ident: ref77
  doi: 10.1109/LGRS.2005.857031
– ident: ref91
  doi: 10.1109/36.225529
– ident: ref86
  doi: 10.1109/TGRS.2010.2049496
– ident: ref60
  doi: 10.1016/j.patcog.2007.02.004
– ident: ref39
  doi: 10.1109/TGRS.2003.814625
– ident: ref30
  doi: 10.1109/LGRS.2008.916076
– ident: ref27
  doi: 10.1109/TGRS.2002.805087
– ident: ref66
  doi: 10.1016/j.imavis.2004.06.002
– year: 1988
  ident: ref51
  publication-title: Image Analysis and Mathematical Morphology Volume 2 Theoretical Advances
– year: 1979
  ident: ref92
  article-title: Use of watersheds in contour detection
  publication-title: Int Workshop Image Process Real-Time Edge Motion Detection/Estimation
– ident: ref97
  doi: 10.1109/LGRS.2007.896331
– ident: ref47
  doi: 10.1109/TGRS.2012.2190079
– ident: ref42
  doi: 10.1080/01431160500409577
– ident: ref85
  doi: 10.1016/j.imavis.2006.09.002
– ident: ref65
  doi: 10.1080/01431161.2010.512313
– year: 2008
  ident: ref36
  publication-title: Digital Image Processing
– ident: ref59
  doi: 10.1109/JSTARS.2012.2190045
– ident: ref82
  doi: 10.1007/978-3-642-14212-3_8
– year: 2002
  ident: ref43
  publication-title: Digital Image Processing
– ident: ref2
  doi: 10.1080/01431160902926681
– ident: ref11
  doi: 10.1007/978-1-4419-9170-6
– ident: ref18
  doi: 10.1109/TGRS.2004.842481
– ident: ref98
  doi: 10.1109/34.16711
– ident: ref4
  doi: 10.1080/01431169608948770
– ident: ref67
  doi: 10.1016/j.patcog.2011.03.035
– ident: ref38
  doi: 10.1109/CISP.2011.6100425
– ident: ref87
  doi: 10.1109/JSTARS.2010.2069085
– volume: 1
  start-page: 1
  year: 2007
  ident: ref104
  article-title: Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines
  publication-title: J Appl Remote Sens
– ident: ref19
  doi: 10.1109/TGRS.2009.2037898
– start-page: 1
  year: 2002
  ident: ref103
  article-title: Application of combined pixel-based and spatial-based approaches for improved mixed vegetation classification using IKONOS
  publication-title: Proc 23rd Asian Conf Remote Sens
– ident: ref81
  doi: 10.1109/TGRS.2010.2048116
– ident: ref111
  doi: 10.1109/TIP.2011.2175741
– volume: 2009
  start-page: 1
  year: 2009
  ident: ref64
  article-title: Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1155/2009/783194
– ident: ref40
  doi: 10.1109/TGRS.2004.842478
– ident: ref34
  doi: 10.1109/TIP.2007.891150
– year: 1982
  ident: ref52
  publication-title: Image Analysis and Mathematical Morphology
– ident: ref24
  doi: 10.1109/LGRS.2005.856117
– ident: ref25
  doi: 10.1109/JSTARS.2012.2192472
– ident: ref45
  doi: 10.1109/TGRS.2009.2016214
– ident: ref58
  doi: 10.1109/TGRS.2008.2000628
– ident: ref114
  doi: 10.1109/TGRS.2002.805088
– ident: ref107
  doi: 10.1109/TGRS.2002.802476
– ident: ref29
  doi: 10.1109/83.753737
– ident: ref14
  doi: 10.1109/5326.661089
– ident: ref90
  doi: 10.1016/0167-9473(92)90042-E
– ident: ref75
  doi: 10.1109/TGRS.2008.922034
– ident: ref9
  doi: 10.1117/12.672030
– ident: ref44
  doi: 10.1016/j.patcog.2010.01.016
– ident: ref5
  doi: 10.1109/TGRS.2005.852082
– ident: ref88
  doi: 10.1016/0031-3203(81)90028-5
– ident: ref63
  doi: 10.1109/IGARSS.2005.1526133
– year: 2012
  ident: ref99
  publication-title: RHSeg User's Manual Including HSWO HSeg HSegExtract HSegReader and HSegViewer
– year: 1998
  ident: ref23
  publication-title: Classification of high dimensional data with limited training samples
– ident: ref53
  doi: 10.1109/TGRS.2002.804618
– volume: 25
  start-page: 267
  year: 2006
  ident: ref70
  article-title: General adaptive neighborhood image processing-Part II
  publication-title: J Math Imag Vis
  doi: 10.1007/s10851-006-7452-7
– year: 2008
  ident: ref105
  publication-title: LIBSVMA library for support vector machines
– ident: ref101
  doi: 10.1109/ICASSP.2011.5946597
– ident: ref7
  doi: 10.1300/J064v22n03_03
– ident: ref102
  doi: 10.1109/JSTARS.2011.2173466
– ident: ref22
  doi: 10.1109/TGRS.2004.831865
– start-page: 668
  year: 2001
  ident: ref76
  publication-title: Advances in Neural Information Processing Systems 13
– year: 2009
  ident: ref20
  publication-title: Kernel Methods for Remote Sensing Data Analysis
– ident: ref95
  doi: 10.1109/34.87344
– ident: ref100
  doi: 10.1109/IGARSS.2005.1526784
– year: 1999
  ident: ref72
  publication-title: The Nature of Statistical Learning Theory
– start-page: 975
  year: 2004
  ident: ref106
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1016/j.rse.2007.12.011
– ident: ref10
  doi: 10.1109/TGRS.2004.837327
– start-page: 491
  year: 2006
  ident: ref37
  publication-title: Signal and Image Processing for Remote sensing
– year: 2003
  ident: ref48
  publication-title: Morphological Image Analysis Principles and Applications
– ident: ref31
  doi: 10.1007/s11263-006-7934-5
– ident: ref80
  doi: 10.1109/83.663500
– ident: ref94
  doi: 10.1109/TIP.2005.864164
– ident: ref73
  doi: 10.1109/TGRS.2004.831865
– ident: ref49
  doi: 10.1109/TSMCB.2009.2037132
– ident: ref84
  doi: 10.1109/ICIP.2011.6115666
– ident: ref78
  doi: 10.1109/ICIP.2008.4712147
– ident: ref71
  doi: 10.1109/5.54807
– ident: ref83
  doi: 10.1109/LGRS.2010.2091253
– ident: ref68
  doi: 10.1109/IGARSS.2003.1293813
– ident: ref1
  doi: 10.1080/01431160050021303
– ident: ref57
  doi: 10.1109/TGRS.2009.2027895
– ident: ref32
  doi: 10.1109/TPAMI.2004.1262177
– ident: ref110
  doi: 10.1002/j.1538-7305.1957.tb01515.x
– start-page: 1
  year: 2000
  ident: ref15
  article-title: High-dimensional data analysis: The curses and blessing of dimensionality
  publication-title: Proc AMS Conf Math Challenges of the 21st Century
– ident: ref74
  doi: 10.1016/j.rse.2007.07.028
– ident: ref61
  doi: 10.1016/j.patcog.2004.01.006
– ident: ref112
  doi: 10.14358/PERS.70.5.627
– ident: ref93
  doi: 10.5566/ias.v26.p101-109
– ident: ref26
  doi: 10.1109/TGE.1976.294460
– ident: ref50
  doi: 10.1109/36.774728
– ident: ref8
  doi: 10.1109/WARSD.2003.1295218
– ident: ref108
  doi: 10.1109/34.667881
– ident: ref54
  doi: 10.1117/12.836024
SSID ssj0003563
Score 2.629085
Snippet Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both...
Recent Advances in Spectral-Spatial Classification of Hyperspectral Images are presented in this paper. Several techniques are investigated for combining both...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 652
SubjectTerms Classification
Classification algorithms
Computer Science
Construction
Feature extraction
hyperspectral image
Hyperspectral imaging
Image contrast
Image Processing
Image segmentation
Kernel
kernel methods
mathematical morphology
morphological neighborhood
Nearest neighbor searches
Pixels
Remote sensing
segmentation
Spatial resolution
Spectra
Spectral analysis
spectral-spatial classifier
Strategy
Title Advances in Spectral-Spatial Classification of Hyperspectral Images
URI https://ieeexplore.ieee.org/document/6297992
https://www.proquest.com/docview/1291597920
https://www.proquest.com/docview/1323233339
https://www.proquest.com/docview/1770346452
https://inria.hal.science/hal-00737075
Volume 101
WOSCitedRecordID wos000315480200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_a4oM--FXF1Fqi-KZpb5PNfjweR8tVSi2i0rewHxMsaE56d_37O7PJBUUp9C1kZ0mY2Z357c7s_gDeO65Wo6VPIWPrCqazKLyuRaEoFLpKxbZOLArfz_T5ubm8tBdb8HE8C4OIqfgMD_kx5fLjIqx5q-xIlZyEIoe7rbXqz2qNXreqB9Y0QROYpuHmgMzEHn26-PJ5xlVc5SE1EEC2fwWh7R9cApm4Vf5xyCnKnDy53_89hccDmsynvfmfwRZ2z-HRH3cM7sJs2mf5l_lVlzPbPG9tFMxETCMvT5yYXC2UDJQv2nxOC9P-_CXJ5ae_yN8sX8C3k-Ovs3kxMCcUgeDXqqicVAqjtgFL4SjiVBSFUVbemNbUHlvjpQjCC-mdsbJGrwIah8pZ6lbL6iXsdIsOX0Eeoiu1N46BozQRPWEyjKoN3kYdhcxAbFTZhOFacWa3-Nmk5cXENkn9Dau_GdSfwYexz-_-Uo07pd-RhUZBvg97Pj1r-B3nGTWBnhuRwS7bY5QaTJHB_sagzTA5lw1BHAJx2paTDN6OzTStOFfiOlysSaYiqEmDuLJ3yGhylykzvPf_r7-Gh2Viz-CStX3YWV2v8Q08CDerq-X1QRq_t_fB64E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NDQn2wNdAZBsjIN4gW504if1YVZs6KGVCA-3N8sdFTIIUre3-_t25aQQCTdpbFJ-V6M6--9l39g_gneVqNVr6ZDI0NmM6i8zVpcgqCoW2qEJTRhaF75N6OlUXF_psAz70Z2EQMRaf4SE_xlx-mPklb5UdVTknocjhbjFzVndaq_e7RdnxpgmawjQR10dkBvro49nXLyOu48oPqYEgsv4rDN37wUWQkV3lH5cc48zJ47v94RN41OHJdLgaAE9hA9tnsP3HLYM7MBqu8vzz9LJNmW-eNzcy5iKmsZdGVkyuF4omSmdNOqal6eoEJsmlp7_I48yfw7eT4_PROOu4EzJPAGyRFVZWFYZae8yFpZhTUBxGWTilGlU6bJSTwgsnpLNKyxJd5VFZrKymbqUsXsBmO2vxJaQ-2Lx2yjJ0lCqgI1SGoWq806EOQiYg1qo0vrtYnPktfpq4wBhoE9VvWP2mU38C7_s-v1fXatwq_ZYs1Avyjdjj4cTwO8401gR7rkUCO2yPXqozRQL7a4OabnrODYEcgnG1zgcJvOmbaWJxtsS2OFuSTEFgk4ZxoW-Rqclhxtzw7v-__hoejM8_T8zkdPppDx7mkUuDC9j2YXNxtcRXcN9fLy7nVwdxLN8AYQnuyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Spectral-Spatial+Classification+of+Hyperspectral+Images&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Fauvel%2C+Mathieu&rft.au=Tarabalka%2C+Yuliya&rft.au=Benediktsson%2C+Jon+Atli&rft.au=Chanussot%2C+Jocelyn&rft.date=2013-03-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=101&rft.issue=3&rft.spage=652&rft.epage=675&rft_id=info:doi/10.1109%2FJPROC.2012.2197589&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-00737075v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon