BUGSnet: an R package to facilitate the conduct and reporting of Bayesian network Meta-analyses
Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines....
Saved in:
| Published in: | BMC medical research methodology Vol. 19; no. 1; pp. 196 - 13 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
22.10.2019
BioMed Central Ltd BMC |
| Subjects: | |
| ISSN: | 1471-2288, 1471-2288 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines.
Results
To better facilitate the conduct and reporting of NMAs, we have created an R package called “BUGSnet” (
B
ayesian inference
U
sing
G
ibbs
S
ampling to conduct a
Net
work meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines.
Conclusion
BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs. |
|---|---|
| AbstractList | Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines.
To better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines.
BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs. Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines.BACKGROUNDSeveral reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines.To better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines.RESULTSTo better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines.BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs.CONCLUSIONBUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs. Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. To better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs. Abstract Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. Results To better facilitate the conduct and reporting of NMAs, we have created an R package called “BUGSnet” (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. Conclusion BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs. Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. Results To better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. Conclusion BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs. Keywords: Network meta-analysis, Indirect treatment comparison, Systematic review, Bayesian inference, Knowledge synthesis, Health technology assessment, Clinical efficacy, R package, Reporting guidelines Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. Results To better facilitate the conduct and reporting of NMAs, we have created an R package called “BUGSnet” ( B ayesian inference U sing G ibbs S ampling to conduct a Net work meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. Conclusion BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs. |
| ArticleNumber | 196 |
| Audience | Academic |
| Author | Brenner, Darren Boyne, Devon J. Béliveau, Audrey Arora, Paul Slater, Justin |
| Author_xml | – sequence: 1 givenname: Audrey orcidid: 0000-0003-4124-2498 surname: Béliveau fullname: Béliveau, Audrey email: audrey.beliveau@waterloo.ca organization: Department of Statistics and Actuarial Science, University of Waterloo – sequence: 2 givenname: Devon J. surname: Boyne fullname: Boyne, Devon J. organization: Division of Analytics, Lighthouse Outcomes, Department of Community Health Sciences, University of Calgary – sequence: 3 givenname: Justin surname: Slater fullname: Slater, Justin organization: Division of Analytics, Lighthouse Outcomes – sequence: 4 givenname: Darren surname: Brenner fullname: Brenner, Darren organization: Division of Analytics, Lighthouse Outcomes, Department of Community Health Sciences, University of Calgary, Department of Oncology, University of Calgary – sequence: 5 givenname: Paul surname: Arora fullname: Arora, Paul organization: Division of Analytics, Lighthouse Outcomes, Dalla Lana School of Public Health, University of Toronto |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31640567$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB_wA9igSGzYpPiV2GaB1FalVCpCArq2PPZ16mnGHuwMaP59HdKiDkJVFo7tcz7d63sOq70QA1TVa4yOMRbd-4yJ4KxBWDZIENmQZ9UBZhw3hAix9-h_vzrMeYkQ5oJ2L6p9ijuG2o4fVOr0-uJ7gPFDrUP9rV5rc6t7qMdYO2384Ec9lt0N1CYGuzFjkdk6wTqm0Ye-jq4-1VvIvrgL5XdMt_UXGHWjgx62GfLL6rnTQ4ZX9-tRdf3p_MfZ5-bq68Xl2clVY1rejg0V2JDWUJBAOyw4R9IYgsBJiy1gaAmHcqnNAqNFaV2zzjBoKWdMMts5elRdzlwb9VKtk1_ptFVRe_XnIKZe6VKyGUAhQoXUshC0ZQtnJaUOOY7Km0hpiSmsjzNrvVmswBoIY9LDDnT3Jvgb1cdfqhOobWlXAO_uASn-3EAe1cpnA8OgA8RNVoQigVnXYl6kb2dpr0tpPrhYiGaSq5MOsZZSyUhRHf9HVT4LK18mA86X8x3Dm8ct_K39YfBFwGeBSTHnBE6ZadY-Th35QWGkpoipOWKqRExNEVMTGv_jfIA_5SGzJxdt6CGpZdykEpH8hOkObGLhRQ |
| CitedBy_id | crossref_primary_10_1007_s00228_023_03479_3 crossref_primary_10_7759_cureus_28582 crossref_primary_10_1007_s00415_025_13279_7 crossref_primary_10_1177_26317745211062983 crossref_primary_10_1053_j_gastro_2024_03_018 crossref_primary_10_1136_rapm_2024_106345 crossref_primary_10_3389_fcvm_2023_1257628 crossref_primary_10_3389_fphar_2024_1358340 crossref_primary_10_1136_bmj_2024_081164 crossref_primary_10_1136_bmj_2022_070022 crossref_primary_10_1016_j_hlpt_2024_100879 crossref_primary_10_1016_j_ijnurstu_2021_103904 crossref_primary_10_1097_MEG_0000000000002222 crossref_primary_10_1016_j_jep_2023_117663 crossref_primary_10_1016_j_yebeh_2025_110434 crossref_primary_10_1097_ALN_0000000000004381 crossref_primary_10_3390_nu16162690 crossref_primary_10_1016_j_bja_2023_11_046 crossref_primary_10_1016_j_smrv_2025_102117 crossref_primary_10_1038_s41598_020_70641_7 crossref_primary_10_1016_j_maturitas_2025_108713 crossref_primary_10_1210_clinem_dgae651 crossref_primary_10_1016_j_heliyon_2024_e31186 crossref_primary_10_1016_j_ejvs_2022_08_025 crossref_primary_10_1053_j_jvca_2025_08_053 crossref_primary_10_1136_bmjopen_2020_039122 crossref_primary_10_3389_fnut_2023_1133293 crossref_primary_10_1016_j_jcms_2021_04_014 crossref_primary_10_1001_jamapediatrics_2021_0775 crossref_primary_10_1186_s13019_024_03015_z crossref_primary_10_1097_JS9_0000000000000630 crossref_primary_10_1017_cjn_2023_287 crossref_primary_10_1097_JS9_0000000000000991 crossref_primary_10_1080_00273171_2022_2115965 crossref_primary_10_1016_j_ejvs_2024_05_014 crossref_primary_10_1016_j_jamda_2022_01_057 crossref_primary_10_1136_bmjopen_2022_061855 crossref_primary_10_3389_fendo_2023_1144290 crossref_primary_10_1038_s41598_022_22431_6 crossref_primary_10_3390_nu17162683 crossref_primary_10_3389_fneur_2025_1544135 crossref_primary_10_2106_JBJS_OA_23_00064 crossref_primary_10_1016_j_bja_2023_02_041 crossref_primary_10_1007_s00228_025_03882_y crossref_primary_10_1016_j_bjane_2024_844565 crossref_primary_10_1016_j_bja_2024_12_039 crossref_primary_10_1007_s11239_021_02628_8 crossref_primary_10_1016_j_drugalcdep_2020_108467 crossref_primary_10_1016_j_jshs_2024_01_004 crossref_primary_10_1016_j_ajp_2024_104316 crossref_primary_10_1177_00033197221121616 crossref_primary_10_1016_j_chest_2024_06_3773 crossref_primary_10_1007_s10557_023_07457_w crossref_primary_10_1007_s00415_024_12330_3 crossref_primary_10_1016_j_jclinepi_2025_111839 crossref_primary_10_1080_07853890_2025_2541420 crossref_primary_10_3389_fendo_2023_1282584 crossref_primary_10_1186_s13643_024_02736_5 crossref_primary_10_1186_s12885_023_11250_1 crossref_primary_10_2147_CLEP_S422386 crossref_primary_10_2196_40383 crossref_primary_10_1016_j_jdsr_2024_05_004 crossref_primary_10_1136_bmjopen_2024_088917 crossref_primary_10_2186_jpr_JPR_D_23_00272 crossref_primary_10_1186_s12889_021_10162_8 crossref_primary_10_1002_ijgo_15602 crossref_primary_10_1007_s00415_024_12243_1 crossref_primary_10_1093_ehjcvp_pvac065 crossref_primary_10_3390_jcm13226932 crossref_primary_10_1136_bmjopen_2022_068182 crossref_primary_10_1016_j_scitotenv_2023_167017 crossref_primary_10_1136_bjsports_2023_107956 crossref_primary_10_1186_s13018_025_05574_w crossref_primary_10_1016_j_heliyon_2024_e37058 crossref_primary_10_1080_14787210_2021_1961579 crossref_primary_10_3389_fphar_2024_1348360 crossref_primary_10_1038_s41598_023_34348_9 crossref_primary_10_3390_pharmaceutics15051361 crossref_primary_10_3389_fendo_2025_1579101 crossref_primary_10_3389_fphar_2024_1475222 crossref_primary_10_1016_j_jagp_2024_06_012 crossref_primary_10_7717_peerj_19175 crossref_primary_10_1016_j_jshs_2024_101008 crossref_primary_10_2147_JPR_S396530 crossref_primary_10_1186_s12874_020_01113_9 crossref_primary_10_1080_09546634_2021_1927949 crossref_primary_10_1371_journal_pone_0303513 crossref_primary_10_1007_s11096_024_01755_5 crossref_primary_10_1093_ehjcvp_pvaa101 crossref_primary_10_1097_PCC_0000000000003139 crossref_primary_10_3389_fneur_2023_1176540 crossref_primary_10_1016_j_arthro_2022_11_032 crossref_primary_10_1186_s12874_023_02038_9 crossref_primary_10_1038_s41598_022_13680_6 crossref_primary_10_1186_s12936_021_03768_1 crossref_primary_10_3389_fphar_2025_1573640 crossref_primary_10_3389_fpubh_2022_1040704 crossref_primary_10_3389_fphar_2024_1410172 crossref_primary_10_1016_j_jclinepi_2025_111759 crossref_primary_10_3389_fvets_2020_00271 crossref_primary_10_1007_s00223_023_01078_z crossref_primary_10_1097_DCR_0000000000003256 crossref_primary_10_1093_bjsopen_zrab091 crossref_primary_10_1016_j_thromres_2024_109101 crossref_primary_10_1111_ans_17831 crossref_primary_10_3390_ijms252312821 crossref_primary_10_1016_j_autrev_2024_103723 crossref_primary_10_1016_j_ihj_2025_06_006 crossref_primary_10_1016_j_ejvs_2023_05_029 crossref_primary_10_1186_s13643_020_01366_x crossref_primary_10_1002_bimj_202300334 crossref_primary_10_1016_j_phymed_2024_156295 crossref_primary_10_1159_000534196 crossref_primary_10_1186_s12933_024_02301_3 crossref_primary_10_1016_j_dsx_2024_103136 crossref_primary_10_1016_j_injury_2023_111078 crossref_primary_10_1111_anae_15873 crossref_primary_10_1214_20_BA1224 crossref_primary_10_1007_s40520_025_03015_6 crossref_primary_10_1080_03007995_2022_2108616 crossref_primary_10_1080_09546634_2025_2513054 crossref_primary_10_1136_bmjebm_2024_113103 crossref_primary_10_1016_j_jep_2021_114665 crossref_primary_10_1007_s00540_023_03170_y crossref_primary_10_1016_j_bja_2021_08_034 crossref_primary_10_3389_fonc_2024_1524991 crossref_primary_10_1111_jcpt_13156 crossref_primary_10_1097_JS9_0000000000000819 crossref_primary_10_1111_head_14283 crossref_primary_10_1016_j_ejso_2023_107087 crossref_primary_10_1001_jamapediatrics_2020_6826 crossref_primary_10_1016_j_jvsv_2023_03_011 crossref_primary_10_1177_15266028231193978 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106270 crossref_primary_10_3389_fendo_2025_1558560 crossref_primary_10_1515_med_2021_0242 crossref_primary_10_1016_j_imr_2023_101004 crossref_primary_10_1007_s12020_025_04342_4 crossref_primary_10_1016_j_ypmed_2022_107169 crossref_primary_10_1016_j_aed_2025_08_007 crossref_primary_10_1111_jocd_70185 crossref_primary_10_1186_s12909_024_06397_9 crossref_primary_10_1007_s12272_025_01552_2 crossref_primary_10_1001_jamanetworkopen_2024_11735 crossref_primary_10_1186_s12887_025_05469_z crossref_primary_10_1097_CM9_0000000000002183 crossref_primary_10_1002_wps_21036 crossref_primary_10_1186_s13018_024_04792_y crossref_primary_10_3233_NPM_221025 crossref_primary_10_1016_j_advnut_2024_100216 crossref_primary_10_1186_s12874_023_02130_0 crossref_primary_10_1186_s12893_024_02385_4 crossref_primary_10_3389_fcvm_2022_996744 crossref_primary_10_1016_j_ajic_2024_02_016 crossref_primary_10_1097_HEP_0000000000001028 crossref_primary_10_1177_17407745221112001 crossref_primary_10_1186_s40560_023_00667_2 crossref_primary_10_1053_j_jvca_2023_07_041 crossref_primary_10_3389_fneur_2024_1346099 crossref_primary_10_3390_ijerph19137711 crossref_primary_10_3389_fmed_2022_998623 crossref_primary_10_1186_s12916_023_03238_2 crossref_primary_10_1016_j_bone_2022_116610 crossref_primary_10_1097_MS9_0000000000003658 crossref_primary_10_1227_ons_0000000000001251 crossref_primary_10_1016_j_jdent_2023_104532 crossref_primary_10_1016_j_ejvs_2021_12_042 crossref_primary_10_1136_bjo_2023_323798 crossref_primary_10_1186_s44158_025_00272_9 crossref_primary_10_1186_s12905_024_03453_w crossref_primary_10_1136_bmjebm_2022_111928 crossref_primary_10_1001_jamaophthalmol_2022_3667 crossref_primary_10_1159_000545282 crossref_primary_10_1177_02683555211015020 crossref_primary_10_1016_j_surg_2021_11_030 crossref_primary_10_1007_s00787_023_02174_z crossref_primary_10_1016_j_bja_2024_09_020 crossref_primary_10_1186_s12889_025_21405_3 crossref_primary_10_1002_ehf2_13822 crossref_primary_10_1016_j_spinee_2021_02_022 crossref_primary_10_1186_s13018_023_03714_8 crossref_primary_10_1016_j_apmr_2023_12_013 crossref_primary_10_1007_s00384_024_04724_6 crossref_primary_10_1002_ppul_25011 crossref_primary_10_1161_HYPERTENSIONAHA_121_18415 crossref_primary_10_1186_s13020_021_00556_6 crossref_primary_10_1111_apt_16808 crossref_primary_10_3389_fpsyt_2023_1189970 crossref_primary_10_1007_s10741_024_10403_z crossref_primary_10_1097_HEP_0000000000001254 crossref_primary_10_1159_000516640 crossref_primary_10_1371_journal_pone_0250553 crossref_primary_10_1371_journal_pone_0276129 crossref_primary_10_1016_j_jdent_2023_104636 crossref_primary_10_1016_j_psychres_2024_115874 crossref_primary_10_3389_fonc_2022_942941 crossref_primary_10_3389_fendo_2024_1431676 crossref_primary_10_1016_j_ajpc_2025_101045 |
| Cites_doi | 10.1002/jrsm.1195 10.1016/j.jval.2014.01.004 10.1016/j.jval.2014.01.003 10.1002/jrsm.1054 10.1016/j.jclinepi.2013.07.014 10.1136/bmj.g1741 10.1016/j.jval.2011.04.002 10.1136/bmj.b1147 10.1186/1741-7015-11-159 10.1111/jebm.12264 10.1136/bmj.k585 10.1002/9781118951651 10.1016/S0140-6736(07)60108-1 10.1371/journal.pone.0092508 10.1371/journal.pone.0011054 10.1371/journal.pone.0115065 10.1002/sim.1186 10.1186/2046-4053-3-110 10.7326/M14-2385 10.1002/sim.1189 10.1016/j.jclinepi.2017.06.004 10.1093/ije/dys222 10.1002/jrsm.1085 10.1186/s12916-016-0764-6 10.1016/S0895-4356(97)00049-8 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1186/s12874-019-0829-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1471-2288 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_02389a946cad4bfd933f0f7016499d2c PMC6805536 A604533942 31640567 10_1186_s12874_019_0829_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Canada |
| GeographicLocations_xml | – name: Canada |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c575t-381c25c3e9e36187709cc20ef9d1de1e527e3e9acb10b186a46c4e5374494d6f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 223 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492022100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2288 |
| IngestDate | Fri Oct 03 12:23:14 EDT 2025 Tue Nov 04 01:46:42 EST 2025 Thu Oct 02 09:42:37 EDT 2025 Tue Nov 11 10:17:06 EST 2025 Tue Nov 04 17:53:21 EST 2025 Sat Jun 21 01:31:02 EDT 2025 Sat Nov 29 06:38:57 EST 2025 Tue Nov 18 21:26:06 EST 2025 Sat Sep 06 07:35:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Network meta-analysis Health technology assessment Knowledge synthesis Clinical efficacy Systematic review Bayesian inference Reporting guidelines Indirect treatment comparison R package |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-381c25c3e9e36187709cc20ef9d1de1e527e3e9acb10b186a46c4e5374494d6f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4124-2498 |
| OpenAccessLink | https://doaj.org/article/02389a946cad4bfd933f0f7016499d2c |
| PMID | 31640567 |
| PQID | 2308146517 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_02389a946cad4bfd933f0f7016499d2c pubmedcentral_primary_oai_pubmedcentral_nih_gov_6805536 proquest_miscellaneous_2308146517 gale_infotracmisc_A604533942 gale_infotracacademiconefile_A604533942 pubmed_primary_31640567 crossref_citationtrail_10_1186_s12874_019_0829_2 crossref_primary_10_1186_s12874_019_0829_2 springer_journals_10_1186_s12874_019_0829_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-22 |
| PublicationDateYYYYMMDD | 2019-10-22 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medical research methodology |
| PublicationTitleAbbrev | BMC Med Res Methodol |
| PublicationTitleAlternate | BMC Med Res Methodol |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | B Hutton (829_CR11) 2015; 162 C Xu (829_CR14) 2018; 11 JP Jansen (829_CR1) 2011; 14 829_CR12 G van Valkenhoef (829_CR15) 2012; 3 HC Bucher (829_CR27) 1997; 50 829_CR18 AW Lee (829_CR3) 2014; 67 829_CR19 S Dias (829_CR26) 2011 S Donegan (829_CR7) 2010; 5 JP Higgins (829_CR21) 2002; 21 J Jaime Caro (829_CR29) 2014; 17 B Hutton (829_CR5) 2014; 9 F Song (829_CR6) 2009; 338 S Dias (829_CR17) 2011 WJ Elliott (829_CR31) 2007; 369 AA Veroniki (829_CR24) 2013; 42 A Nikolakopoulou (829_CR32) 2018; 360 O Efthimiou (829_CR2) 2016; 7 A Bafeta (829_CR4) 2014; 348 B Kovic (829_CR8) 2017; 88 B Neupane (829_CR13) 2014; 9 S Donegan (829_CR25) 2013; 4 S Brown (829_CR16) 2014; 3 DE Warn (829_CR23) 2002; 21 S Dias (829_CR28) 2011 G Schwarzer (829_CR30) 2007; 7 W Zarin (829_CR9) 2017; 15 JP Jansen (829_CR20) 2013; 11 Sofia Dias (829_CR22) 2018 JP Jansen (829_CR10) 2014; 17 |
| References_xml | – volume: 7 start-page: 236 issue: 3 year: 2016 ident: 829_CR2 publication-title: Res Synth Methods doi: 10.1002/jrsm.1195 – volume: 17 start-page: 157 issue: 2 year: 2014 ident: 829_CR10 publication-title: Value Health doi: 10.1016/j.jval.2014.01.004 – volume: 17 start-page: 174 issue: 2 year: 2014 ident: 829_CR29 publication-title: Value Health doi: 10.1016/j.jval.2014.01.003 – volume: 3 start-page: 285 issue: 4 year: 2012 ident: 829_CR15 publication-title: Res Synth Methods doi: 10.1002/jrsm.1054 – volume: 67 start-page: 138 issue: 2 year: 2014 ident: 829_CR3 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2013.07.014 – volume: 348 year: 2014 ident: 829_CR4 publication-title: BMJ doi: 10.1136/bmj.g1741 – ident: 829_CR19 – volume: 14 start-page: 417 issue: 4 year: 2011 ident: 829_CR1 publication-title: Value Health doi: 10.1016/j.jval.2011.04.002 – volume: 338 start-page: b1147 year: 2009 ident: 829_CR6 publication-title: BMJ doi: 10.1136/bmj.b1147 – volume: 11 start-page: 159 year: 2013 ident: 829_CR20 publication-title: BMC Med doi: 10.1186/1741-7015-11-159 – volume: 11 start-page: 176 issue: 3 year: 2018 ident: 829_CR14 publication-title: J Evid Based Med doi: 10.1111/jebm.12264 – volume: 360 start-page: k585 year: 2018 ident: 829_CR32 publication-title: BMJ doi: 10.1136/bmj.k585 – volume-title: Network Meta-Analysis for Decision Making year: 2018 ident: 829_CR22 doi: 10.1002/9781118951651 – volume: 369 start-page: 201 issue: 9557 year: 2007 ident: 829_CR31 publication-title: Lancet doi: 10.1016/S0140-6736(07)60108-1 – volume-title: NICE DSU technical support document 3: heterogeneity: subgroups, meta-regression, bias and bias-adjustment year: 2011 ident: 829_CR28 – volume: 9 issue: 3 year: 2014 ident: 829_CR5 publication-title: PLoS One doi: 10.1371/journal.pone.0092508 – volume: 5 issue: 11 year: 2010 ident: 829_CR7 publication-title: PLoS One doi: 10.1371/journal.pone.0011054 – ident: 829_CR18 – volume: 9 issue: 12 year: 2014 ident: 829_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0115065 – volume: 7 start-page: 40 issue: 3 year: 2007 ident: 829_CR30 publication-title: R News – volume: 21 start-page: 1539 issue: 11 year: 2002 ident: 829_CR21 publication-title: Stat Med doi: 10.1002/sim.1186 – volume-title: NICE DSU technical support document 4: inconsistency in networks of evidence based on randomised controlled trials year: 2011 ident: 829_CR26 – volume: 3 start-page: 110 year: 2014 ident: 829_CR16 publication-title: Systematic Reviews doi: 10.1186/2046-4053-3-110 – volume: 162 start-page: 777 issue: 11 year: 2015 ident: 829_CR11 publication-title: Ann Intern Med doi: 10.7326/M14-2385 – ident: 829_CR12 – volume: 21 start-page: 1601 issue: 11 year: 2002 ident: 829_CR23 publication-title: Stat Med doi: 10.1002/sim.1189 – volume: 88 start-page: 47 year: 2017 ident: 829_CR8 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2017.06.004 – volume: 42 start-page: 332 issue: 1 year: 2013 ident: 829_CR24 publication-title: Int J Epidemiol doi: 10.1093/ije/dys222 – volume: 4 start-page: 291 issue: 4 year: 2013 ident: 829_CR25 publication-title: Res Synth Methods doi: 10.1002/jrsm.1085 – volume: 15 start-page: 3 issue: 1 year: 2017 ident: 829_CR9 publication-title: BMC Med doi: 10.1186/s12916-016-0764-6 – volume-title: NICE DSU technical support document 2: a generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials year: 2011 ident: 829_CR17 – volume: 50 start-page: 683 issue: 6 year: 1997 ident: 829_CR27 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(97)00049-8 |
| SSID | ssj0017836 |
| Score | 2.6311498 |
| Snippet | Background
Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be... Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially... Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be... Abstract Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 196 |
| SubjectTerms | Bayes Theorem Bayesian analysis Bayesian inference Computational Biology - methods Data analysis Health Sciences Health technology assessment Humans Indirect treatment comparison Knowledge synthesis Medicine Medicine & Public Health Meta-analysis Methods Network meta-analysis Network Meta-Analysis as Topic R (Programming language) Software Statistical software Statistical Theory and Methods statistics and modelling Statistics for Life Sciences Systematic review Systematic Reviews as Topic Technology Theory of Medicine/Bioethics |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kivhSvzVaZQVBUIJJ9tu3nlh9sEVaW_q2bDa7bVGSckkF_3tnNrnD1A_Qh3u428ndzmQ-b2Z_IeQ5rz0UEsHkUdUs50qAzYlK5NI12sGrdmk25-ij2tvTx8fm03SOu19Nu69akslTJ7PW8nVfIjQ7lL4mx_OgOfjdqxDtNFrj_sHRunWAxxKm9uVvL5sFoITT_6s3_ikcXR6VvNQvTWFo5-Z_MXCLbE5ZJ90e1eQ2uRLaO-T67tRXv0vs4vD9QRuGN9S1dJ9CHf0F_AwdOhqdH3G84d1poFA9I0AskDV0bDfADmgX6cJ9D3gek7bjXDndDYPLXYI8Cf09crjz7vPbD_n06IXcQ_425BDHfSU8CyYwWWqlCuN9VYRomrIJZRCVCrDofF0WNTDnuPQ8CKY4N7yRkd0nG23XhoeESvAoUXMvmcRcJ2gRZYSvYN5pkIvOSLG6H9ZPuOT4eIyvNtUnWtpRcBYEZ1FwtsrIy_Ul5yMox9-IF3iT14SIp50-6JYndjJPi5mLcQa4cA2vY2MYi0VUiD9mTFP5jLxAFbFo9bA576bDC8Ai4mfZbQmpMWOGw89tzSjBWv1s-dlKySwu4YhbG7qL3kItiH_HilJl5MGodOs9M9gHZKqwombqOGNqvtKenSawcKkLIZjMyKuVUtrJS_V_ltmjf6J-TG5UqNUQ0atqi2wMy4vwhFzz34azfvk0WecP5Kkz2w priority: 102 providerName: Springer Nature |
| Title | BUGSnet: an R package to facilitate the conduct and reporting of Bayesian network Meta-analyses |
| URI | https://link.springer.com/article/10.1186/s12874-019-0829-2 https://www.ncbi.nlm.nih.gov/pubmed/31640567 https://www.proquest.com/docview/2308146517 https://pubmed.ncbi.nlm.nih.gov/PMC6805536 https://doaj.org/article/02389a946cad4bfd933f0f7016499d2c |
| Volume | 19 |
| WOSCitedRecordID | wos000492022100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RSV dateStart: 20011201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96ivgifls9lwiCoJRrkzQfvt3KnQrusux5x_oU0jThDqUr157gf-9M212uJ-qLD1vITnabzkdmppn8QshLUXpIJIJJoyp5KlQBNlewIpWu0g4-petqc04-qflcr1ZmcemoL6wJ6-GBe8btoU8xzgjpXSXKWEECHrOoEBnKmIp5nH0h6tkkU8P6Ae5NGNYwcy33mhxh3SFtNinuJU3ZyAt1YP2_T8mXfNLVeskri6adLzq8S-4MQSTd7wd_j1wL9X1yazYskz8gdnr8_qgO7VvqarqkkBZ_hWmDtmsane9huaF1Gigkw4j3Ct0q2q8ewP3oOtKp-xlweyWt-zJxOgutS12HYBKah-T48ODzuw_pcJJC6iEca1Nwy54VngcTuMy1UpnxnmUhmiqvQh4KpgIQnS_zrASGOWC3CAVXQhhRycgfkZ16XYcnhEqYIKIWXnKJoUvQRZQR_oJ7p4HXOiHZhrPWDzDjeNrFN9ulG1raXhgWhGFRGJYl5PX2J997jI2_dZ6iuLYdER67-wKUxg5KY_-lNAl5hcK2aMQwOO-GvQjwiAiHZfclRLqcGwG32x31BOPzI_KLjbpYJGHFWh3WF42F1A7frha5SsjjXn22Y-YwDgg8gaJGijV6qDGlPjvtsL-lzoqCy4S82aigHSad5s88e_o_ePaM3GZoQOC3GdslO-35RXhObvof7VlzPiHX1Up1Vz0hN6YH88Vy0pkktBYfZ4sv0FoenfwCAqE2Jg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZQQdAX7iNQwEhISKCIJL556yJKEbsr1Et9sxzHplVRgjYpEv-esZOsSDkkeNiHXU927cmcOzNfEHpOSwuJhFOpFyVJqWCgc6xgKTeVNPAqTezNOZqL5VIeH6tPwxx3O3a7jyXJaKmjWkv-us0DNDukvioN86Ap2N3LFBxW6OPb2z9alw7CWMJQvvztZRMHFHH6f7XGP7mji62SF-ql0Q3t3PivA9xE14eoE2_3YnILXXL1bXR1MdTV7yA9O3y_X7vuDTY13sOQR5-BncFdg72xPY43vDtxGLLnABALZBXuyw2wA9x4PDPfXZjHxHXfV44XrjOpiZAnrr2LDnfeHbzdTYdHL6QW4rcuBT9uC2aJU47wXAqRKWuLzHlV5ZXLHSuEg0Vjyzwr4XCGcksdI4JSRSvuyT20UTe1e4AwB4viJbWc8BDrOMk89_AVxBoJfJEJysb7oe2ASx4ej_FFx_xEct0zTgPjdGCcLhL0cn3J1x6U42_Es3CT14QBTzt-0Kw-60E9dYhclFFwClPR0leKEJ95EfDHlKoKm6AXQUR00HrYnDXD8AIcMeBn6W0OoTEhisLPbU0oQVvtZPnZKGQ6LIUWt9o1562GXDD8HctykaD7vdCt90xgHxCpwoqYiOPkUNOV-vQkgoVzmTFGeIJejUKpByvV_plnD_-J-im6tnuwmOv5h-XHR2izCBIO3r0ottBGtzp3j9EV-607bVdPoqb-AFUPNr8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQQRUv5S6BAkZCQgJFTeIr5q0LLCDaVUVp1TfLcWxaFSXVJkXi3zOTY0XKISEe9mF3nI1nMp4jM_5MyDNeOEgkvI6DKljMlYA1JzIRS1vmFj6F7XpzjnbVYpEfH-v94ZzTZux2H0uS_Z4GRGmq2u3zMvRLPJfbTYow7ZAG6xj3hsZgg69yPDMI0_WDo1UZAbcoDKXM3142cUYdZv-vlvkn13S5bfJS7bRzSfMb_83MTbIxRKN0p1efW-SKr26T9b2h3n6HmNnhu4PKt6-oregnCvn1Gdgf2tY0WNfje8O3E0_hjggcC8NK2pchYDa0DnRmv3vcp0mrvt-c7vnWxraDQvHNXXI4f_v59ft4OJIhdhDXtTH4d5cJx7z2TKa5Uol2Lkt80GVa-tSLTHkgWlekSQHMWS4d94IpzjUvZWD3yFpVV_4-oRIsTci5k0xiDORzEWSAv2DO5iCXPCLJ-GyMG_DK8diMr6bLW3JpesEZEJxBwZksIi9Wl5z3YB1_GzzDB74aiDjb3Q_18osZlq3BiEZbDVzYkheh1IyFJCjEJdO6zFxEnqO6GLQGMDlnh00NwCLiapkdCSEzY5rD7bYmI2EVuwn56ahwBknY-lb5-qIxkCPia1qRqohs9gq4mjODeUAECxQ1Uc0JU1NKdXrSgYjLPBGCyYi8HBXUDNar-bPMHvzT6Cdkff_N3Ox-WHx8SK5nqODg9LNsi6y1ywv_iFxz39rTZvm4W7Q_ALgBP6M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BUGSnet%3A+an+R+package+to+facilitate+the+conduct+and+reporting+of+Bayesian+network+Meta-analyses&rft.jtitle=BMC+medical+research+methodology&rft.au=B%C3%A9liveau%2C+Audrey&rft.au=Boyne%2C+Devon+J&rft.au=Slater%2C+Justin&rft.au=Brenner%2C+Darren&rft.date=2019-10-22&rft.eissn=1471-2288&rft.volume=19&rft.issue=1&rft.spage=196&rft_id=info:doi/10.1186%2Fs12874-019-0829-2&rft_id=info%3Apmid%2F31640567&rft.externalDocID=31640567 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon |