BUGSnet: an R package to facilitate the conduct and reporting of Bayesian network Meta-analyses

Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines....

Full description

Saved in:
Bibliographic Details
Published in:BMC medical research methodology Vol. 19; no. 1; pp. 196 - 13
Main Authors: Béliveau, Audrey, Boyne, Devon J., Slater, Justin, Brenner, Darren, Arora, Paul
Format: Journal Article
Language:English
Published: London BioMed Central 22.10.2019
BioMed Central Ltd
BMC
Subjects:
ISSN:1471-2288, 1471-2288
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. Results To better facilitate the conduct and reporting of NMAs, we have created an R package called “BUGSnet” ( B ayesian inference U sing G ibbs S ampling to conduct a Net work meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. Conclusion BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs.
AbstractList Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. To better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs.
Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines.BACKGROUNDSeveral reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines.To better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines.RESULTSTo better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines.BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs.CONCLUSIONBUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs.
Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. To better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs.
Abstract Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. Results To better facilitate the conduct and reporting of NMAs, we have created an R package called “BUGSnet” (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. Conclusion BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs.
Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. Results To better facilitate the conduct and reporting of NMAs, we have created an R package called "BUGSnet" (Bayesian inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. Conclusion BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs. Keywords: Network meta-analysis, Indirect treatment comparison, Systematic review, Bayesian inference, Knowledge synthesis, Health technology assessment, Clinical efficacy, R package, Reporting guidelines
Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which do not readily produce all of the output needed to satisfy current guidelines. Results To better facilitate the conduct and reporting of NMAs, we have created an R package called “BUGSnet” ( B ayesian inference U sing G ibbs S ampling to conduct a Net work meta-analysis). This R package relies upon Just Another Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these functions to checklist items within current reporting and best practice guidelines. Conclusion BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the conduct and reporting of NMAs.
ArticleNumber 196
Audience Academic
Author Brenner, Darren
Boyne, Devon J.
Béliveau, Audrey
Arora, Paul
Slater, Justin
Author_xml – sequence: 1
  givenname: Audrey
  orcidid: 0000-0003-4124-2498
  surname: Béliveau
  fullname: Béliveau, Audrey
  email: audrey.beliveau@waterloo.ca
  organization: Department of Statistics and Actuarial Science, University of Waterloo
– sequence: 2
  givenname: Devon J.
  surname: Boyne
  fullname: Boyne, Devon J.
  organization: Division of Analytics, Lighthouse Outcomes, Department of Community Health Sciences, University of Calgary
– sequence: 3
  givenname: Justin
  surname: Slater
  fullname: Slater, Justin
  organization: Division of Analytics, Lighthouse Outcomes
– sequence: 4
  givenname: Darren
  surname: Brenner
  fullname: Brenner, Darren
  organization: Division of Analytics, Lighthouse Outcomes, Department of Community Health Sciences, University of Calgary, Department of Oncology, University of Calgary
– sequence: 5
  givenname: Paul
  surname: Arora
  fullname: Arora, Paul
  organization: Division of Analytics, Lighthouse Outcomes, Dalla Lana School of Public Health, University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31640567$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGzYpPiV2GaB1FalVCpCArq2PPZ16mnGHuwMaP59HdKiDkJVFo7tcz7d63sOq70QA1TVa4yOMRbd-4yJ4KxBWDZIENmQZ9UBZhw3hAix9-h_vzrMeYkQ5oJ2L6p9ijuG2o4fVOr0-uJ7gPFDrUP9rV5rc6t7qMdYO2384Ec9lt0N1CYGuzFjkdk6wTqm0Ye-jq4-1VvIvrgL5XdMt_UXGHWjgx62GfLL6rnTQ4ZX9-tRdf3p_MfZ5-bq68Xl2clVY1rejg0V2JDWUJBAOyw4R9IYgsBJiy1gaAmHcqnNAqNFaV2zzjBoKWdMMts5elRdzlwb9VKtk1_ptFVRe_XnIKZe6VKyGUAhQoXUshC0ZQtnJaUOOY7Km0hpiSmsjzNrvVmswBoIY9LDDnT3Jvgb1cdfqhOobWlXAO_uASn-3EAe1cpnA8OgA8RNVoQigVnXYl6kb2dpr0tpPrhYiGaSq5MOsZZSyUhRHf9HVT4LK18mA86X8x3Dm8ct_K39YfBFwGeBSTHnBE6ZadY-Th35QWGkpoipOWKqRExNEVMTGv_jfIA_5SGzJxdt6CGpZdykEpH8hOkObGLhRQ
CitedBy_id crossref_primary_10_1007_s00228_023_03479_3
crossref_primary_10_7759_cureus_28582
crossref_primary_10_1007_s00415_025_13279_7
crossref_primary_10_1177_26317745211062983
crossref_primary_10_1053_j_gastro_2024_03_018
crossref_primary_10_1136_rapm_2024_106345
crossref_primary_10_3389_fcvm_2023_1257628
crossref_primary_10_3389_fphar_2024_1358340
crossref_primary_10_1136_bmj_2024_081164
crossref_primary_10_1136_bmj_2022_070022
crossref_primary_10_1016_j_hlpt_2024_100879
crossref_primary_10_1016_j_ijnurstu_2021_103904
crossref_primary_10_1097_MEG_0000000000002222
crossref_primary_10_1016_j_jep_2023_117663
crossref_primary_10_1016_j_yebeh_2025_110434
crossref_primary_10_1097_ALN_0000000000004381
crossref_primary_10_3390_nu16162690
crossref_primary_10_1016_j_bja_2023_11_046
crossref_primary_10_1016_j_smrv_2025_102117
crossref_primary_10_1038_s41598_020_70641_7
crossref_primary_10_1016_j_maturitas_2025_108713
crossref_primary_10_1210_clinem_dgae651
crossref_primary_10_1016_j_heliyon_2024_e31186
crossref_primary_10_1016_j_ejvs_2022_08_025
crossref_primary_10_1053_j_jvca_2025_08_053
crossref_primary_10_1136_bmjopen_2020_039122
crossref_primary_10_3389_fnut_2023_1133293
crossref_primary_10_1016_j_jcms_2021_04_014
crossref_primary_10_1001_jamapediatrics_2021_0775
crossref_primary_10_1186_s13019_024_03015_z
crossref_primary_10_1097_JS9_0000000000000630
crossref_primary_10_1017_cjn_2023_287
crossref_primary_10_1097_JS9_0000000000000991
crossref_primary_10_1080_00273171_2022_2115965
crossref_primary_10_1016_j_ejvs_2024_05_014
crossref_primary_10_1016_j_jamda_2022_01_057
crossref_primary_10_1136_bmjopen_2022_061855
crossref_primary_10_3389_fendo_2023_1144290
crossref_primary_10_1038_s41598_022_22431_6
crossref_primary_10_3390_nu17162683
crossref_primary_10_3389_fneur_2025_1544135
crossref_primary_10_2106_JBJS_OA_23_00064
crossref_primary_10_1016_j_bja_2023_02_041
crossref_primary_10_1007_s00228_025_03882_y
crossref_primary_10_1016_j_bjane_2024_844565
crossref_primary_10_1016_j_bja_2024_12_039
crossref_primary_10_1007_s11239_021_02628_8
crossref_primary_10_1016_j_drugalcdep_2020_108467
crossref_primary_10_1016_j_jshs_2024_01_004
crossref_primary_10_1016_j_ajp_2024_104316
crossref_primary_10_1177_00033197221121616
crossref_primary_10_1016_j_chest_2024_06_3773
crossref_primary_10_1007_s10557_023_07457_w
crossref_primary_10_1007_s00415_024_12330_3
crossref_primary_10_1016_j_jclinepi_2025_111839
crossref_primary_10_1080_07853890_2025_2541420
crossref_primary_10_3389_fendo_2023_1282584
crossref_primary_10_1186_s13643_024_02736_5
crossref_primary_10_1186_s12885_023_11250_1
crossref_primary_10_2147_CLEP_S422386
crossref_primary_10_2196_40383
crossref_primary_10_1016_j_jdsr_2024_05_004
crossref_primary_10_1136_bmjopen_2024_088917
crossref_primary_10_2186_jpr_JPR_D_23_00272
crossref_primary_10_1186_s12889_021_10162_8
crossref_primary_10_1002_ijgo_15602
crossref_primary_10_1007_s00415_024_12243_1
crossref_primary_10_1093_ehjcvp_pvac065
crossref_primary_10_3390_jcm13226932
crossref_primary_10_1136_bmjopen_2022_068182
crossref_primary_10_1016_j_scitotenv_2023_167017
crossref_primary_10_1136_bjsports_2023_107956
crossref_primary_10_1186_s13018_025_05574_w
crossref_primary_10_1016_j_heliyon_2024_e37058
crossref_primary_10_1080_14787210_2021_1961579
crossref_primary_10_3389_fphar_2024_1348360
crossref_primary_10_1038_s41598_023_34348_9
crossref_primary_10_3390_pharmaceutics15051361
crossref_primary_10_3389_fendo_2025_1579101
crossref_primary_10_3389_fphar_2024_1475222
crossref_primary_10_1016_j_jagp_2024_06_012
crossref_primary_10_7717_peerj_19175
crossref_primary_10_1016_j_jshs_2024_101008
crossref_primary_10_2147_JPR_S396530
crossref_primary_10_1186_s12874_020_01113_9
crossref_primary_10_1080_09546634_2021_1927949
crossref_primary_10_1371_journal_pone_0303513
crossref_primary_10_1007_s11096_024_01755_5
crossref_primary_10_1093_ehjcvp_pvaa101
crossref_primary_10_1097_PCC_0000000000003139
crossref_primary_10_3389_fneur_2023_1176540
crossref_primary_10_1016_j_arthro_2022_11_032
crossref_primary_10_1186_s12874_023_02038_9
crossref_primary_10_1038_s41598_022_13680_6
crossref_primary_10_1186_s12936_021_03768_1
crossref_primary_10_3389_fphar_2025_1573640
crossref_primary_10_3389_fpubh_2022_1040704
crossref_primary_10_3389_fphar_2024_1410172
crossref_primary_10_1016_j_jclinepi_2025_111759
crossref_primary_10_3389_fvets_2020_00271
crossref_primary_10_1007_s00223_023_01078_z
crossref_primary_10_1097_DCR_0000000000003256
crossref_primary_10_1093_bjsopen_zrab091
crossref_primary_10_1016_j_thromres_2024_109101
crossref_primary_10_1111_ans_17831
crossref_primary_10_3390_ijms252312821
crossref_primary_10_1016_j_autrev_2024_103723
crossref_primary_10_1016_j_ihj_2025_06_006
crossref_primary_10_1016_j_ejvs_2023_05_029
crossref_primary_10_1186_s13643_020_01366_x
crossref_primary_10_1002_bimj_202300334
crossref_primary_10_1016_j_phymed_2024_156295
crossref_primary_10_1159_000534196
crossref_primary_10_1186_s12933_024_02301_3
crossref_primary_10_1016_j_dsx_2024_103136
crossref_primary_10_1016_j_injury_2023_111078
crossref_primary_10_1111_anae_15873
crossref_primary_10_1214_20_BA1224
crossref_primary_10_1007_s40520_025_03015_6
crossref_primary_10_1080_03007995_2022_2108616
crossref_primary_10_1080_09546634_2025_2513054
crossref_primary_10_1136_bmjebm_2024_113103
crossref_primary_10_1016_j_jep_2021_114665
crossref_primary_10_1007_s00540_023_03170_y
crossref_primary_10_1016_j_bja_2021_08_034
crossref_primary_10_3389_fonc_2024_1524991
crossref_primary_10_1111_jcpt_13156
crossref_primary_10_1097_JS9_0000000000000819
crossref_primary_10_1111_head_14283
crossref_primary_10_1016_j_ejso_2023_107087
crossref_primary_10_1001_jamapediatrics_2020_6826
crossref_primary_10_1016_j_jvsv_2023_03_011
crossref_primary_10_1177_15266028231193978
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106270
crossref_primary_10_3389_fendo_2025_1558560
crossref_primary_10_1515_med_2021_0242
crossref_primary_10_1016_j_imr_2023_101004
crossref_primary_10_1007_s12020_025_04342_4
crossref_primary_10_1016_j_ypmed_2022_107169
crossref_primary_10_1016_j_aed_2025_08_007
crossref_primary_10_1111_jocd_70185
crossref_primary_10_1186_s12909_024_06397_9
crossref_primary_10_1007_s12272_025_01552_2
crossref_primary_10_1001_jamanetworkopen_2024_11735
crossref_primary_10_1186_s12887_025_05469_z
crossref_primary_10_1097_CM9_0000000000002183
crossref_primary_10_1002_wps_21036
crossref_primary_10_1186_s13018_024_04792_y
crossref_primary_10_3233_NPM_221025
crossref_primary_10_1016_j_advnut_2024_100216
crossref_primary_10_1186_s12874_023_02130_0
crossref_primary_10_1186_s12893_024_02385_4
crossref_primary_10_3389_fcvm_2022_996744
crossref_primary_10_1016_j_ajic_2024_02_016
crossref_primary_10_1097_HEP_0000000000001028
crossref_primary_10_1177_17407745221112001
crossref_primary_10_1186_s40560_023_00667_2
crossref_primary_10_1053_j_jvca_2023_07_041
crossref_primary_10_3389_fneur_2024_1346099
crossref_primary_10_3390_ijerph19137711
crossref_primary_10_3389_fmed_2022_998623
crossref_primary_10_1186_s12916_023_03238_2
crossref_primary_10_1016_j_bone_2022_116610
crossref_primary_10_1097_MS9_0000000000003658
crossref_primary_10_1227_ons_0000000000001251
crossref_primary_10_1016_j_jdent_2023_104532
crossref_primary_10_1016_j_ejvs_2021_12_042
crossref_primary_10_1136_bjo_2023_323798
crossref_primary_10_1186_s44158_025_00272_9
crossref_primary_10_1186_s12905_024_03453_w
crossref_primary_10_1136_bmjebm_2022_111928
crossref_primary_10_1001_jamaophthalmol_2022_3667
crossref_primary_10_1159_000545282
crossref_primary_10_1177_02683555211015020
crossref_primary_10_1016_j_surg_2021_11_030
crossref_primary_10_1007_s00787_023_02174_z
crossref_primary_10_1016_j_bja_2024_09_020
crossref_primary_10_1186_s12889_025_21405_3
crossref_primary_10_1002_ehf2_13822
crossref_primary_10_1016_j_spinee_2021_02_022
crossref_primary_10_1186_s13018_023_03714_8
crossref_primary_10_1016_j_apmr_2023_12_013
crossref_primary_10_1007_s00384_024_04724_6
crossref_primary_10_1002_ppul_25011
crossref_primary_10_1161_HYPERTENSIONAHA_121_18415
crossref_primary_10_1186_s13020_021_00556_6
crossref_primary_10_1111_apt_16808
crossref_primary_10_3389_fpsyt_2023_1189970
crossref_primary_10_1007_s10741_024_10403_z
crossref_primary_10_1097_HEP_0000000000001254
crossref_primary_10_1159_000516640
crossref_primary_10_1371_journal_pone_0250553
crossref_primary_10_1371_journal_pone_0276129
crossref_primary_10_1016_j_jdent_2023_104636
crossref_primary_10_1016_j_psychres_2024_115874
crossref_primary_10_3389_fonc_2022_942941
crossref_primary_10_3389_fendo_2024_1431676
crossref_primary_10_1016_j_ajpc_2025_101045
Cites_doi 10.1002/jrsm.1195
10.1016/j.jval.2014.01.004
10.1016/j.jval.2014.01.003
10.1002/jrsm.1054
10.1016/j.jclinepi.2013.07.014
10.1136/bmj.g1741
10.1016/j.jval.2011.04.002
10.1136/bmj.b1147
10.1186/1741-7015-11-159
10.1111/jebm.12264
10.1136/bmj.k585
10.1002/9781118951651
10.1016/S0140-6736(07)60108-1
10.1371/journal.pone.0092508
10.1371/journal.pone.0011054
10.1371/journal.pone.0115065
10.1002/sim.1186
10.1186/2046-4053-3-110
10.7326/M14-2385
10.1002/sim.1189
10.1016/j.jclinepi.2017.06.004
10.1093/ije/dys222
10.1002/jrsm.1085
10.1186/s12916-016-0764-6
10.1016/S0895-4356(97)00049-8
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s12874-019-0829-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 13
ExternalDocumentID oai_doaj_org_article_02389a946cad4bfd933f0f7016499d2c
PMC6805536
A604533942
31640567
10_1186_s12874_019_0829_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c575t-381c25c3e9e36187709cc20ef9d1de1e527e3e9acb10b186a46c4e5374494d6f3
IEDL.DBID DOA
ISICitedReferencesCount 223
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492022100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2288
IngestDate Fri Oct 03 12:23:14 EDT 2025
Tue Nov 04 01:46:42 EST 2025
Thu Oct 02 09:42:37 EDT 2025
Tue Nov 11 10:17:06 EST 2025
Tue Nov 04 17:53:21 EST 2025
Sat Jun 21 01:31:02 EDT 2025
Sat Nov 29 06:38:57 EST 2025
Tue Nov 18 21:26:06 EST 2025
Sat Sep 06 07:35:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Network meta-analysis
Health technology assessment
Knowledge synthesis
Clinical efficacy
Systematic review
Bayesian inference
Reporting guidelines
Indirect treatment comparison
R package
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-381c25c3e9e36187709cc20ef9d1de1e527e3e9acb10b186a46c4e5374494d6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4124-2498
OpenAccessLink https://doaj.org/article/02389a946cad4bfd933f0f7016499d2c
PMID 31640567
PQID 2308146517
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_02389a946cad4bfd933f0f7016499d2c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6805536
proquest_miscellaneous_2308146517
gale_infotracmisc_A604533942
gale_infotracacademiconefile_A604533942
pubmed_primary_31640567
crossref_citationtrail_10_1186_s12874_019_0829_2
crossref_primary_10_1186_s12874_019_0829_2
springer_journals_10_1186_s12874_019_0829_2
PublicationCentury 2000
PublicationDate 2019-10-22
PublicationDateYYYYMMDD 2019-10-22
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References B Hutton (829_CR11) 2015; 162
C Xu (829_CR14) 2018; 11
JP Jansen (829_CR1) 2011; 14
829_CR12
G van Valkenhoef (829_CR15) 2012; 3
HC Bucher (829_CR27) 1997; 50
829_CR18
AW Lee (829_CR3) 2014; 67
829_CR19
S Dias (829_CR26) 2011
S Donegan (829_CR7) 2010; 5
JP Higgins (829_CR21) 2002; 21
J Jaime Caro (829_CR29) 2014; 17
B Hutton (829_CR5) 2014; 9
F Song (829_CR6) 2009; 338
S Dias (829_CR17) 2011
WJ Elliott (829_CR31) 2007; 369
AA Veroniki (829_CR24) 2013; 42
A Nikolakopoulou (829_CR32) 2018; 360
O Efthimiou (829_CR2) 2016; 7
A Bafeta (829_CR4) 2014; 348
B Kovic (829_CR8) 2017; 88
B Neupane (829_CR13) 2014; 9
S Donegan (829_CR25) 2013; 4
S Brown (829_CR16) 2014; 3
DE Warn (829_CR23) 2002; 21
S Dias (829_CR28) 2011
G Schwarzer (829_CR30) 2007; 7
W Zarin (829_CR9) 2017; 15
JP Jansen (829_CR20) 2013; 11
Sofia Dias (829_CR22) 2018
JP Jansen (829_CR10) 2014; 17
References_xml – volume: 7
  start-page: 236
  issue: 3
  year: 2016
  ident: 829_CR2
  publication-title: Res Synth Methods
  doi: 10.1002/jrsm.1195
– volume: 17
  start-page: 157
  issue: 2
  year: 2014
  ident: 829_CR10
  publication-title: Value Health
  doi: 10.1016/j.jval.2014.01.004
– volume: 17
  start-page: 174
  issue: 2
  year: 2014
  ident: 829_CR29
  publication-title: Value Health
  doi: 10.1016/j.jval.2014.01.003
– volume: 3
  start-page: 285
  issue: 4
  year: 2012
  ident: 829_CR15
  publication-title: Res Synth Methods
  doi: 10.1002/jrsm.1054
– volume: 67
  start-page: 138
  issue: 2
  year: 2014
  ident: 829_CR3
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2013.07.014
– volume: 348
  year: 2014
  ident: 829_CR4
  publication-title: BMJ
  doi: 10.1136/bmj.g1741
– ident: 829_CR19
– volume: 14
  start-page: 417
  issue: 4
  year: 2011
  ident: 829_CR1
  publication-title: Value Health
  doi: 10.1016/j.jval.2011.04.002
– volume: 338
  start-page: b1147
  year: 2009
  ident: 829_CR6
  publication-title: BMJ
  doi: 10.1136/bmj.b1147
– volume: 11
  start-page: 159
  year: 2013
  ident: 829_CR20
  publication-title: BMC Med
  doi: 10.1186/1741-7015-11-159
– volume: 11
  start-page: 176
  issue: 3
  year: 2018
  ident: 829_CR14
  publication-title: J Evid Based Med
  doi: 10.1111/jebm.12264
– volume: 360
  start-page: k585
  year: 2018
  ident: 829_CR32
  publication-title: BMJ
  doi: 10.1136/bmj.k585
– volume-title: Network Meta-Analysis for Decision Making
  year: 2018
  ident: 829_CR22
  doi: 10.1002/9781118951651
– volume: 369
  start-page: 201
  issue: 9557
  year: 2007
  ident: 829_CR31
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60108-1
– volume-title: NICE DSU technical support document 3: heterogeneity: subgroups, meta-regression, bias and bias-adjustment
  year: 2011
  ident: 829_CR28
– volume: 9
  issue: 3
  year: 2014
  ident: 829_CR5
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092508
– volume: 5
  issue: 11
  year: 2010
  ident: 829_CR7
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011054
– ident: 829_CR18
– volume: 9
  issue: 12
  year: 2014
  ident: 829_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0115065
– volume: 7
  start-page: 40
  issue: 3
  year: 2007
  ident: 829_CR30
  publication-title: R News
– volume: 21
  start-page: 1539
  issue: 11
  year: 2002
  ident: 829_CR21
  publication-title: Stat Med
  doi: 10.1002/sim.1186
– volume-title: NICE DSU technical support document 4: inconsistency in networks of evidence based on randomised controlled trials
  year: 2011
  ident: 829_CR26
– volume: 3
  start-page: 110
  year: 2014
  ident: 829_CR16
  publication-title: Systematic Reviews
  doi: 10.1186/2046-4053-3-110
– volume: 162
  start-page: 777
  issue: 11
  year: 2015
  ident: 829_CR11
  publication-title: Ann Intern Med
  doi: 10.7326/M14-2385
– ident: 829_CR12
– volume: 21
  start-page: 1601
  issue: 11
  year: 2002
  ident: 829_CR23
  publication-title: Stat Med
  doi: 10.1002/sim.1189
– volume: 88
  start-page: 47
  year: 2017
  ident: 829_CR8
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2017.06.004
– volume: 42
  start-page: 332
  issue: 1
  year: 2013
  ident: 829_CR24
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dys222
– volume: 4
  start-page: 291
  issue: 4
  year: 2013
  ident: 829_CR25
  publication-title: Res Synth Methods
  doi: 10.1002/jrsm.1085
– volume: 15
  start-page: 3
  issue: 1
  year: 2017
  ident: 829_CR9
  publication-title: BMC Med
  doi: 10.1186/s12916-016-0764-6
– volume-title: NICE DSU technical support document 2: a generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials
  year: 2011
  ident: 829_CR17
– volume: 50
  start-page: 683
  issue: 6
  year: 1997
  ident: 829_CR27
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(97)00049-8
SSID ssj0017836
Score 2.6311498
Snippet Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be...
Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be partially...
Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may be...
Abstract Background Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses (NMAs). We suspect that this issue may...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms Bayes Theorem
Bayesian analysis
Bayesian inference
Computational Biology - methods
Data analysis
Health Sciences
Health technology assessment
Humans
Indirect treatment comparison
Knowledge synthesis
Medicine
Medicine & Public Health
Meta-analysis
Methods
Network meta-analysis
Network Meta-Analysis as Topic
R (Programming language)
Software
Statistical software
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Systematic review
Systematic Reviews as Topic
Technology
Theory of Medicine/Bioethics
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kivhSvzVaZQVBUIJJ9tu3nlh9sEVaW_q2bDa7bVGSckkF_3tnNrnD1A_Qh3u428ndzmQ-b2Z_IeQ5rz0UEsHkUdUs50qAzYlK5NI12sGrdmk25-ij2tvTx8fm03SOu19Nu69akslTJ7PW8nVfIjQ7lL4mx_OgOfjdqxDtNFrj_sHRunWAxxKm9uVvL5sFoITT_6s3_ikcXR6VvNQvTWFo5-Z_MXCLbE5ZJ90e1eQ2uRLaO-T67tRXv0vs4vD9QRuGN9S1dJ9CHf0F_AwdOhqdH3G84d1poFA9I0AskDV0bDfADmgX6cJ9D3gek7bjXDndDYPLXYI8Cf09crjz7vPbD_n06IXcQ_425BDHfSU8CyYwWWqlCuN9VYRomrIJZRCVCrDofF0WNTDnuPQ8CKY4N7yRkd0nG23XhoeESvAoUXMvmcRcJ2gRZYSvYN5pkIvOSLG6H9ZPuOT4eIyvNtUnWtpRcBYEZ1FwtsrIy_Ul5yMox9-IF3iT14SIp50-6JYndjJPi5mLcQa4cA2vY2MYi0VUiD9mTFP5jLxAFbFo9bA576bDC8Ai4mfZbQmpMWOGw89tzSjBWv1s-dlKySwu4YhbG7qL3kItiH_HilJl5MGodOs9M9gHZKqwombqOGNqvtKenSawcKkLIZjMyKuVUtrJS_V_ltmjf6J-TG5UqNUQ0atqi2wMy4vwhFzz34azfvk0WecP5Kkz2w
  priority: 102
  providerName: Springer Nature
Title BUGSnet: an R package to facilitate the conduct and reporting of Bayesian network Meta-analyses
URI https://link.springer.com/article/10.1186/s12874-019-0829-2
https://www.ncbi.nlm.nih.gov/pubmed/31640567
https://www.proquest.com/docview/2308146517
https://pubmed.ncbi.nlm.nih.gov/PMC6805536
https://doaj.org/article/02389a946cad4bfd933f0f7016499d2c
Volume 19
WOSCitedRecordID wos000492022100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96ivgifls9lwiCoJRrkzQfvt3KnQrusux5x_oU0jThDqUr157gf-9M212uJ-qLD1vITnabzkdmppn8QshLUXpIJIJJoyp5KlQBNlewIpWu0g4-petqc04-qflcr1ZmcemoL6wJ6-GBe8btoU8xzgjpXSXKWEECHrOoEBnKmIp5nH0h6tkkU8P6Ae5NGNYwcy33mhxh3SFtNinuJU3ZyAt1YP2_T8mXfNLVeskri6adLzq8S-4MQSTd7wd_j1wL9X1yazYskz8gdnr8_qgO7VvqarqkkBZ_hWmDtmsane9huaF1Gigkw4j3Ct0q2q8ewP3oOtKp-xlweyWt-zJxOgutS12HYBKah-T48ODzuw_pcJJC6iEca1Nwy54VngcTuMy1UpnxnmUhmiqvQh4KpgIQnS_zrASGOWC3CAVXQhhRycgfkZ16XYcnhEqYIKIWXnKJoUvQRZQR_oJ7p4HXOiHZhrPWDzDjeNrFN9ulG1raXhgWhGFRGJYl5PX2J997jI2_dZ6iuLYdER67-wKUxg5KY_-lNAl5hcK2aMQwOO-GvQjwiAiHZfclRLqcGwG32x31BOPzI_KLjbpYJGHFWh3WF42F1A7frha5SsjjXn22Y-YwDgg8gaJGijV6qDGlPjvtsL-lzoqCy4S82aigHSad5s88e_o_ePaM3GZoQOC3GdslO-35RXhObvof7VlzPiHX1Up1Vz0hN6YH88Vy0pkktBYfZ4sv0FoenfwCAqE2Jg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZQQdAX7iNQwEhISKCIJL556yJKEbsr1Et9sxzHplVRgjYpEv-esZOsSDkkeNiHXU927cmcOzNfEHpOSwuJhFOpFyVJqWCgc6xgKTeVNPAqTezNOZqL5VIeH6tPwxx3O3a7jyXJaKmjWkv-us0DNDukvioN86Ap2N3LFBxW6OPb2z9alw7CWMJQvvztZRMHFHH6f7XGP7mji62SF-ql0Q3t3PivA9xE14eoE2_3YnILXXL1bXR1MdTV7yA9O3y_X7vuDTY13sOQR5-BncFdg72xPY43vDtxGLLnABALZBXuyw2wA9x4PDPfXZjHxHXfV44XrjOpiZAnrr2LDnfeHbzdTYdHL6QW4rcuBT9uC2aJU47wXAqRKWuLzHlV5ZXLHSuEg0Vjyzwr4XCGcksdI4JSRSvuyT20UTe1e4AwB4viJbWc8BDrOMk89_AVxBoJfJEJysb7oe2ASx4ej_FFx_xEct0zTgPjdGCcLhL0cn3J1x6U42_Es3CT14QBTzt-0Kw-60E9dYhclFFwClPR0leKEJ95EfDHlKoKm6AXQUR00HrYnDXD8AIcMeBn6W0OoTEhisLPbU0oQVvtZPnZKGQ6LIUWt9o1562GXDD8HctykaD7vdCt90xgHxCpwoqYiOPkUNOV-vQkgoVzmTFGeIJejUKpByvV_plnD_-J-im6tnuwmOv5h-XHR2izCBIO3r0ottBGtzp3j9EV-607bVdPoqb-AFUPNr8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQQRUv5S6BAkZCQgJFTeIr5q0LLCDaVUVp1TfLcWxaFSXVJkXi3zOTY0XKISEe9mF3nI1nMp4jM_5MyDNeOEgkvI6DKljMlYA1JzIRS1vmFj6F7XpzjnbVYpEfH-v94ZzTZux2H0uS_Z4GRGmq2u3zMvRLPJfbTYow7ZAG6xj3hsZgg69yPDMI0_WDo1UZAbcoDKXM3142cUYdZv-vlvkn13S5bfJS7bRzSfMb_83MTbIxRKN0p1efW-SKr26T9b2h3n6HmNnhu4PKt6-oregnCvn1Gdgf2tY0WNfje8O3E0_hjggcC8NK2pchYDa0DnRmv3vcp0mrvt-c7vnWxraDQvHNXXI4f_v59ft4OJIhdhDXtTH4d5cJx7z2TKa5Uol2Lkt80GVa-tSLTHkgWlekSQHMWS4d94IpzjUvZWD3yFpVV_4-oRIsTci5k0xiDORzEWSAv2DO5iCXPCLJ-GyMG_DK8diMr6bLW3JpesEZEJxBwZksIi9Wl5z3YB1_GzzDB74aiDjb3Q_18osZlq3BiEZbDVzYkheh1IyFJCjEJdO6zFxEnqO6GLQGMDlnh00NwCLiapkdCSEzY5rD7bYmI2EVuwn56ahwBknY-lb5-qIxkCPia1qRqohs9gq4mjODeUAECxQ1Uc0JU1NKdXrSgYjLPBGCyYi8HBXUDNar-bPMHvzT6Cdkff_N3Ox-WHx8SK5nqODg9LNsi6y1ywv_iFxz39rTZvm4W7Q_ALgBP6M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BUGSnet%3A+an+R+package+to+facilitate+the+conduct+and+reporting+of+Bayesian+network+Meta-analyses&rft.jtitle=BMC+medical+research+methodology&rft.au=B%C3%A9liveau%2C+Audrey&rft.au=Boyne%2C+Devon+J&rft.au=Slater%2C+Justin&rft.au=Brenner%2C+Darren&rft.date=2019-10-22&rft.eissn=1471-2288&rft.volume=19&rft.issue=1&rft.spage=196&rft_id=info:doi/10.1186%2Fs12874-019-0829-2&rft_id=info%3Apmid%2F31640567&rft.externalDocID=31640567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon