Developing an adapted Charlson comorbidity index for ischemic stroke outcome studies
Background The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant. Methods We identified an IS cohort ( N = 6988) from the...
Saved in:
| Published in: | BMC health services research Vol. 19; no. 1; pp. 930 - 9 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
03.12.2019
BioMed Central Ltd BMC |
| Subjects: | |
| ISSN: | 1472-6963, 1472-6963 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant.
Methods
We identified an IS cohort (
N
= 6988) from the Ontario Stroke Registry (OSR) who were discharged from acute hospitals (
N
= 100) between April 1, 2012 and March 31, 2013. We used hospital discharge ICD-10-CA data to identify Charlson comorbidities. We developed a multivariable Cox model to predict one-year mortality retaining statistically significant (
P
< 0.05) comorbidities with hazard ratios ≥1.2. Hazard ratios were used to generate revised weights (1–6) for the comorbid conditions. The performance of the IS adapted Charlson comorbidity index (ISCCI) mortality model was compared to the original CCI using the c-statistic and continuous Net Reclassification Index (cNRI).
Results
Ten of the 17 Charlson comorbid conditions were retained in the ISCCI model and 7 had reassigned weights when compared to the original CCI model . The ISCCI model showed a small but significant increase in the c-statistic compared to the CCI for 30-day mortality (c-statistic 0.746 vs. 0.732,
p
= 0.009), but no significant increase in c-statistic for in-hospital or one-year mortality. There was also no improvement in the cNRI when the ISCCI model was compared to the CCI.
Conclusions
The ISCCI model had similar performance to the original CCI model. The key advantage of the ISCCI model is it includes seven fewer comorbidities and therefore easier to implement in situations where coded data is unavailable. |
|---|---|
| AbstractList | Background The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant. Methods We identified an IS cohort (N = 6988) from the Ontario Stroke Registry (OSR) who were discharged from acute hospitals (N = 100) between April 1, 2012 and March 31, 2013. We used hospital discharge ICD-10-CA data to identify Charlson comorbidities. We developed a multivariable Cox model to predict one-year mortality retaining statistically significant (P < 0.05) comorbidities with hazard ratios [greater than or equai to]1.2. Hazard ratios were used to generate revised weights (1-6) for the comorbid conditions. The performance of the IS adapted Charlson comorbidity index (ISCCI) mortality model was compared to the original CCI using the c-statistic and continuous Net Reclassification Index (cNRI). Results Ten of the 17 Charlson comorbid conditions were retained in the ISCCI model and 7 had reassigned weights when compared to the original CCI model . The ISCCI model showed a small but significant increase in the c-statistic compared to the CCI for 30-day mortality (c-statistic 0.746 vs. 0.732, p = 0.009), but no significant increase in c-statistic for in-hospital or one-year mortality. There was also no improvement in the cNRI when the ISCCI model was compared to the CCI. Conclusions The ISCCI model had similar performance to the original CCI model. The key advantage of the ISCCI model is it includes seven fewer comorbidities and therefore easier to implement in situations where coded data is unavailable. Keywords: Charlson comorbidity, Ischemic stroke, Administrative data, Risk adjustment, Mortality The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant.BACKGROUNDThe Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant.We identified an IS cohort (N = 6988) from the Ontario Stroke Registry (OSR) who were discharged from acute hospitals (N = 100) between April 1, 2012 and March 31, 2013. We used hospital discharge ICD-10-CA data to identify Charlson comorbidities. We developed a multivariable Cox model to predict one-year mortality retaining statistically significant (P < 0.05) comorbidities with hazard ratios ≥1.2. Hazard ratios were used to generate revised weights (1-6) for the comorbid conditions. The performance of the IS adapted Charlson comorbidity index (ISCCI) mortality model was compared to the original CCI using the c-statistic and continuous Net Reclassification Index (cNRI).METHODSWe identified an IS cohort (N = 6988) from the Ontario Stroke Registry (OSR) who were discharged from acute hospitals (N = 100) between April 1, 2012 and March 31, 2013. We used hospital discharge ICD-10-CA data to identify Charlson comorbidities. We developed a multivariable Cox model to predict one-year mortality retaining statistically significant (P < 0.05) comorbidities with hazard ratios ≥1.2. Hazard ratios were used to generate revised weights (1-6) for the comorbid conditions. The performance of the IS adapted Charlson comorbidity index (ISCCI) mortality model was compared to the original CCI using the c-statistic and continuous Net Reclassification Index (cNRI).Ten of the 17 Charlson comorbid conditions were retained in the ISCCI model and 7 had reassigned weights when compared to the original CCI model . The ISCCI model showed a small but significant increase in the c-statistic compared to the CCI for 30-day mortality (c-statistic 0.746 vs. 0.732, p = 0.009), but no significant increase in c-statistic for in-hospital or one-year mortality. There was also no improvement in the cNRI when the ISCCI model was compared to the CCI.RESULTSTen of the 17 Charlson comorbid conditions were retained in the ISCCI model and 7 had reassigned weights when compared to the original CCI model . The ISCCI model showed a small but significant increase in the c-statistic compared to the CCI for 30-day mortality (c-statistic 0.746 vs. 0.732, p = 0.009), but no significant increase in c-statistic for in-hospital or one-year mortality. There was also no improvement in the cNRI when the ISCCI model was compared to the CCI.The ISCCI model had similar performance to the original CCI model. The key advantage of the ISCCI model is it includes seven fewer comorbidities and therefore easier to implement in situations where coded data is unavailable.CONCLUSIONSThe ISCCI model had similar performance to the original CCI model. The key advantage of the ISCCI model is it includes seven fewer comorbidities and therefore easier to implement in situations where coded data is unavailable. The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant. We identified an IS cohort (N = 6988) from the Ontario Stroke Registry (OSR) who were discharged from acute hospitals (N = 100) between April 1, 2012 and March 31, 2013. We used hospital discharge ICD-10-CA data to identify Charlson comorbidities. We developed a multivariable Cox model to predict one-year mortality retaining statistically significant (P < 0.05) comorbidities with hazard ratios ≥1.2. Hazard ratios were used to generate revised weights (1-6) for the comorbid conditions. The performance of the IS adapted Charlson comorbidity index (ISCCI) mortality model was compared to the original CCI using the c-statistic and continuous Net Reclassification Index (cNRI). Ten of the 17 Charlson comorbid conditions were retained in the ISCCI model and 7 had reassigned weights when compared to the original CCI model . The ISCCI model showed a small but significant increase in the c-statistic compared to the CCI for 30-day mortality (c-statistic 0.746 vs. 0.732, p = 0.009), but no significant increase in c-statistic for in-hospital or one-year mortality. There was also no improvement in the cNRI when the ISCCI model was compared to the CCI. The ISCCI model had similar performance to the original CCI model. The key advantage of the ISCCI model is it includes seven fewer comorbidities and therefore easier to implement in situations where coded data is unavailable. Background The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant. Methods We identified an IS cohort ( N = 6988) from the Ontario Stroke Registry (OSR) who were discharged from acute hospitals ( N = 100) between April 1, 2012 and March 31, 2013. We used hospital discharge ICD-10-CA data to identify Charlson comorbidities. We developed a multivariable Cox model to predict one-year mortality retaining statistically significant ( P < 0.05) comorbidities with hazard ratios ≥1.2. Hazard ratios were used to generate revised weights (1–6) for the comorbid conditions. The performance of the IS adapted Charlson comorbidity index (ISCCI) mortality model was compared to the original CCI using the c-statistic and continuous Net Reclassification Index (cNRI). Results Ten of the 17 Charlson comorbid conditions were retained in the ISCCI model and 7 had reassigned weights when compared to the original CCI model . The ISCCI model showed a small but significant increase in the c-statistic compared to the CCI for 30-day mortality (c-statistic 0.746 vs. 0.732, p = 0.009), but no significant increase in c-statistic for in-hospital or one-year mortality. There was also no improvement in the cNRI when the ISCCI model was compared to the CCI. Conclusions The ISCCI model had similar performance to the original CCI model. The key advantage of the ISCCI model is it includes seven fewer comorbidities and therefore easier to implement in situations where coded data is unavailable. Abstract Background The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant. Methods We identified an IS cohort (N = 6988) from the Ontario Stroke Registry (OSR) who were discharged from acute hospitals (N = 100) between April 1, 2012 and March 31, 2013. We used hospital discharge ICD-10-CA data to identify Charlson comorbidities. We developed a multivariable Cox model to predict one-year mortality retaining statistically significant (P < 0.05) comorbidities with hazard ratios ≥1.2. Hazard ratios were used to generate revised weights (1–6) for the comorbid conditions. The performance of the IS adapted Charlson comorbidity index (ISCCI) mortality model was compared to the original CCI using the c-statistic and continuous Net Reclassification Index (cNRI). Results Ten of the 17 Charlson comorbid conditions were retained in the ISCCI model and 7 had reassigned weights when compared to the original CCI model . The ISCCI model showed a small but significant increase in the c-statistic compared to the CCI for 30-day mortality (c-statistic 0.746 vs. 0.732, p = 0.009), but no significant increase in c-statistic for in-hospital or one-year mortality. There was also no improvement in the cNRI when the ISCCI model was compared to the CCI. Conclusions The ISCCI model had similar performance to the original CCI model. The key advantage of the ISCCI model is it includes seven fewer comorbidities and therefore easier to implement in situations where coded data is unavailable. The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine whether the original seventeen comorbidities and their weights are relevant. We identified an IS cohort (N = 6988) from the Ontario Stroke Registry (OSR) who were discharged from acute hospitals (N = 100) between April 1, 2012 and March 31, 2013. We used hospital discharge ICD-10-CA data to identify Charlson comorbidities. We developed a multivariable Cox model to predict one-year mortality retaining statistically significant (P < 0.05) comorbidities with hazard ratios [greater than or equai to]1.2. Hazard ratios were used to generate revised weights (1-6) for the comorbid conditions. The performance of the IS adapted Charlson comorbidity index (ISCCI) mortality model was compared to the original CCI using the c-statistic and continuous Net Reclassification Index (cNRI). Ten of the 17 Charlson comorbid conditions were retained in the ISCCI model and 7 had reassigned weights when compared to the original CCI model . The ISCCI model showed a small but significant increase in the c-statistic compared to the CCI for 30-day mortality (c-statistic 0.746 vs. 0.732, p = 0.009), but no significant increase in c-statistic for in-hospital or one-year mortality. There was also no improvement in the cNRI when the ISCCI model was compared to the CCI. The ISCCI model had similar performance to the original CCI model. The key advantage of the ISCCI model is it includes seven fewer comorbidities and therefore easier to implement in situations where coded data is unavailable. |
| ArticleNumber | 930 |
| Audience | Academic |
| Author | Porter, Joan Reeves, Mathew J. Hall, Ruth E. Quan, Hude |
| Author_xml | – sequence: 1 givenname: Ruth E. orcidid: 0000-0002-9214-2270 surname: Hall fullname: Hall, Ruth E. email: ruth@ices.on.ca organization: ICES, Institute for Health Policy Management and Evaluation, Dalla Lana School of Public Health, University of Toronto – sequence: 2 givenname: Joan surname: Porter fullname: Porter, Joan organization: ICES – sequence: 3 givenname: Hude surname: Quan fullname: Quan, Hude organization: Department of Community Health Sciences, Faculty of Medicine, University of Calgary – sequence: 4 givenname: Mathew J. surname: Reeves fullname: Reeves, Mathew J. organization: Department of Epidemiology, Michigan State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31796024$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB_wA9igSGzYpPiR-LFBqoZXpUpsytpy7JuMh8Qe7KRi_j0OKVUHocoLv75zbF-f8-LEBw9F8RqjS4wFe58wkZhWCMuq5gRVh2fFGc6jiklGTx6NT4vzlHYIYS4If1GcUswlQ6Q-K24_wh0MYe98X2pfaqv3E9hys9VxSMGXJowhts666VA6b-FX2YVYumS2MDpTpimGH1CGecog5OlsHaSXxfNODwle3fcXxffPn243X6ubb1-uN1c3lWl4M1Wka4jFhDPLTQM1k6IRVAsp6xbLtsbYcKk70YIUjLamsUhKY2jbtqaVBgy9KK5XXxv0Tu2jG3U8qKCd-rMQYq90nJwZQDHWcCCSdgh1taCdBIuMYcJwk08VNHt9WL32czuCNeCnqIcj0-Md77aqD3eKCUkIWgze3RvE8HOGNKkxlwmGQXsIc1KEEswYJlhk9O2K9jpfzfkuZEez4OqKIS4FJ5xn6vI_VG52KX1OQufy-pHgzeMnPNz9729nAK-AiSGlCN0DgpFaEqXWRKmcKLUkSh2yhv-jMW7SkwtLFdzwpJKsypRP8T1EtQtz9DkQT4h-A7RR4EY |
| CitedBy_id | crossref_primary_10_4103_sjg_SJG_208_20 crossref_primary_10_7759_cureus_60112 crossref_primary_10_1016_j_heliyon_2024_e36462 crossref_primary_10_1017_cjn_2022_46 crossref_primary_10_1371_journal_pone_0296402 crossref_primary_10_15829_1728_8800_2024_3996 crossref_primary_10_1186_s12877_024_05015_z crossref_primary_10_1161_STROKEAHA_122_039946 crossref_primary_10_1371_journal_pone_0251116 crossref_primary_10_4251_wjgo_v14_i6_1162 crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_106162 crossref_primary_10_1159_000521288 crossref_primary_10_1097_TXD_0000000000001438 crossref_primary_10_1016_j_hrthm_2024_01_046 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107236 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107219 crossref_primary_10_1186_s12883_024_03863_1 crossref_primary_10_1016_j_ijcard_2024_132328 crossref_primary_10_1017_cjn_2024_37 crossref_primary_10_1002_pmrj_12660 crossref_primary_10_9778_cmajo_20200300 crossref_primary_10_1016_j_jocn_2025_111205 crossref_primary_10_3389_fphar_2025_1535501 crossref_primary_10_1002_iid3_421 crossref_primary_10_1016_j_jfma_2020_12_021 crossref_primary_10_1016_j_thromres_2022_02_013 crossref_primary_10_1097_NHH_0000000000001226 crossref_primary_10_3390_brainsci15080892 crossref_primary_10_1212_WNL_0000000000209454 crossref_primary_10_1177_19386400251355652 |
| Cites_doi | 10.1002/sim.2929 10.1161/01.STR.0000135225.80898.1c 10.1016/j.jval.2017.09.002 10.1016/j.jclinepi.2007.08.001 10.1097/MLR.0000000000000317 10.1212/WNL.0000000000003457 10.1136/bmjopen-2015-007974 10.1371/journal.pone.0127240 10.1016/0895-4356(95)00564-1 10.1097/01.mlr.0000182534.19832.83 10.1371/journal.pone.0095029 10.1016/S1474-4422(14)70286-8 10.1161/01.str.0000441948.35804.77 10.1503/cmaj.121418 10.1161/01.CIR.98.10.946 10.1038/ki.2009.413 10.1371/journal.pone.0112479 10.1161/STROKEAHA.113.001584 10.1212/WNL.39.5.638 10.1016/j.jclinepi.2004.03.012 10.1161/CIRCOUTCOMES.109.921858 10.1016/S0895-4356(02)00585-1 10.1017/cjn.2015.20 10.1046/j.1525-1497.2001.016008519.x 10.1186/1472-6963-14-70 10.1097/MLR.0b013e318297429c 10.1093/aje/kwq433 10.1016/0021-9681(87)90171-8 10.1097/00005650-200502000-00012 10.1016/j.jclinepi.2003.01.002 10.1001/jama.2012.7870 10.1097/MLR.0b013e31825f64d0 10.1161/CIRCOUTCOMES.111.000095 10.1212/WNL.0000000000003321 10.2337/diacare.25.3.512 10.1080/15412550903140865 10.1016/S0272-6386(03)00415-3 10.1186/s12913-017-2697-y 10.1212/WNL.0000000000000062 10.1017/cjn.2016.278 10.1159/000479827 10.1186/1471-2288-11-83 10.1186/1472-6963-11-146 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1186/s12913-019-4720-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1472-6963 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_6657e293f00f483f9ed0cc68c7c85883 PMC6892203 A607987277 31796024 10_1186_s12913_019_4720_y |
| Genre | Journal Article |
| GeographicLocations | Ontario |
| GeographicLocations_xml | – name: Ontario |
| GrantInformation_xml | – fundername: Canadian Institutes for Health Research grantid: FDN 143303 – fundername: ICES grantid: NA – fundername: Ontario Stroke Network grantid: NA funderid: http://dx.doi.org/10.13039/501100004723 – fundername: Ontario Stroke Network grantid: NA – fundername: ; grantid: NA – fundername: ; grantid: FDN 143303 |
| GroupedDBID | --- 0R~ 23N 2WC 44B 53G 5VS 6J9 6PF 7RV 7WY 7X7 88E 8FI 8FJ 8FL AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BEZIV BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FRNLG FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC K60 K6~ KQ8 M0C M0T M1P M48 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQBIZ PQBZA PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c575t-2f52d1276d7c5e4698583a8994b19b411c79af8be9863bc5d099cc3bbbcb9cec3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506194800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1472-6963 |
| IngestDate | Fri Oct 03 12:53:37 EDT 2025 Tue Nov 04 01:30:25 EST 2025 Thu Oct 02 11:06:07 EDT 2025 Tue Nov 11 10:43:49 EST 2025 Tue Nov 04 17:55:36 EST 2025 Thu Apr 03 06:59:55 EDT 2025 Sat Nov 29 05:23:22 EST 2025 Tue Nov 18 22:35:04 EST 2025 Sat Sep 06 07:27:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Administrative data Charlson comorbidity Ischemic stroke Risk adjustment Mortality |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-2f52d1276d7c5e4698583a8994b19b411c79af8be9863bc5d099cc3bbbcb9cec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9214-2270 |
| OpenAccessLink | https://doaj.org/article/6657e293f00f483f9ed0cc68c7c85883 |
| PMID | 31796024 |
| PQID | 2321661218 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6657e293f00f483f9ed0cc68c7c85883 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6892203 proquest_miscellaneous_2321661218 gale_infotracmisc_A607987277 gale_infotracacademiconefile_A607987277 pubmed_primary_31796024 crossref_primary_10_1186_s12913_019_4720_y crossref_citationtrail_10_1186_s12913_019_4720_y springer_journals_10_1186_s12913_019_4720_y |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-03 |
| PublicationDateYYYYMMDD | 2019-12-03 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC health services research |
| PublicationTitleAbbrev | BMC Health Serv Res |
| PublicationTitleAlternate | BMC Health Serv Res |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | BR Hemmelgarn (4720_CR32) 2003; 42 A Harvard (4720_CR48) 2014; 9 MJ Pencina (4720_CR29) 2008; 27 V DeGroot (4720_CR1) 2003; 56 J Willeit (4720_CR40) 2015; 14 ME Charlson (4720_CR11) 1987; 40 4720_CR35 J Huo (4720_CR47) 2018; 21 HHG Castro (4720_CR39) 2017; 44 Canadian Institute for Health Information (4720_CR27) 2010 Jae Yoon Park (4720_CR31) 2015; 10 RE Hall (4720_CR16) 2017 K Lucyk (4720_CR36) 2017; 17 MK Kapral (4720_CR24) 2017; 88 EJ Benjamin (4720_CR20) 1998; 98 DN Juurlink (4720_CR42) 2006 JM Quail (4720_CR7) 2011; 11 M Lu (4720_CR12) 2015; 53 SK Thygesen (4720_CR41) 2011; 11 J Hux (4720_CR44) 2002; 25 R Luengo-Fernandez (4720_CR38) 2013; 44 DS Lee (4720_CR43) 2005; 43 M Schmidt (4720_CR13) 2014; 82 WA Ghali (4720_CR33) 1995; 49 R Cote (4720_CR30) 1989; 39 CJ Crooks (4720_CR50) 2015; 5 N Kamal (4720_CR15) 2015; 42 DC Radley (4720_CR5) 2008; 61 LB Goldstein (4720_CR4) 2004; 35 FO Otite (4720_CR19) 2016; 87 M Charlson (4720_CR9) 2014; 9 GC Fonarow (4720_CR37) 2012; 308 H Quan (4720_CR34) 2004; 57 SR Austin (4720_CR10) 2015; 53 H Quan (4720_CR25) 2005; 43 BJ Martin (4720_CR49) 2014; 14 MK Kapral (4720_CR14) 2013; 185 LH Schwamm (4720_CR21) 2013; 6 R Hall (4720_CR46) 2016; 22 H Quan (4720_CR3) 2011; 173 WA Ghali (4720_CR26) 2001; 16 AS Gershon (4720_CR45) 2009; 6 4720_CR23 R Hall (4720_CR18) 2014 MTA Sharabiani (4720_CR8) 2012; 50 4720_CR28 G Fonarow (4720_CR17) 2010; 3 Irene L. Katzan (4720_CR22) 2014; 45 V Sundararajan (4720_CR2) 2004; 57 J Lui (4720_CR6) 2010; 77 |
| References_xml | – volume: 27 start-page: 157 year: 2008 ident: 4720_CR29 publication-title: Stat Med doi: 10.1002/sim.2929 – volume: 35 start-page: 1941 year: 2004 ident: 4720_CR4 publication-title: Stroke doi: 10.1161/01.STR.0000135225.80898.1c – volume: 21 start-page: 334 issue: 3 year: 2018 ident: 4720_CR47 publication-title: Value Health doi: 10.1016/j.jval.2017.09.002 – ident: 4720_CR35 – volume: 61 start-page: 580 issue: 6 year: 2008 ident: 4720_CR5 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2007.08.001 – volume: 53 start-page: 355 issue: 4 year: 2015 ident: 4720_CR12 publication-title: Med Care doi: 10.1097/MLR.0000000000000317 – volume-title: Ontario and LHIN 2015/16 stroke report cards and Progress reports: setting the Bar higher year: 2017 ident: 4720_CR16 – volume-title: CIHI data quality study of the 2008–2009 discharge abstract database year: 2010 ident: 4720_CR27 – volume: 88 start-page: 1 year: 2017 ident: 4720_CR24 publication-title: Neurology doi: 10.1212/WNL.0000000000003457 – volume: 5 year: 2015 ident: 4720_CR50 publication-title: BMJ Open doi: 10.1136/bmjopen-2015-007974 – volume: 10 start-page: e0127240 issue: 5 year: 2015 ident: 4720_CR31 publication-title: PLOS ONE doi: 10.1371/journal.pone.0127240 – volume: 49 start-page: 273 issue: 3 year: 1995 ident: 4720_CR33 publication-title: J Clin Epidem doi: 10.1016/0895-4356(95)00564-1 – volume: 43 start-page: 1130 issue: 11 year: 2005 ident: 4720_CR25 publication-title: Med Care doi: 10.1097/01.mlr.0000182534.19832.83 – volume: 9 issue: 4 year: 2014 ident: 4720_CR48 publication-title: PLoS One doi: 10.1371/journal.pone.0095029 – volume: 14 start-page: 48 year: 2015 ident: 4720_CR40 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70286-8 – volume-title: Canadian Institute for Health Information Discharge Abstract Database: AValidation study year: 2006 ident: 4720_CR42 – ident: 4720_CR28 – volume: 45 start-page: 918 issue: 3 year: 2014 ident: 4720_CR22 publication-title: Stroke doi: 10.1161/01.str.0000441948.35804.77 – volume: 185 start-page: E483 year: 2013 ident: 4720_CR14 publication-title: CMAJ doi: 10.1503/cmaj.121418 – volume: 98 start-page: 946 year: 1998 ident: 4720_CR20 publication-title: Circulation. doi: 10.1161/01.CIR.98.10.946 – volume: 77 start-page: 141 year: 2010 ident: 4720_CR6 publication-title: Kidney Int doi: 10.1038/ki.2009.413 – volume: 9 issue: 12 year: 2014 ident: 4720_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0112479 – volume: 44 start-page: 2854 year: 2013 ident: 4720_CR38 publication-title: Stroke doi: 10.1161/STROKEAHA.113.001584 – volume: 39 start-page: 638 year: 1989 ident: 4720_CR30 publication-title: Neurology doi: 10.1212/WNL.39.5.638 – volume: 57 start-page: 1288 issue: 12 year: 2004 ident: 4720_CR2 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2004.03.012 – ident: 4720_CR23 – volume: 3 start-page: 291 year: 2010 ident: 4720_CR17 publication-title: Circ Cardiovasc Qual Outcomes doi: 10.1161/CIRCOUTCOMES.109.921858 – volume: 56 start-page: 221 issue: 3 year: 2003 ident: 4720_CR1 publication-title: J Clin Epi doi: 10.1016/S0895-4356(02)00585-1 – volume: 42 start-page: 168 issue: 3 year: 2015 ident: 4720_CR15 publication-title: Can J Neurol Sci doi: 10.1017/cjn.2015.20 – volume: 16 start-page: 519 issue: 8 year: 2001 ident: 4720_CR26 publication-title: J Gen Intern Med doi: 10.1046/j.1525-1497.2001.016008519.x – volume: 14 start-page: 70 year: 2014 ident: 4720_CR49 publication-title: BMC Health Serv Res doi: 10.1186/1472-6963-14-70 – volume: 53 start-page: e65 issue: 9 year: 2015 ident: 4720_CR10 publication-title: Med Care doi: 10.1097/MLR.0b013e318297429c – volume: 173 start-page: 676 year: 2011 ident: 4720_CR3 publication-title: Am J Epidemiol doi: 10.1093/aje/kwq433 – volume: 40 start-page: 373 issue: 5 year: 1987 ident: 4720_CR11 publication-title: J Chron Dis doi: 10.1016/0021-9681(87)90171-8 – volume: 43 start-page: 182 issue: 2 year: 2005 ident: 4720_CR43 publication-title: Med Care doi: 10.1097/00005650-200502000-00012 – volume: 57 start-page: 366 year: 2004 ident: 4720_CR34 publication-title: J of Clin Epi doi: 10.1016/j.jclinepi.2003.01.002 – volume: 308 start-page: 257 issue: 3 year: 2012 ident: 4720_CR37 publication-title: JAMA. doi: 10.1001/jama.2012.7870 – volume: 50 start-page: 1109 issue: 12 year: 2012 ident: 4720_CR8 publication-title: Med Care doi: 10.1097/MLR.0b013e31825f64d0 – volume: 6 start-page: 543 year: 2013 ident: 4720_CR21 publication-title: Circ Cardiovascular Quality Outcomes doi: 10.1161/CIRCOUTCOMES.111.000095 – volume: 87 start-page: 1 year: 2016 ident: 4720_CR19 publication-title: Neurology doi: 10.1212/WNL.0000000000003321 – volume: 25 start-page: 512 issue: 3 year: 2002 ident: 4720_CR44 publication-title: Diabetes Care doi: 10.2337/diacare.25.3.512 – volume: 6 start-page: 388 issue: 5 year: 2009 ident: 4720_CR45 publication-title: J Chron Obstruct Pulmon Dis doi: 10.1080/15412550903140865 – volume: 42 start-page: 125 issue: 1 year: 2003 ident: 4720_CR32 publication-title: Am J Kidney Dis doi: 10.1016/S0272-6386(03)00415-3 – volume-title: Ontario stroke evaluation report 2014: on target for stroke prevention and care year: 2014 ident: 4720_CR18 – volume: 17 start-page: 766 year: 2017 ident: 4720_CR36 publication-title: BMC Health Serv Res doi: 10.1186/s12913-017-2697-y – volume: 82 start-page: 340 year: 2014 ident: 4720_CR13 publication-title: Neurology doi: 10.1212/WNL.0000000000000062 – volume: 22 start-page: 765 issue: 7 year: 2016 ident: 4720_CR46 publication-title: Can J Neurol Sci doi: 10.1017/cjn.2016.278 – volume: 44 start-page: 232 year: 2017 ident: 4720_CR39 publication-title: Cerebrovasc Dis doi: 10.1159/000479827 – volume: 11 start-page: 83 year: 2011 ident: 4720_CR41 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-11-83 – volume: 11 start-page: 146 year: 2011 ident: 4720_CR7 publication-title: BMC Health Serv Res doi: 10.1186/1472-6963-11-146 |
| SSID | ssj0017827 |
| Score | 2.4066422 |
| Snippet | Background
The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to... The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to determine... Background The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS) cohort to... Abstract Background The Charlson comorbidity index (CCI) is commonly used to adjust for patient casemix. We reevaluated the CCI in an ischemic stroke (IS)... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 930 |
| SubjectTerms | Administrative data Adult Aged Aged, 80 and over Analysis Brain Ischemia Charlson comorbidity Comorbidity Diagnosis-Related Groups Female Health Administration Health Informatics Hospital admission and discharge Hospital patients Humans International Classification of Diseases Ischemia Ischemic stroke Male Medicine Medicine & Public Health Middle Aged Mortality Nursing Research Ontario Outcome Assessment, Health Care Patient Discharge Prognosis Proportional Hazards Models Public Health Quality Research Article Retrospective Studies Risk adjustment safety and outcomes Stroke Stroke - epidemiology |
| SummonAdditionalLinks | – databaseName: Springer Nature - Connect here FIRST to enable access dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Zi9YwEB90FRHEY3W1ukoEQVCKbdPmeFyPxQddRNdl30KTpvqx0i7t9wn73zuTHtj1AH1tJrSTzPGbzmQC8ESkAp16hYpUCRfnKi_QDgoKVcjhokOuQvvio3fy4EAdH-sP4znufqp2n1KSwVIHtVbiRY-eiW4iSHWcS4x5zi7CJfR2irTx46ejOXWALk-O6cvfTls4oNCn_1dr_JM7Ol8qeS5fGtzQ_o3_YuAmXB9RJ9sbxOQWXPDNNlx5P-bVt-Ha8PeODYeSbsPh6_ksFSsbVlblKSJTFnLzCNAZvrDt7KpCCM9Cv0WG2JetMFKmWnvWr7v2xLN2s0ZCz_qhVvEOfN5_c_jqbTzevxA7BHHrOKsL2iopKukKT1dNFoqXGKDlNtU2T1MndVkr67US3LqiQrTpHLfWOqudd3wHtpq28feAoWmofJZzx0uRW-sVt0rWOksqq1CGRATJtCnGjc3J6Y6MbyYEKUqYYfUMrp6h1TNnETybp5wOnTn-RvySdnompKba4UHbfTGjjhpKQnmEP3WS1LnitfZV4pxQTjrkXPEInpKcGFJ9_DhXjicYkEVqomX2RCK1QkAoI9hdUKLKusXw40nSDA1RnVvj201vEN-mgpq6qQjuDpI3fzMiPQw3szwCuZDJBVPLkWb1NXQMF0pnWYIMPJ8k04ymqv_zmt3_J-oHcDUj0aZKH74LW-tu4x_CZfd9veq7R0FFfwDaYze_ priority: 102 providerName: Springer Nature |
| Title | Developing an adapted Charlson comorbidity index for ischemic stroke outcome studies |
| URI | https://link.springer.com/article/10.1186/s12913-019-4720-y https://www.ncbi.nlm.nih.gov/pubmed/31796024 https://www.proquest.com/docview/2321661218 https://pubmed.ncbi.nlm.nih.gov/PMC6892203 https://doaj.org/article/6657e293f00f483f9ed0cc68c7c85883 |
| Volume | 19 |
| WOSCitedRecordID | wos000506194800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: 7WY dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: M0C dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Healthcare Administration Database customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: M0T dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthmanagement providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: 7RV dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1472-6963 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017827 issn: 1472-6963 databaseCode: RSV dateStart: 20011201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEB_09EEQ8fNcPUsEQVCW288k-3h33qHglVJrrU9h87FYlN2j2wr33zuT3ZbbE_XFlzw0U0gyM5nfbCa_ALziMcegbtGRLDdhJrMc90FOqQoFXAzI1tMXzz-K8VguFsXkylNfVBPW0QN3C3dIJwMOY1IVRVUm06pwNjKGSyOMzKX0PJ-IerbJVH9-gHFP9GeYseSHLUY1esUgLsJMYL50OYhCnqz_9y35Sky6Xi957dDUx6Kz-3CvB5HsqBv8A7jh6odwt_sCx7qLRY9g9m53H4qVNStteYHokvnzdQTZDE2tWemlRRjOPGciQ_zKlpjtUr08a9er5rtjzWaNgo61Xb3hY_h8djo7eR_2byiEBoHYOkyqnJZbcCtM7ui5yFymJSZZmY4LncWxEUVZSe0KyVNtcouI0ZhUa210YZxJn8Be3dTuKTB0b-uSLDVpyTOtnUy1FFWRRFZLtAMeQLRdU2V6gnF65-KH8omG5KpTg0I1KFKDugzgze4vFx27xt-Ej0lRO0EixvY_oLmo3lzUv8wlgNekZkXui4MzZX8LAadIRFjqiEeikAjqRAAHA0l0OzPofrk1FEVdVKtWu2bTKsSoMSdiNhnAfmc4uzEjWsOUMckCEAOTGkxq2FMvv3nWby6LJIlwAm-3xqf67ab985o9-x9r9hzuJOQ6VMSTHsDeerVxL-C2-bletqsR3BTTObVfvlK7EL6VI7h1fDqeTEfeMbE9j058O8OeyYfzCUlPP81_ARybOcU |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3pa9VAEB-0igriUa9o1RUEoRLMucfHepSKrw_RZ-m3JXtEH0pSkjyh_72zmwNTD9Cv2VmS2Z3jN5nZWYCnNKbo1A0qkqE6zHiWox2kLlRxDhcdsvHti48WbLnkx8fi_XCOux2r3ceUpLfUXq05fdGiZ3I3EcQizBjGPKfn4UKGDsvV8X34eDSlDtDlsSF9-dtpMwfk-_T_ao1_ckdnSyXP5Eu9G9q__l8M3IBrA-oke72Y3IRzttqGS4dDXn0brvZ_70h_KOkWrF5PZ6lIUZHCFCeITInPzSNAJ_jCulFrgxCe-H6LBLEvWWOk7GrtSds19VdL6k2HhJa0fa3ibfi0_2b16iAc7l8INYK4LkzK3G0Vo4bp3LqrJnOeFhigZSoWKotjzURRcmUFp6nSuUG0qXWqlNJKaKvTO7BV1ZW9BwRNg7FJluq0oJlSlqeKs1IkkVEcZYgGEI2bIvXQnNzdkfFN-iCFU9mvnsTVk2715GkAu9OUk74zx9-IX7qdnghdU23_oG4-y0FHpUtCWYQ_ZRSVGU9LYU2kNeWaaeScpwE8c3Iinerjx-liOMGALLomWnKPRkxwBIQsgJ0ZJaqsng0_GSVNuiFX51bZetNKxLcxdU3deAB3e8mbvhmRHoabSRYAm8nkjKn5SLX-4juGUy6SJEIGno-SKQdT1f55ze7_E_VjuHywOlzIxdvluwdwJXFi7qp-0h3Y6pqNfQgX9fdu3TaPvLr-AHlPOqM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3pa9VAEB-0ShHEo17RqisIgiU05-7mY7U-FOujYC39tmSP6ENJHkme0P_emVyYeoD49e2El9md4zeZ2RmA5zzk6NQtKpLlxk9kkqId5BSqkMNFh2y79sWnR2K5lGdn2fEw57QZq93HlGR_p4G6NJXt_toWvYpLvt-gl6KpBGHmJwLjn_PLcCWhmUEUrn88ndII6P7EkMr87WMzZ9T17P_VMv_kmi6WTV7InXYuaXHzv5m5BTcGNMoOevG5DZdcuQPbH4Z8-w5c77_qsf6y0h04OZzuWLG8ZLnN14hYWZezR-DO8M-rWq8sQnvW9WFkiInZCiNoqsFnTVtXXx2rNi0SOtb0NYx34dPizcnrt_4wl8E3CO5aPypSOkLBrTCpoxGUqYxzDNwSHWY6CUMjsryQ2mWSx9qkFlGoMbHW2ujMOBPfg62yKt0DYGgyrIuS2MQ5T7R2MtZSFFkUWC1RtrgHwXhAygxNy2l2xjfVBS-Sq373FO6eot1T5x68nB5Z9x07_kb8ik59IqRm290PVf1ZDbqrKDnlEBYVQVAkMi4yZwNjuDTCIOcy9uAFyYwik4AvZ_LhZgOySM211AEPRCYRKAoPdmeUqMpmtvxslDpFS1T_Vrpq0yjEvSGnZm_Sg_u9FE7vjAgQw9Ao8UDM5HPG1HylXH3pOolzmUVRgAzsjVKqBhPW_HnPHv4T9VPYPj5cqKN3y_eP4FpEUk7FQPEubLX1xj2Gq-Z7u2rqJ53m_gDnTkOH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+an+adapted+Charlson+comorbidity+index+for+ischemic+stroke+outcome+studies&rft.jtitle=BMC+health+services+research&rft.au=Ruth+E.+Hall&rft.au=Joan+Porter&rft.au=Hude+Quan&rft.au=Mathew+J.+Reeves&rft.date=2019-12-03&rft.pub=BMC&rft.eissn=1472-6963&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1186%2Fs12913-019-4720-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6657e293f00f483f9ed0cc68c7c85883 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6963&client=summon |