Privacy-preserving harmonization via distributed ComBat

Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly transferring patient data. In neuroimaging, integration of data across multiple institutions also introduces unwanted biases driven by scann...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 248; s. 118822
Hlavní autoři: Chen, Andrew A., Luo, Chongliang, Chen, Yong, Shinohara, Russell T., Shou, Haochang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.03.2022
Elsevier Limited
Elsevier
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly transferring patient data. In neuroimaging, integration of data across multiple institutions also introduces unwanted biases driven by scanner differences. These scanner effects have been shown by several research groups to severely affect downstream analyses. To facilitate the need of removing scanner effects in a distributed data setting, we introduce distributed ComBat, an adaptation of a popular harmonization method for multivariate data that borrows information across features. We present our fast and simple distributed algorithm and show that it yields equivalent results using data from the Alzheimer’s Disease Neuroimaging Initiative. Our method enables harmonization while ensuring maximal privacy protection, thus facilitating a broad range of downstream analyses in functional and structural imaging studies.
AbstractList Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly transferring patient data. In neuroimaging, integration of data across multiple institutions also introduces unwanted biases driven by scanner differences. These scanner effects have been shown by several research groups to severely affect downstream analyses. To facilitate the need of removing scanner effects in a distributed data setting, we introduce distributed ComBat, an adaptation of a popular harmonization method for multivariate data that borrows information across features. We present our fast and simple distributed algorithm and show that it yields equivalent results using data from the Alzheimer’s Disease Neuroimaging Initiative. Our method enables harmonization while ensuring maximal privacy protection, thus facilitating a broad range of downstream analyses in functional and structural imaging studies.
Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly transferring patient data. In neuroimaging, integration of data across multiple institutions also introduces unwanted biases driven by scanner differences. These scanner effects have been shown by several research groups to severely affect downstream analyses. To facilitate the need of removing scanner effects in a distributed data setting, we introduce distributed ComBat, an adaptation of a popular harmonization method for multivariate data that borrows information across features. We present our fast and simple distributed algorithm and show that it yields equivalent results using data from the Alzheimer's Disease Neuroimaging Initiative. Our method enables harmonization while ensuring maximal privacy protection, thus facilitating a broad range of downstream analyses in functional and structural imaging studies.Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly transferring patient data. In neuroimaging, integration of data across multiple institutions also introduces unwanted biases driven by scanner differences. These scanner effects have been shown by several research groups to severely affect downstream analyses. To facilitate the need of removing scanner effects in a distributed data setting, we introduce distributed ComBat, an adaptation of a popular harmonization method for multivariate data that borrows information across features. We present our fast and simple distributed algorithm and show that it yields equivalent results using data from the Alzheimer's Disease Neuroimaging Initiative. Our method enables harmonization while ensuring maximal privacy protection, thus facilitating a broad range of downstream analyses in functional and structural imaging studies.
ArticleNumber 118822
Author Shinohara, Russell T.
Shou, Haochang
Chen, Yong
Chen, Andrew A.
Luo, Chongliang
Author_xml – sequence: 1
  givenname: Andrew A.
  surname: Chen
  fullname: Chen, Andrew A.
  email: andrewac@pennmedicine.upenn.edu
  organization: Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
– sequence: 2
  givenname: Chongliang
  surname: Luo
  fullname: Luo, Chongliang
  organization: Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
– sequence: 3
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  organization: Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
– sequence: 4
  givenname: Russell T.
  surname: Shinohara
  fullname: Shinohara, Russell T.
  organization: Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
– sequence: 5
  givenname: Haochang
  surname: Shou
  fullname: Shou, Haochang
  organization: Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34958950$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhiNURD_gL6BIXLhk63Hs2L4g6ApopUpwgLPlOJPFIYkXO1lp--vxNqVIe9qTLeuZxzPzXmZnox8xy3IgKyBQXXerEefg3WA2uKKEwgpASkpfZBdAFC8UF_TscOdlIQHUeXYZY0cIUcDkq-y8ZIpLxclFJr4HtzN2X2wDRgw7N27yXyYMfnQPZnJ-zHfO5I2LU3D1PGGTr_1wY6bX2cvW9BHfPJ1X2c8vn3-sb4v7b1_v1p_uC8sFnwpaQ8tKqYytalXZFltiG5TcsNYy3jaEMSjRSGulMEyauqZ1KdCKlpcVUVheZXeLt_Gm09uQRg577Y3Tjw8-bLQJk7M96qYRJO0AZfqSGWiVAMFA1GXJAOqSJdf7xbUN_s-McdKDixb73ozo56hpBRworQQk9N0R2vk5jGnSRFFQiqbuEvX2iZrrAZvn9v6tNwFyAWzwMQZsnxEg-pCk7vT_JPUhSb0kmUo_HJVaNz0mMgXj-lMEN4sAUzw7h0FH63C02LiAdkr7c6dIPh5JbO9GZ03_G_enKf4CGTnVLA
CitedBy_id crossref_primary_10_1016_j_neuroimage_2022_119297
crossref_primary_10_1016_j_neuroimage_2023_120125
crossref_primary_10_1371_journal_pone_0321631
crossref_primary_10_1007_s43032_025_01917_4
crossref_primary_10_1002_hbm_26708
crossref_primary_10_1016_j_dcn_2024_101464
crossref_primary_10_1038_s41597_023_02421_7
crossref_primary_10_1016_j_waojou_2025_101120
crossref_primary_10_1016_j_biopsych_2025_09_003
crossref_primary_10_1089_neu_2024_0128
crossref_primary_10_1093_biomtc_ujae003
crossref_primary_10_1146_annurev_biodatasci_020722_100353
crossref_primary_10_1002_eng2_70153
crossref_primary_10_1162_imag_a_00011
Cites_doi 10.3233/JAD-190283
10.1016/j.neuroimage.2017.08.047
10.1016/j.neuroimage.2020.117129
10.1016/j.neuroimage.2009.11.006
10.1093/jamia/ocz199
10.1093/jamia/ocaa044
10.1016/j.neuroimage.2008.10.037
10.1016/j.neuroimage.2016.02.036
10.1038/s41386-018-0122-9
10.1002/hbm.24241
10.1016/j.neuroimage.2008.12.016
10.1016/j.neuroimage.2017.11.024
10.1016/j.neuroimage.2019.116450
10.1002/jmri.22003
10.1093/biostatistics/kxj037
10.1016/j.dcn.2019.100706
10.1007/s12021-011-9109-y
10.1016/j.datak.2007.03.015
10.3174/ajnr.A5254
10.1016/j.neuroimage.2006.02.051
10.1002/hbm.20511
10.1109/TMI.2010.2046908
10.1016/j.jalz.2010.03.004
10.1198/jasa.2009.tm08651
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Mar 2022
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Mar 2022
CorporateAuthor the Alzheimer’s Disease Neuroimaging Initiative
Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer’s Disease Neuroimaging Initiative
– name: Alzheimer’s Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2021.118822
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


ProQuest One Psychology
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_dd70822e81f44a1f9717417b33411b34
34958950
10_1016_j_neuroimage_2021_118822
S1053811921010934
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS112274
– fundername: NINDS NIH HHS
  grantid: R01 NS085211
– fundername: NIMH NIH HHS
  grantid: R01 MH123550
– fundername: NINDS NIH HHS
  grantid: R01 NS060910
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
9DU
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-2b1f4389ac6b96cfef0cde85a4fc45fd04413ea8cc87a48abb2b37ec7f53609e3
IEDL.DBID M7P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744505300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:45:43 EDT 2025
Sun Nov 09 10:11:49 EST 2025
Tue Oct 07 06:50:19 EDT 2025
Thu Apr 03 06:57:38 EDT 2025
Sat Nov 29 06:55:31 EST 2025
Tue Nov 18 20:53:13 EST 2025
Fri Feb 23 02:41:22 EST 2024
Tue Oct 14 19:35:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Privacy-preserving
Distributed analysis
Site effect
ComBat
Harmonization
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-2b1f4389ac6b96cfef0cde85a4fc45fd04413ea8cc87a48abb2b37ec7f53609e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/dd70822e81f44a1f9717417b33411b34
PMID 34958950
PQID 2621992609
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_dd70822e81f44a1f9717417b33411b34
proquest_miscellaneous_2615122671
proquest_journals_2621992609
pubmed_primary_34958950
crossref_primary_10_1016_j_neuroimage_2021_118822
crossref_citationtrail_10_1016_j_neuroimage_2021_118822
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118822
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118822
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Wasserman, Zhou (bib0029) 2010; 105
Marek, Tervo-Clemmens, Nielsen, Wheelock, Miller, Laumann, Earl, Foran, Cordova, Doyle, Perrone, Miranda-Dominguez, Feczko, Sturgeon, Graham, Hermosillo, Snider, Galassi, Nagel, Ewing, Eggebrecht, Garavan, Dale, Greene, Barch, Fair, Luna, Dosenbach (bib0022) 2019; 40
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0027) 2010; 29
Wonderlick, Ziegler, Hosseini-Varnamkhasti, Locascio, Bakkour, van der Kouwe, Triantafyllou, Corkin, Dickerson (bib0030) 2009; 44
Manjón, Coupé, Martí-Bonmatí, Collins, Robles (bib0021) 2010; 31
Chen, Beer, Tustison, Cook, Shinohara, Shou (bib0006) 2021
Duan, Boland, Liu, Liu, Chang, Xu, Chu, Schmid, Forrest, Holmes, Schuemie, Berlin, Moore, Chen (bib0008) 2020; 27
Pomponio, Erus, Habes, Doshi, Srinivasan, Mamourian, Bashyam, Nasrallah, Satterthwaite, Fan, Launer, Masters, Maruff, Zhuo, Völzke, Johnson, Fripp, Koutsouleris, Wolf, Gur, Gur, Morris, Albert, Grabe, Resnick, Bryan, Wolk, Shinohara, Shou, Davatzikos (bib0023) 2020; 208
Avants, Klein, Tustison, Woo, Gee (bib0002) 2010
Das, Avants, Grossman, Gee (bib0007) 2009; 45
Shinohara, Oh, Nair, Calabresi, Davatzikos, Doshi, Henry, Kim, Linn, Papinutto, Pelletier, Pham, Reich, Rooney, Roy, Stern, Tummala, Yousuf, Zhu, Sicotte, Bakshi, Cooperative (bib0025) 2017; 38
Fortin, Sweeney, Muschelli, Crainiceanu, Shinohara (bib0014) 2016; 132
Duan, Luo, Schuemie, Tong, Liang, Chang, Boland, Bian, Xu, Holmes, Forrest, Morton, Berlin, Moore, Mahoney, Chen (bib0009) 2020; 27
Jack, Bernstein, Borowski, Gunter, Fox, Thompson, Schuff, Krueger, Killiany, DeCarli, Dale, Weiner (bib0018) 2010; 6
Johnson, Li, Rabinovic (bib0019) 2007; 8
Shokri, Shmatikov (bib0026) 2015
Glocker, B., Robinson, R., Castro, D. C., Dou, Q., Konukoglu, E., 2019. Machine learning with multi-site imaging data: an empirical study on the impact of scanner effects. arXiv:1910.04597 [cs, eess, q-bio]
Tustison, Holbrook, Avants, Roberts, Cook, Reagh, Duda, Stone, Gillen, Yassa, Initiative (bib0028) 2019; 71
Dwork, McSherry, Nissim, Smith (bib0010) 2016; 7
Dwork, Roth (bib0011) 2014; 9
Al-Rubaie, Wu, Chang, Kung (bib0001) 2017
Bartlett, DeLorenzo, Sharma, Yang, Zhang, Petkova, Weissman, McGrath, Fava, Ogden, Kurian, Malchow, Cooper, Trombello, McInnis, Adams, Oquendo, Pizzagalli, Trivedi, Parsey (bib0004) 2018; 43
Beer, Tustison, Cook, Davatzikos, Sheline, Shinohara, Linn (bib0005) 2020; 220
Fortin, Cullen, Sheline, Taylor, Aselcioglu, Cook, Adams, Cooper, Fava, McGrath, McInnis, Phillips, Trivedi, Weissman, Shinohara (bib0012) 2018; 167
İnan, Kaya, Saygın, Savaş, Hintoğlu, Levi (bib0017) 2007; 63
Avants, Tustison, Wu, Cook, Gee (bib0003) 2011; 9
Yu, Linn, Cook, Phillips, McInnis, Fava, Trivedi, Weissman, Shinohara, Sheline (bib0031) 2018; 39
Fortin, Parker, Tunç, Watanabe, Elliott, Ruparel, Roalf, Satterthwaite, Gur, Gur, Schultz, Verma, Shinohara (bib0013) 2017; 161
Reig, Sánchez-González, Arango, Castro, González-Pinto, Ortuño, Crespo-Facorro, Bargalló, Desco (bib0024) 2009; 30
Han, Jovicich, Salat, van der Kouwe, Quinn, Czanner, Busa, Pacheco, Albert, Killiany, Maguire, Rosas, Makris, Dale, Dickerson, Fischl (bib0016) 2006; 32
Kruggel, Turner, Muftuler, Alzheimer’s Disease Neuroimaging Initiative (bib0020) 2010; 49
Das (10.1016/j.neuroimage.2021.118822_bib0007) 2009; 45
Duan (10.1016/j.neuroimage.2021.118822_bib0009) 2020; 27
Dwork (10.1016/j.neuroimage.2021.118822_bib0011) 2014; 9
Reig (10.1016/j.neuroimage.2021.118822_bib0024) 2009; 30
İnan (10.1016/j.neuroimage.2021.118822_bib0017) 2007; 63
Pomponio (10.1016/j.neuroimage.2021.118822_bib0023) 2020; 208
Wonderlick (10.1016/j.neuroimage.2021.118822_bib0030) 2009; 44
Marek (10.1016/j.neuroimage.2021.118822_bib0022) 2019; 40
Johnson (10.1016/j.neuroimage.2021.118822_bib0019) 2007; 8
Bartlett (10.1016/j.neuroimage.2021.118822_bib0004) 2018; 43
Shinohara (10.1016/j.neuroimage.2021.118822_bib0025) 2017; 38
Al-Rubaie (10.1016/j.neuroimage.2021.118822_bib0001) 2017
Chen (10.1016/j.neuroimage.2021.118822_bib0006) 2021
Fortin (10.1016/j.neuroimage.2021.118822_bib0014) 2016; 132
Han (10.1016/j.neuroimage.2021.118822_bib0016) 2006; 32
Manjón (10.1016/j.neuroimage.2021.118822_bib0021) 2010; 31
Tustison (10.1016/j.neuroimage.2021.118822_bib0027) 2010; 29
Tustison (10.1016/j.neuroimage.2021.118822_bib0028) 2019; 71
Wasserman (10.1016/j.neuroimage.2021.118822_bib0029) 2010; 105
Beer (10.1016/j.neuroimage.2021.118822_bib0005) 2020; 220
Jack (10.1016/j.neuroimage.2021.118822_bib0018) 2010; 6
Dwork (10.1016/j.neuroimage.2021.118822_bib0010) 2016; 7
Shokri (10.1016/j.neuroimage.2021.118822_bib0026) 2015
Avants (10.1016/j.neuroimage.2021.118822_bib0002) 2010
Kruggel (10.1016/j.neuroimage.2021.118822_bib0020) 2010; 49
Duan (10.1016/j.neuroimage.2021.118822_bib0008) 2020; 27
10.1016/j.neuroimage.2021.118822_bib0015
Yu (10.1016/j.neuroimage.2021.118822_bib0031) 2018; 39
Avants (10.1016/j.neuroimage.2021.118822_bib0003) 2011; 9
Fortin (10.1016/j.neuroimage.2021.118822_bib0013) 2017; 161
Fortin (10.1016/j.neuroimage.2021.118822_bib0012) 2018; 167
References_xml – volume: 7
  start-page: 17
  year: 2016
  end-page: 51
  ident: bib0010
  article-title: Calibrating noise to sensitivity in private data analysis
  publication-title: J. Priv. Confid.
– volume: 9
  start-page: 211
  year: 2014
  end-page: 407
  ident: bib0011
  article-title: The algorithmic foundations of differential privacy
  publication-title: Found. Trends® Theor. Comput. Sci.
– volume: 27
  start-page: 1028
  year: 2020
  end-page: 1036
  ident: bib0009
  article-title: Learning from local to global: an efficient distributed algorithm for modeling time-to-event data
  publication-title: J. Am. Med. Inform. Assoc.
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  ident: bib0013
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: NeuroImage
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib0027
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  start-page: 212
  year: 2010
  end-page: 220
  ident: bib0018
  article-title: Update on the MRI core of the Alzheimer’s disease neuroimaging initiative
  publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc.
– volume: 132
  start-page: 198
  year: 2016
  end-page: 212
  ident: bib0014
  article-title: Removing inter-subject technical variability in magnetic resonance imaging studies
  publication-title: NeuroImage
– volume: 44
  start-page: 1324
  year: 2009
  end-page: 1333
  ident: bib0030
  article-title: Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging
  publication-title: NeuroImage
– volume: 63
  start-page: 646
  year: 2007
  end-page: 666
  ident: bib0017
  article-title: Privacy preserving clustering on horizontally partitioned data
  publication-title: Data Knowl. Eng.
– volume: 39
  start-page: 4213
  year: 2018
  end-page: 4227
  ident: bib0031
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data
  publication-title: Hum. Brain Mapp.
– volume: 220
  start-page: 117129
  year: 2020
  ident: bib0005
  article-title: Longitudinal ComBat: a method for harmonizing longitudinal multi-scanner imaging data
  publication-title: NeuroImage
– volume: 9
  start-page: 381
  year: 2011
  end-page: 400
  ident: bib0003
  article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
– start-page: 1310
  year: 2015
  end-page: 1321
  ident: bib0026
  article-title: Privacy-preserving deep learning
  publication-title: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security
– volume: 31
  start-page: 192
  year: 2010
  end-page: 203
  ident: bib0021
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imaging JMRI
– year: 2010
  ident: bib0002
  article-title: Evaluation of open-access, automated brain extraction methods on multi-site multi-disorder data
  publication-title: Proceedings of the 16th Annual Meeting for the Organization of Human Brain Mapping
– start-page: 280
  year: 2017
  end-page: 287
  ident: bib0001
  article-title: Privacy-preserving PCA on horizontally-partitioned data
  publication-title: Proceedings of the IEEE Conference on Dependable and Secure Computing
– volume: 40
  start-page: 100706
  year: 2019
  ident: bib0022
  article-title: Identifying reproducible individual differences in childhood functional brain networks: an ABCD study
  publication-title: Dev. Cognit. Neurosci.
– volume: 167
  start-page: 104
  year: 2018
  end-page: 120
  ident: bib0012
  article-title: Harmonization of cortical thickness measurements across scanners and sites
  publication-title: NeuroImage
– volume: 38
  start-page: 1501
  year: 2017
  end-page: 1509
  ident: bib0025
  article-title: Volumetric analysis from a harmonized multisite brain MRI study of a single subject with multiple sclerosis
  publication-title: Am. J. Neuroradiol.
– volume: 8
  start-page: 118
  year: 2007
  end-page: 127
  ident: bib0019
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
– volume: 71
  start-page: 165
  year: 2019
  end-page: 183
  ident: bib0028
  article-title: Longitudinal mapping of cortical thickness measurements: an Alzheimer’s disease neuroimaging initiative-based evaluation study
  publication-title: J. Alzheimers Dis.
– volume: 45
  start-page: 867
  year: 2009
  end-page: 879
  ident: bib0007
  article-title: Registration based cortical thickness measurement
  publication-title: NeuroImage
– volume: 30
  start-page: 355
  year: 2009
  end-page: 368
  ident: bib0024
  article-title: Assessment of the increase in variability when combining volumetric data from different scanners
  publication-title: Hum. Brain Mapp.
– start-page: 858415
  year: 2021
  ident: bib0006
  article-title: Removal of scanner effects in covariance improves multivariate pattern analysis in neuroimaging data
  publication-title: Human Brain Mapping
– volume: 32
  start-page: 180
  year: 2006
  end-page: 194
  ident: bib0016
  article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
  publication-title: NeuroImage
– volume: 43
  start-page: 2221
  year: 2018
  end-page: 2230
  ident: bib0004
  article-title: Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder
  publication-title: Neuropsychopharmacology
– volume: 27
  start-page: 376
  year: 2020
  end-page: 385
  ident: bib0008
  article-title: Learning from electronic health records across multiple sites: a communication-efficient and privacy-preserving distributed algorithm
  publication-title: J. Am. Med. Inform. Assoc.
– reference: Glocker, B., Robinson, R., Castro, D. C., Dou, Q., Konukoglu, E., 2019. Machine learning with multi-site imaging data: an empirical study on the impact of scanner effects. arXiv:1910.04597 [cs, eess, q-bio]
– volume: 208
  start-page: 116450
  year: 2020
  ident: bib0023
  article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
  publication-title: NeuroImage
– volume: 49
  start-page: 2123
  year: 2010
  end-page: 2133
  ident: bib0020
  article-title: Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort
  publication-title: NeuroImage
– volume: 105
  start-page: 375
  year: 2010
  end-page: 389
  ident: bib0029
  article-title: A statistical framework for differential privacy
  publication-title: J. Am. Stat. Assoc.
– start-page: 858415
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118822_bib0006
  article-title: Removal of scanner effects in covariance improves multivariate pattern analysis in neuroimaging data
  publication-title: Human Brain Mapping
– volume: 71
  start-page: 165
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118822_bib0028
  article-title: Longitudinal mapping of cortical thickness measurements: an Alzheimer’s disease neuroimaging initiative-based evaluation study
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-190283
– volume: 161
  start-page: 149
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118822_bib0013
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.047
– start-page: 280
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118822_bib0001
  article-title: Privacy-preserving PCA on horizontally-partitioned data
– volume: 220
  start-page: 117129
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118822_bib0005
  article-title: Longitudinal ComBat: a method for harmonizing longitudinal multi-scanner imaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117129
– volume: 49
  start-page: 2123
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118822_bib0020
  article-title: Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.11.006
– volume: 27
  start-page: 376
  issue: 3
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118822_bib0008
  article-title: Learning from electronic health records across multiple sites: a communication-efficient and privacy-preserving distributed algorithm
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocz199
– volume: 27
  start-page: 1028
  issue: 7
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118822_bib0009
  article-title: Learning from local to global: an efficient distributed algorithm for modeling time-to-event data
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocaa044
– volume: 44
  start-page: 1324
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118822_bib0030
  article-title: Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.037
– volume: 132
  start-page: 198
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118822_bib0014
  article-title: Removing inter-subject technical variability in magnetic resonance imaging studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.036
– volume: 43
  start-page: 2221
  issue: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118822_bib0004
  article-title: Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-018-0122-9
– volume: 39
  start-page: 4213
  issue: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118822_bib0031
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24241
– volume: 45
  start-page: 867
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118822_bib0007
  article-title: Registration based cortical thickness measurement
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.016
– volume: 167
  start-page: 104
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118822_bib0012
  article-title: Harmonization of cortical thickness measurements across scanners and sites
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.11.024
– volume: 208
  start-page: 116450
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118822_bib0023
  article-title: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116450
– volume: 31
  start-page: 192
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118822_bib0021
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imaging JMRI
  doi: 10.1002/jmri.22003
– volume: 8
  start-page: 118
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118822_bib0019
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 40
  start-page: 100706
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118822_bib0022
  article-title: Identifying reproducible individual differences in childhood functional brain networks: an ABCD study
  publication-title: Dev. Cognit. Neurosci.
  doi: 10.1016/j.dcn.2019.100706
– volume: 9
  start-page: 381
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118822_bib0003
  article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-011-9109-y
– volume: 63
  start-page: 646
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118822_bib0017
  article-title: Privacy preserving clustering on horizontally partitioned data
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2007.03.015
– year: 2010
  ident: 10.1016/j.neuroimage.2021.118822_bib0002
  article-title: Evaluation of open-access, automated brain extraction methods on multi-site multi-disorder data
– start-page: 1310
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118822_bib0026
  article-title: Privacy-preserving deep learning
– volume: 38
  start-page: 1501
  issue: 8
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118822_bib0025
  article-title: Volumetric analysis from a harmonized multisite brain MRI study of a single subject with multiple sclerosis
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5254
– volume: 32
  start-page: 180
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118822_bib0016
  article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.051
– volume: 7
  start-page: 17
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118822_bib0010
  article-title: Calibrating noise to sensitivity in private data analysis
  publication-title: J. Priv. Confid.
– volume: 30
  start-page: 355
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118822_bib0024
  article-title: Assessment of the increase in variability when combining volumetric data from different scanners
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20511
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118822_bib0027
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 9
  start-page: 211
  issue: 3–4
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118822_bib0011
  article-title: The algorithmic foundations of differential privacy
  publication-title: Found. Trends® Theor. Comput. Sci.
– volume: 6
  start-page: 212
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118822_bib0018
  article-title: Update on the MRI core of the Alzheimer’s disease neuroimaging initiative
  publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc.
  doi: 10.1016/j.jalz.2010.03.004
– volume: 105
  start-page: 375
  issue: 489
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118822_bib0029
  article-title: A statistical framework for differential privacy
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.tm08651
– ident: 10.1016/j.neuroimage.2021.118822_bib0015
SSID ssj0009148
Score 2.5086951
Snippet Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118822
SubjectTerms Algorithms
Alzheimer's disease
ComBat
Datasets
Distributed analysis
Estimates
Harmonization
Humans
Information Dissemination
Magnetic fields
Medical imaging
Methods
Neurodegenerative diseases
Neuroimaging
Privacy
Privacy-preserving
Scanners
Site effect
Structure-function relationships
Systems Integration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5ERLyIb-uLCl6LbZptUjypKB5UPKh4C2keUtGurOuC_96ZvtSDuAevu0kpX2YmX-iXbwAOrBS6KKyIcCt2EekuokI7jXkVM0-6i7QWyN5fiutr-fCQ33xr9UWasMYeuAHu0FpBpuROJp5znfgczx88EUWK5Tcp0toJFFlPd5jq7HaR5be6nUbNVbtDli-Yo3gmZAlWCqSW7MdmVHv2_9iTfuOc9d5zvgSLLWkMj5uXXYYZV63A_FX7WXwVxM2onGjzEZGqlZK_egzJknrY3bIMJ6UOLXnkUnsrZ0MsAyd6vAZ352e3pxdR2xEhMkirxhErEAVET5usyDPjnY-NdXKguTd84G2M5CZ1WhqDS8AlrgIrUuGM8IM0i3OXrsNsNazcJoT4BM5wABfeIrBc5pKs45OMeqObLAtAdNAo09qFU9eKZ9Xpwp7UF6iKQFUNqAEk_czXxjJjijknhH4_nkyv6x8wFFQbCuqvUAgg79ZOdfdKsRLig8opXuCon9tyj4ZTTDl7pwsV1daAN8UyRtpexD2A_f5vzF76JKMrN3ynMcS4WCaSADaaEOsxSPHsKvNBvPUf2GzDAqOLG7V6bgdmx6N3twtzZjIu30Z7dfJ8Arw6HM8
  priority: 102
  providerName: Directory of Open Access Journals
Title Privacy-preserving harmonization via distributed ComBat
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921010934
https://dx.doi.org/10.1016/j.neuroimage.2021.118822
https://www.ncbi.nlm.nih.gov/pubmed/34958950
https://www.proquest.com/docview/2621992609
https://www.proquest.com/docview/2615122671
https://doaj.org/article/dd70822e81f44a1f9717417b33411b34
Volume 248
WOSCitedRecordID wos000744505300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXYS48H4ElipIXCPqR2JHHBBFu-JAqwoB6s1ybGeVFSRL263Ev2fGcVLtAVSJSw7J2Io99szY_vwNIW-ckqaqnMzAFfsMcRdZZbyBeTVlNeIueADIfv8sFwu1WpXLuOG2ibDKwSYGQ-06i3vkb1nBEClZTMv3V78yzBqFp6sxhcYROUGWBB6ge8s96S4V_VW4nGeK0jIieXp8V-CLbH7CrIVVIqNgOyDYZDfcU2Dxv-Gl_haFBm90fv9_2_GA3ItxaPqhHzgPyS3fPiJ35vGk_TGRy3WzM_Z3hkBZtCftRYos191wcTPdNSZ1SLuLGbO8S8GyzMz2Cfl2fvb146csJlnILERq24xVtMYM6MYWVVnY2tdT67zKjaityGs3hXiJe6OsBa0KBYplFZfeyjrn0AjPn5Ljtmv9c5JCDYKBgJC1EwKES4Vs9LTAdOu2KBIih77VNjKQYyKMH3qAml3qvVY0akX3WkkIHUte9SwcB5SZofpGeeTRDi-69YWO01I7J5Hy3ivoBGFoXcLqVlBZcXDutOIiIeWgfD1cVQXjChU1B_zAu7FsDGf6MOXA0qfD-NHRrGz0fvAk5PX4GQwCnvKY1nfXKINBHCskTcizfoyOfcBhOazKfPri35W_JHcZ3vIIULtTcrxdX_tX5LbdbZvNekKO5EqGp5qQk9nZYvllErYy4Dln80mYg38Actwzjw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALb2igQJDgGBE7TpyoQogCVavurnooqDfXsZ0qCJJ2d7uof6q_kZm8Vj2A9tID18R2Emfmm5nkmxmAtzaVOs-tDNAUu4B4F0GunUa9CnlBvIuoIch-H8nJJD06yg7W4LLPhSFaZY-JDVDb2tA38vc84cSUTMLs4-lZQF2j6O9q30KjFYt9d_EbQ7bZh70v-H7fcb7z9fDzbtB1FQgMuibzgOesoJbf2iR5lpjCFaGxLo21KIyICxuigxA5nRqDjyFSfBKeR9IZWcQRXt1FuO4NuCkwEqJWEWM-Xhb5ZaJNvYujIGUs65hDLZ-sqU9Z_kKUwKiUM8QqdG75FXPYdA24YhX_5vU21m_n_v-2bw_gXudn-59axXgIa656BLfHHZPgMciDabnQ5iIgIjDhZXXiUxXvuk9M9Rel9i2VFaaOYM76iJzbev4Evl3LbT-F9aqu3Ab4uILgOEDIwgqBg7OUqu2zhNrJmyTxQPbvUpmuwjo1-vipeirdD7WUAkVSoFop8IANM0_bKiMrzNkmcRnGU53w5kA9PVEd7ChrJZX0dylugtCsyDB6F0zmETovLI-EB1kvbKpPxUXjgQuVK9zA1jC3c9daN2zF2Zu9vKoONmdqKawevBlOI-DRXyxdufqcxpCTyhPJPHjW6sSwBxGG-2kWh8__vfhruLN7OB6p0d5k_wXc5ZTR0tAKN2F9Pj13L-GWWczL2fRVo98-HF-3YvwBlvOOVA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB8LBYIEx6ix48SJEEKUsqJqWe0BUG_G8aMKapOyu13Uv8avYyavVQ-gvfTANbEtx56X42--AXhlM6mLwsoQXbELCXcRFtpp1KuIe8JdxA1A9tuhnEyyo6N8ugG_-1wYglX2NrEx1LY29I98h6eckJJplO_4DhYx3Ru_O_sZUgUpumnty2m0InLgLn7h8W3-dn8P9_o15-OPXz58CrsKA6HBMGUR8oJ5Kv-tTVrkqfHOR8a6LNHCG5F4G2GwEDudGYOfJDL8Kl7E0hnpkxhn4mIc9xpcl0Ra3sAGpyvCXybaNLwkDjPG8g5F1GLLGq7K8hQtBp5QOUO7hYEuv-QamwoClzzk3yLgxhOOb__Pa3gHbnXxd_C-VZi7sOGqe7D1uUMY3Ac5nZVLbS5CAgiTHa2OA2L3rvuE1WBZ6sAS3TBVCnM2QIu6qxcP4OuVTPshbFZ15R5DgCMIjg2E9FYIbJxnxMLPUiozb9J0BLLfV2U65nUqAHKieojdD7WSCEUSoVqJGAEbep617CNr9Nkl0RnaE39486CeHavOHClrJVH9uwwXQWjmczzVCyaLGIMaVsRiBHkveKpP0UWnggOVa0zgzdC3C-Pa8GzN3tu97KrOnM7VSnBH8HJ4jYaQbrd05epzakPBK08lG8GjVj-GNYhFnmR5Ej359-AvYAv1QR3uTw6ewk1OiS4N2nAbNhezc_cMbpjlopzPnjeqHsD3q9aLP6nclyU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-preserving+harmonization+via+distributed+ComBat&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.date=2022-03-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=248&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118822&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon